数学《集合间的基本关系》课件-课件ppt
合集下载
集合间的基本关系ppt课件
( B
A.2
)
B.3
C.4
【解析】集合M满足M ⫋ {1,2},集合{1,2}的元素个数为2,
则满足题意的M的个数为22 − 1 = 3.
D.5
例3-7 已知集合A = {x ∈ | − 2 < x < 3},则集合A的所有非空真子集的个数是
( A
)
A.6
B.7
C.14
D.15
【解析】A = {x ∈ | − 2 < x < 3} = {0,1,2},
图形语言:
符号语言:若A⊆B,且B⊆A,则A=B
例如:A={x|x是两条边相等的三角形}
B={x|x是等腰三角形}
B (A)
2、集合相等
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的
任何一个元素都是集合A的元素,此时集合A与集合B中的元素是一样的,那
么集合A与集合B相等,记作:A=B.
【解析】B = {1,2,4,8},可知集合A中的任意一个元素都是集合B中的元素,故
A ⫋ B.用Venn图表示更加直观,如图1.2-8.
图1.2-8
(2)A = {x| − 1 < x < 5},B = {x|0 < x < 5};
【解析】在数轴上表示出集合A,B,如图1.2-9所示,由图可知B ⫋ A.
方法1 (列举法) 满足条件的集合有:{0},{1},{2},{0,1},{0,2},{1,2},共6个.
方法2 (公式法) 集合A的元素个数为3,则集合A的所有非空真子集的个数为
23 − 2 = 6.
高考题型1 集合间关系的判断
例10 指出下列各组集合之间的关系:
(1)A = {1,2,4},B = {x|x是8的正约数};
A.2
)
B.3
C.4
【解析】集合M满足M ⫋ {1,2},集合{1,2}的元素个数为2,
则满足题意的M的个数为22 − 1 = 3.
D.5
例3-7 已知集合A = {x ∈ | − 2 < x < 3},则集合A的所有非空真子集的个数是
( A
)
A.6
B.7
C.14
D.15
【解析】A = {x ∈ | − 2 < x < 3} = {0,1,2},
图形语言:
符号语言:若A⊆B,且B⊆A,则A=B
例如:A={x|x是两条边相等的三角形}
B={x|x是等腰三角形}
B (A)
2、集合相等
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的
任何一个元素都是集合A的元素,此时集合A与集合B中的元素是一样的,那
么集合A与集合B相等,记作:A=B.
【解析】B = {1,2,4,8},可知集合A中的任意一个元素都是集合B中的元素,故
A ⫋ B.用Venn图表示更加直观,如图1.2-8.
图1.2-8
(2)A = {x| − 1 < x < 5},B = {x|0 < x < 5};
【解析】在数轴上表示出集合A,B,如图1.2-9所示,由图可知B ⫋ A.
方法1 (列举法) 满足条件的集合有:{0},{1},{2},{0,1},{0,2},{1,2},共6个.
方法2 (公式法) 集合A的元素个数为3,则集合A的所有非空真子集的个数为
23 − 2 = 6.
高考题型1 集合间关系的判断
例10 指出下列各组集合之间的关系:
(1)A = {1,2,4},B = {x|x是8的正约数};
1.2 集合间的基本关系-(新教材人教版必修第一册)(38张PPT)
1.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0} 关系的Venn图是( )
B [解x2-x=0得x=1或x=0,故N={ 0,1} ,易得N M,其对应的 Venn图如选项B所示.]
子集、真子集的个数问题 【例2】 已知集合M满足:{1,2} M⊆{1,2,3,4,5},写出集合M所有 的可能情况.
[解] (1)若 A B,则集合 A 中的元素都在集合 B 中,且 B 中有不 在 A 中的元素,则 a>2.
(2)若 B⊆A,则集合 B 中的元素都在集合 A 中,则 a≤2. 因为 a≥1, 所以 1≤a≤2.
谢谢~
3.在具体情境中,了解空集的含义.(难 解,培养数学运算素养.
点)
自主预习 探新知
1.Venn图的优点及其表示 (1)优点:形象直观. (2)表示:通常用封闭曲线的内部代表集合.
2.子集、真子集、集合相等的相关概念
都是
A=B
A⊆B
B⊇A
A≠B
AB
BA
思考1:(1)任何两个集合之间是否有包含关系? (2)符号“∈”与“⊆”有何不同? 提示:(1)不一定.如集合A={0,1,2},B={-1,0,1},这两个集合就 没有包含关系. (2)符号“∈”表示元素与集合间的关系; 而“⊆”表示集合与集合之间的关系.
[思路点拨] B={x|m+1≤x≤2m-1} ――分―B结=―合― ∅和 数―B轴―≠―∅→ 列不等式组 ―→ 求m的取值范围
[解] (1)当B=∅时, 由m+1>2m-1,得m<2. (2)当B≠∅时,如图所示.
m+1≥-2,
∴2m-1<5, 2m-1≥m+1
m+1>-2,
或2m-1≤5, 2m-1≥m+1,
1.2集合间的基本关系-高一数学课件
符号语言:若A ⊆ B,且B ⊇ A,则A = B.
如果集合A ⊆ B,但存在元素x ∈ B,且x ∉ A,就称集合A是集合
B的真子集,记作A ⫋ B(或B
子集( A ⊆ B )
A).
真子集( A ⫋ B )
相等( A = B )
新知探究
问题3:方程 2 + 1 = 0的实数根组成集合是什么?它的元素有哪些?
求实数m的取值范围.
解:据题意得:A ≠ ∅.
所以,
m + 1 ≤ −2
2m − 1 ≥ 5
m ≤ −3
解得,
m≥3
∴ m无解,即m的解集为∅.
·
+1
·
−2
·
5
·
2 − 1
小结
对任意的 ∈ ,总有 ∈ ,则 ⊆
子集
B
A
或
B
真子集 集合A ⊆ B,但存在x ∈ B,且x ∉ A,则A ⫋ B
+ 1 ≤ 2 + 1
≥2
②当 ≠ ∅时,则 + 1 ≥ −2
即 ≥ −3
2 + 1 ≤ 5
≤3
解得:2 ≤ ≤ 3.
综上可得,实数的取值范围是:{| ≤ 3}
·
·
−2 + 1
·
2 − 1
·
5
练习巩固
变式4-1.已知集合A = {−2 ≤ x ≤ 5},B = {x|m + 1 ≤ x ≤ 2m − 1},若A ⊆ B,
复习导入
元素
研究对象
集合
元素组成的整体
含义
元素的性质
确定性、互异性、无序性
集合的概念
如果集合A ⊆ B,但存在元素x ∈ B,且x ∉ A,就称集合A是集合
B的真子集,记作A ⫋ B(或B
子集( A ⊆ B )
A).
真子集( A ⫋ B )
相等( A = B )
新知探究
问题3:方程 2 + 1 = 0的实数根组成集合是什么?它的元素有哪些?
求实数m的取值范围.
解:据题意得:A ≠ ∅.
所以,
m + 1 ≤ −2
2m − 1 ≥ 5
m ≤ −3
解得,
m≥3
∴ m无解,即m的解集为∅.
·
+1
·
−2
·
5
·
2 − 1
小结
对任意的 ∈ ,总有 ∈ ,则 ⊆
子集
B
A
或
B
真子集 集合A ⊆ B,但存在x ∈ B,且x ∉ A,则A ⫋ B
+ 1 ≤ 2 + 1
≥2
②当 ≠ ∅时,则 + 1 ≥ −2
即 ≥ −3
2 + 1 ≤ 5
≤3
解得:2 ≤ ≤ 3.
综上可得,实数的取值范围是:{| ≤ 3}
·
·
−2 + 1
·
2 − 1
·
5
练习巩固
变式4-1.已知集合A = {−2 ≤ x ≤ 5},B = {x|m + 1 ≤ x ≤ 2m − 1},若A ⊆ B,
复习导入
元素
研究对象
集合
元素组成的整体
含义
元素的性质
确定性、互异性、无序性
集合的概念
集合间的基本关系-ppt课件
1.集合有哪两种表示方法?
列举法,描述法
2.元素与集合有哪几种关系?
属于、不属于
3.对于集合这个新的研究对象,接下来该如何研究呢?
类比法
问题
• 实数间的基本关系
关系
大小
关系
相等
关系
5<7
5>3
5=5
集 合间的 基本 关系
图示法(Venn图)
常常画一条封闭的曲线,用它的内部表示一个集合.
例如 ,
A B
B
A
人教A版( 2019) 数学必 修第一 册1.1. 2集合 间的基 本关系 课件( 共16张P PT)
概念理解
问
通过类比实数关系中的性质 “若a b且b a, 则a b"
你能发现集合之间的关系有哪些性质?
(1)任何一个集合是它本身的子集,即 ⊆ ; 反身性
(2)对于集合,,,如果 ⊆ ,且 ⊆ ,那么 ⊆ .
1.2集合间的基本关系
一、教学目标
1.理解集合之间包含与相等的含义,理解子集、真子集的概念,在具体情
境中,了解空集的含义.
2.能识别给定集合的子集,掌握列举有限集的所有子集的方法.
3.能用符号和Venn图表示集合间的关系.
二、教学重难点
1、教学重点
集合之间包含与相等的含义.
2、教学难点
子集、真子集的关系.
图1-1表示任意一个集合A
图1-2表示集合 {1,2,3,4,5}
A
图1-1
1,2,3,4,5
图1-2
优点: 直观,体现了数形结合思想,可以作为同学
们学习集合这一章的辅助手段。
问题 类比实数之间的相等关系、大小关系,集合与集
人教版高中数学必修一《集合间的基本关系》ppt课件
(6)对于集合A、B、C,如果 A B且B C,那么A C.
13
练习: 判断集合A是否为集合B的子集,若是则在( )里打 “√”,若不是则在( )里打“×”:
① A 1,3,5, B 1, 2,3, 4,5,(√ ) ② A 1,3,5, B 1,3,6,9 ( × )
m+1≥-2
2m-1≤7 ,解得2<m≤4,
m+1<2m-1
综上:m≤4.
22
1.本节课的知识网络:
子集 AB
空集 ()
相等 AB
真子集 A B
性质
性质
23
2.回顾本节课你有什么收获? (1)子集:A B 任意x∈A,则x∈B.
(2)真子集: A B A B,
但存在 x0 ∈B且 x0 A. (3)集合相等:A=B AB且BA.
解:A 1,3
(1)当 a 0时, B 满足 B A .
(2)当 a 0
时,B
1 a
.
若 B A ,则 1 1 或 1 3 .
a
a
即 a 1 或 a 1 .
综上
a
0或
1
3
或
1
.
3
18
设集合 A 1, a,b, B a, a2, ab ,
提升总结: 写集合子集的一般方法:先写空集,然后按照集合 元素从少到多的顺序写出来,一直到集合本身. 写集合真子集时除集合本身外其余的子集都是它的 真子集.
16
写出集合 a,b,c 的所有子集,并指出它的真子集.
解:集合{a,b,c}的所有子集为 ,a,b,c, a,b,
13
练习: 判断集合A是否为集合B的子集,若是则在( )里打 “√”,若不是则在( )里打“×”:
① A 1,3,5, B 1, 2,3, 4,5,(√ ) ② A 1,3,5, B 1,3,6,9 ( × )
m+1≥-2
2m-1≤7 ,解得2<m≤4,
m+1<2m-1
综上:m≤4.
22
1.本节课的知识网络:
子集 AB
空集 ()
相等 AB
真子集 A B
性质
性质
23
2.回顾本节课你有什么收获? (1)子集:A B 任意x∈A,则x∈B.
(2)真子集: A B A B,
但存在 x0 ∈B且 x0 A. (3)集合相等:A=B AB且BA.
解:A 1,3
(1)当 a 0时, B 满足 B A .
(2)当 a 0
时,B
1 a
.
若 B A ,则 1 1 或 1 3 .
a
a
即 a 1 或 a 1 .
综上
a
0或
1
3
或
1
.
3
18
设集合 A 1, a,b, B a, a2, ab ,
提升总结: 写集合子集的一般方法:先写空集,然后按照集合 元素从少到多的顺序写出来,一直到集合本身. 写集合真子集时除集合本身外其余的子集都是它的 真子集.
16
写出集合 a,b,c 的所有子集,并指出它的真子集.
解:集合{a,b,c}的所有子集为 ,a,b,c, a,b,
《集合间的基本关系》课件
80%
补集的可分离性
若全集U中存在两个互不重叠的 子集A和B,则它们的补集A'和B' 也是互不重叠的。
补集的应用
集合的划分
通过补集可以将全集划分为若 干个互不重叠的子集,从而实 现对全集的划分。
集合的运算
在集合运算中,补集的概念可 以用于简化运算过程,例如在 集合的交、并、差等运算中, 可以通过补集来消除某些元素 。
并集的性质
01
并集具有交换律,即 A∪B=B∪A。
02
03
并集具有结合律,即 (A∪B)∪C=A∪(B∪C) 。
并集的补集律表明,如 果M是全集U,那么 A∪(M-A)=M。
04
并集的幂等律表明, A∪A=A。
并集的应用
并集在数学、逻辑和计 算机科学中都有广泛的 应用。
在集合运算中,并集用 于组合多个集合,满足 某些条件或属性的元素 。
假设A={a, b, c, d},B={b, c, e, f}, 则A∩B={b, c}。
交集的性质
01
02
03
04
空集与任何集合的交集是空集 :即A∩∅=∅。
空集与任何集合的交集是空集 :即A∩∅=∅。
空集与任何集合的交集是空集 :即A∩∅=∅。
空集与任何集合的交集是空集 :即A∩∅=∅。
交集的应用
超集是指一个集合包含另一个集合的所有元素,即如果集合A中的 所有元素都属于集合B,则称集合B为集合A的超集。
03
集合间的相等关系
相等关系的定义
相等关系
如果两个集合A和B的元素完全相同,即A=B,则称集合A与B具有 相等关系。
相等的定义
对于任意两个集合A和B,如果A中的每一个元素都是B中的元素, 且B中的每一个元素都是A中的元素,则称A与B相等,记作A=B。
集合间的基本关系ppt课件
变式训练1 (1)若{1,2,3}⫋A⊆{1,2,3,4,5},则满足条件的集合A的个数为
( B )
A.2
B.3
C.4D.5解析 满足 Nhomakorabea件的集合A有{1,2,3,4},{1,2,3,5}和{1,2,3,4,5},共3个.
(2)已知集合A⫋{1,2,3},且A中至少含有一个奇数,则满足条件的集合A的个
别为{1},{2}.
思考辨析
1.{0},⌀之间有什么区别与联系?
提示 {0}是含有一个元素0的集合,⌀是不含任何元素的集合,因此⌀⊆{0}.
2.若一个集合只有一个子集,则这个集合有什么特征?
提示 一个集合只有一个子集,则这个集合是空集.
自主诊断
1.下列集合中为空集的是( C )
A.{0}
B.{⌀}
(3)集合A的非空子集的个数为2n-1;
(4)集合A的非空真子集的个数为2n-2.
例如,集合{1,2}的元素个数为2,其子集个数为22=4,子集分别为⌀,{1},{2},
{1,2};真子集个数为22-1=3,真子集分别为⌀,{1},{2};非空子集个数为22-1=
3,非空子集分别为{1},{2},{1,2};非空真子集个数为22-2=2,非空真子集分
【例1】 (1)[2024河南统考模拟预测]已知集合A={x∈N|-2<x<3},则集合A
的所有非空真子集的个数是( D )
A.6
B.7
C.14
D.15
解析 因为A={x∈N|-2<x<3}={0,1,2},所以集合A中的元素个数为3,因此集
合A的所有非空真子集的个数是23-2=6.故选A.
(2)已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},那么这样的集合M的个数为( C )
集合间的基本关系课件-高一上学期数学人教A版(2019)必修第一册
解析:因为A={x|1<x<2},B={x|x<a},且A⊆B,
所以借助数轴分析知 ≥ 2.
D
)
3.已知M={a-3,2a-1,a2 +1},N={-2,4a-3,3a-1},若M=
N,求实数a的值.
解
因为M=N,则(a-3)+(2a-1)+(a2+1)=-2+(4a-3)+(3a
-1),即a2-4a+3=0,解得a=1,或a=3.
A.2个
B.4个
C.6个
B
)
D.8个
解析:根据题意,在集合A的子集中,含有元素0的子集有{0},
{0,1},{0,-1},{-1,0,1}, 共4个.
2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是(
A.{a|a≤2}
B.{a|a≤1}
C.{a|a≥1}
D.{a|a≥2}
记作: ⊆ ,或者 ⊇ ,读作包含于,包含
集合包含集合是什么意思?什么是子集?
【对子集的理解】
(1)若 ⊆ ,则有任意,
(2)当集合中存在不属于集合的元素时,我们就说集合不是集合的
子集,记作 ⊈ 或 ⊉ ,读作“不包含于”或“不包含”,
举例说明,若 = {1,2,3}, = {1,2,3,4}, = {1,2,5},则有
=
也就是说,若 ⊆ ,且 ⊆ ,则 =
【举例说明】
①若集合是0~10之间的质数组成的集合;集合 ={2,3,5,7},则 = ;
②若集合是中国的直辖市组成的集合; ={北京,上海,重庆,天津},则 = .
两个集合相等是什么意思?
【问题】怎样证明或判定两个集合相等?
区分大小关系。
集合间的基本关系ppt课件
A B
记作A B(或B A). 如 : {1,2} {1,2,3,4} 符号语言: 若A B, 且存在x B但x A,则A B. 图形语言: 若A B,且A B,则A B.
A B
新知探究:空集
问题4 方程x2+1=0的实数根组成集合是什么?它的元素有哪些? 我们知道,方程x2+1=0是没有实数根,所以方程x2+1=0的实数根
集合
元素个数 子集个数
真子集 非空子集
个数
个数
结论:
0
1
{a}
1
2
集合A有n(n≥0)个元素,则 A的子集有2n个,
{a,b}
2
4
A的真子集或非空子集有2n-1个, {a,b,c}
3
8
A的非空真子集有2n-2个(n≥1). {a,b,c,…} n
2n
0 1 3 7
2n 1
典例解析 例2 判断下列各题中集合A是否为集合B的子集,并说明理由: (1)A={1, 2, 3},B={x|x是8的约数}; (2)A={x|x是长方形},B={x|x是两条对角线相等的平行四边形}. 解:(1) 因为3不是8的约数,所以集合A不是集合B的子集. (2) 因为若x是长方形,则x一定是两条对角线相等的平行四边形, 所以集合A是集合B的子集.
如:{x||x|=1}={x|x2=1}
符号语言: 若A⊆B且B⊇A,则A=B.
图形语言:
A(B)
A B BA
集合相等是集合包含关系中的特殊情况。
集.
(1) A={1,3,5},B={1,2,3,4,5}; (√)
(2) A={1,3,5},B={1,3,6,9}; (×)
变式 已知集合A满足{1,2}⫋A⊆{1,2,3, 4},写出满足条件的集合A.
1.2集合间的基本关系 课件(共20张PPT)
新知探究1:子集
子集的定义: 一般地,对于两个集合A、B,如果集合A中任 意一个元素都是集合B中的元素,我们就说这两个集合有包 含关系,称集合A为集合B的子集. 记作:A B (或B A ). 读作:“A包含于B” (或“B包含A”). 符号语言:任意x A,有x B, 则A B.
新知探究1:子集
人教版数学课本必修一 第一章 第二节
集合间的基本关系
复习引入
1.集合中元素的三大特性:确定性 、互异性、无序性.
2.元素与集合的关系
意义
读法 符号表示
a 是集合 A 的元素 a 属于集合 A a∈A
a 不是集合 A 的元素 a 不属于集合 A a A
3.常用数集的表示
集合 自然数集 正整数集 整数集 有理数集 实数集
表示 N
N 或N
Z
Q
R
4.集合的表示法:列举法 、描述法.
新知探究1:子集
思考1:两个实数之间有相等关系,大小关系,如5=5,5<7,5>3, 等等.类比两个实数之间的关系,你会想到集合之间有什么关系呢?
新知探究1:子集
观察下面三组集合,类比实数之间的相等关系、大小关系,你能 发现下面两个集合之间的关系吗?
(× ) (× ) (√ )
新知探究2:集合的相等
第三组集合
③ A={x| x是两条边相等的三角形}, B={x | x是等腰三角}. 集合A中的元素和集合B中的元素相同,集合A与集合B相等
思考2:能否仿照实数中的结论“若a ≥b,且b ≥a,则a=b ”, 用集合的语言描述集合A和集合B相等?
a ≥b
BHale Waihona Puke Ab ≥aA Ba=b
A= B
新知探究2:集合的相等
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
问题1:观察以下几组集合,并指出它们 元素间的关系
(1)A={1,2,3}, B={1,2,3,4,5}
(2)A={新华中学高一(2)班全体女生},
B={新华中学高一班全体学生}
(3)C={x|x是两条边相等的三角形},
D={x|x是等腰三角形}
人教版 高一数学 必修一
福州四十中 数学组
1.1.2《集合间的基本关系》
授课教师:叶 丹 指导教师:郑新发
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
复习引入:
1.集合、元素 2.集合的分类: 3.集合元素的特性: 4.集合的表示方法: 5.常用数集: N , N *, Z , Q, R
B={x|x是等腰三角形} 这两例中两个集合间关系有何不同之处?
Aห้องสมุดไป่ตู้
D
等腰三角形
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
问题2:写出集合{a、b、c}的所有子集。
变式1:
说出集合{a、b、c}的子集、真子集的个数;
变式2:
说出集合{a、b、c、d}的子集、真子集的个数;
变式3:
已知集合A={a,b},B={a,b,c,d,e},则满足 条件 A C B的集合C 的个数为( )
A.A⊆B B.C⊆B
C.D⊆C D.A⊆D
2.如果集合A={x|x≤ 3},a= 2 ,那么 ( B )
A.a ∉ A
B.{a} ⊆ A
C.{a}∈A D.a⊆A
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
问题1再探究: (1)A={1,2,3}, B={1,2,3,4,5} (3)A={x|x是两条边相等的三角形},
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
课后作业: 福州四十中校本课时训练(4)
福州四十中 数学组
(3)C={x|x是两条边相等的三角形}, D={x|x是等腰三角形}
等腰三角形 D
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
练习:
1.集合A={x|x是三角形},B={x|x是等腰三
角形},C={x|x是等腰直角三角形},D={x|x
是等边三角形},则 ( B )
A.{a|a≥3} B.{a|a≤-1} C.{a|a>3} D.{a|a<-1}
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
C
m 1
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
课堂小结: (1)知识点:
①子集、真子集、相等关系的
概念,空集的概念。
②子集的相关性质。
(2)方法: 数形结合(如数轴、Venn图)、 分类讨论解决有关集合问题。
C.空集的元素个数为0
D.任何集合至少有二个不同子集
√ √ 5、六个关系式:①{a,b} {a,b } ②{a,b}={b,a} √ √ ③{0} ④0 ∈ {0} ⑤ ∈ {0} ⑥ ={0},
其中正确的个数为 ( C)
A.6个 B.5个 C.4个 D.小于4个
必修一 1.1.2《集合间的基本关系》
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
(1)A={1,2,3}, B={1,2,3,4,5}
A
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
(2)A={新华中学高一(2)班全体女生}, B={新华中学高一班全体学生}
A
新华中学高一(2)班 全体女生
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
问题3:子集的性质的运用
6、已知集合{2x,x+y}={7,4},
则整数x=____2____,y=____5____.
7、已知集合A={1,2,m3},B={1,m},
B⊆A,则m=_0_或__-_1_或__2.
8、设A={x|-1<x≤3},C={x|x>a},
若A ⊆ B,则a的取值范围是 ( B )
A.7 B.8 C.15 D.16
必修一 1.1.2《集合间的基本关系》
福州四十中 数学组
练习:
3、下列四个集合中,是空集的是 ( B )
A.{0}
B.{x|x>8,且x<5}
C.{x∈N|x2-1=0} D.{x|x>4}
4、下列四个命题,其中正确的命题是( C)
A.空集没有子集
B.空集是任何集合的一个真子集