数值分析第三章插值法
数值分析插值法
数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。
插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。
插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。
插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。
常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。
假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。
拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。
b.构造插值多项式L(x)。
c.计算L(x)在需要估计的插值点上的函数值f(x)。
2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。
差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。
最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。
牛顿插值法的步骤为:a.计算差商表的第一列。
b.计算差商表的其他列,直至最后一列。
c.根据差商表构造插值多项式N(x)。
数值分析第三章插值法
插值误差举例
f ( 3) ( ) 抛物线插值:R2 ( x ) ( x x0 )( x x1 )( x x2 ) 3!
x0=0.4, x1=0.5, x2=0.6, (0.4, 0.6)
f ( 3) ( ) 2 3 31.25
31.25 R2 (0.54) (0.54 0.4)(0.54 0.5)(0.54 0.6) 3! 0.00175 R1 (0.54) 0.048
ln 0.54 的精确值为:-0.616186···
可见,抛物线插值的精度比线性插值要高 Lagrange插值多项式简单方便,只要取定节点就可写 出基函数,进而得到插值多项式,易于计算机实现。
11
Lagrange插值
lk(x) 的表达式
由构造法可得
( x x0 ) ( x xk 1 )( x xk 1 ) ( x xn ) lk ( x ) ( xk x0 ) ( xk xk 1 )( xk xk 1 ) ( xk xn )
( n1) ( t ) 在 (a, b) 内至少有一个零点,设 以此类推,可知 为 x ,即 ( n1) ( x ) 0 ,x (a, b)。
( n 1) 又 ( n1) ( t ) Rn ( t ) K ( x )[( t x0 )( t x1 ) ( t xn )]( n1)
17
Lagrange基函数性质
Lagrange 基函数的两个重要性质
当 f(x) 为一个次数 n 的多项式时,有 f ( n1) ( x ) 0 故
Rn ( x ) f ( x ) Ln ( x) 0
即 n 次插值多项式对于次数 n 的多项式是精确的
数值分析第3章--插值法
插值多项式的存在惟一性 定理1 •:给定被插函数 f x ,插值节点 x0 , x1 ,
必存在惟一的形如表达式P( x) a0 a1x an x 的插值函数 P( x) ( 3-1 ) 满足插值条件: P( xi ) yi ,i 0, 1, 2, , n 。 因为方程组 a0 + a1x0 + … + anxn0 = y0 a0 + a1x1 + … + anxn1 = y1 ( 3-2 )
线性插值多项式: P1( x ) = y0 l0( x ) + y1 l1( x )
《数值分析》 冶金工业出版社
数值分析——第 3章
3.2.2 抛物线插值 (n 2 )
• 插值条件:给定三个不同点 ( xi , yi ) , i 0,1, 2 , 插值多项式 P2 ( x)满足: P2 ( x) 的次数不超过 2 。 ( 1) (2)P2 ( xi ) yi ,i 0,1, 2 。 • 抛物线插值多项式形式: 2 P2 ( x) a0 a1x a2 x = y0 l0( x ) + y1 l1( x ) + y2 l2( x )
• 定义2:若 n 次多项式 l j ( x) , j= 0, 1, 2, …, n 在 n 1 个节点 x0 x1 xn 上满足条件 :
数值分析——第 3章
第3章
插值法
《数值分析》 冶金工业出版社
数值分析——第 3章
内容概要
• • • • • • • 插值的基本概念 拉格朗日插值 均差与牛顿插值多项式 差分与等距节点插值多项式 分段线性插值 埃尔米特插值 三次样条插值
《数值分析》 冶金工业出版社
数值分析 插值法
图形见图2-3. 称 lk ( x) 及 lk 1 ( x) 为线性插值基函数,
11
图2-3
12
பைடு நூலகம் 2.
n次插值多项式
根据插值的定义 Ln ( x) 应满足
Ln ( x j ) y j ( j 0,1, , n).
为构造 Ln ( x), 先定义 n 次插值基函数.
13
定义1 若 n 次多项式 L j ( x ) ( j 0,1, , n) 在 n 1 个节点
L1 ( xk 1 ) yk 1.
8
其几何意义就是通过两点( xk , yk ), ( xk 1 , yk 1 ) 的直线. 如图2-2.
图2-2
9
由 L1 ( x) 的几何意义可得到表达式
L1 ( x ) y k y k 1 y k ( x xk ) xk 1 xk
5
因为线性方程组的系数行列式
1 1 . . 1 xn ...
n xn
x0 x1
... ...
n x0 n x1
0
所以线性方程组 的解存在且唯一。
6
定理1
在次数不超过 n 的多项式集合 H n 中,满足条
件的
插值多项式 L ( x) H是存在唯一的. n n
7
2.3
1. 线性插值
拉格朗日插值
y
k 0
n
k
l k ( x ).
Ln ( x j ) yk lk ( x j ) y j
( j 0,1, , n).
称为拉格郎日(Lagrange)插值多项式 而线性插值与抛物线插值是 n=1 和 n=2 的特殊情形
若引入记号
数值分析3-插值方法
,n
泰勒插值余项
定理 1 假设 f(x)在含有点 x0的区间[a,b]内有直 到 n +1阶导数,则当 x∈[a,b]时,对于由式(1) 给出的 pn(x),成立
f n+1 ( ξ ) f ( x ) − pn ( x ) = ( x − x 0 )n + 1 ( n + 1 )!
式中 ξ界于 x0与 x之间,因而 ξ∈[a,b].
f [ xi , x j ] = f ( xi ) − f ( x j ) xi − x j (i ≠ j , xi ≠ x j )
为f (x)在点xi , xi处的一阶差商,并记作f [xi , xj],
插商及其性质
又称
f [ xi , x j , xk ] = f [ xi , x j ] − f [ x j , xk ] xi − xk (i ≠ k )
则
1 c= ( x 0 − x1 )( x 0 − x 2 )
( x0 − xn )
基函数的一般形式
即
( x − x 1 )( x − x 2 ) l0 ( x ) = ( x 0 − x 1 )( x 0 − x 2 )
x − xj ( x − xn ) = π ( x 0 − x n ) 1≤ j ≤ n x 0 − x j
抛物线插值
p2(x) ≈ f(x)
f(x)
x0
x1
x2
因过三点的二次曲线为抛物线,故称为抛物插值。
插值问题的可解性
设所求的插值多项式为
pn ( x ) = a 0 + a1 x + a 2 x 2 + + an x n
待定系数法
可建立关于系数 a0,a1,…,an的线性方程组
常用数值分析方法3插值法与曲线拟合
p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值
数值分析实验报告--实验2--插值法
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值分析-计算方法-插值a
sin 50 0
L2
(
5
18
)
0.76543
- c os
R (x ) x(x-)x (-)x (-);
c o s3
2
3 ! 6 4 3
x2
R2
5 18
0.00077
sin 50 = 0.7660444…
2次插值的实际误差 0.00061
高次插值通常优于 低次插值
但绝对不是次数越 高就越好,嘿 嘿……
R1(
5
18
)
0.01077
sin 50 = 0.7660444…
外推 /* extrapolation */的实际误差 -0.01001
利用 x1 4, x2 3
sin 50 0.76008,
内插/* interpolation */ 的实际误差 0.00596
R~ 1
5
18
0.00660
The wife said: "No, they're TEN!" "But I have counted them: 0, 1, 2, ..."
n1 li(x)
希望找到li(x),i = 0, …, n 使得 li(xj)=ij ;然后令
n
Ln ( x )
li ( x )
y i
,则显然有Ln(xi)
[b a,]
n
RRno(lxl)e’至s T少h有eornem+1:个若根( x) 充分Rn光(x)滑 ,K(x() x i00)( x - (xx i )1)0,则
任存意在固注定意(这xx0里,xxi是1)(i对使= 0得t, 求…,导(n),)考0察。
数值分析插值法范文
数值分析插值法范文数值分析是一门研究利用数值方法解决实际问题的学科,它涵盖了数值计算、数值逼近、数值解法等内容。
在数值分析中,插值方法是一种重要的数学技术,用于从给定的数据点集推断出函数的值。
本文将详细介绍插值法的基本原理、常用插值方法以及应用领域等内容。
一、插值法的基本原理插值法是利用已知的数据点集构造一个函数,使得这个函数在给定区间内与已知数据吻合较好。
插值法的基本原理是,假设已知数据点的函数值是连续变化的,我们可以通过构造一个满足这种连续性的函数,将数据点连接起来。
当得到这个函数后,我们可以通过输入任意的$x$值,得到相应的$y$值,从而实现对函数的近似。
插值法的基本步骤如下:1.给定数据点集$\{(x_0,y_0),(x_1,y_1),...,(x_n,y_n)\}$,其中$x_i$是已知的数据点的$x$值,$y_i$是对应的函数值。
2.构造一个函数$f(x)$,使得$f(x_i)=y_i$,即函数通过已知数据点。
3.根据实际需要选择合适的插值方法,使用已知数据点构造函数,得到一个满足插值要求的近似函数。
4.对于输入的任意$x$值,利用插值函数求出相应的$y$值,从而实现对函数的近似估计。
二、常用插值方法1.拉格朗日插值法拉格朗日插值法是一种使用拉格朗日多项式进行插值的方法。
给定数据点集$\{(x_0,y_0),(x_1,y_1),...,(x_n,y_n)\}$,拉格朗日插值多项式可以表示为:$$L(x) = \sum_{i=0}^{n} y_i \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$其中$L(x)$为插值函数,利用这个函数可以求出任意输入$x$对应的$y$值。
2.牛顿插值法牛顿插值法是一种使用差商来表示插值多项式的方法。
给定数据点集$\{(x_0,y_0),(x_1,y_1),...,(x_n,y_n)\}$,牛顿插值多项式可以表示为:$$N(x) = y_0 + \sum_{i=1}^{n} f[x_0, x_1, ..., x_i]\prod_{j=0}^{i-1} (x - x_j)$$其中$N(x)$为插值函数,$f[x_0,x_1,...,x_i]$是差商,利用这个函数可以求出任意输入$x$对应的$y$值。
数值分析 插值法
1 1 1
x0 x1 xn
2 x0 2 x1
n x0 n x1
0 i j n
2 xn n xn
( x j xi ) 0
, an .
由克莱默法则知,方程组有唯一解 a0 , a1 ,
§2 Lagrange Polynomial
唯一性的另一证明 满足 P( xi ) yi , i 0, ... , n 的 n 阶插 值多项式是唯一存在的。
f (x)
(x0 ,y0)
(x1 ,y1)
P1(x)
x0
x1
可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
§2 Lagrange Polynomial
y1 y0 直线方程为: y y0 x x ( x x0 ) 1 0
记 P 1 ( x) L 1 ( x) ,上式等价变形为:
化简得到
L2 ( x ) l0 ( x ) y0 l1 ( x ) y1 l2 ( x ) y2 l i ( x ) yi .
i 3
成立:
l 0 ( x0 ) 1 l ( x ) 0 0 1 l 0 ( x 2 ) 0
l1 ( x 0 ) 0 l ( x ) 1 1 1 l1 ( x 2 ) 0
l 2 ( x0 ) 0 l ( x ) 0 2 1 l 2 ( x 2 ) 1
将以上思路推广到n+1个节点情形,即可得到类似的 插值基函数和插值多项式表示形式。
§2 Lagrange Polynomial
2-3 Lagrange插值多项式
数值分析中的(插值法)
插值法可以与其他数值分析方法结合使用,以获得更准确和可靠的估计结果。例如,可以 考虑将插值法与回归分析、时间序列分析等方法结合,以提高数据分析的效率和精度。
THANKS
感谢观看
多项式的阶数
根据数据点的数量和分布情况,选择适当的多项式阶数,以确保多 项式能够更好地逼近真实数据。
计算多项式的系数
通过已知的数据点和多项式阶数,计算出多项式的系数,从而得到 完整的插值多项式。
计算插值多项式的导数
导数的计算
在某些应用中,需要计算插值多项式的导数,例如在 曲线拟合、数值微分等场景中。
总结词
牛顿插值法是一种基于差商的插值方法,通过构造差商表来逼近未知点的数值。
详细描述
牛顿插值法的基本思想是通过构造差商表来逼近未知点的数值,差商表中的每一 项都是根据前一项和后一项的差来计算的。该方法在数值分析中广泛应用于数据 拟合、函数逼近等领域。
样条插值法
总结词
样条插值法是一种通过已知的离散数据点来构造一个样条函 数,用于估计未知点的数值的方法。
常见的插值法
拉格朗日插值法
总结词
拉格朗日插值法是一种通过已知的离散数据点来构造一个多项式,用于估计未 知点的数值的方法。
详细描述
拉格朗日插值法的基本思想是通过构造一个多项式来逼近已知数据点,使得该 多项式在每个数据点的取值与实际值相等。该方法在数值分析中广泛应用于数 据拟合、函数逼近等领域。
牛顿插值法
增加采样点的数量可以减小离散化误差,提高插值结果的稳定
性。
选择合适的插值方法
02
根据具体情况选择适合的插值方法,如多项式插值、样条插值
等,以获得更好的逼近效果和稳定性。
引入阻尼项
数值分析-插值法的讲解
称P(x)为f(x)的插值函数,x为插值节 点,[a,b]为插值区间,求插值函数P(x)的 方法为插值法。
若P(x)=a0+a1x+▪▪▪+anxn,称 P(x)为插值多项式。 若P(x)为分段多项式,就称 之为分段插值。
若P(x)为三角多项式,就 称之为三角插值。
枪管膛线----→
1.插值多项式的存在唯一性 P(x)=a0+a1x+▪▪▪+anxn, P(x) ∈Hn a0+a1x0+…+anx0n=y0 a0+a1x1+…+anx1n=y1
. . .
a0+a1xn+…+anxnn=yn
1 x x ... x Vn(x0,x1,…,xn)= 1 x x ... x ... 1 x x ... x
k 1 k 1 k 1 k 1
y
( x xk 1)( x xk 1)
k
( xk xk 1)( xk xk 1)
T H A N K Y O U !
( x xk 1)( x xk ) ( xk 1 xk 1)( xk 1 xk )
k k k 1
l
l
2
k
k 1
( x xk )( x xk 1) ( x x )( x x ) y ( )( ) L ( x) yk 1 x x x x ( xk 1 xk )( xk 1 xk 1)
k 1
x
x xk
k 1
k ห้องสมุดไป่ตู้1
k
xk
L1(x)=
x x y x x y x x x x
数值分析第三章 插值法
+ (0.3367 − 0.32)(0.3367 − 0.36) × 0.333487 (0.34 − 0.32)(0.34 − 0.36)
+ (0.3367 − 0.32)(0.3367 − 0.34) × 0.352274 = 0.330374
(0.36 − 0.32)(0.36 − 02.36 4)
x x0 x1 y 01
一次插值多项式y = P1 (x)可以由两个基本插值多项 式 l0 (x)、l1 (x) 与函数值y0、y1的线性组合来表示
6
6
线性插值
例3.2.1:已知y = f (x)的函数表
x13 y12
求线性插值多项式,并计算x=1.5的函数值
解:已知两点的线性插值多项式
Rn (x) = f (x) − Pn (x)
定理3.2:设f (n)(x)在区间[a, b]上连续,f (n + 1)(x) 在[a, b]上存在,x0, x1,…, xn是[a, b]上互异的节 点,记插值问题的余项为 Rn (x) = f (x) − Pn (x) , 那么,当x ∈ [a, b]时,有如下估计
≈
P2 (115)
=
(115 (100
− 121)(115 − 144) − 121)(100 − 144)
× 10
+ (115 − 100)(115 − 144) ×11 (121 − 100)(121 − 144)
+ (115 − 100)(115 − 121) ×12 (144 − 100)(144 − 121)
P1 ( x)
=
x−3 1−3
×1+
x −1× 3−1
2
数值分析插值法
数值分析插值法数值分析是数学的一个分支,用于研究如何使用数值方法来近似和解决数学问题。
插值是数值分析的一个重要概念,它涉及到如何通过已知数据点的信息来估计未知数据点的值。
在本文中,我们将着重讨论插值法。
插值法是一种基于已知数据点的函数值,通过建立适当的插值函数来估计未知数据点的函数值的方法。
插值问题的目标是找到一个函数f(x),使得f(x_i)=y_i(i=0,1,2,...,n),其中x_i是已知的数据点,y_i是相应的函数值,n是已知数据点的数量。
然后,通过插值函数可以近似估计任意一个未知数据点的函数值。
常见的插值方法包括拉格朗日插值、牛顿插值和埃尔米特插值等。
下面我们将逐一介绍这些插值方法。
拉格朗日插值是一种利用拉格朗日多项式进行插值的方法。
拉格朗日多项式是一个多项式函数,满足通过已知数据点的函数值。
具体地说,设给定的已知数据点为(x_i,y_i),我们需要找到一个多项式P(x)=y,使得P(x_i)=y_i。
拉格朗日插值多项式的形式如下:P(x)=Σ(y_i*l_i(x))其中l_i(x)是拉格朗日基函数,它定义为:l_i(x)=Π((x-x_j)/(x_i-x_j))(j≠i)牛顿插值是另一种常用的插值方法。
它通过使用差商来递归地计算插值多项式。
差商是一个递归定义的函数,用于计算多项式的系数。
设给定的已知数据点为(x_i,y_i),我们需要找到一个多项式P(x)=y,使得P(x_i)=y_i。
牛顿插值多项式的形式如下:P(x)=y_0+(x-x_0)*f[x_0,x_1]+(x-x_0)*(x-x_1)*f[x_0,x_1,x_2]+...其中,f[x_i,x_j,...,x_k]是差商的定义,它可以通过递归公式计算得到:f[x_i,x_j,...,x_k]=(f[x_j,...,x_k]-f[x_i,...,x_{k-1}])/(x_k-x_i)埃尔米特插值是一种利用已知数据点及其导数信息进行插值的方法。
数值分析--chapter3 多项式插值与样条插值
其中Ak 为待定系数。
由条件lk (xk ) = 1 可定Ak ,于是
lk=(xj)=n0=xx(k−x−k(xx−xjj−x0x)0()x(kx−−xx11))······((xxk−−xxkk−−11))((xx−k −xkx+k1+)1·)···(··x(−xkx−n)xn)
(6)
j =k
§3.2 拉格朗日(Lagrange)插值−−拉格朗日插值多项式
基函数法:由线性空间的基出发,构造满足插值条件的多项式方 法。
用基函数法求插值多项式分两步:
(1)定义n + 1个线性无关的特殊代数多项式(插值基函数), 用ϕ0(x), · · · , ϕn(x)表示;
(2)利用插值条件,确定插值基函数的线性组合表示的n次插值多
项式
p(x) = a0ϕ0(x) + a1ϕ1(x) + · · · + anϕn(x)
− −
x0 x0
y1
(8)
用L1(x)近似代替f (x)称为线性插值,公式(8)称为线性插值多项 式或一次插值多项式。
§3.2 拉格朗日(Lagrange)插值−−拉格朗日插值多项式
当n = 2时,拉格朗日插值多项式(7)为
数值分析中的插值方法
数值分析中的插值方法在数值分析中,插值是一种通过在已知数据点之间估计未知数据点的方法。
它是一种常见的数据处理技术,用于填补数据间的空白,揭示数据间的关联性,或者建立数据模型。
在本文中,我们将讨论数值分析中的几种常见的插值方法。
一、拉格朗日插值拉格朗日插值是一种基于多项式的插值方法。
假设有n个离散数据点,我们想要在这些点之间插值得到未知数据点的值。
拉格朗日插值可以通过构建一个n次多项式来实现。
例如,给定三个数据点(x0, y0),(x1, y1),(x2, y2),我们可以假定插值多项式为:P(x) = y0 * L0(x) + y1 * L1(x) + y2 * L2(x)其中,L0(x),L1(x),L2(x)是拉格朗日插值多项式的基函数,由以下公式得到:L0(x) = (x - x1) * (x - x2) / ((x0 - x1) * (x0 - x2))L1(x) = (x - x0) * (x - x2) / ((x1 - x0) * (x1 - x2))L2(x) = (x - x0) * (x - x1) / ((x2 - x0) * (x2 - x1))利用这些基函数,我们可以得到插值多项式P(x),从而计算出未知点的值。
二、牛顿插值牛顿插值是另一种常见的插值方法,也是基于多项式的。
与拉格朗日插值不同的是,牛顿插值使用了差商的概念来构建插值多项式。
差商是一种表示数据间差异的指标,它可以用于计算插值多项式的系数。
对于n个数据点,差商可以由以下递归公式计算得到:f[x0] = f(x0)f[x0, x1] = (f[x1] - f[x0]) / (x1 - x0)f[x0, x1, ..., xn] = (f[x1, x2, ..., xn] - f[x0, x1, ..., xn-1]) / (xn - x0)基于差商,我们可以得到牛顿插值多项式的表达式:P(x) = f[x0] + f[x0, x1] * (x - x0) + f[x0, x1, x2] * (x - x0) * (x - x1) + ...利用牛顿插值,我们可以通过已知数据点构建插值多项式,进而估计未知点的值。
数值分析-插值法
数值分析-插值法我们能得到⼀个函数f在区间[a,b]上某些点的值或者这些点上的⾼阶导数我们就能通过插值法去得到⼀个函数g,g与f是⾮常相近的⼀般来说g分为三类,⼀类是n次多项式 a n*x n +a n-1*x n-1 + .......+a0,⼀类是三⾓多项式,最后⼀类是分段n次多项式多项式插值这个可以说是最简单的插值了对于a n*x n +a n-1*x n-1 + .......+a0,我们有n+1个未知数,我只需要知道n+1个点的函数值就可以解出这n+1个未知数将解出的值带⼊即可优点:简单粗暴缺点:要解n+1个⽅程,时间复杂度较⾼,n不好确定,若n过⼤,容易过拟合,若n过⼩,容易⽋拟合拉格朗⽇插值先说⼀阶多项式我们有两点式f(x) = y k*(x k+1 - x) / (x k-x k+1) + y k+1*(x-x k) / (x k+1 - x k)此两点式可以看做∂ * y k + (1-∂) * y k+1那么⾃然的在x=x k的时候 ∂=0 在x=x k+1的时候∂=1这⾥的∂其实是与x相关的⼀阶多项式再说⼆阶多项式对于⼀个⼆次函数,我们有三个点(x k-1,y k-1) ,(x k,y k) ,(x k+1,y k+1)我们有l k-1,l k,l k+1f(x) = l k-1*y k-1 + l k*y k + l k+1*y k+1其中l是与x相关的⼆次多项式我们可以把l当作基函数这样的话就有x = x k-1 时l k-1 = 1, l k=0, l k+1 = 0x = x k时 l k-1 = 0, l k=1, l k+1 = 0x = x k+1时l k-1 = 0, l k=0, l k+1 = 1那么这个插值基函数是很好求的因为每个插值函数都有两个零点对于l k-1来说有零点x k,x k+1那么lk-1就可以表⽰为l k-1 = A*(x-x k)*(x-x k+1)因为x=xk-1时l k-1 = 1所以A = 1 / ((x k-1 - x k)* (x k-1 - x k+1) )那么同理l k和l k+1也能求出来了那我们得到⼆阶的拉格朗⽇插值多项式现在将⼆阶推⼴到n阶得到n接的拉格朗⽇插值多项式余项:R n(x) = f(x) - L n(x) R n(x)表⽰n次拉格朗⽇多项式的插值余项R n(x) = f n+1(e)/(n+1)! * w n+1(x) e属于[a,b]且依赖与x w n+1(x) = (x-x0)(x-x1).......(x-x n)优点:算法较为简单缺点:⽆法处理动态增加节点的情况⽜顿插值还是先从⼀阶到⼆阶进⾏说明我先得到了⼀阶差值多项式P1(x),P1(x) 满⾜过点(x1, f(x1)), (x2,f(x2))假设现在有第三个点(x3,f(x3))我们要通过这个点去得到⼆阶差值多项式P2(x) 使得P2(x)过这三个点可以设P2(x) = P1(x) + a2*(x-x0)*(x-x1)通过第三个点解出a2就⾏了推⼴到多阶那么可以得到P n(x) = a0 + a1(x-x0) + a2(x-x0)(x-x1) + a3(x-x0)(x-x1)(x-x2) + ......求这个插值多项式的值可以通过递推⼀步⼀步的求这样就实现了动态增删可以看到计算a k需要计算(k-1)2次,那么⽜顿插值法就是⼀个快速的计算⽅法均差⼀阶均差 f[x0, x k] = ( f(x k) - f(x0) ) / (x k - x0)⼆阶均差 f[x0, x1, x2] = (f[x0, x2] -f[x0, x1] ) / (x2 - x1)可以看到⼀阶均差就是简单的求斜率⼆阶均差就是对⼀阶均差求斜率那么k阶均差就是f[x0, x1,,,,,,x k] = (f[x0,,,,,x k-2, x k] -f[x0, ,,,,,,,x k-2,x k-1] ) / (x k - x k-1)f[x0, x1,,,,,,x k] = f n(ε) / n!均差的性质k阶均差可表⽰为f(x0),f(x1), f(x2),,,,,,,,, f(x k)的线性组合⽜顿插值中的a就是均差,可以从⼀阶开始推,然后使⽤数学归纳法证明那么⽜顿插值多项式就是:在计算f[x0,x1,,,,,,,,,,x n]时,⼀般使⽤均差表均差表的计算⽅式为a[i,j] = ( a[i-1][j] - a[i-1][j-1] ) / (末尾的x - 最开始的x)误差:误差为最后⼀阶的均差 * w(x)优点:可动态增删节点缺点:⽆法处理要求导数相同的情况埃尔⽶特插值法实验报告⼀个点,多个导数:⽜顿插值中的均差在xi->x0时其实分别是i阶导数,这样就是我们熟悉的泰勒多项式此时的插值函数就是泰勒多项式两个点,⼀个导数我们有三个条件,也就是说我们能求出三次插值多项式这时我们先写出过这两个点的⽜顿插值多项式在这个多项式的基础上我们再加上⼀个三次项搞定,可以观察到,这三个项数其实可以算是正交的,因为当x=x1或者x=x2时最后⼀项是0满⾜条件的两个点,两个导数这也是题⽬所要求的情况因为有两个导数,所以⽜顿插值法⽆法解决,这⾥只能使⽤基函数⽅法设插值函数为H(x), 点与导数分别为(x1,y1,m1),(x2,y2,m2)H(x)满⾜:H(x1) =y1, H(x2) = y2, H(x1)’ = m1,H(x2)=m2H(x) = a1*x1 + a2*x2 + b1*m1 + b2*m2其中 a1, a2, b1, b2均为三层插值多项式X=x1时 a1(x1) = 1,a2(x1) = 0, b1(x1) = 0,b2(x1) = 0,a1’(x1) = 1,a2’(x1) = 0X=x2时 a1(x2) = 0,a2(x2) = 1, b1(x2) = 0,b2(x2) = 0,a1’(x2) = 1,a2’(x2) = 0X=x1时 b1’(x1) = 1,b2’(x1) = 0X=x2时b1’(x1) = 0,b2’(x1) = 1然后⽤了⼀个很巧妙的⽅法设基函数,解出来值和就是这样⼦的R3(x) = 1/4! * (x-x k)2(x-x k+1)2*f4(ε)两个点,两个导数2直接使⽤泰勒多项式,并把将余项改为未知数,使⽤多余的⼀个条件去求余项的值例如:求次数⼩于等于3的多项式P(x),使满⾜条件P(x0)=f(x0),P'(x0)=f'(x0),P"(x0)=f"(x0),P(x1)=f(x1)。
数值分析常用的插值方法
数值分析常用的插值方法数值分析中常用的插值方法有线性插值、拉格朗日插值、分段线性插值、Newton插值、Hermite插值、样条插值等。
下面将对这些插值方法进行详细介绍。
一、线性插值(linear interpolation)线性插值是最简单的插值方法之一、假设已知函数在两个点上的函数值,通过这两个点之间的直线来估计中间点的函数值。
线性插值公式为:f(x)=f(x0)+(x-x0)*(f(x1)-f(x0))/(x1-x0)其中,f(x)表示要求的插值点的函数值,f(x0)和f(x1)是已知的两个点上的函数值,x0和x1是已知的两个点的横坐标。
二、拉格朗日插值(Lagrange interpolation)拉格朗日插值是一种基于多项式的插值方法。
它通过多个已知点的函数值构造一个多项式,并利用这个多项式来估计其他点的函数值。
拉格朗日插值多项式的一般形式为:f(x) = Σ[f(xi) * Li(x)] (i=0,1,2,...,n)其中,f(x)表示要求的插值点的函数值,f(xi)是已知的多个点的函数值,Li(x)是拉格朗日基函数。
拉格朗日基函数的表达式为:Li(x) = Π[(x-xj)/(xi-xj)] (i≠j,i,j=0,1,2,...,n)三、分段线性插值(piecewise linear interpolation)分段线性插值是一种逐段线性近似函数的方法。
通过将整个插值区间分成多个小段,在每个小段上使用线性插值来估计函数的值。
分段线性插值的过程分为两步:首先确定要插值的点所在的小段,在小段上进行线性插值来估计函数值。
四、Newton插值(Newton interpolation)Newton插值也是一种基于多项式的插值方法。
利用差商的概念来构造插值多项式。
Newton插值多项式的一般形式为:f(x)=f(x0)+(x-x0)*f[x0,x1]+(x-x0)*(x-x1)*f[x0,x1,x2]+...其中,f(x)表示要求的插值点的函数值,f(x0)是已知的一个点的函数值,f[xi,xi+1,...,xi+k]是k阶差商。
数值分析——插值法
然而,方程组的求解也并不是一件容易的事。
对于线性插值的两种形式解进行适当的分析, 从中寻求规律而得到启发,就有了所谓的拉格朗日 插值法(公式)和牛顿插值(公式).
我们先来看看如何得到二次拉格朗日插值公式 (和牛顿插值公式(为讨论方便,留待后述)).
称为拉氏基函数 ,满足 li(xj)=ij 首先, 线性插值的两点式可看作是两个特殊的一次式 的一种线性组合. 两点式 P1 ( x ) =
x - x1 y + x 0 - x1 0 x - x0 y = x1 - x 0 1
1.2.2 基函数法
l ( x) y
i =0 i
1
i
l0(x) l1(x) 这里, l0(x)和l1(x)具有如下性质: 显然有l0(x)+ l0(x)≡1. 实质上 l( ( 0 x)和 l 1 x)即是满足函数表
g(x) f(x)
x0
x1
x2
x
x3
x4
根据实际需要,可以用各种不同的函数来近 似原来的函数。
最常用的插值函数是 多项式: …?
代数多项式最简单,计算其值只需用到加、减乘运 算,且积分和微分都很方便; 所以常用它来近似表示表格函数(或复杂函数),这样 的插值方法叫做代数插值法,简称插值法。
§1 拉格朗日多项式
求 n 次多项式 Pn ( x) = a0 a1 x an x n 使得
(完整版)数值分析插值法
第二章插值法2.在区间[-1,1]上分别取n=10,20用两组等距节点对龙哥函数f(x)=1/(1+25*x^2)做多项式插值及三次样条插值,对每个n值,分别画出插值函数及f(x)的图形。
(1)多项式插值①先建立一个多项式插值的M-file;输入如下的命令(如牛顿插值公式):function [C,D]=newpoly(X,Y)n=length(X);D=zeros(n,n)D(:,1)=Y'for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)))m=length(C);C(m)= C(m)+D(k,k);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.2:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.2:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:③当n=20时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.1:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.1:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:(2)三次样条插值①先建立一个多项式插值的M-file;输入如下的命令:function S=csfit(X,Y,dx0,dxn)N=length(X)-1;H=diff(X);D=diff(Y)./H;A=H(2:N-1);B=2*(H(1:N-1)+H(2:N));C=H(2:N);U=6*diff(D);B(1)=B(1)-H(1)/2;U(1)=U(1)-3*(D(1));B(N-1)=B(N-1)-H(N)/2;U(N-1)=U(N-1)-3*(-D(N));for k=2:N-1temp=A(k-1)/B(k-1);B(k)=B(k)-temp*C(k-1);U(k)=U(k)-temp*U(k-1);endM(N)=U(N-1)/B(N-1);for k=N-2:-1:1M(k+1)=(U(k)-C(k)*M(k+2))/B(k);endM(1)=3*(D(1)-dx0)/H(1)-M(2)/2;M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;for k=0:N-1S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));S(k+1,2)=M(k+1)/2;S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6;S(k+1,4)=Y(k+1);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.2:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:②当n=20时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.1:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:第三章函数逼近与快速傅里叶变换2. 由实验给出数据表x 0.0 0.1 0.2 0.3 0.5 0.8 1.0y 1.0 0.41 0.50 0.61 0.91 2.02 2.46试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线,用图示数据曲线及相应的三种拟合曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( n 1) 又 ( n1) ( t ) Rn ( t ) K ( x )[( t x0 )( t x1 ) ( t xn )]( n1)
19
插值误差举例
f ( 3) ( ) 抛物线插值:R2 ( x ) ( x x0 )( x x1 )( x x2 ) 3!
x0=0.4, x1=0.5, x2=0.6, (0.4, 0.6)
f ( 3) ( ) 2 3 31.25
31.25 R2 (0.54) (0.54 0.4)(0.54 0.5)(0.54 0.6) 3! 0.00175 R1 (0.54) 0.048
试估计线性插值和抛物线插值计算 ln 0.54 的误差
解 线性插值
f ( 2) ( ) R1 ( x ) ( x x0 )( x x1 ) 2
f ( 2) ( ) 2 4
x0=0.5, x1=0.6, (0.5, 0.6)
R1 (0.54) 2(0.54 0.5)(0.54 0.6) 0.0048
ln 0.54 的精确值为:-0.616186···
可见,抛物线插值的精度比线性插值要高 Lagrange插值多项式简单方便,只要取定节点就可写 出基函数,进而得到插值多项式,易于计算机实现。
11
Lagrange插值
lk(x) 的表达式
由构造法可得
( x x0 ) ( x xk 1 )( x xk 1 ) ( x xn ) lk ( x ) ( xk x0 ) ( xk xk 1 )( xk xk 1 ) ( xk xn )
……
5
多项式插值
多项式插值
已知函数 y = f(x) 在 [a, b] 上 n + 1 个点
a x0 < x1 < ···< xn b 处的函数值为 y0 = f(x0),… ,yn = f(xn) 求次数不超过 n 的多项式 P(x) = c0+c1x + ···+ cnxn,使得 P(xi) = yi,i = 1, 2, ... , n P(x) 的次数可能小于 n
j 0 n n
Ln ( x )
yj
j 0
k 0, k j
n
x xk x j xk
Lagrange 插值多项式
13
误差估计
如何估计误差
Rn ( x) f ( x) Ln ( x)
插值余项
定理
设 f(x) Cn[a, b] ( n 阶连续可微 ),且 f (n+1)(x) 在 (a, b) 内存在,则对 x[a,b],有
线性插值多项式(一次插值多项式)
n=2
L2 ( x )
( x x0 )( x x2 ) ( x x0 )( x x1 ) ( x x1 )( x x2 ) y0 y1 y2 ( x0 x1 )( x0 x1 ) ( x1 x0 )( x1 x2 ) ( x2 x0 )( x2 x1 )
定理
满足上述条件的多项式存在且唯一
证明:利用Vandermonde 行列式即可
证明过程给出了一种求 P(x) 的方法,但较复杂,一般不用!
6
基函数插值法
基函数法
记 n+1 维线性空间
Zn(x) = {次数不超过 n 的多项式的全体} P(x) = a0z0(x) + a1z1(x) + ···+ anzn(x)
f ( n1) ( x ) Rn ( x ) f ( x ) Ln ( x ) n1 ( x ) ( n 1)!
其中 x(a, b) 且与 x 有关, n1 ( x) ( x x0 )( x x1 )( x xn )
14
插值余项
由插值条件可知: Rn(xi)=0, i=0, 1, …, n Rn(x) 在[a,b]上至少有 n+1 个零点 Rn(x) 可写成
1, lk ( x j ) 0,
jk
jk
则称 lk(x) 为节点 x0 , x1 , … , xn 上的拉格朗日插值基函数
8
线性与抛物线插值
两种特殊情形
n=1
x x0 x x1 L1 ( x ) y0 l0 ( x ) y1l1 ( x ) y0 y1 x0 x1 x1 x0
n
Rn ( x ) x k x k j l j ( x) 0
j 0
特别地,当 k = 0 时有
l ( x) 1
j 0 j
n
Lagrange 基函数的两 个重要性质
18
插值误差举例
例:已知函数 y = lnx 的函数值如下
x lnx 0.4 -0.9163 0.5 -0.6931 0.6 -0.5108 0.7 -0.3567 0.8 -0.2231
f ( n1) ( t ) L(nn1) ( t ) K ( x )( n 1)! f ( n1) ( t ) K ( x )( n 1)!
f ( x ) K ( x) ( n 1)!
( n 1)
f ( n1) ( x ) Rn ( x ) n1 ( x ) ( n 1)! 16
j 1, j k
n
x xj xk x j
性质 注意
l0(x) , l1(x) , … , ln(x) 构成 Zn(x) 的一组基 l0(x) , l1(x) , … , ln(x) 与插值节点有关, 但与函数 f(x) 无关
12
Lagrange插值
如何用 Lagrange 基函数求 P(x)
则 ( t ) 在 [a, b] 中有 n+2 个互不相同的零点:x, x0 , … , xn
罗尔 定理
15
插值余项
f(x) Cn[a, b],且 f (n+1)(x) 在 (a, b) 内存在
由Rolle定理可知 '( t ) 在 (a, b) 内至少有 n+1 个不同的零点; 同理可知 "( t ) 在 (a, b) 内至少有 n 个零点;
22
新的基函数
设插值节点为 x0 , … , xn ,考虑插值基函数组
0 ( x) 1 1 ( x ) x x0 2 ( x ) ( x x0 )( x x1 )
n ( x ) ( x x0 )( x x1 ) ( x xn1 )
当增加一个节点 xn+1 时,只需加上基函数
数值分析
第三章
插值法
1
为什么要插值
在生产和科研实践中许多实际问题都用函数来表示某种内在 规律的数量关系, 虽然可以确定所考虑函数的一些性质,但 却难以找到它的解析表达式,只能通过实验和观测得到在有 限个点上的函数值。 另外, 有时虽然可以写出函数的解析表达式,但由于结
构相当复杂,使用起来很不方便。
P(x) = a0l0(x) + a1l1(x) + ···+ anln(x)
将 P(xi) = yi ,i = 1, 2, ... , n 代入,可得
ai = yi ,i = 1, 2, ... , n P(x) = y0l0(x) + y1l1(x) + ···+ ynln(x)
Ln ( x ) y j l j ( x )
插值基本概念
什么是插值
插值区间
已知函数 y = f(x) 在 [a, b] 上有定义,且已经测得在点
a x0 < x1 < · · ·< xn b 处的函数值为 y0 = f(x0),… ,yn = f(xn)
如果存在一个简单易算的函数 P(x),使得
插值节点
P(xi) = f(xi),i = 1, 2, ... , n
n
n1 ( x xi )
i 0
23
Newton 插值
此时 f(x) 的 n 次插值多项式为
pn ( x ) a0 a1 ( x x0 ) a2 ( x x0 )( x x1 ) an ( x xk )
k 0
n1
问题
如何从 pn-1(x) 得到 pn(x) ? 怎样确定参数 a0 , … , an ? 需要用到 差商(均差)
17
Lagrange基函数性质
Lagrange 基函数的两个重要性质
当 f(x) 为一个次数 n 的多项式时,有 f ( n1) ( x ) 0 故
Rn ( x ) f ( x ) Ln ( x) 0
即 n 次插值多项式对于次数 n 的多项式是精确的
若 f(x) = xk,k n,则有
则称 P(x) 为 f(x) 的插值函数
插值条件
插值节点无需递 增排列,但必须 确保互不相同!
求插值函数 P(x) 的方法就称为插值法
4
常用插值法
P(x)
x0
x1
x2
x
x3
x4
常用插值法
多项式插值:P(x) 为多项式函数 --- 最常用的插值函数 分段插值:P(x) 为分段多项式函数 三角插值:P(x) 为三角函数
高次插值通常优于低次插值
20
数值分析
第三章
插值法
—— Newton 插值法
21
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函 数 lk(x) 都需重新计算,不太方便。