上海大学研究生高等电磁理论习题答案(包括老师ppt习题和课后习题)

合集下载

电磁学习题答案

电磁学习题答案

04
电磁波部分习题答案
平面波在均匀介质中的传播
总结词
波动特性、传播速度、波长、频率、偏振。
详细描述
电磁波在均匀介质中传播时,具有恒定的波速,与频率无关;波长、频率和速度之间存在反比关系;电磁波是横波时,具 有偏振现象。
公式
$v = \lambda f$
电磁辐射与天线
总结词
基本原理、偶极子天线、单极子天线、天线增益。
详细描述
电磁辐射是指电磁场在空间中传播并向外辐射能量的现象;天线是用于发射和接收电磁波的设备,根据不同需求有多种类 型,如偶极子天线和单极子天线,其中偶极子天线又分为对称和非对称两种类型。
公式
$G = \frac{4\pi^2}{\lambda^2}r^2$
电磁波的散射与吸收
总结词
散射现象、散射截面、吸收现象 、介质损耗。
雷电与避雷针
01
02
总结词:雷电的形成、危害与 避雷针的作用
详细描述
03
04
雷电是云层与地面之间产生的 放电现象,具有极大的破坏性 ,可导致建筑物、设备损坏和 人员伤亡。
避雷针是一种接闪装置,通过 金属杆将雷电引向自身,再通 过引下线和接地装置将电流引 入地下,以保护建筑物和人员 安全。
THANK YOU.
详细描述
电磁波遇到微观粒子时,会产生 散射现象,散射截面表示散射强 度与入射角度之间的关系;当电 磁波穿过介质时,会发生吸收现 象,介质损耗表示电磁波在介质 中传播时的能量损耗。
公式
$\alpha = \frac{4\pi k}{\lambda}$
05
电磁场应用部分习题答案
变压器与电动机总结词:变压器的原理、源自用与电动机的关系电容器与电阻器

高等电磁场理论习题解答(作业)

高等电磁场理论习题解答(作业)

第一章基本电磁理论1-1 利用Fourier 变换, 由时域形式的Maxwell方程导出其频域形式。

(作1-2—1-3)解:付氏变换和付氏逆变换分别为:麦氏方程:对第一个方程进行付氏变换:(时谐电磁场)同理可得:上面四式即为麦式方程的频域形式。

1-2 设各向异性介质的介电常数为当外加电场强度为(1) ;(2) ;(3) ;(4) ;(5)求出产生的电通密度。

(作1-6)解:将E分别代入,得:1-3 设各向异性介质的介电常数为试求:(1) 当外加电场强度时,产生的电通密度D;(2) 若要求产生的电通密度,需要的外加电场强度E。

(作1-7—1-8)解:即:.附:又所以1-6 已知理想导电体表面上某点的电磁场为试求该点表面电荷及电流密度。

解:由已知条件,理想导体表面某点:(1-6-1)(1-6-2)知该点处的法向单位矢量为: (1-6-3)理想导体表面上的电磁场满足边界条件:(1-6-4)(1-6-5)将(1-6-2)、(1-6-3)式代入(1-6-4)式,得该点处的表面电流密度为:(1-6-6)将(1-6-1)、(1-6-3)式代入(1-6-5)式,得该点处的表面电荷密度为:(1-6-7)1-9 若非均匀的各向同性介质的介电常数为, 试证无源区中的时谐电场强度满足下列方程:(作1-9)证明:非均匀各向同性介质中(无源区)的时谐电磁场满足(1-9-1)(1-9-2)对(1-9-2)式两边取旋度,并利用(1-9-1)得又所以 (1-9-3)又在非均匀各向同性介质中即 (1-9-4)将(1-9-4)代入(1-9-3),得即第2章平面电磁波2-1 导出非均匀的各向同性线性媒质中,正弦电磁场应该满足的波动方程及亥姆霍兹方程。

解:非均匀各向同性线性媒质中,正弦电磁场满足的Maxwell方程组为(2-1-1)(2-1-2)(2-1-3)(2-1-4)对(2-1-2)式两边取旋度,并应用(2-1-1)得即对(2-1-1)式两边取旋度,并应用(2-1-2)得所以非均匀各向同性媒质中,正弦电磁场满足的波动方程为 (2-1-5)(2-1-6)由(2-1-4)式得即 (2-1-7)由(2-1-3)式得即 (2-1-8)利用矢量关系式,并将(2-1-7)(2-1-8)式代入,得电磁场满足的亥姆霍兹方程为(2-1-9)(2-1-10)均匀介质中,无源区中2-4 推导式(2-2-8)。

高等电磁场理论课后习题答案

高等电磁场理论课后习题答案

由于是远场,
e 1 e 2 e 3 e 4 e e 1 e 2 e 3 e 4 e
2
I ka sin jkr jk r1 jk r2 E E 1 E 2 E 3 E 4 e e jk r3 e jk r4 e e 4r 1 H e k E
2.7
解:
H j E E j H E k 2 E 0 H 0 E 0
比如 E e z e 2.11
jkz
(1)
2 E ( E) ( E) k 2 E 2 E k 2 E 0 (2)
代入公式,可得,
I ka sin1 jkr1 H e e x cos 1 cos 1 e y cos 1 sin 1 e z sin 1 4r1
2

I ka sin 2 jkr2 e e x cos 2 cos 2 e y cos 2 sin 2 e z sin 2 4r2
推导1 1 1 R ˆ 4 lim 2 dV lim dS lim 3 4 R 2 R V 0 R 0 R 0 R R R V S 1 1 又知道 2 在R 0处值为零,符合 (r r ')函数的定义。 4 R 推导2 点电荷q (r r ')产生的电场强度为 q 1 4 0 R 4 R q (r r ') 1 E 2 4 (r r ') 0 R E q
所以有
H 2 E1 H1 E2 E1 J 2 E2 J1 H 2 M1 H1 M 2

高等电磁理论习题答案

高等电磁理论习题答案

高等电磁理论习题答案【篇一:电磁场理论补充习题及解答】ass=txt>一、填空与简答1、2、ddadbdduda?a?u3、若a,b为矢量函数,u为标量函数,(a?b)?,(ua)?,dtdtdtdtdtdtddbdaddbda(a?b)?a???b,(a?b)?a???b, dtdtdtdtdtdtdadadu?如果a?a(u),u?u(t), dtdudt4、?表示哈密顿算子(w.r. hamilton),即??ex????ey?ez。

数量场u梯度和矢量?x?y?z场a的散度和旋度可表示为grad u??u,div a???a,rot a???a。

4、奥氏公式及斯托克斯公式可为??a?ds????(??a)dv,a?dl?(??a)?ds 。

s?ls5、亥姆霍兹(h.von helmholtz场。

6、高斯定理描述通过一个闭合面的电场强度的通量与闭合面内电荷的关系,即:e?ds?sq?07、电偶极子(electric dipole正电荷指向负电荷。

8、根据物质的电特性,可将其分为导电物质和绝缘物质,后者简称为介质。

极化介质产生的电位可以看作是等效体分布电荷和面分布电荷在真空中共同产生的。

等效体电荷密度和面电荷密度分别为?(r?)?????p(r?),?sp?p(r?)?n 。

9、在静电场中,电位移矢量的法向分量在通过界面时一般不连续,即n?(d2?d1)?场强度的切向分量在边界两侧是连续的,即n?(e2?e1)?0。

10、凡是静电场不为零的空间中都存储着静电能,静电能是以电场的形式存在于空间,而?s,电不是以电荷或电位的形式存在于空间的。

场中任一点的能量密度为we?11、1e?d。

2欧姆定理的微分形式表明,任意一点的电流密度与该点的电场强度成正比,即j??e。

2导体内任一点的热功率密度与该点的电场强度的平方成正比,即p??e。

12、在恒定电场中,电流密度j在通过界面时其法向分量连续,电场强度的切向分量连续,即n?(e2?e1)?0,n?(j2?j1)?0。

大学电磁学考研题库与答案

大学电磁学考研题库与答案

大学电磁学考研题库与答案大学电磁学考研题库与答案电磁学是物理学的重要分支,研究电荷、电流和电磁场之间的相互作用。

在大学物理学习中,电磁学是一个重要的课程,对于理解电磁现象和应用具有关键作用。

而在考研中,电磁学也是一个重要的科目,掌握电磁学的基本原理和解题方法对于考研的成功至关重要。

下面我们来介绍一些大学电磁学考研题库与答案。

第一题:电场强度与电势的关系电场强度是描述电场的物理量,而电势则是描述电场中某一点的电能。

它们之间存在一定的关系,请问电场强度与电势之间的关系是什么?答案:电场强度与电势之间的关系可以通过电场强度的梯度来描述。

具体来说,电场强度的负梯度等于电势,即E = -∇V其中,E表示电场强度,V表示电势,∇表示梯度运算符。

这个关系可以帮助我们计算电场强度和电势之间的转换。

第二题:电场中的高斯定律高斯定律是电磁学中的重要定律之一,它描述了电场与电荷之间的关系。

请问高斯定律的表达式是什么?答案:高斯定律的表达式为∮E·dA = Q/ε0其中,∮E·dA表示电场在闭合曲面上的通量,Q表示闭合曲面内的总电荷量,ε0表示真空介电常数。

这个定律可以帮助我们计算电场在不同形状的闭合曲面上的通量。

第三题:电磁感应定律电磁感应定律是电磁学中的另一个重要定律,它描述了磁场变化引起的感应电动势。

请问电磁感应定律的表达式是什么?答案:电磁感应定律的表达式为ε = -dφ/dt其中,ε表示感应电动势,dφ/dt表示磁通量的变化率。

这个定律可以帮助我们计算磁场变化引起的感应电动势。

第四题:安培环路定理安培环路定理是电磁学中的另一个重要定律,它描述了电流与磁场之间的相互作用。

请问安培环路定理的表达式是什么?答案:安培环路定理的表达式为∮B·dl = μ0I其中,∮B·dl表示磁场在闭合回路上的环路积分,I表示通过闭合回路的总电流,μ0表示真空磁导率。

这个定律可以帮助我们计算磁场在不同形状的闭合回路上的环路积分。

高等电磁理论习题答案

高等电磁理论习题答案

高等电磁理论习题答案【篇一:电磁场理论补充习题及解答】ass=txt>一、填空与简答1、2、ddadbdduda?a?u3、若a,b为矢量函数,u为标量函数,(a?b)?,(ua)?,dtdtdtdtdtdtddbdaddbda(a?b)?a???b,(a?b)?a???b, dtdtdtdtdtdtdadadu?如果a?a(u),u?u(t), dtdudt4、?表示哈密顿算子(w.r. hamilton),即??ex????ey?ez。

数量场u梯度和矢量?x?y?z场a的散度和旋度可表示为grad u??u,div a???a,rot a???a。

4、奥氏公式及斯托克斯公式可为??a?ds????(??a)dv,a?dl?(??a)?ds 。

s?ls5、亥姆霍兹(h.von helmholtz场。

6、高斯定理描述通过一个闭合面的电场强度的通量与闭合面内电荷的关系,即:e?ds?sq?07、电偶极子(electric dipole正电荷指向负电荷。

8、根据物质的电特性,可将其分为导电物质和绝缘物质,后者简称为介质。

极化介质产生的电位可以看作是等效体分布电荷和面分布电荷在真空中共同产生的。

等效体电荷密度和面电荷密度分别为?(r?)?????p(r?),?sp?p(r?)?n 。

9、在静电场中,电位移矢量的法向分量在通过界面时一般不连续,即n?(d2?d1)?场强度的切向分量在边界两侧是连续的,即n?(e2?e1)?0。

10、凡是静电场不为零的空间中都存储着静电能,静电能是以电场的形式存在于空间,而?s,电不是以电荷或电位的形式存在于空间的。

场中任一点的能量密度为we?11、1e?d。

2欧姆定理的微分形式表明,任意一点的电流密度与该点的电场强度成正比,即j??e。

2导体内任一点的热功率密度与该点的电场强度的平方成正比,即p??e。

12、在恒定电场中,电流密度j在通过界面时其法向分量连续,电场强度的切向分量连续,即n?(e2?e1)?0,n?(j2?j1)?0。

(完整word版)电磁场理论复习题(含答案)(word文档良心出品)

(完整word版)电磁场理论复习题(含答案)(word文档良心出品)

第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处 A = ,=⨯∇A 0 。

2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。

3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。

4. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。

5. 电流连续性方程的微分和积分形式分别为 和 。

6. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。

(b )E 与A 垂直,B与A 平行。

(c )E 与A 平行,B与A 垂直。

(d )E 、B 皆与A 平行。

答案:B7. 两种不同的理想介质的交界面上,(A )1212 , E E H H == (B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C8. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。

则ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇EJ H B E D σ=μ=ε= , ,t q S d J S∂∂-=⋅⎰ tJ ∂ρ∂-=⋅∇空间位移电流密度d J(A/m 2)为:(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 9. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。

[2016.12.01].电磁场习题答案

[2016.12.01].电磁场习题答案

anA
an
an (anA)
A An
At
1
《电磁场理论》习题参考答案
(2) 如下图所示,垂直于 ak 的平面内任意一点的位置矢量 R 在 ak 上的投影
相同, 即 Rak C , C 为坐标原点 O 到该平面的距离。该平面包含点(0, 0, 1),故 az ak C .因此,该平面的方程为 Rak az ak .
《电磁场理论》习题参考答案
《电磁场理论》第一章习题(部分) 参考答案
1. 课本习题:1.6
2. 求证,如果已知 AB AC , A B A C ,且 A 为非零矢量,则 B = C。
提示:利用矢量恒等式(A.2)(见附录 A)
在 A B A C 两边同时叉乘矢量 A
AA B A AC .
q2 4 (1 2)a
15
《电磁场理论》习题参考答案
2.17、一平行板电容器,极板面积为 S,一板接地,另一板平移,当板间间隔为 d 时,将之充电至电压为U ,然后移去电源、使极板间隔增至 nd(n 为整数)。 忽略边缘效应。试求:
解:解题思路 ①由散度定理求出点电荷的电场强度 ;
②由 ③由 ④由
求出极化强度 ;
⋅ 求出

⋅ 求出 ;
⑤由
求出总的束缚电荷 。


⋅4

4

1
1
4
⋅| ⋅
1
1 4
4 1⋅ 1
4
1⋅4 ⋅ 1 ⋅
⋅1 0
0
2.9、边长为 a 的介质立方体的极化强度为
,如果立方体中心
位于坐标原点,求束缚电荷体密度和束缚电荷面密度,在这种情况下总的束缚电 荷为多少?(课本习题 2.9)

上海大学研究生高等电磁理论习题答案(包括老师ppt习题和课后习题)

上海大学研究生高等电磁理论习题答案(包括老师ppt习题和课后习题)

上海大学研究生高等电磁理论习题答案(包括老师ppt习题和课后习题)上海大学研究生高等电磁理论习题答案分析化学下册第三版第一章绪论 1. 解释下列名词:(1仪器分析和化学分析;(2标准曲线与线性范围;(3灵敏度、精密度、准确度和检出限。

答:(1仪器分析和化学分析:以物质的物理性质和物理化学性质(光、电、热、磁等为基础的分析方法,这类方法一般需要特殊的仪器,又称为仪器分析法;化学分析是以物质化学反应为基础的分析方法。

(2标准曲线与线性范围:标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线;标准曲线的直线部分所对应的被测物质浓度(或含量的范围称为该方法的线性范围。

(3灵敏度、精密度、准确度和检出限:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度;精密度是指使用同一方法,对同一试样进行多次测定所得测定结果的一致程度;试样含量的测定值与试样含量的真实值(或标准值相符合的程度称为准确度;某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。

2. 对试样中某一成分进行5次测定,所得测定结果(单位μg ⋅mL -1分别为 0.36,0.38,0.35,0.37,0.39。

(1 计算测定结果的相对标准偏差;(2 如果试样中该成分的真实含量是0.38 μg ⋅mL -1,试计算测定结果的相对误差。

解:(1测定结果的平均值37.0539.037.035.038.036.0=++++=x μg ⋅mL -1标准偏差122222120158.01537.039.0(37.037.0(37.035.0(37.038.0(37.036.0(1 (-=⋅=--+-+-+-+-=--=∑m Lg n x x s ni iμ相对标准偏差 %27.4%10037.00158.0%100=⨯=⨯= xs s r(2相对误差 %63.2%10038.038.037.0%100-=⨯-=⨯-=μμx E r 。

高等电磁理论第五章答案5

高等电磁理论第五章答案5

用 J0 (
0 n
R0
) 乘以上式两端,并积分可得
2 ' J 0 ( ) 2 ]Gz
[ dz
n 1
dຫໍສະໝຸດ 2 2 k2 (
0 n
R0
0 n
R0 (z z' ) R J (0 n )
2 2 0 1
')
选择两个本征函数为
( 0 n )2 k 2 z F1 e R0 , z z' ( 0 n )2 k 2 z R0 , z z' F2 e
'
(r r ' )
2 kn kn
Q
n 0 2 n
1
n
(r ) *n (r ) ,本题中有
mn ( x, y ) sin
m n m ' n x sin y , *mn ( x, y ) sin x sin y a b a b 1 m 2 n 2 2 2 Qn ) ( ) , kmn ( 4ab a b
4 m 2 n 2 m m x ' n n y ' [( ) ( ) k 2 ]1 sin x sin sin y sin a b a a b b m 1 n 1 ab

1
5-2
在一半径为 R0 的圆柱形金属波导内,于 z z 平面上放置一半径为 的均匀磁
[
1 2 ( ) 2 k 2 ] Am J m z
因此该定解问题对应的格林函数应满足以下的辅助定解问题
1 2 ( ' ) ( z z ' ) 2 [ ( ) k ] G 1 z 2 ( G1 ) | R0 0

高等电磁场理论习题一答案

高等电磁场理论习题一答案

高等电磁场理论习题一答案高等电磁场理论习题一答案在高等电磁场理论学习中,习题是检验学生理解和掌握程度的重要方式。

下面将给出一些高等电磁场理论习题的答案,并对其中的一些重要概念进行解析和讨论。

1. 什么是电磁场的源项?它的物理意义是什么?电磁场的源项是电荷密度和电流密度,分别用ρ和J表示。

它们是描述电磁场产生和变化的根本原因。

电荷密度ρ表示单位体积内所含电荷的数量,而电流密度J则表示单位面积内通过的电流。

源项的物理意义在于它们决定了电磁场的分布和演化规律。

2. 什么是麦克斯韦方程组?它们描述了什么物理现象?麦克斯韦方程组是描述电磁场的基本方程组,由四个方程组成,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。

这四个方程描述了电场和磁场的产生、传播和相互作用的规律。

高斯定律描述了电场的产生和分布,它表明电场线从正电荷发出,指向负电荷。

高斯磁定律描述了磁场的产生和分布,它表明磁场线是闭合的,不存在磁单极子。

法拉第电磁感应定律描述了磁场对电场的影响,它表明变化的磁场可以产生感应电场。

安培环路定律描述了电场对磁场的影响,它表明电场沿闭合回路的积分等于该回路内的磁场总磁通量的变化率。

3. 什么是麦克斯韦方程的积分形式和微分形式?它们之间有什么关系?麦克斯韦方程的积分形式是将方程两边进行积分得到的形式,它们是高斯定律的积分形式、高斯磁定律的积分形式、法拉第电磁感应定律的积分形式和安培环路定律的积分形式。

麦克斯韦方程的微分形式是将方程两边进行微分得到的形式,它们是高斯定律的微分形式、高斯磁定律的微分形式、法拉第电磁感应定律的微分形式和安培环路定律的微分形式。

积分形式和微分形式之间有一个重要的关系,即微分形式是积分形式的局部形式。

通过斯托克斯定理和高斯定理,可以将积分形式转化为微分形式,从而得到具体的电场和磁场分布情况。

4. 什么是电磁波?它有哪些基本特性?电磁波是由电场和磁场相互作用而产生的一种波动现象。

大学物理 电磁感应 电磁场(二)习题答案 上海理工

大学物理 电磁感应 电磁场(二)习题答案 上海理工

一. 选择题[ D ]1. 用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的 (A) 磁感强度大小为B = μ0 μ r NI . (B) 磁感强度大小为B = μ r NI / l . (C) 磁场强度大小为H = μ 0NI / l .(D) 磁场强度大小为H = NI / l . 【参考答案】B = μ0 μ r nI= μ NI / l=μH[ C ]2. 磁介质有三种,用相对磁导率μr 表征它们各自的特性时, (A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1. (B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1. (C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0.[ A ]4. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理.[ C ]5. 电位移矢量的时间变化率t D d /d的单位是(A )库仑/米2 (B )库仑/秒 (C )安培/米2 (D )安培•米2二. 填空题1. 一个绕有500匝导线的平均周长50 cm 的细环,载有 0.3 A 电流时,铁芯的相对磁导率为600.(1) 铁芯中的磁感强度B 为_____0.226T_____. (2) 铁芯中的磁场强度H 为_____300A/m_________.【参考答案】 n=500/0.5T nI B r 226.0102.73.0106001042370=⨯=⨯⨯⨯⨯==--ππμμ2. 图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表_____铁磁质 __________的B ~H 关系曲线.b 代表______顺磁质__________的B ~H 关系曲线.c 代表______抗磁质__________的B ~H 关系曲线.3. 图示为一圆柱体的横截面,圆柱体内有一均匀电场E,其方向垂直纸面向内,E的大小随时间t 线性增加,P 为柱体内与轴线相距为r 的一点则(1)P 点的位移电流密度的方向为_垂直纸面向内___. (2) P 点感生磁场的方向为__竖直向下___. 【参考答案】(1)dt E d j d / ε=,E 是一均匀电场,方向不变,大小随时间t 线性增加,所以位移电流密度的方向与电场方向相同。

《电磁场理论》练习题与参考答案(最新版)

《电磁场理论》练习题与参考答案(最新版)

第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处 A = ,=⨯∇A 0 。

2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。

3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。

4. 任一矢量场在无限大空间不可能既是 无源场 又是 无旋场 ,但在局部空间 可以有 以及 。

5. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。

6. 电流连续性方程的微分和积分形式分别为 和 。

7. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。

(b )E 与A 垂直,B与A 平行。

(c )E 与A 平行,B与A 垂直。

(d )E 、B 皆与A 平行。

答案:B8. 两种不同的理想介质的交界面上,(A )1212 , E E H H == (B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H ==ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇EJ H B E D σ=μ=ε= , ,t q S d J S∂∂-=⋅⎰ tJ ∂ρ∂-=⋅∇ 0A ∇⋅=0A ∇⨯=(D) 1212 , t t n n E E H H ==答案:C9. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。

则空间位移电流密度d J(A/m 2)为:(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 10. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。

电磁学课后习题答案及解析

电磁学课后习题答案及解析

第五章 静 电 场5 -9若电荷Q 均匀地分布在长为L 的细棒上.求证:<1>在棒的延长线,且离棒中心为r 处的电场强度为<2>在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长<即L →∞>,试将结果与无限长均匀带电直线的电场强度相比较.分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.<1>若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,<2>若点P 在棒的垂直平分线上,如图<A >所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 <1>延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.<2>根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′,22x r r +='统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度此结果与无限长带电直线周围的电场强度分布相同[图<B >].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2取球坐标系,电场强度矢量和面元在球坐标系中可表示为①5 -17设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析通常有两种处理方法:<1>利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. <2>利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内<0≤r ≤R > 球体外<r >R >解2将带电球分割成球壳,球壳带电由上述分析,球体内<0≤r ≤R >球体外<r >R >5 -20一个内外半径分别为R 1和R 2的均匀带电球壳,总电荷为Q 1,球壳外同心罩一个半径为R 3的均匀带电球面,球面带电荷为Q 2.求电场分布.电场强度是否为离球心距离r 的连续函数?试分析.分析以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解取半径为r 的同心球面为高斯面,由上述分析r <R 1,该高斯面内无电荷,0=∑q ,故01=ER 1<r <R 2,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2<r <R 3,高斯面内电荷为Q 1,故r >R 3,高斯面内电荷为Q 1+Q 2,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图<B >所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2>R 1>,单位长度上的电荷为λ.求离轴线为r 处的电场强度:<1>r <R 1,<2> R 1<r <R 2,<3>r >R 2.分析电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解作同轴圆柱面为高斯面,根据高斯定理r <R 1,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1<r <R 2,L λq =∑r >R 2,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变这与5-20题分析讨论的结果一致.5 -22如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布且Q 1=Q 3=Q .已知其中任一点电荷所受合力均为零,求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析由库仑力的定义,根据Q 1、Q 3所受合力为零可求得Q 2.外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:<1>根据功的定义,电场力作的功为 其中E 是点电荷Q 1、Q 3产生的合电场强度.<2>根据电场力作功与电势能差的关系,有其中V 0是Q 1、Q 3在点O 产生的电势<取无穷远处为零电势>.解1由题意Q 1所受的合力为零解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为将Q 2从点O 沿y 轴移到无穷远处,<沿其他路径所作的功相同,请想一想为什么?>外力所作的功为解2与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1、Q 3在点O 的电势将Q 2从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23已知均匀带电长直线附近的电场强度近似为为电荷线密度.<1>求在r =r 1和r =r 2两点间的电势差;<2>在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明.解 <1>由于电场力作功与路径无关,若沿径向积分,则有<2>不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.5 -27两个同心球面的半径分别为R 1和R 2,各自带有电荷Q 1和Q 2.求:<1>各区域电势分布,并画出分布曲线;<2>两球面间的电势差为多少?分析通常可采用两种方法<1>由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.<2>利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 <1>由高斯定理可求得电场分布由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1时,有当R 1≤r ≤R 2时,有当r ≥R 2时,有<2>两个球面间的电势差解2 <1>由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1,则若该点位于两个球面之间,即R 1≤r ≤R 2,则若该点位于两个球面之外,即r ≥R 2,则<2>两个球面间的电势差第六章 静电场中的导体与电介质6 -1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将〔 〔A 升高 〔B 降低 〔C 不会发生变化 〔D 无法确定分析与解不带电的导体B 相对无穷远处为零电势。

电磁学课后部分习题答案解析

电磁学课后部分习题答案解析

电磁学课后部分习题答案解析1.2.2 两个同号点电荷所带电荷量之和为Q.在两者距离一定的前提下,他们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为()2q Q q =-,两者距离为r,则由库仑定律求得两个电电荷之间的作用力为()204q Q q F rπε-=令力F 对电荷量q 的一阶导数为零,即 ()2004Q q qdF dqrπε--==得122Q q q ==即取 122Q q q ==时力F 为极值,而222202204Q q d F dqrπε==-<故当 122Q q q ==时,F 取最大值1.2.6 两个电荷量相等的同性点电荷相距为2a ,在两者连线的中垂面上置一试探点电荷0q , 求0q 受力最大的点的轨迹.解答:如图(a)所示,设有两个电荷量为q 的点电荷 ,坐标分别为(-a ,0,0)和(a ,0,0),试探点电荷0q 置于二者连线的中垂面Oyz 上坐标为(0,y,z).r y j z k=+ 为原点O 至试探点电荷0q 的失径,距离为r =,如图(b)所示.根据对称性, 所受合力的方向与失径r 平行或反平行.其大小为 ()003222222sin 2q q q qrF kkr araα==++求上式的级值,去F 对r 的一阶导数并令其为零,的方程 ()22230r r a-++=求得2r =求二阶导数并带入2r =,得()272222022120r d Fa kqq r a rdr -=-+<说明此时F 取极大值因此,0q 受力最大的点的轨迹是在中垂面上的圆心坐标为(0,0,0)半径为2的圆.1.3.6 附图中均匀带电圆环的半径为R,总电荷量为q(1)求数轴线上离环心O 为x处的场强E(2) 轴线上何处场强最大?其值是多少? (3)大致画出E-x 曲线.解答:设圆环的带电线密度为 2q Rηπ=如图(a)所示,圆环一小段d l 到轴上一点P 的距离为r ,即有dq dl η=,cos x rα=,该小段对P 点产生的场强大小为22dq dldE k krrη==根据对称性,P 点场强仅有x 分量, d E在x 轴的分量大小为()3222cos x xdldE dE kRxηα==+()()()33322222222200224xxRxqxE dEkR RxR xR xηηπεπε====+++⎰P点场强为()322204qxE iR xπε=+(2)应求dE dx并令其值为0,求得当2x =,E取极值,而2220x d Edx<,根据对称性,位于轴上2x =±点的场强取最大值,其值为qE =±(3)如图(b )所示。

高等电磁理论第四章答案4

高等电磁理论第四章答案4


( )2 2 2 ' E0 C c , tg 1 ( A | | ) 2 2 E0 2 2 2 ( ) ( ) 2 c
其中



2
[ 1 (
1 2 ) 1] 2 ,


2
[ 1 (
1 2 2 ) 1 ]
{ [ 1 (
106 Hz :
1 2
)
2
1]}
1/2
0.066 ,
1.8 ,所以
1 2
0.066{ [ 1 1.82 1]}1/ 2 0.0816(rad / s)
则有
v
2 2 2 106 7.7 107 m , 77 m 0.0816 0.0816
(1
2 0
)2 1
' E0 当 时, | r// || | 1, 0 , R 1 E0
对于极劣导体:

1 ,有 k2 i 0 i

2
0 ,故
6
0 0 0 0 0 ( 0 ) i ' E E0 2 2 | | ei E0 0 0 E0 0 i 0 0 0 ( 0 ) i 2 2
4.5S/ m ,铜的相对介电常数为 r 1 ,海水的相对介电常数 r 对于无线电波和微波
为 80 ,对于光波为 1.33 。 解: 100MHz :
5 107 8.99 109 ,是良导体 8.85 1012 2 3.14 100 106 4.5 10.11 ,是良导体 海水: 12 80 8.85 10 2 3.14 100 106 10GHz :

高等电磁理论第二章答案2

高等电磁理论第二章答案2
' V1 Am J0 ( m 1
其中 Am
'
2V1 2V2 ' , Bm x0 m J1 ( x0 m ) x0 m J1 ( x0 m )
由 z 0 时, 2 ; z d 时, 1 可得
2V2 2 ' Am Bm , Bm x0 m J1 ( x0 m ) x0 m J1 ( x0 m )
n 1
设柱外电势为 1 ,柱内电势为 2 ,定解过程如下: 当 时, 1 E0 cos ,则有 n 1 时, A1 E0 ; n 1 时, An 0 ,故
1 E0 cos
n 1

n
Bn
cos n
当 0 时, 2 为有限值,故2 中不可有 n 项,即 Bn 0 ,则
2 x, y
若按 y 划分区域,即一区 0 y y ,二区 y y b ,1 、 2 如何呢?
习题 2-5 图 解:如图所示分为两个区域,则在两个区域中 1 、 2 均满足拉普拉斯方程,且与 z 无关,其通解形式为
1 (m1 m2 x)(m3 m4 y ) ( An chkn x Bn shk n x )(Cn cos k n y Dnn
D 'n sin kn ye kn x

x 0 时,1 2 ,则 Bn Dn sin kn y B 'n D 'n sin kn y ,即 Bn Dn B'n D'n
n 1 n 1
x 0 时,
后得
2 1 ,则 kn Bn Dn sin kn y kn B 'n D 'n sin kn y ,化简 x x n 1 n 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档