数电实验报告 实验六 计数

合集下载

数电 计数器 实验报告

数电 计数器 实验报告

数电计数器实验报告
《数电计数器实验报告》
实验目的:通过实验,掌握计数器的工作原理及其应用。

实验仪器:数电实验箱、示波器、计数器芯片、电源等。

实验原理:计数器是一种能够记录输入脉冲信号次数的电子设备,它能够实现数字信号的计数功能。

在实验中,我们将使用计数器芯片来实现二进制计数器的功能,通过观察输出信号的变化来了解计数器的工作原理。

实验步骤:
1. 将计数器芯片连接到数电实验箱上,并接入示波器以观察输出信号。

2. 将电源接通,调节示波器参数,观察计数器的输出波形。

3. 输入不同的脉冲信号,观察计数器的计数变化。

4. 通过改变输入信号的频率和幅度,观察计数器的响应情况。

实验结果:通过实验观察,我们发现计数器能够准确地记录输入脉冲信号的次数,并且能够按照二进制的方式进行计数。

当输入信号的频率增加时,计数器的计数速度也相应增加,而当输入信号停止时,计数器的计数也停止。

实验结论:计数器是一种非常重要的数字电路元件,它在数字系统中具有广泛的应用。

通过本次实验,我们深入了解了计数器的工作原理及其特性,为今后的数字电路设计和应用打下了坚实的基础。

总结:本次实验通过实际操作,让我们对计数器有了更深入的了解,同时也增强了我们对数字电路的理解和应用能力。

希望通过今后的实验和学习,我们能够更加熟练地掌握数字电路的相关知识,为今后的工程实践打下坚实的基础。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告数电计数器实验报告引言:数电计数器是数字电路中常见的一种组合逻辑电路,用于实现对输入信号进行计数的功能。

在本次实验中,我们将通过搭建一个四位二进制计数器的电路,来深入了解计数器的工作原理和应用。

实验目的:1. 熟悉计数器的基本原理和工作方式;2. 掌握计数器的设计与搭建方法;3. 理解计数器在数字系统中的应用。

实验器材:1. 74LS161四位二进制同步计数器芯片;2. 74LS47七段数码管芯片;3. 电路连接线、电源等。

实验步骤:1. 按照电路原理图,连接74LS161计数器芯片和74LS47七段数码管芯片;2. 将74LS161的CLK输入引脚连接到一个可调的方波发生器,用于提供时钟信号;3. 将74LS161的RST引脚连接到一个开关,用于手动复位计数器;4. 将74LS161的QA~QD引脚连接到74LS47的A~D引脚,用于输出计数结果;5. 将74LS47的LT引脚连接到一个LED灯,用于指示计数溢出。

实验原理:计数器是由触发器和逻辑门组成的组合逻辑电路。

在本次实验中,我们使用74LS161芯片作为计数器,它具有四位二进制计数功能。

74LS161芯片内部包含四个D触发器,每个触发器的输出与下一个触发器的时钟输入相连,形成级联的工作方式。

当时钟信号上升沿到来时,触发器会根据输入信号的状态进行状态转移,从而实现计数功能。

实验结果:通过调节方波发生器的频率,我们可以观察到七段数码管上显示的数字不断变化。

当计数器达到最大值时,LED灯会亮起,指示计数溢出。

通过手动复位开关,我们可以将计数器重新复位为0,重新开始计数。

实验分析:1. 在实验过程中,我们发现计数器的工作稳定性较好,能够准确地进行计数;2. 通过改变方波发生器的频率,我们可以调整计数器的计数速度,从而实现不同的计数效果;3. 计数器的应用非常广泛,比如在时钟、计时器、频率分频器等数字系统中都有广泛的应用。

实验总结:通过本次实验,我们深入了解了数电计数器的工作原理和应用。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告数电计数器实验报告引言:数电计数器是数字电路中常见的一种组合逻辑电路,用于计数和记录输入脉冲的次数。

本实验旨在通过搭建一个基本的二进制计数器电路,探究计数器的工作原理,并验证其计数功能的正确性。

实验装置和步骤:实验中所用的装置包括集成电路、数字示波器、电源等。

首先,我们按照电路原理图搭建计数器电路,并连接相应的输入和输出信号线。

然后,我们通过给计数器电路提供时钟信号,观察输出信号的变化情况。

最后,我们通过改变输入信号的频率和幅度,测试计数器的稳定性和可靠性。

实验结果:在实验中,我们观察到计数器电路的输出信号随着时钟信号的输入而变化。

当时钟信号的边沿触发计数器时,计数器按照设定的计数规则进行计数,并输出相应的二进制码。

例如,当计数器为4位二进制计数器时,输入一个时钟脉冲,计数器的输出变化为0001、0010、0011、0100,依次类推。

当计数器达到最大计数值时,会自动归零重新计数。

实验分析:通过实验我们发现,计数器的计数规则是按照二进制码进行计数的。

每一位计数器都有两种状态,0和1,通过时钟信号的输入,计数器的状态会发生变化。

当计数器达到最大计数值时,会自动归零,这是因为计数器的位数是有限的,无法继续计数。

计数器的位数越多,能够计数的范围就越大。

此外,我们还发现计数器的计数速度与输入时钟信号的频率有关。

当时钟信号的频率较高时,计数器的计数速度也会相应增加。

然而,当时钟信号的频率过高时,计数器可能无法跟上时钟信号的输入,导致计数器的计数出错。

因此,在实际应用中,我们需要根据具体的需求来选择合适的计数器和时钟频率。

实验总结:通过本次实验,我们深入了解了数电计数器的工作原理和计数功能。

计数器作为一种常见的组合逻辑电路,广泛应用于各种计数和测量系统中。

在实际应用中,我们需要根据具体的需求选择合适的计数器和时钟频率,以确保计数器的稳定性和可靠性。

未来展望:随着科技的不断发展,计数器的功能和性能也在不断提升。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告实验名称:数电计数器实验实验目的:通过实验,了解和掌握数电计数器的原理和工作方式,以及计数器的应用。

实验原理:计数器是一种能够实现数字计数功能的电子元件。

主要由触发器、逻辑门和时钟信号组成。

触发器主要用于储存和传递信号,逻辑门用于控制和处理信号,时钟信号用于控制计数时间。

实验器材:1. 7400四路或五路与门2. 7432四路或五路或六路或七路与非门3. 7474触发器4. 555定时器5. LED灯6. 电源实验步骤:1. 将触发器与逻辑门按照电路图连接,并确保连接正确无误。

2. 将555定时器连接到电路中,并设置合适的时钟频率。

3. 将LED灯连接到电路中,用于显示计数结果。

4. 打开电源,观察LED灯的亮灭情况,并记录计数结果。

5. 可以尝试改变定时器的频率,观察LED灯的计数速度。

实验结果分析:通过实验观察和记录计数结果,可以得出计数器的工作原理和特点。

可以发现,当时钟信号输入时,计数器会根据触发器和逻辑门的控制逻辑实现数字计数功能。

实验结论:1. 数电计数器是一种能够实现数字计数功能的电子元件。

2. 计数器由触发器、逻辑门和时钟信号组成,触发器用于储存和传递信号,逻辑门用于控制和处理信号,时钟信号用于控制计数时间。

3. 数电计数器在实际应用中具有广泛的用途,如计时器、频率计等。

实验中可能遇到的问题和解决方法:1. 连接错误:检查电路连接,确保连接正确无误。

2. LED灯未亮起:检查电路连接,确保连接正确无误。

3. 计数不准确:检查时钟信号的频率,确保设置合适的计数速度。

实验改进思路:1. 尝试使用不同型号的触发器和逻辑门,比较它们的计数效果和特点。

2. 尝试使用其他电子元件,如译码器、多路选择器等,扩展计数器的功能和应用场景。

3. 尝试使用计数器的级联连接,实现更复杂的计数功能和应用。

实验六 计数、译码、显示综合实验

实验六 计数、译码、显示综合实验

实验六计数、译码、显示综合实验姓名:zht学号:班级:15自动化2班日期:2016/11/18目录一、实验内容 (3)二、设计过程、电路图及仿真 (4)①设计过程 (4)②逻辑图及仿真 (5)三、实验数据及总结 (7)①实验数据 (7)②总结 (9)一、实验内容1.用74LS160分别组成8421码十进制计数器和六进制计数器,然后连接成一个60进制计数器(6进制为高位,10进制为低位)。

使用试验箱上的LED译码显示电路显示。

用函数发生器的低频连续脉冲作为计数器的计数脉冲,通过数码管观察计数、译码、显示电路的功能是否正确。

2.设计一个时间计数器,具有分钟和秒计时功能的计数器。

实验仪器:1.实验箱、示波器。

2.74LS160、74LS48、74LS00。

二、设计过程、电路图及仿真①设计过程:1.将74LS160时钟端接上连续脉冲,输出Q3、Q2、Q1、Q0自然是8421码十进制。

若要组成六进制计数器,只需将Q2、Q1接入一与非门,将与非门的输出X接入74LS160的异步清除输入端R,这样一旦当Q3Q2Q1Q0=0110即8421码为6时,R就会发挥作用使计数器清零,如此便能实现8421码从0到5的六进制计数器。

要将六进制计数器和十进制计数器连接起来组成六十进制计数器,只需将两计数器的CP 端接同一连续脉冲,并将十进制计数器的TC端(进位输出端)与六进制计数器的CET、CEP端相连。

这样每当十进制计数器从9变化到0时,六进制计数器中CET、CEP端为高使该计数器能正常工作,并在时钟脉冲上升沿的触发下使输出的8421码加一。

当两计数器分别显示9和5时,下一个计数脉冲会使十进制计数器变为0,同时使六进制计数器变为0,这样就完成了从00计数到59的六十进制计数器。

2.与上题同理,要设计一个具有分钟和秒计时功能的计数器,即将两个六十进制计数器连接在一起组成一个3600进制计数器。

可以利用上一题完成的六十进制计数器。

数字电路 实验 计数器及其应用 实验报告

数字电路 实验 计数器及其应用 实验报告

实验六计数器及其应用一、实验目的1.学习用集成触发器构成计数器的方法2.掌握同步计数的逻辑功能、测试方法及功能扩展方法3.掌握构成任意进制计数器的方法二、实验设备和器件1.+5V直流电源2.双踪示波器3.连续脉冲源4.单次脉冲源5.逻辑电平开关6.逻辑电平显示器7.译码显示器8.CC4013×2(74LS74)CC40192×3(74LS192)CC4011(74LS00)CC4012(74LS20)三、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多。

计数器计数时所经历的独立状态总数为计数器的模(M)。

计数器按模可分为二进计数器(M=2n)、十进计数器(M=10n)和任意进制计数器(M≠2n、M≠10n)。

按计数脉冲输入方式不同,可分为同步计数和异步计数。

按计数值增减趋势分为:加法计数器、减法计数器和可逆(加/减)计数器。

1.用D触发器构成异步二进制加/减计数器图6-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T 触发器,再由低位触发器的Q端和高一位的CP端相连接。

若将图6-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。

2.中规模十进制计数器、十六进制计数器(1)CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能。

当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。

当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3置入计数器。

当CR为低电平,LD为高电平时,执行计数功能。

执行加计数时,减计数端CP D接高电平,计数脉冲由CP U输入;在计数脉冲上升沿进行8421码十进制加法计数。

执行减计数时,加计数端CP U接高电平,计数脉冲由减计数端CP D 输入,表6-2为8421码十进制加、减计数器的状态转换表。

数电实验实验报告

数电实验实验报告

dry实验一组合逻辑电路分析一.试验用集成电路引脚图74LS00集成电路74LS20集成电路四2输入与非门双4输入与非门二.实验内容1.实验一X12.5 VABCDU1A74LS00NU2AU3A74LS00N逻辑指示灯:灯亮表示“1”,灯灭表示“0”ABCD按逻辑开关,“1”表示高电平,“0”表示低电平自拟表格并记录:A B C D Y A B C D Y0 0 0 0 0 1 0 0 0 00 0 0 1 0 1 0 0 1 00 0 1 0 0 1 0 1 0 00 0 1 1 1 1 0 1 1 10 1 0 0 0 1 1 0 0 10 1 0 1 0 1 1 0 1 10 1 1 0 0 1 1 1 0 10 1 1 1 1 1 1 1 1 12.实验二密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开。

否则,报警信号为“1”,则接通警铃。

试分析密码锁的密码ABCD是什么?ABCDABCD接逻辑电平开关。

最简表达式为:X1=AB’C’D 密码为:1001三.实验体会:1.分析组合逻辑电路时,可以通过逻辑表达式,电路图和真值表之间的相互转换来到达实验所要求的目的。

2.这次试验比较简单,熟悉了一些简单的组合逻辑电路和芯片,和使用仿真软件来设计和构造逻辑电路来求解。

实验二组合逻辑实验(一)半加器和全加器一.实验目的1.熟悉用门电路设计组合电路的原理和方法步骤二.预习内容1.复习用门电路设计组合逻辑电路的原理和方法步骤。

2.复习二进制数的运算。

3.用“与非门”设计半加器的逻辑图。

4.完成用“异或门”、“与或非”门、“与非”门设计全加器的逻辑图。

5.完成用“异或”门设计的3变量判奇电路的原理图。

三.元件参考依次为74LS283、74LS00、74LS51、74LS136其中74LS51:Y=(AB+CD)’,74LS136:Y=A⊕B(OC门)四.实验内容1.用与非门组成半加器,用或非门、与或非门、与非门组成全加器(电路自拟)U1NOR2NOR2U3NOR2U4NOR2U5NOR2SC半加器U1A74LS136DU1B74LS136DU2C74LS00DR11kΩR21kΩVCC5VU3A74LS51D81121391011J1Key = AJ2Key = BJ3Key = CSi2.5 VCi2.5 V被加数A i0 1 0 1 0 1 0 12.用异或门设计3变量判奇电路,要求变量中1的个数为奇数是,输出为1,否则为0.3.“74LS283”全加器逻辑功能测试五.实验体会:1.通过这次实验,掌握了熟悉半加器与全加器的逻辑功能2.这次实验的逻辑电路图比较复杂,涉及了异或门、与或非门、与非门三种逻辑门,在接线时应注意不要接错。

数电实验报告实验六计数译码显示综合实验整理版x

数电实验报告实验六计数译码显示综合实验整理版x

数电实验报告实验六计数、译码、显示综合实验姓名:学号:班级:院系:指导老师:2016年目录实验目的: (22)实验器件与仪器: (22)实验原理: (33)用同步清零端或置数端置零或置数构成N 进制计数器 (33)用同步清零端或置数端置零或置数构成N 进制计数器 (33)实验内容: (44)实验过程: (55)实验总结: (66)实验:实验目的:1.熟悉中规模集成电路计数器的功能及应用。

2.熟悉中规模集成电路译码器的功能及应用。

3.熟悉LED数码管及显示电路的工作原理。

4.学会综合测试的方法。

实验器件与仪器:1.实验箱、万用表、示波器。

2.74LS160、74LS48、74LS20对于计数规模小的计数器,我们使用集成触发器来设计计数器,但是如果计数器的模数达到十六以上(如六十进制)时,如果还是用集成触发器来设计的话,电路就比较复杂了。

在这种情况下,我们可以用集成计数器来构成任意进制计数器。

利用集成计数器的清零端和置数端实现归零,从而构成按自然态序进行计数的N 进制计数器的方法。

用同步清零端或置数端置零或置数构成N 进制计数器用这种方法的实现步骤如下:1)写出状态S N-1 的二进制代码。

2)求归零逻辑,即求同步清零端或置数控制端信号的逻辑表达式3)画连线图用同步清零端或置数端置零或置数构成N 进制计数器用这种方法的实现步骤如下:1)写出状态S N 得二进制代码2)求归零逻辑,即求异步清零端或置数控制端信号的逻辑表达式3)画连线图在集成计数器中,清零、置数均采用同步方法的有74LS163均采用异步方法的有74LS193 74LS197 74LS192清零采用异步方法、置数采用同步方法的有74LS161 74LS160有的只具备异步清零功能,如CC4520 74LS190 74LS191 74LS90则具有异步清零和异步置9 功能。

1.用集成计数器74LS160分别组成8421码十进制和六进制计数器,然后连接成一个60进制计数器(6进制为高位,10进制位低位)。

数字电路实验报告6

数字电路实验报告6

一、实验内容利用EDA工具Quartus-ll的原理图输入法,充分利用数电实验系统提供的硬件资源,设计一个小时(两位,24小时制)、分钟(两位)计时器,数码管显示。

在Quartus ⅡI环境下输入原理图(直接使用74系列器件,计数器用74160或74161、74190、74191)并仿真。

将设计下载到FPGA中,连线,按键观察实验。

二、实验目的熟悉用QuartusII原理图输入法进行电路设计和仿真,掌握QuartusII图形模块单元的生成与调用。

学会根据时序电路图分析电路的功能,并会自主实现时序逻辑电路的功能设计与仿真。

三、实验设备EDA工具 Quartus-ll四、实验方法与手段数字钟电路(用数码管显示)数字钟是一种用数字电路技术实现时、分、秒计时的钟表。

与机械钟相比具有更高的准确性和直观性,具有更长的使用寿命,已得到广泛的使用。

数字钟由计数器电路、分频器电路和数码管显示译码电路构成,使用74160进行级联设计时分计数器电路并封装为clk元件,用74160芯片实现时分计数器,计数器分频后将芯片输出端接至7447的输入端进行译码后进行仿真,根据数字电路实验箱对应引脚进行引脚分配后,将设计下载到FPGA中,连线,按键观察实验。

五、实验原理图数字钟计数器电路使用74160级联作为时分计数器,并通过门电路实现异步置数计数。

用74160芯片实现时分计数器,使用74160芯片级联组成分频电路,将高频脉冲信号转换为1Hz的低频信号,再将脉冲信号经一次分频后连接74138译码器进行译码,控制七段数码管的分段显示,最后将处理后的信号经过74151数据选择器与7447译码器相连,分配引脚后下载至试验箱测试。

六、实验现象记录分析十进制计数器电路试验箱下载后可观察到数码管的时间从00:00开始计数。

六、实验结论与体会通过本次实验我逐渐掌握了 QuartusII的设计与仿真功能,并熟悉了FPGA数字电路设计平台的使用。

数电项目实验报告(3篇)

数电项目实验报告(3篇)

第1篇一、实验目的1. 理解数字电路的基本概念和组成原理。

2. 掌握常用数字电路的分析方法。

3. 培养动手能力和实验技能。

4. 提高对数字电路应用的认识。

二、实验器材1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 短路线5. 电阻、电容等元器件6. 连接线三、实验原理数字电路是利用数字信号进行信息处理的电路,主要包括逻辑门、触发器、计数器、寄存器等基本单元。

本实验通过搭建简单的数字电路,验证其功能,并学习数字电路的分析方法。

四、实验内容及步骤1. 逻辑门实验(1)搭建与门、或门、非门等基本逻辑门电路。

(2)使用数字信号发生器产生不同逻辑电平的信号,通过示波器观察输出波形。

(3)分析输出波形,验证逻辑门电路的正确性。

2. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发器电路。

(2)使用数字信号发生器产生时钟信号,通过示波器观察触发器的输出波形。

(3)分析输出波形,验证触发器电路的正确性。

3. 计数器实验(1)搭建异步计数器、同步计数器等基本计数器电路。

(2)使用数字信号发生器产生时钟信号,通过示波器观察计数器的输出波形。

(3)分析输出波形,验证计数器电路的正确性。

4. 寄存器实验(1)搭建移位寄存器、同步寄存器等基本寄存器电路。

(2)使用数字信号发生器产生时钟信号和输入信号,通过示波器观察寄存器的输出波形。

(3)分析输出波形,验证寄存器电路的正确性。

五、实验结果与分析1. 逻辑门实验通过实验,验证了与门、或门、非门等基本逻辑门电路的正确性。

实验结果表明,当输入信号满足逻辑关系时,输出信号符合预期。

2. 触发器实验通过实验,验证了D触发器、JK触发器、T触发器等基本触发器电路的正确性。

实验结果表明,触发器电路能够根据输入信号和时钟信号产生稳定的输出波形。

3. 计数器实验通过实验,验证了异步计数器、同步计数器等基本计数器电路的正确性。

实验结果表明,计数器电路能够根据输入时钟信号进行计数,并输出相应的输出波形。

数电 计数器 实验报告

数电 计数器 实验报告

数电计数器实验报告数电计数器实验报告引言:计数器是数字电路中常见的一种组合逻辑电路,它可以实现对输入信号进行计数的功能。

在本次实验中,我们将通过搭建一个4位二进制计数器的电路,深入了解计数器的工作原理和应用。

一、实验目的本次实验的目的是通过搭建一个4位二进制计数器的电路,学习计数器的基本原理,掌握计数器的设计和应用方法。

二、实验原理计数器是由触发器和逻辑门组成的组合电路。

触发器是一种存储器件,可以存储一个比特的数据。

逻辑门则负责对输入信号进行处理和控制。

在计数器中,触发器的输出被连接到逻辑门的输入,逻辑门的输出又反馈到触发器的输入,形成了一个闭环。

当输入信号发生变化时,逻辑门会根据其输入信号的状态改变输出信号的状态,从而实现计数器的计数功能。

三、实验材料本次实验所需的材料如下:1. 电路板2. 74LS74触发器芯片3. 74LS08与门芯片4. 74LS32或门芯片5. 连线材料6. 电源四、实验步骤1. 将74LS74触发器芯片插入电路板上的指定位置,并连接电源。

2. 使用连线材料将74LS74触发器芯片的引脚与74LS08与门芯片和74LS32或门芯片的引脚相连,按照电路图进行正确的连接。

3. 检查电路连接是否正确,确保没有短路或接触不良的情况。

4. 打开电源,观察计数器的输出情况。

5. 将输入信号接入计数器,观察计数器的计数变化。

五、实验结果与分析通过实验,我们成功搭建了一个4位二进制计数器的电路。

当输入信号发生变化时,计数器能够按照二进制方式进行计数。

例如,当输入信号从0变为1时,计数器的输出会从0000变为0001;当输入信号再次变为0时,计数器的输出会继续递增,变为0010,0011,0100,以此类推。

实验结果表明,计数器能够准确地对输入信号进行计数,并按照预期的方式输出计数结果。

六、实验总结本次实验通过搭建一个4位二进制计数器的电路,深入了解了计数器的工作原理和应用。

我们学习了计数器的基本原理,掌握了计数器的设计和应用方法。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告
实验名称:数电计数器实验报告
一、实验目的
了解数码计数器的基本原理和工作方式,掌握计数原理及电路实现方法,培养实验操作能力。

二、实验内容
1. 设计一个基本的二进制计数器电路
2. 加深对计数器的理解并搭建计数器电路
三、实验器材
1. 计数器芯片:CD74HC161E
2. 电源电源适配器
3. 示波器
4. 直流电压表
5. 万用表
四、实验步骤
1. 将芯片和电路板连接
2. 将电路电源设置到好
3. 用直流电压表测试电路板工作电压是否正常
4. 用万用表检查所连接线路的连通状况
5. 用示波器测量芯片输出波形是否正常
六、实验结果
在实验过程中,我们成功地节点了一个基本的二进制计数器电路,并顺利地搭建了计数器电路。

计数器能够正常工作,实验目
标全部达到。

七、实验结论
通过实验,我们深入了解了数码计数器的基本原理和工作方式,培养了实验操作的能力,并通过实验获得了实际操作的经验。

八、实验感想
通过这次实验,我们深刻认识到了学习知识的重要性。

掌握计
数器原理是我们今后从事电子学领域必要的基础,因此我们要保
持深入学习、不断拓展知识面的心态。

同时,在操作实验过程中,我们也要注重细节、沉着冷静,并时刻保持对失误的辨识、纠正
和处理能力。

数字电子技术实验报告(学生版)

数字电子技术实验报告(学生版)

数字电子技术实验报告开课实验室 指导教师 班级 学号 姓名 日期实验项目 实验一 TTL 逻辑门电路 和组合逻辑电路一、实验目的1.掌握TTL “与非”门的逻辑功能.2.学会用“与非”门构成其他常用门电路的方法。

3.掌握组合逻辑电路的分析方法与测试方法。

4.学习组合逻辑电路的设计方法并用实验来验证.二、预习内容1.用74LS00验证“与非”门的逻辑功能Y 1=AB 2.用“与非"门(74LS00)构成其他常用门电路Y 2=A Y 3=A+B=B A Y 4=AB B AB A实验前画出Y 1——Y 4的逻辑电路图,并根据集成片的引脚排列分配好各引脚。

3.画出用“异或”门和“与非”门组成的全加器电路。

(参照实验指导书P 。

75 图3—2-2)并根据集成片的引脚排列分配好各引脚。

4.设计一个电动机报警信号电路.要求用“与非”门来构成逻辑电路。

设有三台电动机,A 、B 、C 。

今要求:⑴A 开机,则B 必须开机;⑵B 开机,则C 必须开机;⑶如果不同时满足上述条件,则必须发出报警信号。

实验前设计好电动机报警信号电路。

设开机为“1”,停机为“0”;报警为“1”,不报警为“0”。

(写出化简后的逻辑式,画出逻辑图及引脚分配)三、实验步骤1. 逻辑门的各输入端接逻辑开关输出插口,门的输出端接由发光二极管组成的显示插口。

逐个测试逻辑门Y 1-Y 4的逻辑功能,填入表1-1表1-12. 用74LS00和74LS86集成片按全加器线路接线,并测试逻辑功能。

将测试结果填入表 1—2.判断测试是否正确。

图中A i 、B i 为加数,C i —1为来自低位的进位;S i 为本位和,C i 为向高位的进位信号.表1—23.根据设计好的电动机报警信号电路用74LS00集成片按图接线,并经实验验证.将测试结果填入表1—3。

表1-3四、简答题1.Y4具有何种逻辑功能?2.在实际应用中若用74LS20来实现Y=AB时,多余的输入端应接高电平还是低电平? 3.在全加器电路中,当A i=0,S i*=1,C i=1时C i—1=?数字电子技术实验报告开课实验室 指导教师 班级 学号 姓名 日期 实验项目 实验二 组合逻辑电路的设计一、实验目的1.掌握用3线- 8线译码器74LS138设计组合逻辑电路。

数电的小实验报告(3篇)

数电的小实验报告(3篇)

第1篇一、实验目的1. 熟悉数字电路实验的基本操作流程;2. 掌握基本数字电路的组成和原理;3. 培养动手能力和问题解决能力。

二、实验设备1. 数字电路实验箱;2. 万用表;3. 导线;4. 面包板;5. 计算器。

三、实验内容1. 基本逻辑门电路实验2. 组合逻辑电路实验3. 时序逻辑电路实验四、实验原理1. 基本逻辑门电路:逻辑门电路是数字电路的基础,包括与门、或门、非门、异或门等。

通过这些逻辑门电路的组合,可以实现复杂的逻辑功能。

2. 组合逻辑电路:组合逻辑电路由基本逻辑门电路组成,其输出仅取决于当前输入信号。

常见的组合逻辑电路有编码器、译码器、多路选择器等。

3. 时序逻辑电路:时序逻辑电路由触发器组成,其输出不仅取决于当前输入信号,还与电路的历史状态有关。

常见的时序逻辑电路有计数器、寄存器、触发器等。

五、实验步骤1. 基本逻辑门电路实验(1)按照实验指导书的要求,搭建与门、或门、非门、异或门等逻辑门电路;(2)使用万用表测量各逻辑门的输入、输出电压;(3)根据实验数据,验证各逻辑门的功能。

2. 组合逻辑电路实验(1)按照实验指导书的要求,搭建编码器、译码器、多路选择器等组合逻辑电路;(2)使用万用表测量各组合逻辑电路的输入、输出电压;(3)根据实验数据,验证各组合逻辑电路的功能。

3. 时序逻辑电路实验(1)按照实验指导书的要求,搭建计数器、寄存器、触发器等时序逻辑电路;(2)使用万用表测量各时序逻辑电路的输入、输出电压;(3)根据实验数据,验证各时序逻辑电路的功能。

六、实验结果与分析1. 基本逻辑门电路实验实验结果显示,与门、或门、非门、异或门等逻辑门电路的功能与理论分析一致。

2. 组合逻辑电路实验实验结果显示,编码器、译码器、多路选择器等组合逻辑电路的功能与理论分析一致。

3. 时序逻辑电路实验实验结果显示,计数器、寄存器、触发器等时序逻辑电路的功能与理论分析一致。

七、实验总结通过本次实验,我熟悉了数字电路实验的基本操作流程,掌握了基本数字电路的组成和原理,提高了动手能力和问题解决能力。

数电实验报告 实验六 计数

数电实验报告 实验六  计数

实验六计数、译码、显示综合实验一【实验目的】1.熟悉中规模集成电路计数器的功能及应用。

2.熟悉中规模集成电路译码器的功能及应用。

3.数以LED数码管及显示电路的工作原理。

4.学会综合测试的方法。

二【实验分析与设计】1.六十进制计数器(方案一,异步清零)(1)原理:用集成触发器设计太过复杂,因此采用集成计数器,即一个六进制计数器和一个十进制计数器来实现。

由于器材限制,此次试验设计采用的核心元件是异步清零、同步置数的74LS160。

160 的清除端是异步的。

当清除端/MR 为低电平时,不管时钟端CP 状态如何,即可完成清除功能。

160 的计数是同步的,靠CP 同时加在四个触发器上而实现的。

当CEP、CET 均为高电平时,在CP 上升沿作用下Q0-Q3 同时变化,从而消除了异步计数器中出现的计数尖峰。

54/74LS160的CEP、CET跳变与CP 无关。

160 有超前进位功能。

当计数溢出时,进位输出端(TC)输出一个高电平脉冲,其宽度为Q0 的高电平部分。

对于54/74LS160,在CP 出现前,即使CEP、CET、/MR 发生变化,电路的功能也不受影响。

(2)真值表与接口表达式十进制部分根据74LS160引脚说明,CR=1 CEP=CET=1 PE=1六进制部分CR=(Q2Q1)’根据CEP、CET特点,把十进制进位输出端(高电平)接入六进制的CEP、CET,可实现进位功能,级CEP=CET=TC(十进制进位输出端)(3)电路图设计(4)仿真波形图-CR1图-CR2根据图CR1,CR波形出现低电平毛刺然后Q0~Q3马上清零。

CR2是把CR与CP波形对比,通过放大波形我们CR高电平只出现一瞬间,清零操作并不需要CP上升沿或者下降沿为条件,即异步清零。

2.六十进制计数器(方案二,同步置数)(1)原理:用集成触发器设计太过复杂,因此采用集成计数器,即一个六进制计数器和一个十进制计数器来实现。

由于器材限制,此次试验设计采用的核心元件是异步清零、同步置数的74LS160。

数电综合实验报告(3篇)

数电综合实验报告(3篇)

第1篇一、实验目的1. 巩固和加深对数字电路基本原理和电路分析方法的理解。

2. 掌握数字电路仿真工具的使用,提高设计能力和问题解决能力。

3. 通过综合实验,培养团队合作精神和实践操作能力。

二、实验内容本次实验主要分为以下几个部分:1. 组合逻辑电路设计:设计一个4位二进制加法器,并使用仿真软件进行验证。

2. 时序逻辑电路设计:设计一个4位计数器,并使用仿真软件进行验证。

3. 数字电路综合应用:设计一个数字时钟,包括秒、分、时显示,并使用仿真软件进行验证。

三、实验步骤1. 组合逻辑电路设计:(1)根据题目要求,设计一个4位二进制加法器。

(2)使用Verilog HDL语言编写代码,实现4位二进制加法器。

(3)使用ModelSim软件对加法器进行仿真,验证其功能。

2. 时序逻辑电路设计:(1)根据题目要求,设计一个4位计数器。

(2)使用Verilog HDL语言编写代码,实现4位计数器。

(3)使用ModelSim软件对计数器进行仿真,验证其功能。

3. 数字电路综合应用:(1)根据题目要求,设计一个数字时钟,包括秒、分、时显示。

(2)使用Verilog HDL语言编写代码,实现数字时钟功能。

(3)使用ModelSim软件对数字时钟进行仿真,验证其功能。

四、实验结果与分析1. 组合逻辑电路设计:通过仿真验证,所设计的4位二进制加法器能够正确实现4位二进制加法运算。

2. 时序逻辑电路设计:通过仿真验证,所设计的4位计数器能够正确实现4位计数功能。

3. 数字电路综合应用:通过仿真验证,所设计的数字时钟能够正确实现秒、分、时显示功能。

五、实验心得1. 通过本次实验,加深了对数字电路基本原理和电路分析方法的理解。

2. 掌握了数字电路仿真工具的使用,提高了设计能力和问题解决能力。

3. 培养了团队合作精神和实践操作能力。

六、实验改进建议1. 在设计组合逻辑电路时,可以考虑使用更优的电路结构,以降低功耗。

2. 在设计时序逻辑电路时,可以尝试使用不同的时序电路结构,以实现更复杂的逻辑功能。

计数器数电实验报告

计数器数电实验报告

计数器数电实验报告《计数器数电实验报告》实验目的:本次实验旨在通过搭建计数器电路,加深学生对数电原理的理解,提高学生的动手能力和实验操作技能。

实验原理:计数器是一种能够按照特定规律对输入信号进行计数的电路。

在本次实验中,我们将使用集成电路74LS90和74LS47来搭建一个模4计数器。

74LS90是一个可递增或递减的4位二进制计数器,而74LS47是一个BCD-7段译码器,用于将二进制计数转换为7段数码管的显示。

实验材料:1. 74LS90集成电路2. 74LS47集成电路3. 7段数码管4. 电源5. 连接线6. 示波器实验步骤:1. 将74LS90和74LS47集成电路插入实验面包板中,并连接好电源和连接线。

2. 根据电路原理图连接好各个元件,确保连接正确无误。

3. 接通电源,调节示波器观察输出波形,验证计数器的工作状态。

4. 通过改变输入信号的方式,观察计数器的不同工作模式,并记录观察结果。

实验结果:经过实验操作,我们成功搭建了一个模4计数器电路,并通过示波器观察到了正确的计数输出波形。

在改变输入信号的情况下,我们也观察到了计数器的不同工作模式,验证了电路的正常工作。

实验结论:通过本次实验,我们深入了解了计数器的工作原理和实验操作技能。

通过动手搭建电路和观察波形,我们加深了对数电原理的理解,提高了实验操作的能力。

同时,我们也发现了实验中可能存在的问题和改进的空间,为今后的实验操作提供了宝贵的经验。

总结:本次实验不仅让我们了解了计数器的原理和工作方式,还提高了我们的动手能力和实验操作技能。

通过实验,我们对数电原理有了更深入的理解,为今后的学习和实践打下了坚实的基础。

数字电路实验的实验报告(3篇)

数字电路实验的实验报告(3篇)

第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。

2. 熟悉数字电路实验设备和仪器的基本操作。

3. 培养实际动手能力和解决问题的能力。

4. 提高对数字电路设计和调试的实践能力。

二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。

(2)设计简单的组合逻辑电路,如全加器、译码器等。

2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。

(2)设计简单的时序逻辑电路,如计数器、分频器等。

3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。

(2)分析电路的输入输出关系,验证电路的正确性。

4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。

(2)分析电路的输入输出关系,验证电路的正确性。

5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。

(2)对比实际实验结果和仿真结果,分析误差原因。

四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。

(2)了解实验器材的性能和操作方法。

(3)准备好实验报告所需的表格和图纸。

2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。

(2)使用万用表测试电路的输入输出关系,验证电路的功能。

(3)记录实验数据,分析实验结果。

3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。

(2)使用示波器观察触发器的输出波形,验证电路的功能。

(3)记录实验数据,分析实验结果。

4. 组合逻辑电路实验(1)设计4位二进制加法器电路。

(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。

(3)记录实验数据,分析实验结果。

数电实验六实验报告

数电实验六实验报告

实验6 随机数生成电路的设计与实现一、实验任务要求1.设计并实现一个随机数生成电路,每2 秒随机生成一个0~999 之间的数字,并在数码管上显示生成的随机数。

2.为系统设置一个复位键,复位后数码管显示学号后三位(“092”),2 秒后再开始每2 秒生成并显示随机数,要求使用按键复位。

二、电路设计及VHDL代码(一)设计思路总体的构思是分模块化设计分模块化实现,顶层采用状态机的方式实现。

1.根据系统所需要的功能,大概可以分为7个模块,按键防抖模块,分频器模块(一个2000分频,一个10分频,外部时钟为1kHz),M序列发生器模块,译码模块,位选信号模块,以及顶层。

其连接关系如图1-1。

图1-1 分模块化流程图2.对于防抖模块,采用100Hz的时钟,进行采样型防抖,两个采样点之间为从0变到1时才认为是一次有效的按键发生,同时输出的时候与时钟的下降沿作一个同步。

3.对于分频模块,通过计数器进行分频,现举分频比为2000,进行说明。

通过计数器从0计数到999,实现一次电平的翻转,这样输出的时钟中低电平包含1000个时钟周期,高电平包含1000个时钟周期,这样就构成了占空比为50%的,频率为原频率1/2000的输出信号。

10分频也是同理,不再赘述。

4.对于M序列发生器,伪随机序列的产生已经有了比较成熟的思路。

通过移位寄存器加反馈便可以实现,如图1-2所示。

而相应位数的反馈函数可以通过查表知道。

本实验要求产生的随机数为0-999,所以采用10位的M序列发生器,查表得知反馈函数为D0=Q6⨁Q9。

但是10位的二进制数最大可以到1023,比999大,因此通过判断语句对输出的随机数加以限制,当随机数大于999时通过减去999来限制它的范围。

图1-2 移位寄存器加反馈构成M序列发生器5.对于产生位选信号的模块,其实就是一个顺序脉冲发生器,因为位选信号为低电平有效,故用一个模3的计数器控制哪一位输出低电平。

6.对于数码管译码模块,可用图1-3进行说明。

计数器数电实验报告

计数器数电实验报告

计数器数电实验报告计数器数电实验报告引言:计数器是数字电路中常见的一个模块,用于计算和记录输入信号的脉冲数。

本次实验旨在通过设计和实现一个4位二进制计数器,加深对计数器原理和数电实验的理解。

一、实验目的本实验的目的是通过设计和实现一个4位二进制计数器,加深对计数器原理和数电实验的理解。

二、实验器材1. 数字逻辑实验箱2. 7400、7402、7404、7476、7490等集成电路芯片3. 连线和电源线三、实验原理计数器是一种用于记录输入脉冲数量的电子电路。

常见的计数器有二进制计数器、BCD计数器等。

本实验中,我们将设计一个4位二进制计数器,即计数范围为0-15。

四、实验步骤1. 按照电路原理图连接实验箱中的集成电路芯片,确保连接正确。

2. 将电源线接入实验箱,确保电路正常供电。

3. 通过按下实验箱上的开关,给计数器输入脉冲信号。

4. 通过观察计数器输出端的LED灯亮灭情况,判断计数器是否正常工作。

5. 调整输入脉冲信号的频率,观察计数器的计数变化情况。

五、实验结果与分析经过实验,我们成功地设计和实现了一个4位二进制计数器。

当输入脉冲信号的频率较低时,我们可以清晰地观察到计数器的计数变化,LED灯依次亮起。

当输入脉冲信号的频率较高时,我们可以看到LED灯快速闪烁,但我们无法逐个数清楚。

这是因为计数器的计数速度跟不上输入脉冲信号的频率。

六、实验总结通过本次实验,我们深入了解了计数器的原理和工作方式。

计数器作为数字电路中常见的模块,广泛应用于各个领域。

通过设计和实现一个4位二进制计数器,我们不仅加深了对计数器的理解,还掌握了实验中常用的集成电路芯片的连接方法。

然而,本次实验还存在一些问题。

首先,计数器的计数范围仅为0-15,无法满足更大范围的计数需求。

其次,计数器的计数速度受限于输入脉冲信号的频率,当频率过高时无法逐个数清楚。

对于这些问题,我们可以进一步改进和优化设计,以满足不同的应用需求。

在今后的学习和实践中,我们将继续深入研究和应用计数器的原理,探索更多的应用场景和设计方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六计数、译码、显示综合实验
一【实验目的】
1.熟悉中规模集成电路计数器的功能及应用。

2.熟悉中规模集成电路译码器的功能及应用。

3.数以LED数码管及显示电路的工作原理。

4.学会综合测试的方法。

二【实验分析与设计】
1.六十进制计数器(方案一,异步清零)
(1)原理:用集成触发器设计太过复杂,因此采用集成计数器,即一个六进制计数器和一个十进制计数器来实现。

由于器材限制,此次试验设计采用的核心元件是异步清零、同步置数的74LS160。

160 的清除端是异步的。

当清除端/MR 为低电平时,不管时钟端CP 状态如何,
即可完成清除功能。

160 的计数是同步的,靠CP 同时加在四个触发器上而实现的。

当CEP、CET 均为高电平时,在CP 上升沿作用下Q0-Q3 同时变化,从而消除了异步计数器中出现的计数尖峰。

54/74LS160的CEP、CET跳变与CP 无关。

160 有超前进位功能。

当计数溢出时,进位输出端(TC)输出一个高电平脉
冲,其宽度为Q0 的高电平部分。

对于54/74LS160,在CP 出现前,即使CEP、CET、/MR 发生变化,电路的功能也不受影响。

(2)真值表与接口表达式
十进制部分
根据74LS160引脚说明,
CR=1 CEP=CET=1 PE=1
六进制部分
CR=(Q2Q1)’
根据CEP、CET特点,把十进制进位输出端(高电平)接入六进制的CEP、CET,可实现进位功能,级CEP=CET=TC(十进制进位输出端)
(3)电路图设计
(4)仿真波形
图-CR1
图-CR2
根据图CR1,CR波形出现低电平毛刺然后Q0~Q3马上清零。

CR2是把CR与CP波形对比,通过放大波形我们CR高电平只出现一瞬间,清零操作并不需要CP上升沿或者下降沿为条件,即异步清零。

2.六十进制计数器(方案二,同步置数)
(1)原理:用集成触发器设计太过复杂,因此采用集成计数器,即一个六进制计数器和一个十进制计数器来实现。

由于器材限制,此次试验设计采用的核心元件是异步清零、同步置数的74LS160。

160 的预置是同步的。

当置入控制器/PE 为低电平时,在CP 上升沿作用下,
输出端Q0-Q3 与数据输入端P0-P3 一致。

160 的计数是同步的,靠CP 同时加在四个触发器上而实现的。

当CEP、CET 均为高电平时,在CP 上升沿作用下Q0-Q3 同时变化,从而消除了异步计数器中出现的计数尖峰。

54/74LS160的CEP、CET跳变与CP 无关。

160 有超前进位功能。

当计数溢出时,进位输出端(TC)输出一个高电平脉
冲,其宽度为Q0 的高电平部分。

对于54/74LS160,在CP 出现前,即使CEP、CET、/MR 发生变化,电路的功能也不受影响。

(2)
PE=(Q2Q1)’(3)电路设计
(4)仿真波形
由波形截图可以看到,当PE产生低电平后,维持了1个CLK周期,而不是和CR信号一样的毛刺,只有等到CP上升沿到来,才能实现置数,即同步置数。

三【实验结果与结论】
1.六十进制计数器(方案一,异步清零)
(1)实验波形
(2)波形分析
根据波形,化成真值表。

根据真值表,实现了六进制计数器
异步清零:观察CR波形,CP出现低电平毛刺,但是并没有等到CP的上升沿或者下降沿(CP 是频率最快、周期最短的波形),就执行了清零操作,Q0~Q3马上清零。

把CR与CP波形对比,通过观察,CR低电平只出现一瞬间,清零操作并不需要CP上升沿或者下降沿为条件,即异步清零。

2.六十进制计数器(方案二,同步置数)
(1)实验波形
(2)波形分析
根据波形,化成真值表。

根据真值表,实现了六进制计数器
同步置数:观察PE波形,当PE产生低电平后,并没有马上实现置数而恢复高电平,维持了1个CLK周期,而不是和CR信号一样的毛刺,直到CP上升沿出现,才能进行置数,即同步置数。

四【实验总结】
1.通过两种不同的方式实现了六十进制计数器的设计
2.进一步了解了74LS160的同步置数和异步清零的功能特点
3.学会了通过波形分析来探究同步、异步实现的区别。

相关文档
最新文档