初中数学中考模拟试卷
2023年贵州省贵阳市 中考数学模拟试卷
贵阳市2023年中考数学模拟试卷一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,每小题3分,共36分.1.5的相反数是( )A .5B .﹣5C .15D .﹣15 2.下列运算正确的是( )A .a 6÷a 2=a 3B .a 2+a 3=a 5C .﹣2(a +b )=﹣2a +bD .(﹣2a 2)2=4a 43.据报道,电信5G 技术赋能千行百业,打造数字经济底座.5G 牌照发放三年来,三大电信运营商共投资4772亿元.把数字4772亿用科学记数法表示为( )A .4.772×109B .4.772×1010C .4.772×1011D .4.772×10124.在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )A .红球B .黄球C .白球D .蓝球5.估计√21的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.如图,将三角形纸片剪掉一角得四边形,设ΔABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )(第6题图) (第7题图)A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为( )A .5分B .4分C .3分D .45% 8.分式方程2x−1﹣1=0的解是( )A .x =1B .x =﹣2C .x =3D .x =﹣39.如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是( )(第9题图)(第10题图)A.5B.5√2C.5√3D.5√510.如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:√3,则AB 的长度为()A.10m B.10√3m C.5m D.5√3m11.在解决数学实际问题时,常常用到数形结合思想,比如:|x+1|的几何意义是数轴上表示数x的点与表示数﹣1的点的距离,|x﹣2|的几何意义是数轴上表示数x的点与表示数2的点的距离.当|x+1|+|x﹣2|取得最小值时,x的取值范围是()A.x≤﹣1B.x≤﹣1或x≥2C.﹣1≤x≤2D.x≥212.遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A B C D二、填空题:每小题4分,共16分.13.因式分解:a2+3a=.14.若一元二次方程x2+3x+k=0有两个相等的实数根,则k的值为.15.为开展“水情教育”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.16.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=°;若△AEF的面积等于1,则AB的值是.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+3x﹣1=0;②x2﹣2x=0;③x2﹣4x=4;④x2﹣9=0.18.某县教育局印发了上级主管部门的“法治和安全等知识”学习材料,某中学经过一段时间的学习,同学们都表示有了提高,为了解具体情况,综治办开展了一次全校性竞赛活动,王老师抽取了这次竞赛中部分同学的成绩,并绘制了下面不完整的统计图、表.参赛成绩60≤x<7070≤x<8080≤x<9090≤x≤100人数8m n32级别及格中等良好优秀请根据所给的信息解答下列问题:(1)王老师抽取了名学生的参赛成绩;抽取的学生的平均成绩是分;(2)将条形统计图补充完整;(3)若该校有1600名学生,请估计竞赛成绩在良好以上(x≥80)的学生有多少人?(4)在本次竞赛中,综治办发现七(1)班、八(4)班的成绩不理想,学校要求这两个班加强学习一段时间后,再由电脑随机从A、B、C、D四套试卷中给每班派发一套试卷进行测试,请用列表或画树状图的方法求出两个班同时选中同一套试卷的概率.19.已知:点A(1,3)是反比例函数y1=k(k≠0)的图象与直线y2=mx(m≠0)的一个x交点.(1)求k、m的值;(2)在第一象限内,当y2>y1时,请直接写出x的取值范围.20.今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.(1)求在甲,乙两个商店租用的服装每套各多少元?(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.21.如图,小敏在数学实践活动中,利用所学知识对他所在小区居民楼AB的高度进行测量,从小敏家阳台C测得点A的仰角为33°,测得点B的俯角为45°,已知观测点到地面的高度CD=36m,求居民楼AB的高度(结果保留整数.参考数据:sin33°≈0.55,cos33°≈0.84,tan33°≈0.65).22.如图,在平行四边形ABCD中,点E和点F是对角线BD上的两点,且BF DE=.(1)求证:BE DF=;(2)求证:ABE CDF∆≅∆.23.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.24.已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.25.如图,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且∠EAF=45°.(1)当BE=DF时,求证:AE=AF;(2)猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;(3)连接AC,G是CB延长线上一点,GH⊥AE,垂足为K,交AC于点H且GH=AE.若DF=a,CH=b,请用含a,b的代数式表示EF的长.。
湖南省长沙市师大附中教育集团第十市级名校2024届中考数学全真模拟试卷含解析
湖南省长沙市师大附中教育集团第十市级名校2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD 为等腰三角形,则线段DG长为()A.2513B.2413C.95D.852.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查3.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.4.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥35.已知电流I (安培)、电压U (伏特)、电阻R (欧姆)之间的关系为U I R =,当电压为定值时,I 关于R 的函数图象是( ) A . B . C . D .6.一元二次方程x 2﹣5x ﹣6=0的根是( )A .x 1=1,x 2=6B .x 1=2,x 2=3C .x 1=1,x 2=﹣6D .x 1=﹣1,x 2=67.已知反比例函数y=﹣6x ,当1<x <3时,y 的取值范围是( ) A .0<y <1 B .1<y <2C .﹣2<y <﹣1D .﹣6<y <﹣2 8.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据132x -,232x -,332x -,432x -,532x -,的平均数和方差分别是( ).A .12,3 B .2,1 C .24,3 D .4,39.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1 B .5.6×10﹣2 C .5.6×10﹣3 D .0.56×10﹣110.下列成语描述的事件为随机事件的是( )A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼二、填空题(共7小题,每小题3分,满分21分)11.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________.12.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.13.已知:如图,矩形ABCD 中,AB =5,BC =3,E 为AD 上一点,把矩形ABCD 沿BE 折叠,若点A 恰好落在CD 上点F 处,则AE 的长为_____.14.从-5,-103,6,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为______.15.已知,直接y=kx+b (k >0,b >0)与x 轴、y 轴交A 、B 两点,与双曲线y=16 x(x >0)交于第一象限点C ,若BC=2AB ,则S △AOB =________.16.如图,在△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B= ______17.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD 上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在边AD 上的点E 处,且EP//AB ,则AB 的长等于________.三、解答题(共7小题,满分69分)18.(10分)某水果批发市场香蕉的价格如下表 购买香蕉数(千克)不超过20千克 20千克以上但不超过40千克 40千克以上 每千克的价格 6元 5元 4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?19.(5分)先化简,再求值:(1x ﹣21x -)÷2212x x x x +-+,其中x 的值从不等式组11022(1)x x x⎧+⎪⎨⎪-≤⎩>的整数解中选取. 20.(8分)如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).求k 、m 的值;已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x=>的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.21.(10分)当x取哪些整数值时,不等式21222xx-≤-+与4﹣7x<﹣3都成立?22.(10分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?23.(12分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).24.(14分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A 作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=258,则AF=4-258=78.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,由GH∥FB,得出FDGD=BDHD,即可求解.【题目详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=25 8,∴AF=4-258=78.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=12∠DBC=12∠ADB=12∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,∵GH∥FB,∴FDGD=BDHD,即258x=55-x,解得x=25 13.故选A.【题目点拨】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.2、D【解题分析】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.3、A【解题分析】利用平行线的性质以及相似三角形的性质一一判断即可.【题目详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴,故选项B正确,∵EF∥AB,∴,∴,故选项C,D正确,故选:A.【题目点拨】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【解题分析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.5、C【解题分析】根据反比例函数的图像性质进行判断.【题目详解】解:∵UIR,电压为定值,∴I关于R的函数是反比例函数,且图象在第一象限,故选C.【题目点拨】本题考查反比例函数的图像,掌握图像性质是解题关键.6、D【解题分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【题目详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【题目点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.7、D【解题分析】根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.【题目详解】解:∵反比例函数y=﹣6x,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.故选D.【题目点拨】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.8、D【解题分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【题目详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为13,∴数据3x1,3x2,3x3,3x4,3x5的方差是13×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【题目点拨】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.9、B【解题分析】0.056用科学记数法表示为:0.056=-25.610,故选B.10、B【解题分析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C 不正确缘木求鱼是不可能事件,D 不正确;故选B .考点:随机事件.二、填空题(共7小题,每小题3分,满分21分)11、9.2×10﹣1. 【解题分析】 根据科学记数法的正确表示为()10110n a a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1. 【题目详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为: 9.2×10﹣1. 【题目点拨】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.12、3.86×108 【解题分析】根据科学记数法的表示(a×10n ,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数)形式可得:3.86亿=386000000=3.86×108.故答案是:3.86×108.13、53【解题分析】根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF =AB =5,EF =EA ,根据勾股定理求出CF ,由此得到DF 的长,再根据勾股定理即可求出AE.【题目详解】∵矩形ABCD 中,AB =5,BC =3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折叠的性质可知,BF =AB =5,EF =EA ,在Rt △BCF 中,CF 4,∴DF=DC﹣CF=1,设AE=x,则EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=53,故答案为:53.【题目点拨】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.14、2 7【解题分析】七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:2 7【题目详解】105,,6,1,0,2, 3π----这七个数中有两个负整数:-5,-1所以,随机抽取一个数,恰好为负整数的概率是:2 7故答案为2 7【题目点拨】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.15、4 3【解题分析】根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可. 【题目详解】∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=16x交于第一象限点C,若BC=2AB,设点C的坐标为(c,16c)∴OA=0.5c,OB=1163c⨯=163c,∴S△AOB=1·2OA OB=1160.523cc⨯⨯=43【题目点拨】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.16、【解题分析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.17、51 2【解题分析】设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到PE PDAB BD=,即11PE PEa-=,可得2211a aa-=,即可得到AB的长等于512-. 【题目详解】如图,设CD=AB=a ,则BC 2=BD 2-CD 2=1-a 2,由折叠可得,CE=BC ,BP=EP ,∴CE 2=1-a 2,∴Rt △CDE 中,DE 2=CE 2-CD 2=1-2a 2,∵PE ∥AB ,∠A=90°,∴∠PED=90°,∴Rt △DEP 中,DE 2=PD 2-PE 2=(1-PE )2-PE 2=1-2PE ,∴PE=a 2, ∵PE ∥AB ,∴△DEP ∽△DAB , ∴PE PD AB BD =,即11PE PE a -=, ∴2211a a a -=, 即a 2+a-1=0,解得125151a a ---==(舍去), ∴AB 的长等于AB=512. 51-.三、解答题(共7小题,满分69分)18、第一次买14千克香蕉,第二次买36千克香蕉【解题分析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y >40③当20<x <3时,则3<y <2.【题目详解】设张强第一次购买香蕉xkg ,第二次购买香蕉ykg ,由题意可得0<x <3.则①当0<x≤20,y≤40,则题意可得5065264x y x y +⎧⎨+⎩==. 解得1436x y ⎧⎨⎩==. ②当0<x≤20,y >40时,由题意可得5064264x y x y +⎧⎨+⎩==. 解得3218x y ⎧⎨⎩==.(不合题意,舍去) ③当20<x <3时,则3<y <2,此时张强用去的款项为5x+5y=5(x+y )=5×50=30<1(不合题意,舍去);④当20<x≤40 y >40时,总质量将大于60kg ,不符合题意,答:张强第一次购买香蕉14kg ,第二次购买香蕉36kg .【题目点拨】本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答. 19、-14【解题分析】先化简,再解不等式组确定x 的值,最后代入求值即可.【题目详解】 (1x ﹣21x -)÷2212x x x x+-+, =(1)(1)x x x -+-÷2212x x x x +-+, =21x x -,解不等式组()110221x x x ⎧+>⎪⎨⎪-≤⎩,可得:﹣2<x ≤2,∴x =﹣1,0,1,2,∵x =﹣1,0,1时,分式无意义,∴x =2,∴原式=2122-=﹣14.20、 (1) k 的值为3,m 的值为1;(2)0<n≤1或n≥3.【解题分析】分析:(1)将A 点代入y=x-2中即可求出m 的值,然后将A 的坐标代入反比例函数中即可求出k 的值. (2)①当n=1时,分别求出M 、N 两点的坐标即可求出PM 与PN 的关系;②由题意可知:P 的坐标为(n ,n ),由于PN≥PM ,从而可知PN≥2,根据图象可求出n 的范围.详解:(1)将A (3,m )代入y=x-2,∴m=3-2=1,∴A (3,1),将A (3,1)代入y=k x , ∴k=3×1=3,m 的值为1.(2)①当n=1时,P (1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M (3,1),∴PM=2,令x=1代入y=3x, ∴y=3,∴N (1,3),∴PN=2∴PM=PN ,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.21、2,1【解题分析】根据题意得出不等式组,解不等式组求得其解集即可.【题目详解】根据题意得21222473xxx-⎧≤-+⎪⎨⎪-<-⎩①②,解不等式①,得:x≤1,解不等式②,得:x>1,则不等式组的解集为1<x≤1,∴x可取的整数值是2,1.【题目点拨】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.22、120【解题分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【题目详解】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【题目点拨】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.23、5作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小【解题分析】(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.【题目详解】解:(1)AC=221+2=5.故答案为5.(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.故答案为作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.【题目点拨】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.24、(1)证明见解析(2)25 3【解题分析】(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【题目详解】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【题目点拨】本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.。
2024年湖南省株洲市初中中考模拟数学信息卷(一)
2024年湖南省株洲市初中中考模拟数学信息卷(一)一、单选题1.如图,整数a 在数轴上的位置如图所示,则它的相反数是( )A .2B .12C .3-D .13- 2.已知三角形的两边长分别为4cm 和8cm ,则第三边的长可以是( )A .2cmB .4cmC .5cmD .12cm 3.下列运算正确的是( )A .353a a a +=B .3412a a a ⋅=C .()1432a a =D .824a a a ÷= 4.关于x 的一元二次方程223210x ax a -+-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根5.下列立体图形中,左视图是三角形的是( )A .B .C .D . 6.2022年清明节假期三天国内旅游出游0.75419亿人次,2024年清明节假期三天国内旅游出游1.19亿人次,设清明节假期三天国内旅游出游的年平均增长率为x ,根据题意可列列方程为( )A .()20.754191 1.19x +=B .()20.754191 1.19x +=C .()21.1910.75419x -=D .()21.1910.75419x -=7.如图,已知AB DE ∥且:3:4AB DE =,A B ∠=∠.若6AC =,则BD 的长度为( )A .8B .12C .14D .168.为贯彻落实教育部办公厅关于“保障学生每天校内、校外各1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录自己一周内每天校外锻炼的时间(单位:分钟),并制作如图所示的统计图.根据统计图,下列描述错误..的是( )A .周日这天的校外锻炼时间最长B .周一至周日每天校外锻炼时间在逐渐增加C .这周每天校外锻炼时间在70分钟及以上的天数有一半以上D .这一周平均每天的校外锻炼时间为73分钟9.如图,锐角三角形ABC 中,A ABC CB =∠∠,点D ,E 分别在边AB ,AC 上,连接BE ,CD .下列命题中,假命题...是( )A .若ACD ABE ∠=∠,则CD BE =B .若BD CE =,则BE CD =C .若CD BE =,则ACD ABE ∠=∠ D .若AD AE =,则CBE DCB ∠=∠10.若()1,1A x -,()2,1B x 是一次函数2y x b =+(b 为常数)图象上的两个点,下面三个结论:①120x x +=;②211x x -=;③21214b x x -⋅=.正确结论的序号是( ) A .①② B .①③ C .②③ D .①②③二、填空题1112.如图,点A ,B ,C 在O e 上,若106AOB ∠=︒,则BCA ∠=.13.如图,将ABC V 沿BC 向右平移4个单位得到DEF V ,则A ,D 两点之间的距离=.14.营养参考值(NRV )是专用于食品营养标签上比较食品营养成分含量的参考标准,例如某高钙饼干,每100克饼干含钙272毫克,钙的NRV 是800毫克,所以钙的NRV%是34%.某瓶装牛奶每100g 含蛋白质g a ,蛋白质的NRV 为64g ,则该瓶装牛奶蛋白质的NRV %为.(用含a 的代数式表示)15.小明在一次投篮过程中,篮球在空中的高度h (单位:米)与在空中飞行的时间 t (单 位:秒)满足函数关系:2412h t t =-+,当篮球在空中的飞行时间=秒时,篮球距离地面最高.16.一个不透明的口袋中装有5个红球和m 个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m 的值为.17.如图,菱形ABCD 中,120BAD ∠=︒,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则AEO △的周长为.18.如图,在平面直角坐标系中,直线l 与反比例函数()0k y x x=>交于A ,B ,与x 轴交于点()4,0C ,与y 轴交于点()0,2D .若点A ,B 恰好是线段CD 的三等分点,则k =.三、解答题19.解一元一次不等式组:()233218x x ->⎧⎨+-<⎩. 20.某学校课后服务开展有声有色,这个学期因更多的学生选择足球和篮球班,学校计划购进若干个足球和篮球.已知篮球和足球的单价相差30元,且购买4个足球的费用与购买3个篮球的费用相同,求每个篮球和足球价格分别是多少元?21.如图是44⨯的正方形网格,请仅用无刻度的直尺.....按要求完成以下作图(保留作图痕迹).(1)在图1中作点C 使得ABC V 是直角三角形,90BAC ∠=︒,1tan 2ABC ∠=,且点C 在网格点上; (2)在图2中找出所有的点1P ,2P ,…,使得1P ,2P ,…到线段AB 两端的距离相等,且1P ,2P ,…在网格点上.22.广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A 、B 、C 、D 、E 五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C ”所对应的圆心角度数;(3)成绩为A 类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率. 23.A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.(1)A 、B 两种机器人每小时分别搬运多少千克化工原料?(2)某化工厂有3000kg 化工原料需要搬运,A 型机器人先工作若干小时,然后B 型机器人加入一起搬运化工原料,所有化工原料搬运完成.若A 、B 两种机器人合作的时间不超过10小时,则A 种机器人至少先工作多少小时?24.图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上,2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin320.53,cos320.85,tan320.62︒≈︒≈︒≈)25.在ABC V 中,⊙O 是ABC V 的外接圆,连结CO 并延长,交AB 于点D ,交⊙O 于点E ,2ACE BCE ∠=∠.连结OB ,BE .(1)求证:ABE EOB ∠=∠.(2)求证:212BD ED EC =⋅. (3)已知2AC EB =,11AB =,是否能确定⊙O 的大小?若能,请求出⊙O 的直径;若不能,请说明理由.26.若一次函数y mx n =+与反比例函数k y x=同时经过点(,)P x y 则称二次函数2y mx nx k =+-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =-与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数” 2()(10)2024y m t x m t x =++--,求m 的值. (3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.。
初中数学中考模拟试卷
初中数学中考模拟试卷初中数学中考模拟试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)-8的相反数是()A.8B.-8 C.0 D.-12.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.(3分)XXX家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是44.(3分)计算6m^6÷(-2m^2)^3的结果为()A.-m B.-1 C.1 D.-1/4m^45.(3分)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B'的坐标为()A.(-4,2)B.(-2,4)C.(4,-2)D.(2,-4)6.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O 上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=AC=2,BD=4,则AE的长为()A.2√3 B.2 C.√3 D.4/√38.(3分)一次函数y=kx+b(k≠0)的图象经过A(-1,-4),B(2,2)两点,P为反比例函数y=2/x图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为()A.2 B.4 C.6 D.8二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)近年来,国家重视精准扶贫,收效显著,据统计约xxxxxxxx人脱贫,xxxxxxxx用科学记数法可表示为6.5×10^7.10.(3分)计算:(√2+1)×(√2-1)=1.11.(3分)若抛物线y=x^2-6x+m与x轴没有交点,则m的取值范围是m<9.12.(3分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为4π-8.13.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为32°。
2024年浙江省初中名校发展共同体中考数学模拟试卷(3月份)(含解析)
2024年浙江省初中名校发展共同体中考数学模拟试卷(3月份)一、选择题(本题有10小题,每题3分,共30分。
每小题列出的四个备选项中只有一个是符合题目要求1.(3分)计算﹣2﹣8的结果是( )A.﹣6B.﹣10C.10D.62.(3分)据科学家估计,地球的年龄大约是4600000000年,将数据4600000000用科学记数法表示应为( )A.0.46×1010B.4.6×109C.46×108D.4.6×108 3.(3分)如图所示几何体的俯视图是( )A.B.C.D.4.(3分)高速公路是指专供汽车高速行驶的公路.高速公路在建设过程中,通常要从大山中开挖隧道穿过,把道路取直以缩短路程.其中的数学原理是( )A.两点之间线段最短B.两点确定一条直线C.平行线之间的距离最短D.平面内经过一点有无数条直线5.(3分)下列函数中,函数值y随x的增大而减小的是( )A.y=6x B.y=﹣6x C.y=D.y=﹣6.(3分)若a>b,则下列不等关系一定成立的是( )A.a+c>b+c B.a﹣c<b﹣c C.ac>bc D.>7.(3分)从某个月的月历表中取一个2×2方块.已知这个方块所围成的4个方格的日期之和为44,求这4个方格中的日期.若设左上角的日期为x,则下列方程正确的是( )A.x+(x+1)+(x+7)+(x+14)=44B.x+(x+1)+(x+6)+(x+12)=44C.x+(x+1)+(x+7)+(x+8)=44D.x+(x+1)+(x+6)+(x+7)=448.(3分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高线,设∠A,∠B,∠ACB所对的边分别为a,b,c,则( )A.c=b cos A+a sin B B.c=b sin A+a sin BC.c=b sin A+a cos B D.c=b cos A+a cos B9.(3分)关于二次函数y=a(x﹣1)(x﹣3)+2(a<0)的下列说法中,正确的是( )A.无论a取范围内的何值,该二次函数的图象都经过(1,0)和(3,0)这两个定点B.当x=2时,该二次函数取到最小值C.将该二次函数的图象向左平移1个单位,则当x<0或x>2时,y<2 D.设该二次函数与x轴的两个交点的横坐标分别为m,n(m<n),则1<m <n<310.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,在BC上取点F,使得CF=CE,连结AF交CD于点G,连结AD.若CG=GF,则的值等于( )A.B.C.D.二、填空题(本题有6小题,每题3分,共18分)11.(3分)分解因式:mx2﹣m= .12.(3分)盒中有m枚黑棋和n枚白棋,这些棋除颜色外无其它差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是,则m关于n的关系表达式为 .13.(3分)如图,直线m,n被一组平行线a,b,c所截.若,则= .14.(3分)已知△ABC的外接圆的半径为6,若∠A=45°,∠B=30°,则AB 的长为 .15.(3分)若a=2﹣b,ab=t﹣1,则(a2﹣1)(b2﹣1)的最小值为 .16.(3分)如图,在等腰Rt△ABC中,∠ACB=90°,若点E,F分别在边AC 和边BC上,沿直线EF将△CEF翻折,使点C落于△ABC所在平面内,记为点D.直线CD交AB于点G.(1)若CF落在边AB上,则= ;(2)若,则tan∠CEF= (用含的代数式表示).三、解答题(本题有8小题,共72分)17.(6分)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.18.(6分)端午节是中国的传统节日,民间有端午节吃粽子的习俗,在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数、为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如表:八年级10名学生活动成绩统计表成绩/分678910人数12a b2已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是 ,七年级活动成绩的众数为 分;(2)a= ,b= ;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.19.(8分)如图,在△ABC中,AB>AC,点D在AB边上,点E在AC边上(点E不与A,C重合),且∠AED=∠B.(1)求证:AD•AB=AE•AC.(2)若AE=EC=2AD,求的值.(3)若AB=6,AC=4,求AD长的取值范围.20.(8分)已知点A(m1,n1),B(m2,n2)(m1<m2)在一次函数y=kx+b的图象上.(1)用含有m1,n1,m2,n2的代数式表示k的值.(2)若m1+m2=3b,n1+n2=kb+4,b>2.试比较n1和n2的大小,并说明理由.21.(10分)如图,在正五边形ABCDE中,连结AC,AD,CE,CE交AD于点F.(1)求∠CAD的度数.(2)已知AB=2,求DF的长.22.(10分)数学实验生活中,常常遇到需要测量物体长度、角度的情况,小聪同学思考:是否有既能测量长度,又能测量角度的多功能直尺?小聪想自己做这样一把尺子:如图1,小聪准备了两条宽度为3cm的矩形纸带,并在点C处用可以转动的纽扣固定.小聪借助直角三角板的特殊度数,比较容易的找到表示90°,60°,45°,30°角的刻度位置.那么另外的度数怎样标出呢?小聪开始思考原理:(1)如图2,小聪将两条纸条叠合形成的四边形ABCD画出来,并分别作边DA,BA的延长线AF,AH.小聪发现:①四边形ABCD是菱形;②∠FAH=2∠ACD.请证明这两个结论.(2)小聪发现,在(1)的基础上,表示90°,60°,45°,30°角的刻度位置可以用三角形的边角关系表示出来,当∠FAH=90°时,∠ACD=45°,则有CE=AE=3cm,因此表示90°角的位置就可以通过计算找到.请利用小聪的思路,算出表示60°角的位置与点C的距离(精确到0.01).(参考数据:≈1.414,≈1.732,.(3)在以上思路启发下,小聪发现,在(1),(2)的基础上,对于任意位置的刻度的表示,只要完成三步任务:第一步,测量出直角△ACE的直角边CE的长度m;第二步,计算出的值,这个值恰好是∠α的正切值,即tanα=;第三步,利用计算器算出α的值,并在尺子上标出刻度即可.做出的尺子如图3所示.请根据以上思路,计算出图2中CE的长度分别为4,2,1时,表示的角的刻度是多少(精确到分).(参考数据:tan4°12'≈0.34,tan4°18'≈0752,tan56°18'≈1.4994,tan56°24'≈1.5051,tan71°30'≈2.989,tan71°36'≈3.006).23.(12分)某个农场有一个花卉大棚,是利用部分墙体建造的.其横截面顶部为抛物线型,大棚的一端固定在墙体OA上,另一端固定在墙体BC上,其横截面有2根支架DE,FG,相关数据如图1所示,其中支架DE=BC,OF=DF =BD,这个大棚用了400根支架.为增加棚内空间,农场决定将图1中棚顶向上调整,支架总数不变,对应支架的长度变化,如图2所示,调整后C与E上升相同的高度,增加的支架单价为60元/米(接口忽略不计),需要增加经费32000元.(1)分别以OB和OA所在的直线为x轴和y轴建立平面直角坐标系.①求出改造前的函数解析式.②当CC′=1米,求GG′的长度.(2)只考虑经费情况下,求出CC′的最大值.24.(12分)如图,在矩形ABCD中,点E,F分别为对边AD,BC的中点,线段EF交AC于点O,延长CD于点G,连结GE并延长交AC于点Q,连结GF 交AC于点P,连结QF.(1)若DG=CD.①求证:点Q为OA的中点.②若OA=1,∠ACB=30°,求QF的长.(2)求证:FE平分∠QFP.(3)若CD=mDG,求.(结果用含m的代数式表示)2024年浙江省初中名校发展共同体中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分。
2024年贵州省贵阳市白云区中考数学模拟试卷及答案解析
2024年贵州省贵阳市白云区中考数学模拟试卷一、选择题(以下每题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每题3分,共36分)1.(3分)下列四个数中,属于负整数的是()A .﹣2.5B .﹣3C .0D .62.(3分)下列图案是轴对称图形的是()A .B .C .D .3.(3分)2024年贵州省政府工作报告重点民生事业取得突破.新增高等教育学位63500个,省属高校“一校一址”布局调整基本完成,民生福祉持续提升.数63500用科学记数法表示为()A .6.35×103B .6.35×104C .6.35×105D .0.635×1054.(3分)若一个几何体的表面展开图如图所示,则这个几何体是()A .三棱柱B .四棱柱C .三棱锥D .四棱锥5.(3分)若二次根式有意义,则实数x 的值可能是()A .﹣2B .0C .1D .36.(3分)下列图形中,∠2大于∠1的是()A .B .C .D .7.(3分)甲、乙、丙、丁四位男同学在中考体育前进行10次立定跳远测试,平均成绩都是2.3米,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则成绩最稳定的是()A .甲B .乙C .丙D .丁8.(3分)若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为()A.﹣1B.0C.1或﹣1D.2或09.(3分)如图,AB∥DE,AE与BD相交于点C,若AB=2,,则CE:AC等于()A.1:1B.1:2C.D.10.(3分)若分式的值为0,则a的值为()A.﹣3B.0C.2D.511.(3分)如图,尺规作∠HFG=∠ABC,作图痕迹中弧MN是()A.以点F为圆心,以BE长为半径的弧B.以点F为圆心,以DE长为半径的弧C.以点G为圆心,以BE长为半径的弧D.以点G为圆心,以DE长为半径的弧12.(3分)已知二次函数y=﹣x2﹣2x+3,当时,函数值y的最小值为1,则a的值为()A.B.C.或D.或二、填空题(每题4分,共16分)13.(4分)一次函数y=kx+3的图象经过点M(2,5),则k的值是.14.(4分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a =6,弦c=10,则小正方形ABCD的面积是.15.(4分)某数学兴趣小组编制了一道游戏试题:将“知必言,言必尽”6个字写在六张完全相同的卡片上,卡片的背面完全相同,将卡片洗匀后,背面朝上,甲随机抽出一张(不放回),乙再随机抽出一张,若甲、乙两人抽出的字相同,便称为“好朋友”.则一次试验中,甲、乙被称为“好朋友”的概率是.16.(4分)如图,△ABC是边长为2的等边三角形,将△ABC沿直线AC翻折,得到△ACD,再将△ACD 在直线AC上平移,得到△A′C′D′.连接A′B,D′B,则△A′D′B的周长的最小值是.三、解答题(本大题共9题,共计98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:tan45°+|﹣5+2|﹣(π﹣3)0;(2)化简:(a+1)2﹣a(a+2).18.(10分)为了解中学生的视力情况,某市卫健局决定随机抽取本市部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.【整理数据】初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%1.1及以上46n合计200100%【分析数据】(1)在初中学生视力情况统计表中,m=,n=;(2)根据表格信息,初中学生视力的中位数为,根据统计图信息,高中学生视力的众数为;【作出决策】(3)小红说:“初中学生的视力水平比高中学生的好.”请你选择统计知识说明理由;(4)保护眼睛,明天更美好,请对视力保护提出一条合理化建议.19.(10分)如图,在矩形纸片ABCD中,AB=3cm,BC=4cm,连接对角线AC,直线MN垂直平分AC,分别交AD,BC于点E,F,垂足为点G.(1)求证:△AGE≌△CGF;(2)求线段EF的长.实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.乙同学所列的方程为=1.5×(1)甲同学所列方程中的x表示.乙同学所列方程中的y表示.(2)任选甲、乙两同学的其中一个方法解答这个题目.21.(10分)如图,为推进市中心城区污水系统综合治理项目,需要从A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°方向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,参考数据)22.(10分)如图,直线y=﹣2x+4与x轴、y轴分别相交于点A、点B,以线段AB为边在第一象限作正方形ABCD.反比例函数y=(k>0)在第一象限内的图象经过点D.(1)求反比例函数的解析式;(2)将正方形ABCD沿y轴向上平移几个单位能使点A落在(1)中所得的双曲线上?23.(12分)如图,△ABC内接于⊙O,过点B作⊙O的切线,交直径DA的延长线于点E.(1)若∠ACB=26°,则∠BAD=°;(2)求证:∠ABE=∠ACB;(3)若AE=2cm,BE=4cm,求⊙O的半径.24.(12分)“樱花红陌上,邂逅在咸安”,为迎接我区首届樱花文化旅游节,某工厂接到一批纪念品生产订单,要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(0<x≤15)每件产品的成本价是y元,y与x之间关系为:y=0.5x+7,任务完成后,统计发现工人小王第x天生产产品P(件)与x(天)之间的关系如图所示,设小王第x天创造的产品利润为W元.(1)直接写出P与x之间的函数关系;(2)求W与x之间的函数关系式,并求小王第几天创造的利润最大?最大利润是多少?(3)最后,统计还发现,平均每个工人每天创造的利润为288元,于是,工厂制定如下奖励方案:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金,请计算,在生产该批纪念过程中,小王能获得多少元的奖金?25.(12分)在Rt△ABC中,∠ACB=90°,AB=10,AC=8,将△ABC绕点B逆时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.【教材呈现】(1)如图①,将△ABC绕点B旋转180°得到△A′BC′,则线段CC'的长为;【问题解决】(2)如图②,在△ABC旋转过程中,连接CC′,交AB于点D,当CC′∥A′B时,求证:CD=AB;【拓展延伸】(3)如图③,连接AA′,延长CC′交AA′于点F,点E为AC边的中点,连接EF.在△ABC旋转过程中,EF是否存在最大值?若存在,求出EF的最大值;若不存在,请说明理由.2024年贵州省贵阳市白云区中考数学模拟试卷参考答案与试题解析一、选择题(以下每题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分)1.【分析】根据负整数的定义进行判断即可.【解答】解:﹣2.5是负分数,﹣3是负整数,0既不是正数也不是负数,6是正整数,故选:B.【点评】本题考查有理数,熟练掌握相关定义是解题的关键.2.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此作答.【解答】解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形,要熟练掌握.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:63500=6.35×104.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:三个长方形和两个三角形折叠后可以围成三棱柱.故选:A.【点评】考查了几何体的展开图,熟记常见几何体的表面展开图特征,是解决此类问题的关键.5.【分析】根据二次根式的被开方数是非负数求出x的取值范围即可得出答案.【解答】解:∵x﹣2≥0,∴x≥2,∴x的取值可能是3.故选:D.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.6.【分析】利用垂直的定义,对顶角的定义,等弧对等角,三角形的外角的性质对各选项进行分析即可.【解答】解:A、由垂直可知:∠1=∠2=90°,故A不符合题意;B、由∠1与∠2属于对顶角,则∠1=∠2,故B不符合题意;C、由等弧对等角可得∠1=∠2,故C不符合题意;D、由三角形的外角性质可得∠2>∠1,故D符合题意.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是明确三角形的外角等于与其不相邻的两个内角之和.7.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵平均成绩都是2.3米,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S甲2>S乙2>S丙2>S丁2,∴射击成绩最稳定的是丁.故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【分析】把x=﹣1代入方程计算即可求出k的值.【解答】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【分析】利用相似三角形的判定与性质解答即可.【解答】解:∵AB∥DE,∴∠A=∠E,∠B=∠D,∴△CDE∽△CBA,∴.∵AB=2,,∴CE:AC=:2.故选:C.【点评】本题主要考查了相似三角形的判定与性质,平行线的性质,熟练掌握适时进行的判定与性质定理是解题的关键.10.【分析】根据分母不为零且分子为零的条件进行解题即可.【解答】解:由题可知,a﹣2=0且a+3≠0,解答a=2.故选:C.【点评】本题考查分式的值为零的条件,熟练掌握分母不为零且分子为零的条件是解题的关键.11.【分析】根据作一个角等于已知角的作图方法判断即可.【解答】解:由作图可知,弧MN是以点G为圆心,以DE长为半径的弧.故选:D.【点评】本题考查作图﹣基本作图,尺规作图,熟知作一个角等于已知角的基本作图步骤是解答本题的关键.12.【分析】根据二次函数的解析式求出顶点坐标,再根据二次函数的性质求出a的值即可.【解答】解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴二次函数的顶点坐标为(﹣1,4),且二次函数的图象开口向下,∵当x=时,y=>1,∴a<﹣1,当y=1时,﹣a2﹣2a+3=1,解得a=﹣1﹣或﹣1(舍去),故选:A.【点评】本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.二、填空题(每题4分,共16分)13.【分析】根据一次函数图象上点的坐标特征解答即可.【解答】解:∵一次函数y=kx+3的图象经过点M(2,5),∴2k+3=5,解得k=1,故答案为:1.【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足函数解析式是关键.14.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案为:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.15.【分析】列表可得出所有等可能的结果数以及甲、乙两人抽出的字相同的结果数,再利用概率公式可得出答案.【解答】解:列表如下:知必言言必尽知(知,必)(知,言)(知,言)(知,必)(知,尽)必(必,知)(必,言)(必,言)(必,必)(必,尽)言(言,知)(言,必)(言,言)(言,必)(言,尽)言(言,知)(言,必)(言,言)(言,必)(言,尽)必(必,知)(必,必)(必,言)(必,言)(必,尽)尽(尽,知)(尽,必)(尽,言)(尽,言)(尽,必)共有30种等可能的结果,其中甲、乙两人抽出的字相同的结果有4种,∴甲、乙被称为“好朋友”的概率是=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.16.【分析】连接CD'.证明四边形A'BCD'是平行四边形,推出CD'=BA′,推出A′D′B的周长=BA'+BD'+A'D'=CD'+BD'+2,可知CD'+BD'最小时,△A′D′B的周长最小,作点C关于直线DD'的对称点E,连接BE,CD'+BD'最小值为BE,求出BE的长即可解决问题.【解答】解:连接CD',由平移的性质,可知A'B=D'C,A'B∥D'C,∴四边形A'BCD'是平行四边形,∴A'B=D'C,∴△A′D′B的周长=BA'+BD'+A'D'=CD'+BD'+2,∴CD'+BD'最小时,△A′D′B的周长最小,作点C关于直线DD'的对称点E,CE交DD'于点P,D'E,BE,过点E作EF⊥BC交BC的延长线于点F,则∠A'CE=∠DPE=90°,∠ECF=180°﹣60°﹣90°=30°,∵CD'+BD'=ED'+BD'≥BE,∴CD'+BD'最小值为BE,∴△A′D′B的周长的最小值=BE+2,∵CE=2CP=2,∴CF=CE•cos30°=3,EF=CE=,∴BF=BC+CF=2+3=5,∴△A′D′B的周长的最小值为2+2,故答案为:2+2.【点评】本题主要考查等边三角形的性质,折叠性质,平移的性质,关键是求出CD'+BD'的最小值三、解答题(本大题共9题,共计98分.解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】(1)先算特殊角的三角函数值,绝对值,零指数幂,再算加减即可;(2)先算完全平方,单项式乘多项式,再合并同类项即可.【解答】解:(1)tan45°+|﹣5+2|﹣(π﹣3)0=1+3﹣1=3;(2)(a+1)2﹣a(a+2)=a2+2a+1﹣a2﹣2a=1.【点评】本题主要考查完全平方公式,实数的运算,解答的关键是对相应的运算法则的掌握.18.【分析】(1)根据初中各视力的总人数=人数÷百分比求解可得m、n的值;(2)根据中位数和众数的定义解答即可;(3)选择合适的统计量,比较即可得出答案;(4)根据保护眼睛的方法提出即可.【解答】解:(1)m=200×34%=68,n=46÷200×100%=23%,故答案为:68,23%;(2)被调查的初中学生视力情况的样本容量为200,∵第100个和第101个数据为1.0和1.0,∴中位数为=1.0,∵被调查的高中学生视力情况中,0.9出现的次数最多,∴众数为0.9.故答案为:1.0,0.9;(3)初中学生的视力水平比高中学生的好,被调查的高中学生视力情况的样本容量为14+44+60+82+65+55=320,∵第160个和第161个数据为0.9和0.9,∴中位数为0.9,∵初中视力水平的中位数为1.0,高中视力水平的中位数为0.9,所以初中学生的视力水平比高中学生的好;(4)建议该区中学生坚持每天做眼保健操,养成良好的用眼习惯.【点评】本题考查频数(率)分布表、条形图统计图,从统计图表中得出解题所需数据是解答本题的关键.19.【分析】(1)利用AAS即可证得△AGE≌△CGF;(2)先根据勾股定理求出AC的长,继而求出AG的长,再证得△AGE∽△ADC,即可求出EG的长,再由(1)中的结论即可求出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEG=∠CFG,∵直线MN垂直平分AC,∴∠AGE=∠CGF=90°,AG=CG,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS);(2)解:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,∵AB=3cm,BC=4cm,∴由勾股定理得cm,∵直线MN垂直平分AC,∴∠AGE=90°,AG=CG cm,∴∠AGE=∠D,又∵∠GAE=∠DAC,∴△AGE∽△ADC,∴,∴,∴EG=,由(1)知△AGE≌△CGF,∴FG=EG=,∴EF=.【点评】本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握这些知识点是解题的关键.20.【分析】(1)根据题意和题目中的式子,可知x和y表示的实际意义;(2)根据题意,选择甲同学的方法进行解答,注意分式方程要检验,也可选择乙同学的作法,注意乙中求得y的值后,还要继续计算,知道计算出原计划平均每月的绿化面积结束.【解答】解:(1)由题意可得,甲同学所列方程中的x表示原计划平均每月的绿化面积,乙同学所列方程中的y表示实际完成这项工程需要的月数,故答案为:原计划平均每月的绿化面积;实际完成这项工程需要的月数;(2)按甲同学的作法解答,﹣=2,方程两边同乘以1.5x,得90﹣60=3x,解得,x=10,经检验,x=10是原分式方程的解,答:原计划平均每月的绿化面积是10km2.【点评】本题考查由实际问题抽象出分式方程,解分式方程,解答本题的关键是明确题意,会解答分式方程,注意分式方程要检验.21.【分析】作CD⊥AB于点D,然后根据锐角三角函数,即可求得AC+BC的长,本题得以解决.【解答】解:作CD⊥AB于点D,由题意可得,∠CAD=45°,∠CBD=90°﹣68°=22°,设CD=x,则AD=CD=x,BD=AB﹣AD=7﹣x,∵,tan22°≈0.40,∴,解得x=2,∵,,∴,答:新建管道的总长度是8.2km.【点评】本题考查解直角三角形的应用﹣方向角问题,解答本题的关键是明确题意,利用数形结合的思想解答.22.【分析】(1)先由y=﹣2x+4得出A,B坐标,作DF⊥x轴证明Rt△ABO≌Rt△DAF,求出点D坐标即可求解.(2)把点A横坐标代入函数解析式求解.【解答】解:(1)作DF垂直x轴于点F,把x=0代入y=﹣2x+4得y=4,把y=0代入y=﹣2x+4得x=2,∴点B,A坐标分别为(0,4),(2,0),∴OB=4,OA=2.∵∠BAD=90°,∠AOB=90°,∴∠ABO+∠BAO=∠DAF+∠BAO=90°,∴∠ABO=∠DAF,在Rt△ABO和Rt△DAF中,,∴Rt△ABO≌Rt△DAF,∴AF=OB=4,DF=AO=2,∴OF=OA+AF=6,∴点D坐标为(6,2),∵反比例函数y=图象经过点D,∴k=6×2=12,∴y=.(2)把x=2代入y=得y=6,∴向上平移6个单位能使点A落在双曲线上.【点评】本题考查反比例函数的综合应用,解题关键是熟练掌握正方形的性质与一线三垂直的全等三角形模型.23.【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠ACB=26°,∠ABD=90°,再利用直角三角形的性质即可解决问题;(2)连接OB,证明∠ABE=90°﹣∠OBA=90°﹣∠OAB=∠ADB,进而可以解决问题;(3)根据切线的性质和勾股定理即可解决问题.【解答】(1)解:如图,连接BD,∴∠ADB=∠ACB=26°,∵AD是⊙O的直径,∴∠ABD=90°,∴∠BAD=90°﹣26°=64°,故答案为:64;(2)证明:如图,连接OB,∴OA=OB,∴∠OAB=∠OBA,∵EB是⊙O的切线,∴∠OBE=90°,∴∠ABD=∠OBE=90°,∴∠ABE=90°﹣∠OBA=90°﹣∠OAB=∠ADB,∵∠ADB=∠ACB,∴∠ABE=∠ACB;(3)解:∵EB是⊙O的切线,∴∠OBE=90°,在Rt△OBE中,AE=2cm,BE=4cm,根据勾股定理得:OE2=OB2+BE2,∴(OA+2)2=OA2+42,∴OA=3,∴⊙O的半径为3cm.【点评】本题考查了切线的性质,圆周角定理,三角形外接圆与外心,解决本题的关键是掌握切线的性质.24.【分析】(1)结合图象,分段计算,当10≤x≤15时,P=40,当0<x≤10时,利用待定系数法即可求解;(2)根据题意有:W=P×(20﹣y),结合(1)的结果和y=0.5x+7,即可求解,再分别求出当0<x ≤10时和当10≤x≤15时,W的最大值,二者比较即可作答;(3)根据题意可知:当W>288时,即可获得奖励,当0<x≤10时,令W=288,即有﹣x2+16x+260=288,解得x=2或者x=14,可得当2<x≤10时可以获得奖励;当10≤x≤15时,W>288,即有:W=﹣20x+520>288,解得:10≤x<11.6,去除第10天重复计算的奖励,问题得解.【解答】解:(1)结合图象,分段计算,当10≤x≤15时,P=40,当0<x≤10时,设P与x之间的函数关系为:P=kx+b,∵(10,40),(0,20),∴,解得,即此时P=2x+20,综上:;(2)根据题意有:W=P×(20﹣y),∵,y=0.5x+7,∴,整理得:,当0<x≤10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,即当x=8时,W有最大值,最大值为W=324,当10≤x≤15时,W=﹣20x+520,即W随着x的增大而减小,∴当x=10时,W有最大值,最大值为W=320,∵320<324,∴当x=8时,W有最大值,最大值为W=324,∴小王第8天创造的利润最大,最大利润是324元;(3)根据题意可知:当W>288时,即可获得奖励,当0<x≤10时,令W=288,即有﹣x2+16x+260=288,解得x=2或者x=14,∵0<x≤10,函数W=﹣x2+16x+260开口朝下,∴当W>288时,有2<x≤10,即此时可以获得奖励为:20×(10﹣2)=160(元),当10≤x≤15时,W>288,即有:W=﹣20x+520>288,解得:10≤x<11.6,即此时可以获得奖励为:20×2=40(元),∵第10天重复计算,∴总计获得的奖励为:160+40﹣20=180(元).【点评】本题考查了二次函数的应用,一次函数的应用,二次函数的图象与性质,利用待定系数法求解一次函数解析式等知识,明确题意,正确得出函数关系,是解答本题的关键.25.【分析】(1)先利用勾股定理求出BC=8,再利用旋转对称得到C′B=BC=6,进而可得CC'=12;(2)根据旋转的性质得出∠A′=∠A,∠A′C′B=∠ACB=90°,BC=BC′,则∠BCC′=∠BC′C,根据平行线的性质求出∠A′+∠BC′C=90°,则∠A+∠BCC′=90°,结合直角三角形的性质推出∠A=∠ACD,∠ABC=∠BCC′,根据等腰三角形的判定从而得解;(3)过A作AP∥A'C'交CC′的延长线于点P,连接A'C,证明△APF≌△A'C'F(AAS),由全等三角形的性质得出AF=A'F,由三角形中位线定理可得出EF=A'C.要使EF最大,只需A'C最大,此时C,B,A'三点共线,A′C的最大值为A′B+BC=AB+BC,进一步解答则可求出答案.【解答】(1)解:∵∠ACB=90°,AB=10,AC=8,∴BC===6,∵将△ABC绕点B逆时针旋转得到△A′BC′,∴C′B=BC=6,C′、B、C在一条直线上,∴CC′=BC+C′B=12,故答案为:12;(2)证明:∵将△ABC绕点B逆时针旋转得到△A′BC′,∴∠A′=∠A,∠A′C′B=∠ACB=90°,BC=BC′,∴∠BCC′=∠BC′C,∵CC′∥A′B,∴∠A′+∠A′C′C=∠A′+∠BC′C+∠A′C′B=180°,∴∠A′+∠BC′C=90°,∴∠A+∠BC′C=90°,∴∠A+∠BCC′=90°,∵∠ACB=∠BCC′+∠ACD=90°,∴∠A=∠ACD,∴AD=CD,∵∠ACB=90°,∴∠A+∠ABC=90°,∴∠ABC=∠BCC′,∴CD=BD,∵BD+AD=AB,∴CD=AB;(3)解:EF的最大值为8,理由如下:过A作AP∥A'C'交CC′的延长线于点P,连接A'C,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',∴∠BCC'=∠BC'C,∠BC′C+∠A′C′P=90°,∴∠BCC′+∠A′C′P=90°,∵∠ACB=∠BCC′+∠ACP=90°,∴∠ACP=∠A′C′P,∵AP∥A'C',∴∠APC=∠A′C′P,∴∠APC=∠ACP,∴AP=AC,∴AP=A'C',在△APF和△A'C'F中,,∴△APF≌△A'C'F(AAS),∴AF=A'F,即F是AA'中点,∵点E为AC的中点,∴EF是△AA'C的中位线,∴EF=A'C.当A'C的值最大时,EF的值最大,∵A'C≤BC+BA'=6+10=16,∴当C,B,A'三点共线时,EF存在最大值.∴EF=8,即EF的最大值为8.【点评】本题考查直角三角形的旋转变换,涉及旋转的性质、勾股定理、等腰三角形判定、全等三角形判定与性质、三角形中位线的判定与性质等知识,综合性较强,解题的关键是作辅助线,构造全等三角形。
2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)
2024年山东省东营市东营区胜利一中中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各组数中,互为相反数的是( )A. ―(―2)和2B. 1和―2 C. ―(+3)和+(―3) D. ―(―5)和―|+5|22.如图所示的几何体,若每个小正方体的棱长为2,则左视图的面积为( )A. 24B. 20C. 10D. 163.下列计算正确的是( )A. (x+2y)(x―2y)=x2―2y2B. (―x+y)(x―y)=x2―y2C. (2x―y)(x+2y)=2x2―2y2D. (―x―2y)(―x+2y)=x2―4y24.如图,已知直线a、b、c相交于A、B、C三点,则下列结论:①∠1与∠2是同位角;②内错角只有∠2与∠5;③若∠5=130°,则∠4=130°;④∠2<∠5;正确的个数是( )A. 1B. 2C. 3D. 45.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是( )A. 6cmB. 7cmC. 8cmD. 9cm6.周日早晨,妈妈送张浩到离家1000m的少年宫,用时20分钟.妈妈到了少年宫后直接返回家里,还是用了20分钟.张浩在少年宫玩了20分钟的乒乓球,然后张浩跑步回家,用了15分钟.如图中,正确描述张浩离家时间和离家距离关系的是( )A. B.C. D.7.某列车提速前行驶400km与提速后行驶500km所用时间相同,若列车平均提速20km/ℎ,设提速后平均速度为x km/ℎ,所列方程正确的是( )A. 400x =500x+20B. 400x=500x―20C. 400x―20=500xD. 400x+20=500x8.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A. 15B. 25C. 35D. 459.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是AC的中点,连接BD交AC于点E,连接OE,且∠OEB=45°,若OB=10,则OE的长为( )A. 6B. 33C. 25D. 21010.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( )A. 12B. 24C. 36D. 48第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。
5年中考3年模拟初中试卷数学
5年中考3年模拟初中试卷数学一、选择题(每题3分,共30分)1. 下列实数中,是无理数的是()A. 0B. -3C. (1)/(3)D. √(3)2. 若一个数的相反数是3,则这个数是()A. -3B. 3C. -(1)/(3)D. (1)/(3)3. 计算(-2x^2)^3的结果是()A. -6x^{5}B. 6x^{5}C. -8x^{6}D. 8x^{6}4. 把不等式组x + 1>0 x - 1≤slant0的解集表示在数轴上,正确的是()A.-2 -1 0 1 2.o-> <-o.B.-2 -1 0 1 2.o-> o->.C.-2 -1 0 1 2.<-o <-o.D.-2 -1 0 1 2.<-o o->.5. 已知点A(x_1,y_1),B(x_2,y_2)在反比例函数y = (k)/(x)(k≠0)的图象上,如果x_1,且y_1,那么k的取值范围是()A. k>0B. k<0C. k≥slant0D. k≤slant06. 一个正多边形的每个内角都是135°,则这个正多边形是()A. 正六边形B. 正七边形C. 正八边形D. 正九边形。
7. 若关于x的一元二次方程x^2-2x + m = 0有两个不相等的实数根,则m的取值范围是()A. m<1B. m>- 1C. m = 1D. m< - 18. 如图,在ABC中,∠ ACB = 90^∘,AC = BC = 4,将ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE = 3,则sin∠ BFD的值为()A. (1)/(3)B. (√(2))/(4)C. (√(2))/(3)D. (3)/(5)9. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,下列结论:abc>0;2a + b = 0;b^2-4ac>0;④a - b + c<0,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个。
2023年吉林省长春市新解放学校初中部中考数学模拟试卷及答案解析
(1)在图①中作△ABC,使 tan∠A=1.
(2)在图②中作△ABD,使
.
(3)在图⑧中作△ABE,使 tan∠A=2.
试卷第 3页,总 5 页
19.(8 分)如图,在矩形 ABCD 中,AB=3,BC=10,点 E 在 BC 边上,DF⊥AE,垂足为
请根据图象解答下列问题:
(1)轿车的速度是
千米/小时.
(2)求轿车出发后,轿车离甲地距离 y(千米)与时间 x
(小时)之间的函数关系式.
(3)在整个过程中(0≤x≤5),当轿车与货车之间的距
为 30 千米时,直接写出 x 的值.
试卷第 4页,总 5页
22.(8 分)在菱形 ABCD 中,
,∠ABC=60°,点 E 是对角线 BD 上的一动点,
连接 BD,若∠P=40°,则∠ADB 的度数是( )
A.65°
B.60°
C.55°
试卷第 1页,总 5 页
D.50°
7.(3 分)如图,在△ABC 中,AB<AC,将△ABC 以点 A 为中心逆时针旋转得到△ADE, 点 D 在 BC 边上,DE 交 AC 于点 F.下列结论:①△AFE∽△DFC;②DA 平分∠BDE; ③∠CDF=∠BAD,其中正确结论的个数是( )
C.x>3
D.x>7
5.(3 分)小华将一张纸对折后做成的纸飞机如图 1,纸飞机机尾的横截是一个轴对称图形,
其示意图如图 2,若 CD=CE=5,∠DCE=40°,则 DE 的长为( )
A.5sin20°
B.10sin20°
2024年陕西省宝鸡市中考模拟数学试题(原卷版)
2024年陕西省宝鸡市初中学业水平考试数学试题注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共6页,总分120分,考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号.3.请在答题卡上各题的指定区域内作答,否则作答无效.4.作图时,先用铅笔作图,再用规定签字笔描黑.5.考试结束,本试卷和答题卡一并交回.第一部分 选择题(共21分)一、选择题(共7小题,每小题3分,计21分,每小题只有一个选项是符合题意的)1. 的倒数是( )A. B. C. D. 2. 一个几何体的表面展开图如图所示,这个几何体是( )A. 圆柱B. 圆锥C. 长方体D. 球3. 如图,是等腰直角三角形,,若,则∠2的度数是( )A B. C. D. 4. 若点在一次函数的图象上,则的值为( )A. B. C. 1 D. 25. 如图,点A 、B 、C 、D 在网格中小正方形的格点处,与相交于点O ,若小正方形的边长为1,则的长为().2024-2024-202412024-12024ABC a b ∥1130∠=︒30︒40︒50︒60︒(),m n 21y x =-2m n -2-1-AD BC AOA. B. 3 C. D. 26. 已知在中,半径,则弦的长度为( )A. 6B. 3C.D. 7. 已知抛物线的图象上三个点的坐标分别为,,C ,则,,的大小关系为( )A. B. C. D. 第二部分 非选择题(共99分)二、填空题(共6小题,每小题3分,计18分)8. 数轴上的点A 表示数2,将点A 向左平移5个单位长度得点B ,则点B 表示的数是___________.9. 分解因式:_________.10. 如图所示,是工人师傅用边长均为a 的一块正六边形和一块正方形地砖绕着点B 进行的铺设,若将一块边长为a 的正多边形地砖恰好能无空隙、不重叠地拼在处,则这块正多边形地砖的边数是_______.11. 如图,在矩形中,,,E 是上一点,,与交于点F ,则的面积为______.3.5 2.5O 630OC BAC =∠=︒,BC()220y ax ax b a =-+<()13,Ay )2B y 33,2y ⎛⎫- ⎪⎝⎭1y 2y 3y y y y <<₃₁₂y y y <<₂₁₃y y y <<₁₃₂y y y <<₁₂₃2242x x -+=ABC ∠ABCD 3AB =4BC =BC 1BE =AE BD BEF △12. 若点在一次函数图象上,点P 关于y 轴的对称点在反比例函数的图象上,则k 的值为______.13. 如图,点P 为上一动点,点A 为圆内一点,且满足,当最大时,则的长是______.三、解答题(共14小题,计81分,解答应写出过程)14. 计算:.15.解不等式,并写出它的所有正整数解.16. 化简:;17. 如图,在中,M 为边延长线上一定点,用尺规作图法在边的延长线上求作一点N ,使得(不写作法和证明,保留作图痕迹).18. 如图,菱形中,过点分别作边上高,求证:.19. 学校为促进“篮球体育运动社团”的开展,准备添置一批篮球,原计划订购80个,每个售价150元,商店表示:如果多购可以优惠,最后校方买了100个,每个只售140元,但商店所获利润不变,求每个篮球的成本价.的的(),2P a -24y x =+k y x=O 122OA OP ==P ∠AP 02|3|1)2--+-1423132x x -+≥-211339a a a a ⎛⎫+÷ ⎪-+-⎝⎭ABC AC BC AB MN ∥ABCD C AB AD ,CE CF ,BE DF =20. 如图是一个长为4cm ,宽为3cm 的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)吧21. 如图,一个可以自由转动的圆形转盘被互相垂直的一条半径和直径分成了3个分别标有数字的扇形区域,转动转盘,待转盘自动停止后指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时称为转动转盘一次(若指针指向两个扇形的边界线,则不计为转动次数,重新转动转盘,直到指针指向扇形内部为止)(1)转动转盘一次,转出的数字是-1的概率为______.(2)转动转盘两次,用画树状图或列表法求这两次分别转出的数字之积为负数的概率.22. 某校生物兴趣小组在相同的试验条件下,对某植物种子发芽率进行试验研究时,收集的试验结果如表所示:试验种子粒数(n )50010001500200030004000发芽的种子粒数(m )4719461425189828533812发芽频率x (1)求表中x 的值;(2)任取一粒这种植物的种子,请你估计它能发芽的概率(精确到);(3)若该学校劳动基地需要这种植物幼苗7600株,试估算该小组至少需要准备多少粒种子进行发芽培育.23. 小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B ,如图所示.于是他们先在古树周围的空的0.9420.9460.9500.9490.9530.01地上选择一点D ,并在点D 处安装了测量器CD ,测得;再在BD 的延长线上确定一点G ,使米,并在G 处的地面上水平放置了一个小平面镜,小明沿着BG 方向移动,当移动到点F 时,他刚好在小平面镜内看到这棵古树的顶端A 的像,此时,测得米,小明眼睛与地面的距离米,测量器的高度米.已知点F 、G 、D 、B 在同一水平直线上,且EF 、CD 、AB 均垂直于FB ,则这棵古树的高度AB 为多少米?(小平面镜的大小忽略不计)24. 经实验研究表明,女生在一定的成长阶段,身高越高,鞋码就越大,通过测量研究,发现鞋码y (码)是身高的一次函数.已知身高为时,鞋码为32码;身高为时,鞋码为37码.(1)求y 与x 之间的函数表达式;(2)当在这一成长阶段女生为时,其鞋码多少?25. 如图,圆内接四边形的对角线,交于点E ,平分.(1)求证:平分,并求的大小;(2)过点C 作交的延长线于点F ,若,求此圆半径的长.26. 如图,抛物线经过点和,与y 轴交于点C ,它的对称轴为直线.是=135ACD ∠︒5DG =2FG ==1.6EF =0.5CD ()cm x 140cm 165cm 160cm ABCD AC BD BD ,ABC BAC ADB ∠∠=∠DB ADC ∠BAD ∠CF AD ∥AB ,4AC AD BF ==²y x bx c =++(1,0)A -()3,0B l(1)求该抛物线的表达式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点,要使以P ,D ,E 为顶点的三角形与全等,求满足条件的点 P 、点E 的坐标.27. 【问题提出】(1)如图1,已知在平面直角坐标系中,点P 为x 轴正半轴上一动点,,,过点P 作x 轴的垂线交直线于点Q ,当周长最小时,求点Q 的坐标;【问题解决】(2)某实验室的设计平面图建立在平面直角坐标中如图2,已知坐标系中每个单位长度表示为1米,,,且满足,,现在将设计一个温度控制室,点M 、N 分别建立在y 轴与x 轴上,米,点P 是温度传感收集设备且为线段的中点,线段与是两条线性传感器,由于传感器的价格昂贵,现在要满足设计要求的同时,使得最小,是否有满足条件的P ,若有,求出点P 坐标并说明理由,求出此时四边形的面积;若没有,请说明理由.BOC ()0,2A ()3,4B AB ABP OABC ()0,80A ()80,0C AB OC ∥60OCB ∠=︒OMN 40MN =MN PA PC PA PC +APCB。
2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷(含解析)
2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若|a|=3,则a的值是( )A. −3B. 3C. 13D. ±32. 每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )A. 1.05×105B. 0.105×10−4C. 1.05×10−5D. 105×10−73.如图所示的几何体的俯视图为( )A.B.C.D.4. 计算2aa+1÷aa+1的结果是( )A. 2B. 2a+2C. 1D. 4aa+15.如图,将一副三角尺按图中所示位置摆放,点F在AC上,AB//DE,则∠EFC的度数是( )A. 65°B. 60°C. 70°D. 75°6. 防晒衣的主要作用是阻隔太阳紫外线的直接照射,如图为某品牌防晒衣某分店2022年1~8月的销量(单位:件)情况.这8个月销量(单位:件)的中位数是( )A. 1952B. 2387C. 2822D. 29847.如图,E是四边形ABCD的边BC延长线上的一点,且AB//CD,则下列条件中不能判定四边形ABCD是平行四边形的是( )A. ∠D=∠5B. ∠3=∠4C. ∠1=∠2D. ∠B=∠D8. 若关于x的一元二次方程x2+6x−a=0有实数根,则a的取值范围是( )A. a≤−9B. a>−9C. a≥−9D. a≥99.如图,等边△ABC的边长为1,D是AC和BC边上的一点,过D作AB边的垂线,交AB于G,设线段AG的长度为x,Rt△AGD的面积为y,则y与关于x的函数图象正确的是( )A. B.C. D.10. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,都是斜边在x轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2 (1,−1),A3(0,0),则依图中所示规律,A2022的坐标为( )A. (2,1010)B. (2,1011)C. (1,−1010)D. (1,−1011)二、填空题(本大题共5小题,共15.0分)11. 一个二次三项式分解因式后,其中一个因式为x+1,请写出一个满足条件的二次三项式:______.12. 如图,在△ABC中,AC=BC,以点A为圆心,任意长为半径画弧,分别交AB、AC于点M、N,再分别以点M、N为圆心,MN的长为半径画弧,两弧交于点P,连接AP并延长交BC大于12于点D,若∠C=36°,则∠ADB的度数是______.13. 2022年2月4日,北京冬奥会在北京一张家口隆重开幕,在北京冬奥会举办期间,小亮想到现场观看两场比赛,于是搜集了如图所示编号为A,B,C,D的四张图片(四张图片除正面图案不同外,图片大小、材质都相同),他将四张图片背面朝上洗匀后,随机抽取其中的两张,到现场观看抽中图片上所对应的比赛,则小亮抽中短道速滑和花样滑冰双人滑的概率是______.14.正方形ABCD的边长为4.E为AD的中点,连接CE,过点B作BF⊥CE交CD于点F,垂足为G,则EG=______.15. 如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形AB CD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为____________.三、解答题(本大题共8小题,共75.0分。
2024年山东省中考数学模拟押题预测卷及答案
2024年初中学生学业水平考试数学押题预测试卷注意事项:1.本试题分为第1卷和第Ⅱ卷两部分。
第1卷为选择题,30分;第Ⅱ卷为非选择题,90分;共120分。
考试时间为120分钟。
2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚。
所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效。
第Ⅰ卷(选择题 30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算82024×(−0.125)2023的结果为( )A. −8B. 8C. −2D. −0.1252.剪纸是中国优秀的传统文化.如图剪纸图案中,是中心对称图形的是( )A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( )A. 46×108B. 4.6×108C. 4.6×109D. 4.6×10104.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A. B. C. D.5.下列计算正确的是( )A. aa2+aa4=aa6B. (−aa3)2=aa6C. 2aa+3bb=5aabbD. aa6÷aa3=aa26.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=30°,则∠2的度数是( )A. 45°B. 55°C. 65°D. 75°7.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800kkkk,乘坐高铁列车比普通快车能提前8ℎ到达,已知高铁列车的平均行驶速度是普通快车的2倍.设普通快车的平均行驶速度为xx kkkk/ℎ,根据题意所列出的方程为( )A. 2800xx=2800×2xx+8B. 2800×2xx=2800xx+8C. 28002xx−2800xx=8D. 2800xx−28002xx=88.如图,点AA,BB分别在反比例函数yy=12xx和yy=kk xx的图象上,分别过AA,BB两点向xx轴,yy轴作垂线,形成的阴影部分的面积为7,则kk的值为( )A. 6B. 7C. 5D. 89.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AABB与从轮子底部到拉杆顶部的高度CCCC之比是黄金比.已知CCCC=80cckk,则AABB的长度是( )A. (20√ 5−20)cckkB. (80−40√ 5)cckkC. (40√ 5−40)cckkD. (120−40√ 5)cckk10.如图,在平面直角坐标系xxxxyy中,四边形xxAABBCC的顶点xx在原点上,xxAA边在xx轴的正半轴上,AABB⊥xx轴,AABB=CCBB=2,xxAA=xxCC,∠AAxxCC=60°,将四边形xxAABBCC绕点xx逆时针旋转,每次旋转90°,则第2024次旋转结束时,点CC的坐标为( )A. (√ 3,3)B. (3,−√ 3)C. (−√ 3,1)D. (1,−√ 3)第Ⅱ卷(非选择题 90分)二、填空题:本题共6小题,每小题3分,共18分。
2024年湖北省荆楚初中联盟中考模拟数学试题(五)(含答案)
荆楚初中联盟2024年中考数学模拟卷(五)(本试卷共6页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.考生答题全部在试题卷上.2.请学生将自己的姓名、班级用0.5毫米的黑色墨水签字笔填写在试卷的密封区.一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一项符合题目要求)1.下面四种化学仪器的示意图是轴对称图形的是( )A .B .C .D .2.Chat GPT 是一种基于深度学习的自然语言处理模型,它的参数量巨大.截止2024年1月Chat GPT 的参数量已经超过200亿.用科学计数法表示这个数字为( )A .B .C .D .3.下列运算正确的是()A . B . C . D .4.为了解学生的身体素质状况,国家每年都会进行中小学生身体素质抽测.在今年的抽测中,某校九年级二班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.根据这组数据判断下列结论中错误的是()A .这组数据的众数是11B .这组数据的中位数是10C .这组数据的平均数是10D .这组数据的方差是4.65.不等式组的解集在同一条数轴上表示正确的是( )A . B .C .D .6.“抖空竹”是我国非物质文化遗产,某中学将此运动引人特色大课间,某同学“抖空竹”的一个瞬间如图所示,将图1抽象成图2的数学问题:在平面内,.若,则的度数为()820010⨯9210⨯920010⨯10210⨯2=22(1)1a a +=+()325a a =2322a a a ⋅=32123m m -<⎧⎨-<⎩AB CD ∥50,85BAE DCE ∠=︒∠=︒AEC ∠图1图2A . B . C . D .7.一次函数的值随x 的增大而增大,则点所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限8.如图,AB 为的直径,直线CD 与相切于点C ,连接AC ,若,则的度数为( )A . B . C . D .9.如图1,点P 从的顶点B 出发,沿匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中曲线部分为轴对称图形,M 为最低点,则的周长是( )图1图2A .12 B .16 C .18D .2410.已知二次函数有以下结论:①对任意实数m ,都有与对应的函数值相等;②无论a 取何值,此函数的图象必过两个定点;③若此函数图象与x 轴有两不同交点A ,B ,且,则;④若,对应的y 的整数值有3个,则或.其中正确的个数是( )A .4B .3C .2D .1二、填空题(共5题,每题3分,共15分)11.因式分解:____________.12.如图,在中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,.若,则DC 的长是____________.115︒125︒135︒145︒(21)2y m x =-+(,)P m m -O e O e 50ACD ∠=︒BAC ∠30︒40︒50︒60︒ABC △B C A →→ABC △224(0)y ax ax a =+-≠11x m =-21x m =--AB >08a <<21x -≤≤-32a -<≤-23a ≤<24x x -=ABC △B ADB ∠=∠4AB =13.学校安排一项综合实践活动,要求测量两栋楼之间的距离.已知对面的楼高为,小明从点A 观测对面楼顶部的仰角为,观测楼底部的俯角为,则这两栋楼之间的距离为____________.(参考数据:)14.如图,电路图上有三个开关A 、B 、C 和一个小灯泡,同时闭合开关A 、B 或A 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是____________.15.如图,在平行四边形ABCD 中,,点E 是AD 上一动点,将沿B E 折叠得到,当点恰好落在EC 上时,DE 的长为____________.三、解答题(共9题,共75分。
山东省菏泽市2024届九年级下学期中考模拟数学试卷(含解析)
菏泽市二0二四年初中学业水平考试(模拟)数学试题本试卷共4页,共24个题。
满分120分,时间120分钟。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、考生号和座号填写在答题卡和试卷规定的位置上。
考试结束后,将试卷和答题卡一并交回。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第I 卷选择题部分(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.1.下面四个数中,最小的是()A .(1)--B .2(0.2)-C .|3|--D .13-2.2020年12月3日.中共中央政治局常务委员会召开会议,听取脱贫攻坚总结评估汇报.中共中央总书记习近平主持会议并发表重要讲话.指出经过8年持续奋斗,我们如期完成了新时代脱贫攻坚目标任务,现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,消除了绝对贫困和区域性整体贫困,近1亿贫困人口实现脱贫,取得了令全世界刮目相看的重大胜利.将100000000用科学记数法表示为()A .80.110⨯B .7110⨯C .8110⨯D .81010⨯3.如图几何体中,主视图是三角形的是()A .B .C .D .4.如图,将矩形纸片ABCD 沿AC 折叠,使点B 落到点B '处,2∠等于()第4题图A .1∠B .21∠C .901︒-∠D .9021︒-∠5.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是()第5题图A .37.8C ︒B .38C ︒C .38.7C ︒D .39.4C︒6.如图,AB 是半圆O 的直径,,2,30,AC AD OC CAB E ==∠=︒为线段CD 上一个动点,连接OE ,则OE 的最小值为()第6题图A B .1C D .27.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+和反比例函数c y x=在同一平面直角坐标系中的图象可能是()第7题图A .B .C .D .8.正ABC △的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数的图像大致为()第8题图A .B .C .D .第II 卷非选择题部分(共96分)二、填空题:本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.9.已知3m n +=,则226m n n -+=______.10.若代数式12x-有意义,则实数x 的取值范围是______.11.如图,是一张撕掉一个角的四边形纸片,根据图中所标示的数据,可得被撕掉的A ∠大小为______.第11题图12.如图,两半圆的圆心点1O 、2O 分别在直角ABC △的两直角边AB 、AC 上,直径分别为AB 、CD ,如果两半圆相外切,且10AB AC ==,那么图中阴影部分的面积为______.第12题图13.设实数,,a b c 满足:2223,4a b c a b c ++=++=,则222222222a b b c c a c a b +++++=---______.14.直角坐标系中,函数y =和3y x =-的图象分别为直线12,l l ,过2l 上的点131,3A ⎛⎫- ⎪ ⎪⎝⎭作x 轴的垂线交1l 于点2A ,过点2A 作y 轴的垂线交2l 于点3A ,过点3A 作x 轴的垂线交1l 于点4,A ⋯依次进行下去,则点2020A 的横坐标为______.第14题图三、解答题:本题共78分,把解答和证明过程写在答题卡的相应区域内.15.(6分)(1)解分式方程:214124x x -=--;(2)计算:10181tan 603-⎛⎫-++-︒ ⎪⎝⎭16.(5分)解不等式组53(1)92151132x x x x --<⎧⎪-+⎨-≤⎪⎩,并在数轴上表示出其解集.。
2024年广西壮族自治区南宁三中初中部中考数学模拟试题
2024年广西壮族自治区南宁三中初中部中考数学模拟试题一、单选题1.如图,数轴上表示3-的点A 到原点的距离是( )A .3-B .3C .13-D .132.近年来,全球新能源汽车发展如火如荼,下列图案是我国四款新能源汽车的标志,其中既是轴对称图形又是中心对称图形的是( ) A .B .C .D .3.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为( )A .70°B .75°C .80°D .85°4.若34x =,36y =,则23x y -的值是( ) A .19B .9C .13D .35.如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法(图中三角形ABC 是三角板),其依据是( )A .同旁内角互补,两直线平行B .两直线平行,同旁内角互补C .同位角相等,两直线平行D .两直线平行,同位角相等6.如图,在四边形ABCD 中,AD BC ∥,添加下列条件后仍不能..判定四边形ABCD 是平行四边形的是( )A .AD BC =B .AB DC ∥ C .A C ∠=∠D .AB DC =7.我们可以用图形中的面积关系解释很多代数恒等式.能用下面图形的面积关系解释的代数恒等式是( )A .()()22a b a b a b +-=-B .()2222a b a ab b -=-+ C .()2222a b a ab b +=++D .()()224a b a b ab -=+-8.下表是某社团20名成员的年龄分布统计表,数据不小心被撕掉一块,仍能够分析得出关于这20名成员年龄的统计量是( )A .平均数B .方差C .中位数D .众数9.小王和小李两位同学准备用720元班费给班里买一定数量的篮球,已知甲、乙两个商店某种品牌的篮球标价相同,如下是两位同学了解到的具体情况:下面是两位同学分别列出来的两个方程: 小王:720720480.72x x-⨯=-;小李:7202720480.7x x x+-=; 其中的x 表示的意义为( ) A .均为篮球的数量 B .均为篮球的单价C .小王方程中的x 表示篮球的数量,小李方程中的x 表示篮球的单价D .小王方程中的x 表示篮球的单价,小李方程中的x 表示篮球的数量10.数学活动课上,李老师给出一组按一定规律排列的数:2,4-,8,16-,32,…,第n 个数是( )A .2nB .2n -C .()12nn -⨯D .()112n n +-⨯11.月亮门是中国古典园林、住宅中常见的圆弧形洞门(如图1),因圆形如月而得名.月亮门因其寓意美好且形态优美,被广泛使用.图2是小智同学家中的月亮门示意图,经测量,水平跨径AB 为1.8米,水平木条BD 和铅锤木条CD 长都为0.3米,点C 恰好落在O e 上,则此月亮门的半径为( )A .1.8米B .1.6米C .1.5米D .1.4米12.如图,ABC V 中,10AB =,8AC =,6BC =,一束光线从AB 上的点P 出发,以垂直于AB 的方向射出,经镜面AC ,BC 反射后,需照射到AB 上的“探测区”MN 上,已知2MN =,1NB =,则AP 的长需满足( )A .142455AP ≤≤ B .182455AP ≤≤ C .192955AP ≤≤ D .243255AP ≤≤二、填空题13.14.如图,数轴上点A 表示的数为a ,化简2a -=.15.如图是某几何体的三视图及相关数据,请根据有关信息得这个几何体的全面积是.16.如图1,在某个盛有部分水的容器内放一个小水杯,现在匀速持续地向容器内注水,小水杯内水的高度()cm y 和注水时间()s t 之间的关系如图2所示,则从开始注水至把小水杯注满水需要的时间为秒.17.抽屉中有两双不同的袜子,小茗同学从中任取两只,那么两只袜子刚好配对的概率是. 18.如图,在Rt ABC △中,AC BC =,点A ,B 均落在坐标轴上且1OA =,点C 的坐标为33(,)22,将ABC V 向上平移得到A B C '''V ,若点B '、C '恰好都在反比例函数(0)k y x x=>的图象上,则k 的值是.三、解答题19.计算:26(23)(2)4⨯-+-÷. 20.解方程:2312x x x -+=+.21.利用勾股定理,L 的线段,如图:在Rt ABC △中,90B ??,2AB =,1BC =,则AC 的长等于______.在按同样的方法,L 的点.(1)在数轴上作出表示M (尺规作图,保留痕迹). (2N (尺规作图,保留痕迹).22.为了弘扬传统文化,某校组织八年级全体学生参加“恰同学少年,品诗词美韵”的古诗词比赛.比赛结束后,学校随机抽取的部分学生成绩作为样本,并进行整理后分成下面5组,50~60分506()0x ≤<的小组称为“诗词少年”组,60~70分607()0x ≤<的小组称为“诗词居士”组,70~80分708()0x ≤<的小组称为“诗词圣手”组,80~90分809()0x ≤<的小组称为“诗词达人”组,90~100分(90100)x ≤≤的小组称为“诗词泰斗”组;下面是将整理的样本绘制的不完整的频数分布直方图,请结合提供的信息解答下列问题:(1)若“诗词泰斗”组成绩的频率12.5%,求出样本容量,补全频数分布直方图;(2)以各组组中值代表本组的选手的平均成绩,计算样本中不含“诗词圣手”组的其他四组学生的平均成绩;(3)学校决定对成绩进入“诗词圣手”、“诗词达人”、“诗词泰斗“组的学生进行奖励,若八年级共有240名学生,请通过计算推断,大约有多少名学生获奖.23.某工厂接受了15天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工8个G 型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?24.综合与实践主题任务:“我的校园我做主”草坪设计任务背景:学校举办“迎五一,爱劳动”主题实践活动,九(2)班参加校园美化设计任务:校园内有一块宽为31米,长为40米的矩形草坪,在草坪上设计两条小路,具体要求:(1)矩形草坪每条边上必须有一个口宽相等的路口;(2)两条小路必须设计成平行四边形;驱动任务一:九(2)班各个实践小组的设计方案汇总后,主要有甲、乙、丙三种不同的方案(如图1):(1)直观猜想:方案中小路的总面积大小关系S 甲_________S 乙,S 甲_________S 丙;(请填“相等”或“不相等”)驱动任务二:验证猜想:各个实践小组用如表格进行研究:(2)请用含x 的代数式表示甲方案中小路总面积:______________; 驱动任务三:(3)如果甲种方案除小路后草坪总面积约为1170平方米.请计算两条小路的宽度是多少? 驱动任务四:为了深入研究,各个小组选择丙方案(如图2)进行研究.若两条小路与矩形两组对边所夹锐角BGF AEF θ∠=∠=.若1x =时,请用含θ的三角函数表示两条路重叠部分四边形FHPQ 的面积,并直接写出sin θ最小值.25.如图,ABC V 内接于O e ,BAC ∠的平分线AF 交O e 于点G ,过G 作DE ∥BC 分别交AB ,AC 的延长线于点D ,E .(1)求证:DE 是O e 的切线; (2)已知6AG =,23CF GE =,点I 为ABC V 的内心,求GI 的长. 26.某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式2y x bx c =++,通过输入不同的b ,c 的值,在几何画板的展示区内得到对应的图象(1)若输入2b =,3c =-,得到如图①所示的图象,求顶点C 的坐标及抛物线与x 轴的交点A ,B 的坐标(2)已知点()1,10P -,()4,0Q .①若输入b ,c 的值后,得到如图②的图象恰好经过P ,Q 两点,求出b ,c 的值; ②淇淇输入b ,嘉嘉输入1c =-,若得到二次函数的图象与线段PQ 有公共点,求淇淇输入b 的取值范围.。
2024年陕西省咸阳市部分学校中考模拟数学试题(原卷版)
2024 年陕西省初中学业水平考试·临考冲刺卷(A )数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共6页,总分120分.考试时间120分钟.2.领到试卷和答题卡后,请用0.5 毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(C 或D ).3.请在答题卡上各题的指定区域内作答,否则作答无效.4.作图时,先用铅笔作图,再用规定签字笔描黑.5.考试结束,本试卷和答题卡一并交回.第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1. 如果向右走10米,记为米,那么向左走25 米记为( )A. 米B. 米C. 米D. 米2. 如图,直线a 、b 相交,,则的度数为( )A. B. C. D. 3. 下列运算中,正确的是( )A. B. C. D. 4. 在中,、是对角线,补充一个条件使得四边形为菱形,这个条件可以是( )A. B. C. D. 5. 已知关于、方程组 的解为 则直线 与直线 、为常的10+25+15+15-25-23100∠+∠=︒1∠130︒100︒120︒50︒2244a a a +=2353(2)42a b a ab -÷=-628()()x x x -⋅-=222()a b a b -=-ABCD Y AC BD ABCD AC BD =AC BD ⊥AB AC =90ABC ∠=︒x y 1y x y kx b =+⎧⎨=+⎩,45x y =⎧⎨=⎩,,1y x =+y kx b =+(k b数,且的交点坐标是( )A. B. C. D. 6. 如图,在中,,E 、F 分别为、的中点,连接,H 为的中点,过点H 作,交于点 D ,连接,则与相似(不含)的三角形个数为( )A. 1B. 4C. 8D. 27. 如图,是的直径,弦交于点,,,,则的长为( )A 3 B. C. D. 8. 已知抛物线 (n 为常数),当时,其对应的函数值最大为,则n 的值为( )A. 或7B. 1 或7C. 4D. 或4第二部分(非选择题 共96分)二、填空题(共5 小题,每小题3分,计15分)9. 计算:_______.10. 宽与长的比是黄金分割数 的矩形叫做黄金矩形,古希腊的巴特农神庙采用的就是黄金矩形的设计.如图,已知四边形是黄金矩形,若长 则该矩形的面积为___________.(结果保留根号).0)k ≠()4,0()5,4()4,5()5,0Rt ABC 90ABC ∠=︒AC BC EF AE HD AC ⊥BC DE ABC ABC AB O CD AB P 1AP =5BP =45APC ∠=︒CD()²1y x n =---14x ≤≤10-2-2-1-=ABCD 1AB =+,ABCD11. 如图,在矩形中,连接,延长至点,使,连接,若,则的度数是________°.12. 若点、在同一个反比例函数的图象上,则n 的值为____________.13. 如图,在中,连接,,,是边上一动点,连接,以为边向左侧作等边,连接,则的最小值是___________.三、解答题(共13 小题,计81分.解答应写出过程)14. 解不等式:,并将它解集在数轴上表示出来.15. 计算: 16.解方程:17. 如图,在矩形中,,连接,请利用尺规作图法在上找一点F ,使得的周长为14.(不写作法,保留作图痕迹)18. 如图,是菱形的对角线,为边上的点,过点作,交于点,交边于点.求证:.的ABCD AC AB E BE AC =DE 20E ∠=︒BAC ∠()2A m ,()4B m n ,ABDC BC 4BC =120ABC ∠=︒E CD BE BE BEF △FC FC 3136x x -->()02024π-+︒13225x x =--ABCD 95AB BC ==,BD CD BFC △BD ABCD P AB P PQ AD ∥BD M CD Q CQ PM =19. 已知关于x 的一元二次方程 (1)求证:该方程总有实数根;(2)若 是该方程的一个解,求n 的值.20. 王朋和李强都想参加学校社团组织的暑假实践活动,但只有一个名额,经过商量,他们计划用摸球的方式确定一人参加.在一个不透明的袋子里装有四个小球,分别标上1、2、3、4(这些球除数字外都相同).游戏规则:第一次,先将袋中的小球摇匀后,王朋从袋子中随机摸出一个小球,记下所摸小球上的数字,摸到偶数不放回,摸到奇数放回;第二次,再将袋子中的小球摇匀后,李强从袋子中随机摸出一个小球,记下所摸小球上的数字.若二人所摸到小球上的数字之和大于5,王朋参加;否则,李强参加.(1)“王朋从袋子中随机摸出一个小球,摸到小球上的数字是6”属于事件;(填“必然”“不可能”或“随机”)(2)请用面树状图或列表的方法说明这个游戏对双方公平吗?21. 小林想利用无人机测量某塔(图的高度.阳光明媚的一天,该塔倒映在平静的河水中,如图2所示,当无人机飞到点处时,点到水平面的高度米,在点处测得该塔顶端的仰角为.该塔顶端在水中倒影的俯角为.已知,,、、三点共线,,求该塔的高度.(光线的折射忽略不计.,22. 【情境描述】古人没有钟表,大多数时候,他们是以香燃烧的时间长短,来计量时刻的.实际上由于环境、风力、香的长短、香料干湿等诸多因素,一炷香的燃烧时间并不完全相同,但一般约为半个时辰,即一个小时.综合实践小组欲探究香燃烧时剩余长度与燃烧时间的关系.【观察发现】()2220x n x n +++=.3x =-1)AB C C BD 9CD =C 37︒A A '42︒CD BD ⊥AB BD ⊥A B A 'A B AB '=AB tan 370.75︒≈tan 420.90)︒≈小组成员准备了一柱长为的香,测量后发现,香燃烧时剩余长度随着燃烧时间的变化而变化,每燃烧一分钟,香的长度就减少.【建立模型】(1)若用()表示香燃烧时剩余长度,用(分)表示燃烧时间,请根据上述信息,求关于的函数表达式,并在图中画出部分函数图象;【解决问题】(2)请你帮该小组算一算,经过多长时间,这柱香恰好燃烧完?23. 王大伯种植了棵新品种桃树,现已挂果,到了成熟期随机选取部分桃树作为样本,对所选取的每棵树上的桃子产量进行统计(均保留整十千克).将得到的结果绘制成如图所示的条形统计图和扇形统计图.请结合统计图,解答下列问题:(1)所抽取桃树产量的中位数是,众数是 ,扇形统计图中所在扇形圆心角的度数为 度;(2)求所抽取桃树的平均产量;(3)王大伯说,今年他这棵新品种桃树产量超过万千克.请你通过估算说明王大伯的说法是否正确.20cm 0.4 cm y cm x y x 400kg kg 120kg 400524. 如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径, AC 与 BD 相交于点 E . 过点 C 作⊙O 的切线,交AB 的延长线于点 F .求证:(1);(2).25. 如图,在平面直角坐标系中,抛物线、为常数.且经过点,交轴于点、在左侧),其顶点的横坐标为2.(1)求抛物线的函数表达式;(2)将抛物线向左平移2个单位长度后得到抛物线,为抛物线上的动点,点为抛物线的对称轴上的动点,请问是否存在以、、、为顶点且以为边的四边形是平行四边形?若存在,求出点坐标;若不存在,请说明理由.26 问题探究(1)如图1,在中,,于点O ,过点C 作于点D ,,,则的长为 ;(2)如图2,在正方形中,点P 在对角线上,点M 、N 分别在边上,且,求证:;问题解决的.BC CD =,CAD BCF ∠=∠2BC AD BF =⋅2:6(L y ax bx a =+-b 0)a ≠1532D ⎛⎫- ⎪⎝⎭,x A (B A B L L L 'Q L 'P L A D P Q AQ Q Rt OAB 90A ∠=︒OC OB ^CD OA ⊥8OA =10OB OC ==AD ABCD AC AB BC 、PM PN ⊥PM PA PN PC=(3)如图3,某地有一块形如正方形的景区,是景区内的一条小路,点E 、N 分别在上,管理部门欲沿修建一条笔直的观光小路,在与的交汇处P 修建休息亭,并沿再修建一条笔直的观光小路.设计人员经测算发现只要再满足就可以实现要求.请判断设计人员的方法是否可行(当且时,)?并证明你的结论.ABCD AC CD BC 、EN EN AC BP 45BPN ∠=︒2EC CN =EN PA PN PC =45BPN ∠=︒2EC CN =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学中考模拟试卷 Document number:WTWYT-WYWY-BTGTT-YTTYU-
2010年初三中考模拟(一)
数学试卷
时间:120分钟 总分:120
一、选择题(本大题共有5小题,每小题3分,共15分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上)
1、平面直角坐标系内,点A (-2,-3)在( )
A.第一象限 B 第二象限 C.第三象限 D 。
第四象限 2.下列图形中,既是..轴对称图形又是..中心对称图形的是( )
3.下列事件中最适合使用普查方式收集数据的是( )
A .了解某班同学的身高情况
B .了解全国每天丢弃的废旧电池数
C .了解一批炮弹的杀伤半径
D .了解我国农民的年人均收入情况
4.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是( )
5、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是
( )
1 2 3 4 1
2 y s O 1 2
3
4 1
2 y s O s 1 2
3
4 1
2 y s
O 1 2 3 4 1
2 y O A
B .
C .
D . D
C
B
A
A B C D
A
B
D E 第16题
二、填空题(共12小题,每小题2分,共24分。
请将答案写在答题卡相应位置.......上) 6计算:2
3
32x
x • ,
()3
22x 。
7、分解因式:228x -= 。
8、已知数据:2,1-,3,5,6,5,则这组数据的众数是 ,极差是 。
9 函数2
1+=
x y 中,自变量x 的取值范围是 .
10.如图5,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=070,则∠AED 的度数是_________________ .
第10题 第12题 第13题
11、已知双曲线x
k
y =过点(-2,3),则k = 。
12、AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =______________度。
13、如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于
14、圆锥形烟囱帽的底面直径为80cm ,母线长为50cm ,则这样的烟囱帽的侧面积是
等于 cm 2.
15、2009201073⨯的计算结果的末位数字
是 。
16、如图,斜边长为6cm ,∠A=30°的直角三角板 ABC 绕点C 顺时针方向旋转90°至ΔEDC 的位置,再沿CB 向左平移,使点D 落在原三角板ABC
的斜边AB 上,则三角板向左平移的距离是 cm ;
17、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆
1 2 3
4 D
C B
A E
三、解答题:(18—22题每题6分,23—26题每题8分,27题9分,28题10分)
18、(1)计算 |4|2145cos 2)3(1
0--⎪⎭
⎫
⎝⎛+--- π; ⑵解方程:2512112x x +=--
19(1)解不等式组 ⎪⎩⎪
⎨⎧-≥+>-131538x x x x
(2)、先化简,再求值:11212-÷⎪⎪⎭
⎫ ⎝⎛---x x
x x x x ,其中3-=x ;
20、如图,已知在ABCD 中,点E 为BC 边的中点,延长DE 、AB 相交于点F 。
求证:CD=BF.
第1个图形 第2个图形 第3个图形 第4个图形
…
A
B
C E F
21、某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类。
在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,图(1)和图(2)是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图。
请你根据图表中提供的信息,解答以下问题:
图(1)
(1)填充图(1)频率分布表中的空格;
(2)在图(2)中,将表示“自然科学”的部分补充完整;
(3)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适 (4)根据图表提供的信息,请你提出一条合理化的建议。
22、(8分)小明和爸爸、妈妈排成一横排照相,小明正好排在爸爸妈妈中间的概率是多少请用表格或树状图加以分析和说明。
图图60数学 社会 文学 自
23、统计数据显示,2007年底某市共有私人汽车10万辆,到2009年底共有私人汽车万辆。
(1)若2008年、2009年两年中每年比上一年年私人汽车平均增长率相同,求这两年该市私人汽车的年平均增长率是多少
(2)如果从2009年开始,每年年底比上一年底新增汽车的数量相同,并且都有上一年底汽车数量的10%报废。
要使2010年底该市私人汽车拥有量不超过万辆,问从2009年开始,每年年底比上一年最多新增汽车多少辆
24、已知:三角形ABC 三边a 、b 、c 满足bc c b a -+=222,ac c a b -+=222,
ab b a c -+=222,
(1)求证:ABC ∆是等边三角形;
(2)若等边ABC ∆的面积为4,其内心为1O ,连结1BO ,以1BO 为边作等边11B BO ∆,记等边11B BO ∆的面积1S ,取11B BO ∆的内心2O ,连2BO ,以2BO 为边作等边22B BO ∆,记等边22B BO ∆的面积为2S ,依次作等边三角形……记20102010B BO ∆的面积为2010S ,求
1S 、2S 及2010S 的值。
2
1
25、(8分)如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离()AB 是,看旗杆顶部M 的仰角为45;小红的眼睛与地面的距离()CD 是,看旗杆顶部M 的仰角为30.两人相距28米且位于旗杆两侧(点B N D ,,在同一条直线上).
请求出旗杆MN 的高度.(参考数据:2 1.4≈,3 1.7≈,结果保留整数)
26、(8分)如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°.
⑴求∠A 的度数;
⑵若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34,求图中阴影部分的面积. (3)填空:圆上有 个点到直线CF 的距离为2
M
N B
A D
C 30°
45°
E C B
O F
27、阅读下列材料:
对于函数1-=x y ,研究其图象时我们发现,与函数1-=x y 的图象相比较,仅仅是将直线1-=x y 在x 轴下方的图象沿x 轴翻折到x 轴上方,原x 轴上方的图象不变。
(如图(1)中实线部分图象)
同理,对于函数x y 2=的图象,依上述办法将双曲线x
y 2
=作一翻折即可(如图(2)实线部分图象) 解决下列问题:
(1)在给定的坐标系内画出函数322--=x x y 的图象
(2)利用图象讨论:对于不同的m 值,方程1322-=--m x x 的根的情况如何 (3)通过题(2)的解决我们知道,方程的根可以看成是两个函数图象交点的横坐标。
若)(n m n m <、是关于x 的方程()()0x 1=---b x a 的两根,且b a <,请判断
n m b 、、、a 的大小关系并说明理由。
图
1
图2
28、已知:如图12所示,在平面直角坐标系xOy 中,直线643
+-=x y 与x 轴、y 轴
的交点分别为A,B,将OBA ∠对折,使点O 的对应点H 落在直线AB 上,折横交x 轴于点C
(1)求出点C 的坐标,并求过A ,B ,C 三点的抛物线的解析式。
(2)若抛物线的顶点为D ,在直线BC 上是否存在点P ,使得四边形ODAP 为平行四边形若存在,求出点P 的坐标;若不存在,说明理由。
(3)在x 轴上找一点Q ,使得QH QB -最大,求出Q 点的坐标,并说明理由。
x。