《工程数学基础(I)》第一次作业答案100分
工程数学基础第一次作业第一次答案

⼯程数学基础第⼀次作业第⼀次答案《⼯程数学基础(Ⅰ)》第⼀次作业答案你的得分:100.0完成⽇期:2013年09⽉03⽇20点40分说明:每道⼩题括号⾥的答案是您最⾼分那次所选的答案,标准答案将在本次作业结束(即2013年09⽉12⽇)后显⽰在题⽬旁边。
⼀、单项选择题。
本⼤题共20个⼩题,每⼩题4.0 分,共80.0分。
在每⼩题给出的选项中,只有⼀项是符合题⽬要求的。
1.( D )A.(-6, 2, -4)B.(6, 2, 4)TC.(2, 6, 4)D.(3, 6, 4)T2.( D )A.B.C.D.3.设A为3x2矩阵,B为2x4矩阵,C为4x2矩阵,则可以进⾏的运算是 ( )( B )A.AC T BB.AC T B TC.ACB TD.ACB4.设A是可逆矩阵,且A+AB=I,则A-1 等于 ( )( C )A.BB.1+ BC.I + BD.(I-AB)-15. ( D )A.|A+B|=| A |+|B|B. | A B|=n| A||B|C. |kA|=k|A|D.|-kA|=(-k)n|A|6. ( D )A. 6B.-6C.8D.-87.设A B均为n阶⽅阵,则成⽴的等式是( )( B )A.|A+B|=| A |+|B|B.| A B|=| BA|C.(AB)T= A T B TD.AB= BA8.设A,B,C均为n阶⽅阵,下列各式中不⼀定成⽴的是 ( )( A )A.A(BC)=(AC)BB.(A+B)+C=A+(C+B)C.(A+B)C=AC+BCD.A(BC)=(AB)C9.设α1,α2,α3是3阶⽅阵A的列向量组,且齐次线性⽅程组Ax=b有唯⼀解,则 ( )( B )A.α1可由α2,α3线性表出B.α2可由α1,α3线性表出C.α3可由α1,α2线性表出D.A,B,C都不成⽴10.设向量组A是向量组B的线性⽆关的部分向量组,则 ( )( D )A.向量组A是B的极⼤线性⽆关组B.向量组A与B的秩相等C.当A中向量均可由B线性表出时,向量组A,B等价D.当B中向量均可由A线性表出时,向量组A,B等价11.设n阶⽅阵A的⾏列式|A|=0则A中( )( C )A.必有⼀列元素全为0B.必有两列元素对应成⽐例C.必有⼀列向量是其余向量线性表⽰D.任⼀向量是其余向量的线性组合12. ( A )A.B.C.D.13. ( A )A.B.C.D.14. ( C )A.0B.-1C. 2D.-215.( B )A.B.C.D.16. ( C )A.B.C.D.17.( B )A.有唯⼀解B.⽆解C.只有0解D.有⽆穷多解18.( A)A. 1B. 2C. 3D. 419.( D )A.B.C.D.20.( D )A.B.C.D.三、判断题。
工程数学基础试题及答案

工程数学基础试题及答案一、单项选择题(每题2分,共10分)1. 极限的定义中,当自变量趋近于某一点时,函数值趋近于一个确定的值,这个值称为该点的极限。
以下哪个选项正确描述了极限的定义?A. 函数值在某点的值B. 函数值在某点的导数C. 函数值在某点的差分D. 函数值在某点的趋近值答案:D2. 以下哪个选项是连续函数的定义?A. 在某点可导B. 在某区间内可导C. 在某点有极限D. 在某区间内函数值无突变答案:D3. 微分中,dy/dx表示的是:A. 函数y的导数B. 函数y的积分C. 函数y的微分D. 函数y的不定积分答案:A4. 以下哪个选项是不定积分的定义?A. 函数的原函数B. 函数的导数C. 函数的微分D. 函数的极限答案:A5. 以下哪个选项是定积分的定义?A. 函数的原函数B. 函数在区间上的极限C. 函数在区间上的累积和D. 函数在区间上的导数答案:C二、填空题(每题3分,共15分)1. 函数f(x)=x^2在区间[0,1]上的定积分表示为∫_0^1 x^2 dx,其值为____。
答案:1/32. 函数f(x)=sinx的不定积分是____。
答案:-cosx + C3. 函数f(x)=e^x的导数是____。
答案:e^x4. 函数f(x)=lnx的导数是____。
答案:1/x5. 函数f(x)=x^3的二阶导数是____。
答案:6x三、计算题(每题10分,共20分)1. 计算定积分∫_0^π/2 sinx dx。
答案:12. 计算不定积分∫x^2 dx。
答案:1/3x^3 + C四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在区间(-∞, +∞)上是增函数。
答案:略2. 证明函数f(x)=e^x在区间(-∞, +∞)上是连续函数。
答案:略五、应用题(每题20分,共20分)1. 某工厂生产一种产品,其成本函数为C(x)=0.01x^2+2x+100,其中x为生产数量。
工程数学练习册答案

《工程数学》练习册参考答案(一) 行列式的概念1、(1)14 (2)1- (3)32452λλλ-+-+ 2、(1)2,偶排列 (2)19,奇排列 (3))1(-n n ,偶排列 (4)2n ,n 为偶数时,偶排列;n 为奇数时,奇排列 3、(1)3,8==k i (2)6,3==k i 4、2,5==j i5、(1)24 (2)3- (3)1(1)!n n --(二)行列式的性质 1、A B C B2、(1)0 (2)297 (3)1(1)nn n x y ++- (4)120-(三)行列式按行展开、克拉默法则 1、A 2、 D3、117A =,1212A =-,133A =,216A =,224A =,231A =-,315A =-,325A =,335A =4(1)32452λλλ-+-+ (2)1++++ad cd ab abcd 5、32=-=λλ或 (四)矩阵的概念及运算1、ABE2、C3、D4、2,2,145、⎪⎪⎪⎭⎫ ⎝⎛+-----+-----=c a c b b a c c a X 232121221426.(1)⎪⎪⎪⎭⎫ ⎝⎛963642321 (2)⎪⎪⎪⎭⎫ ⎝⎛37171291111 (3)233332322322223131132121122111)()()(x a x x a a x a x x a a x x a a x a ++++++++ (3)⎪⎪⎭⎫ ⎝⎛0000 7、⎪⎪⎪⎭⎫⎝⎛---=+-=25229103413152321523)(2E A A A f(五) 逆矩阵和分块矩阵 1(1)11--A B (2)11-A K(3)T A (4)()()11--T T B A 2、D 3、C 4、B A ,可交换(或BA AB =),A 可逆5(1)⎪⎪⎪⎭⎫ ⎝⎛----==*-1113231125231A A A (2)⎪⎪⎪⎭⎫ ⎝⎛---==*-3543513511515151358352351311A A A 6、E E A A E E A A E A A =⎥⎦⎤⎢⎣⎡+⇒=+⇒=-+)2(313)2(0322所以A 可逆,且)2(311E A A+=- E E A E A E E A E A E A A =⎥⎦⎤⎢⎣⎡--+⇒-=-+⇒=-+)2(51)4(5)2)(4(0322所以E A 4+可逆,且)2(51)4(1E A E A --=+-7、⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=166400016000062500006254A (六)矩阵的初等变换、初等矩阵1、(1)1 -2 1 -20 -1 3 -10 0 13 1⎛⎫ ⎪ ⎪ ⎪⎝⎭ (2)1 -1 2 1 00 3 0 -4 10 0 0 4 0⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)1 -2 2 -1 10 0 2 1 00 0 0 0 10 0 0 0 0⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭注意:化阶梯形的答案不唯一3、11 -4 -31 -5 -3-1 6 4A -⎛⎫⎪= ⎪ ⎪⎝⎭4、(1)120X ⎛⎫ ⎪= ⎪ ⎪⎝⎭ (2) 1 8111 26-8 -2X -⎛⎫⎪= ⎪ ⎪⎝⎭(七)矩阵的秩1、(1)3R = (2)4R =2、()2R A =1 143 -1=-3、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→2000010021103021b a A ,当1a ≠且2b ≠时,秩为4,满秩;当1a ≠且2b =或1a =且2b ≠时,秩为3;当1a =且2b =时,秩为2;4、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→)2)(1(30033220321k k k k k A ,当1=k 时,1)(=A r ;当2-=k 时,2)(=A r ;当2,1-≠≠k k 且时,3)(=A r 。
川大《工程数学基础(Ⅰ)2342》19春在线作业1参考答案

7.设A,B,C均为n阶方阵,下列各式中不一定成立的是
A.
B.
C.
D.
答案:A
8.
A.4
B.-4
C.-6
D.6
答案:C
9.
A.1
B.2
C.3
D.4
答案:A
10.设A,B为n阶方阵,且r(A)= r(B),则
A.r(A-B)=0
B.r(A+B)=2 r(A)
C.r(A,B)=2 r(A)
D.
答案:D
其次,笔者认为对婚姻无效与被撤销后的财产分割应方式当加以丰富。我国现在的无效婚姻与可撤销婚姻制度的法律后果中对财产的规定非常单一,忽略了当事人在该婚姻因违法导致无效过程中的主观意志和责任程度,采取各打五十大板的做法不利于发挥法律惩恶扬善的功能。笔者认为在婚姻被撤销或被确认无效后的财产分配中应当参虑双方当事人的主观意志和责任程度,以此作出与之相匹配的分割方案。换句话说主要从“是否知道存在婚姻无效和可撤销的法定事由”和“对法定事由是否有过错”这两个维度来参虑财产的划分。
第一种情况,对于双方当事人都是既知道有违反婚姻生效的法定事由,又对此事由有过错的,适用现行的规定,即双方协商,协商不成的,由法院裁判。第二种情况,对于仅知道有违反婚姻生效事由但没有过错的当事人,在财产分配过程中应当少分,而不论是否属于弱国一方。因为这种情形下,当事人对社会公共利益和法律秩序的挑衅太严重,应当予以更加不利的法律后果。第三种情况,对于不知道存在违反婚姻生效法定事由但是有过错的当事人,境如当事人婚前不知自己患有禁止结婚的疾病而后导致婚姻可撤销,可以适用离婚时财产分割的相关规定。第四种情况,对于既不知道存在违反婚姻生效要件存在,对此又没有过错责任的当事人应当适用离婚时的财产分割规定。因为以上情形中,当事人对社会公益和法律秩序的破坏很小,甚至是无辜的,应当适用更为有利的法律制度。但是需要注意的时,当事人不知的状态需要一直持续到婚姻被确认无效或者被撤销,否者将构化为第一种或者第二种情况。最后,对于子女抚养在题一律适用与离婚时一样的对子女保护的相关规定。
《工程数学》第一次作业答案、第二次作业答案

首页- 我的作业列表- 《工程数学》第一次作业答案()你的得分:100.0完成日期:2020年06月16日17点35分说明:每道小题选项旁的标识是标准答案。
一、单项选择题。
本大题共12个小题,每小题5.0 分,共60.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.定长矢量与其导矢之间满足的关系是A.相互平行B.相互垂直C.大小相等D.垂直且大小相等2.A.B.C.D.3.A. 1B.C.0D.4.A.B.C.D.05.A.不是,6B.是, 6C.不是,0D.是, 0 6.A.-2B.-1C.0D.17.A.B.C.D.8.A.B.C.D. 9.A.0B. 1C. 2D.410.A. 1B.C.D. 11.A.B.C.D. 12.A.B.C.D.二、多项选择题。
本大题共5个小题,每小题6.0 分,共30.0分。
在每小题给出的选项中,有一项或多项是符合题目要求的。
1.A.B.C.D.2.下面的概念是不是矢量的是()。
A.梯度B.散度C.旋度D.方向导数3.下面描述正确的是()。
A.调和场的旋度为0。
B.调和场的散度为0C.调和场的梯度为0D.调和场的旋度和散度有可能不全为0。
4.在线单连域内矢量场A中,下面描述正确的是()A.B.C.D.5.A.B.C.D.三、判断题。
本大题共5个小题,每小题2.0 分,共10.0分。
1.2.3.单位阶跃函数不满足狄利克雷条件,但是正、余弦满足狄利克雷条件。
4.5.首页- 我的作业列表- 《工程数学》第二次作业答案()你的得分:100.0完成日期:2020年06月16日17点47分说明:每道小题选项旁的标识是标准答案。
一、单项选择题。
本大题共11个小题,每小题5.0 分,共55.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.A. AB. BC. CD.D2.A. AB. BC. CD.D3.A. AB. BC. CD.D 4.A. AB. BC. CD.D5.A. AB. BC. CD.D 6.A. AB. BC. CD.D7.A. AB. BC. CD.D 8.A. AB. BC. CD.D 9.A.0B. 1C. 2D.410.A. AB. BC. CD.D11.A. AB. BC. CD.D二、多项选择题。
工程数学基础2019级答案

2019–2020学年第二学期《工程数学基础》试卷标准答案及评分标准考试时间:2020-9-12一、判断题1.×2.×3.×4.5.×6.7.8.×9.×10. 11.×12. 13.×14. 15.×16. 17. 18.×19.×20.×二、填空题1.A c ∩B c 2.−3 3.Y 4.0 5.b−a 6.07.λ−18.09.110.2+√211.0cos x3−x2sin x3e x2x1e x2012.213.−2/5<α<014.16/4515.h2[f(a)+2∑n−1i=1f(x i)+f(b)]16.f(4)(ξ)4!x2(x−2)2,ξ∈(0,2)17.618.2126x+21319.15(b5−a5)20.(0,0.278]三、解:¯A=22−1141−10−14−2−1−8−→4−2−1−81−10−122−114(1分)−→4−2−1−80−1214103−1218−→4−2−1−803−12180−12141−→4−2−1−803−121800164(3分)回代解得x3=24,x2=10,x1=9,即x=(9,10,24)T.(4分)Jacobi迭代格式为x(k+1)1=14·(−2x(k)2−2x(k)3+1),x(k+1)2=12·(−x(k)1−x(k)3+3),x(k+1)3=12·(−x(k)1−x(k)2+7),k=0,1,···.(6分)Jacobi迭代矩阵为M=D−1(L+U)=141212·0−2−2−10−1−1−10=0−12−12−120−12−12−12,由|λE−M|=λ3−34+14=(λ+1)(λ−12)2=0解得M的特征值为λ1,2=12,λ3=−1,所以ρ(M)=1,从而Jocobi迭代发散.(8分)四、解:构造差商表如下(3分)表1:差商表x y 一阶差商二阶差商三阶差商012−3−23−4−1135234315三次Newton 插值多项式N 3(x )=1−2(x −0)+13(x −0)(x −2)+15(x −0)(x −2)(x −3)=15x 3−23x 2−2215x +1,(4分)Newton 插值公式的余项R 3(x )=f [0,2,3,5,x ]x (x −2)(x −3)(x −5).(6分)五、解:(1)λE −A =λ020λ−10−10λ−3−→ −10λ−30λ−10λ02 −→ −10λ−30λ−10002+(λ−3)·λ−→ 10λ−30λ−1000λ2−3λ+2,(4分)所以A 的最小多项式m (λ)=λ2−3λ+2=(λ−1)(λ−2),且J =200010001,C = 10000−2013.(7分)(2)由A 的最小多项式为φ(λ)=(λ−1)(λ−2),设e tA =a 0(t )+a 1(t )A =T (tA ),(2分)因为T (tA )与e tA 在σ(A )={1,2}上的值相同,故有a 0(t )+a 1(t )=e t ,a 0(t )+2a 1(t )=e 2t ,(4分)解得a 1(t )=e 2t −e t ,a 0(t )=2e t −e 2t ,所以e tA =(2e t −e 2t )E +(e 2t −e t )A=2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t2e 2t −e t(6分)所以初值问题的解e tA= 2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t 02e 2t −e t · 101= 4e t −3e 2t 03e 2t −2e t.(8分)六、解:做变换x =12(1+t ),t ∈[−1,1],故t =2x −1.代入得f (x )=14(1+t )2 φ(t ).(2分)对φ(t )在[−1,1]上用Legendre 多项式做最佳平方逼近,设其为¯S ∗1(t )=a 0P 0(t )+a 1P 1(t )则a 0=12∫1−114(t +1)2dt =13,a 1=32∫1−114(t +1)2·tdt =12,(4分)因此有¯S ∗1(t )=13+12t,S ∗1(x )=13+12(2x −1)=x −16.(6分)平方误差为δ2=12∥φ(t )−¯S ∗1(t )∥22=12∫11142(t +1)4dt −121∑k =022k +1a 2k =12(25−2·132−23·122)=1180≈5.56×10−3.(8分)七、解:S 22=4T 23−T 224−1,从而有1=T 23=(3S 22+T 22)/4≈0.401812.其它的有2=S 21=4T 22−T 214−1≈0.400432,3=C 21=42S 22−S 2142−1≈0.400053.八、解:令z =y ′,初值问题化为y ′=z,z ′=(1+x 2)y +1,(0<x ≤1),y (0)=1,z (0)=3.(2分)解此问题的标准Runge-Kutta 格式为y n +1=y n +h 6(k 1+2k 2+2k 3+k 4),z n +1=z n +h 6(l 1+2l 2+2l 3+l 4),k 1=z n ,l 1=(1+x 2n )y n +1,k 2=z n +h 2l 1,l 2=[1+(x n +h 2)2](y n +h2k 1)+1,k 3=z n +h 2l 2,l 2=[1+(x n +h 2)2](y n +h 2k 2)+1,k 4=z n +hl 3,l 4=[1+(x n +h )2](y n +hk 3)+1,y 0=1,z 0=3,(n =0,1,···,N −1)(6分)九、证明:(1)由于(x n )和(y n )都是X 中的Cauchy 序列,则对∀ε>0,∃N 1,N 2∈N ,使得当m,n >N 1时,∥x m −x n ∥<ε;当m,n >N 2时,∥y m −y n ∥<ε.令N =max {N 1,N 2},则当m,n >N 时,有|∥x m −y m ∥−∥x n −y n ∥|≤∥(x m −y m )−(x n −y n )∥≤∥x m −y m ∥+∥x n −y n ∥<ε2+ε2=ε这表明(∥x n −y n ∥)是R 中Cauchy 的序列,由R 的完备性知,数列(∥x n −y n ∥)收敛.(5分)(2)由A 为Hermite 正定矩阵知,存在n 阶酉矩阵U 使得U H AU =diag (λ1,···,λn ).由于A为正定矩阵,因此λi>0,i=1,···,n.令P1=U·diag(1/√λ1, (1)√λn),则P1非奇异,且P H1AP1=E.(3分)同时,显然P H1BP1是Hermite矩阵,因此存在n阶酉矩阵P2,使得P H 2(P H1BP1)P2=diag(µ1,µ2,···,µn),这里µ1,µ2,···,µn为Hermite矩阵P H1BP1的特征值,故为实数.(4分)令P=P1P2,则P非奇异,且P H AP=P H2(P H1AP1)P2=E,P H BP=P H2(P H1BP1)P2=diag(µ1,µ2,···,µn).(5分)。
电大作业工程数学习题(第一次)解答

工程数学习题(第一次)解答(部分)(希望同学们在学习和做题过程中有何问题时,能够和我及时沟通,我将尽力为大家解决课程中所遇到的问题,我的邮箱地址:guowx@ )第1章 行列式 第2章 矩阵单选题1 设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=_______.解:1231231231122331231231231231232323232320326a a a a a a a a a ab a b a b a a a b b bc c c c c c c c c ---=-=⋅-⋅=-单选题2 若00100002001001a a=,则a =_______. 解:413100010000001(1)020(1)21,0200202100100aa a a a a++=-=--===单选题5 设A B ,均为n 阶方阵,k 为常数,则下列等式正确的是( ). A. A B A B +=+ B. AB n A B = C. kA k A = D. n kA k A = 解: 因为 A B ,均为n 阶方阵,所以 -=-kA k A n ().单选题9 设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1( ). A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111 解: 1111111()()()ACB B C A B C A -------'''==填空题2 ---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 .解:1111110111001(1)2(1)201112x x x x --+-=+=-=+-,该多项式一次项的系数是2.填空题7 设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B . 解:22123113()(3)273A B A B A B A B ----'''-=-⋅=-⋅=-解答题5(3) 用初等行变换求矩阵1000110011101111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的逆矩阵 解:因为[]10001000100010001100010001001100:111000100110101011110001011110011000100010001000010011000100110000100110001001100011010100010011A I ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦所以110001000110011001110011011110011-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦证明题8 若A 是n 阶方阵,且AA I '=,试证A =1或-1. 证:2,1,111AA I A A A A ''=⋅==∴=-;或证明题9 若也是正交矩阵是正交矩阵,试证'A A证: 因为','1A A A I A A A ==-可逆且因而是正交阵,故所以有I I AA A A A A ====--')'(')'(')''(11即,是正交阵'A 。
电大工程数学形成性考核册答案

电大工程数学形成性考核册答案工程数学作业(一)答案第2章矩阵一)单项选择题(每小题2分,共20分)1.设 $b_1=2$,则 $2a_1-3b_1a_2+2a_3-3b_3=-6$,选 D。
2.若 $a_2=1$,则 $a=\frac{1}{2}$,选 A。
3.乘积矩阵 $\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}$ 中元素 $c_{23}=10$,选 C。
4.设 $A,B$ 均为 $n$ 阶可逆矩阵,则 $(AB)^{-1}=B^{-1}A^{-1}$,选 B。
5.设 $A,B$ 均为 $n$ 阶方阵,$k>0$ 且 $k\neq1$,则 $-kA=(-k)^nA$,选 D。
6.若 $A$ 是正交矩阵,则 $A^{-1}$ 也是正交矩阵,选 A。
7.矩阵 $\begin{pmatrix}1&-2\\5&-3\end{pmatrix}$ 的伴随矩阵为 $\begin{pmatrix}5&-3\\2&-1\end{pmatrix}$,选 C。
8.方阵 $A$ 可逆的充分必要条件是 $A\neq0$,选 B。
9.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则 $(ACB')^{-1}=B^{-1}C^{-1}A^{-1}$,选 D。
10.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则$(A+B)^2=A^2+2AB+B^2$,选 A。
二)填空题(每小题2分,共20分)1.$\begin{pmatrix}1&-4\\-1&1\end{pmatrix}^{-1}=\begin{pmatrix}1&4\\1&5\end{pmatrix}$。
2.若 $-1$ 是关于 $x$ 的一个一次多项式,则该多项式一次项的系数为 $2$。
3.$\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}^T=\begin{pmatrix}1&2&-1\\-1&4&3\end{pmatrix}$。
《高等工程数学》习题一参考答案

2 1 1 1 3 1 0 0 1 4 ,可得基础解系为 1 1 1 0 1 0 1 1 1 5
f1 (0,1,1,0,0) , f 2 (1,1,0,1,0) , f 3 (4,5,0,0,1) ,Schmidt 正交化得,
1
13.按 P21 欧氏空间定义 2.1,逐条验证, 1) 不满足第 (2 ) 条, (4) 条, 故不是欧氏空间; 不满足第(4)条,故不是欧氏空间;3)都满足,故是欧氏空间。 14. 按 P21 欧氏空间定义 2.1,逐条验证,都满足,故是欧氏空间。 15. 设向量 ( x1 , x2 , x3 , x4 ) 与三个向量正交,则有
所以对两组基有相同坐标的非零向量可取为 (c, c, c,c)(c 0). 5. 由第 7 页子空间定义可得,1)向量满足加法和数乘封闭,是子空间;2)向量不满足加 法或数乘封闭,故而不是子空间。 注:从几何上看,子空间过原点,而不过原点的都不是。 6. 两个向量组生成相同子空间的充分必要条件是这两个向量组等价, 即可以互相线性表示。 解:因对应分量不成比例,故 α1 (1,1,0,0), α2 (1,0,1,1) , β1 (1,1,0,0), β2 (1,0,1,1) 线性
2
T1T2 ( x1 , x2 ) T1[T2 ( x1 , x2 )] T1 ( x1 , x2 ) ( x2 , x1 ) T2T1 ( x1 , x2 ) T2 [T1 ( x1 , x2 )] T2 ( x2 , x1 ) ( x2 , x1 )
11.略。 12. 解:1)因为 T ( x1 , x2 , x3 ) ( 2 x1 x2 , x2 x3 , x1 ) ,按照 P18 (1.21),可知
中央电大土木工程本科工程数学形成性考核册答案

工程数学作业(一)答案(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6⒉若000100002001001a a =,则a =(A ). A. 12 B. -1 C. -12D. 1⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BAB+=+---111B. ()AB BA--=11C. ()A B A B +=+---111D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B = C. kA k A = D. -=-kA k A n () ⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325 C. 5321--⎡⎣⎢⎤⎦⎥ D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ).A. ()A B A AB B +=++2222B. ()A B B BA B +=+2C. ()221111ABC C B A ----= D. ()22ABC C B A '='''(二)填空题(每小题2分,共20分)⒈210140001---=7. ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是2. ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为5×4矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051.⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72.⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3.⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a =0. ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为2.⒑设A A 12,是两个可逆矩阵,则A O O A 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分) ⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +. 解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X .解: 32A X B -=∴⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式1020143602533110--中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥;⑵1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥;⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110010001919292031320323110021020112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1.证明: A 是n 阶方阵,且AA I '=∴12==='='I A A A A A ∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴A A '=-1∴)()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立. A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ=1时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性相关.⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是3. ⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有无穷多解,且系数列向量ααα123,,是线性相关的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩相同.⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有2个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴方程组无解∴β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=0000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-0001000143100145010001002114310211450100030002114310211450123133432212131141r r r r r r r r ∴方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a 44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型.解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++= 222423221)()(x x x x x x -+-++= ∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+= 工程数学作业(第三次)(满分100分)第4章随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ).A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件A B ,,命题(C )是正确的.A. 如果A B ,互不相容,则A B ,互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机实验的成功率为)10(<<p p ,则在3次重复实验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰ B. xf x x a b()d ⎰C.f x x ab()d ⎰D. f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它 B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它 C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).A. F a F b ()()-B. F x x ab()d ⎰C. f a f b ()()-D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμ C. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+=0.8,P AB ()=0.3. 3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+=0.65,P A B ()=0.3. 7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()=6.9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的协方差. (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴A B C ,,中至少有一个发生; ⑵A B C ,,中只有一个发生; ⑶A B C ,,中至多有一个发生; ⑷A B C ,,中至少有两个发生; ⑸A B C ,,中不多于两个发生; ⑹A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3)C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-== …………P P k X P k 1)1()(--== …………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(3216.设随机变量X 的概率分布为12345601015020*********.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P 7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),().解:32322)()(1310==⋅==⎰⎰+∞∞-x xdx x dx x xf X E21422)()(10410222==⋅==⎰⎰+∞∞-xxdx x dx x f x X E181)32(21)]([)()(222=-=-=x E X E X D9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0. 解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P 0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P 10.设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n1)]()()([1)(1)1()(2122121n n n i i X D X D X D nX X X D n X n D X D +⋯⋯++=+⋯⋯++==∑=22211σσn n n=⋅=工程数学作业(第四次)第6章统计推断(一)单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.A. x 1B. x 1+μC. x 122σD. μx 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. max{,,}x x x 123B. 1212()x x +C. 212x x -D. x x x 123--(二)填空题1.统计量就是不含未知参数的样本函数.2.参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法. 3.比较估计量好坏的两个重要标准是无偏性,有效性.4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值x 和样本方差s 2.解: 6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i ix x s2.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它试分别用矩估计法和最大似然估计法估计参数θ. 解:提示教材第214页例3矩估计:,121)1()(110∑⎰===++=+=ni i x n x dx x x X E θθθθx x --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ875.1)(151ˆ5122=--==∑=i i x x s σ(1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x n x σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ故所求置信区间为:]7.111,3.108[],[=+-ns x ns x λλ4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立. 解:237.0162.343|10/42017||/|||0=⨯=-=-=nx U σμ,由975.021)(=-=Φαλ ,查表得:96.1=λ 因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.).解:由已知条件可求得:0125.20=x 0671.02=s1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ∵| T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。
工程数学基础(新版教材)习题解答

, 即
E11
a
0c
0 T,
E12
a c
b 0 d 0
1 0
0 0
a
c
0E11
aE12
0E21
cE22
, 即
E12
0
a
0 c T,
E21
a c
b 0 d 1
0 0
b d
0
0
bE11
0E12
dE21
0E22
, 即
E21
b
0d
0 T,
3
E22
a c
b 0 d 0
0 1
d1() d2 () d3 () 1 , d 4 ( ) ( 1)4 .
00 1
2. 解 (1)∵ det A() ( 2)4 ,∴ D4 () ( 2)4 ,又∵ 0 1
1 2
2 1 0 , 0
∴ D3 () 1 ,从而 D1() D2 () 1 .于是不变因子为 d1() d 2 () d3 () 1 ,
3.满; 4. sup E 2 , inf E 3; 5. 0 ; 6.0; 7. n ; 8.Y .
B
1. 证 y f (A B) , x A B 使 得 y f (x) . 由 x A B , 得 x A , 且 x B 故 y f (x) f (A) 且 y f (B) ,即 y f (A) f (B) ,因此 f (A B) f (A) f (B) .
1
∴ A~ J i .
i
3 1 0 0 1 3 0 0
(3)∵ E A
4 7
1 0
0
1
1 2 1 1,2 1
4 7
0
中央电大土木工程本科工程数学形成性考核册答案

工程数学作业(一)答案(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6⒉若000100002001001a a=,则a =(A ).A.12 B. -1 C. -12D. 1 ⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ).A. 1B. 7C. 10D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BAB +=+---111 B. ()AB BA --=11C. ()A B A B +=+---111 D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B =C. kA k A =D. -=-kA k A n()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325C. 5321--⎡⎣⎢⎤⎦⎥D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2C. ()221111ABC C B A ----= D. ()22ABC C B A '='''(二)填空题(每小题2分,共20分)⒈21014001---= 7 . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分)⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X .解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式1020143602533110--中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥.解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1.证明: A 是n 阶方阵,且AA I '=∴ 12==='='I A A A A A∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立. A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-261210009039270188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-3100010100100102000131004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r ∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型. 解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++=222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件A B ,,命题(C )是正确的. A. 如果A B ,互不相容,则A B ,互不相容 B. 如果A B ⊂,则A B ⊂ C. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰B.xf x x ab()d ⎰C.f x x ab()d ⎰D.f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ). A. F a F b ()()- B. F x x a b()d ⎰ C. f a f b ()()- D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμC. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 . 3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-==…………P P k X P k 1)1()(--==…………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(321 6.设随机变量X 的概率分布为012345601015020*********.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P7.03.01)3(1)3(=-==-=≠X P X P7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),(). 解:32322)()(10310==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E 181)32(21)]([)()(222=-=-=x E X E X D 9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0.解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P 0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P 10.设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n n i i X E X E X E n X X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n1 )]()()([1)(1)1()(2122121n n n i i X D X D X D nX X X D n X n D X D +⋯⋯++=+⋯⋯++==∑= 22211σσn n n=⋅=工程数学作业(第四次)第6章 统计推断(一)单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.A. x 1B. x 1+μC. x 122σ D. μx 1 ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. max{,,}x x x 123B. 1212()x x + C. 212x x - D. x x x 123--(二)填空题1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0 试分别计算样本均值x 和样本方差s 2. 解:6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i i x x s2.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它 试分别用矩估计法和最大似然估计法估计参数θ.解:提示教材第214页例3 矩估计:,121)1()(110∑⎰===++=+=n i i x n x dx x x X E θθθθx x --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i n i n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==n i i n i i x n d L d x n L θθθθ,1ln ˆ1--=∑=n i ixn θ 3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x nx σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ 故所求置信区间为:]7.111,3.108[],[=+-ns x n s x λλ 4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立.解:237.0162.343|10/42017||/|||0=⨯=-=-=n x U σμ, 由975.021)(=-=Φαλ ,查表得:96.1=λ 因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.). 解:由已知条件可求得:0125.20=x 0671.02=s 1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ ∵ | T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。
工科数学基础(专)第1次形测作业

江苏开放大学作业内容: 《工科数学基础(专)》形成性测试题(一)一、填空题:(每小题4分,共计20分)1.函数 可以分解为__2u 2+=x ___31u y =__________________.2.函数 的连续区间为________[]22,-_______________________________. 3.若 32sin lim0=→xmx x ,则 _______6______. 4.=+∞→x x x)21(lim _______2e __________________. 5.函数2312+--=x x x y 的间断点是_1=x ,2=x _____________________________.二、单项选择题:(每小题4分,共计20分)1.下列各组函数中表示同一个函数的为( C )A .x y =1与B .x y 21cos =与22cos x y =C . x y =1与332x y =D .x y =1与22x y =2.下列极限存在的是( A )A .321lim 3-+∞→x x xB .x x e ∞→limC .x x cos lim ∞→D . 1lim 2+∞→x x x 3.当0→x 时,下列变量中的无穷小量是( D )A .x eB .x lnC .x cosD .x tan4.下列各式中不正确的是( A )A .1sin lim =∞→x x xB .1sin lim 0=→x x xC .1)11(lim -∞→=-e x x xD .e xx x =+∞→)11(lim 5.下列命题中正确的是( B ) A .若极限)(lim 0x f x x →存在,则)(x f 在0x 处连续B .若)(x f 在点0x 处连续,则)(lim 0x f x x →存在 C .若)(x f 在点0x 处有定义,则)(x f 在点0x 处连续D .若)(x f 在点0x 处有定义且)(lim 0x f x x →存在,则)(x f 在(b a ,)内连续 三、计算下列各极限:(每小题10分,共计60分)1.xx x x x +++-→221332lim ; 111331213l i m 32l i m 332l i m 222121221=-+-+-+-=+++=+++-→-→-→)()()()()()(x x x x x x x x x x x2.11lim 1--→x x x ; 211111lim 1lim 11lim 11lim 11lim 11111=+=+--=+-+-=--→→→→→x x x x x x x x x x x x x x x ))(()())(())(( =m 322+=x y xx y 22=24x y -=3.xx x x x 223lim 222-+-→; 211)2(lim 2)1lim 223lim 22222=-=---=-+-→→→x x x x x x x x x x x x x )((4.232lim 22+-+∞→x x x x x ; 3200302)213(lim )12lim 232lim 222=+-+=+-+=+-+∞→∞→∞→x x x x x x x x x x (5.xx x x 35sin lim20-→; 3535lim 55sin lim 3555sin lim 35sin lim 00020-=-∙=-∙=-→→→→x x x x x x x x x x x x x6.xx x 2)21(lim +∞→. 442422)21(lim )21(lim )21(lim e x x x x x x x x x =⎥⎦⎤⎢⎣⎡+=+=+∞→∙∞→∞→完成日期: 2015.11.12评 语:得 分:评阅时间:课程名称 工科数学基础(专) 第1次形测作业 评阅教师:。
国家开放大学《工程数学本》形成性考核作业-参考答案(一)

国家开放大学《工程数学本》形成性考核作业-参考答案(一)最近,国家开放大学的学生们正在进行《工程数学本》的形成性考核作业,本文将为大家提供参考答案。
首先,本次形成性考核作业分为两个部分,分别是选择题和计算/证明题。
下面将分开讲解。
一、选择题1. 垂直于平面x+y+z=1的平面方程是()A. x+y-z=1B. x-y+z=1C. -x+y+z=1D. -x-y+z=1答案:D。
解析:由题意可知,要求垂直于平面x+y+z=1,因此可以设计一个法向量n=[1,1,1],那么直线上任意一点与法向量的内积都为0。
从而有x+y+z-1=0。
将其化简得到该平面的方程为-x-y+z=1。
2. 已知曲线的参数方程 r(t) = (1+2t)i + (t-3)j + (t^2-1)k,它在t=1的单位切向量是()A. 2i-j+2kB. 2i+j+2kC. 4i-j+6kD. -2i-j+2k答案:B。
解析:曲线在t=1时的单位切向量就是它的导数,即r’(1)。
求导可得r’(t) = 2i+j+2tk。
代入t=1得到r’(1) = 2i+j+2k。
3. 行列式D=|2 2 1;3 2 4;1 3 2|的值是()A. -2B. 2C. 4D. 6答案:A。
解析:该行列式可以通过按第二行展开化简为:D=2|2 1| - 2|3 4| + |1 3| = 2*(-2) - 2*(-12) + 3 = -2。
二、计算/证明题1.设A、B、C为3×3的矩阵,且满足:AB=BC,且B可逆,证明:AC=C。
证明:由已知AB=BC可得 A=BCB^-1。
于是有 AC=BCB^-1C = B(IB^-1)C = BC = C。
2.已知函数y=e^(kx)sin(ax+b)在[x0,x0+pi/a]上的最大值为2,最小值为-2,求k和b的值情况。
解析:根据已知条件,可推出y的表达式为y=e^(kx)sin(ax+b),并知道在[x0,x0+pi/a]上最大值为2,最小值为-2,因此可列出以下两个等式:e^(kx0)sin(ax0+b)=2e^(k(x0+pi/a))sin(a(x0+pi/a)+b)=-2将两式相除,可得到e^(kpi/a)=-1。
天津大学工程数学基础新版习题答案.pdf

4.
证
设 Y D
是线性空间
X的一族子空间ຫໍສະໝຸດ 要证DY也是X的线性子空间
.显然
D
Y
,z
只需证明
D
Y
对X的线性运算是封闭的.
事实上,x,
y
D
Y
及
, ,从而对每一个 D ,
有
x,
y
Y
,故
x
y
Y
,
x
Y
.于是,
x
y
D
Y
,
x
D
Y
.因此,
D
Y
是
X
的线性子空间.
5. 证 显然W包含零多项式,故非空;又f , g W,及 ,有
(2)y1, y2 Y及1, 2 , x1, x2 X ,s.t.y1 Tx1, y2 Tx2 ,即x1 T 1( y1), x2 T 1( y2 ).于是有
T 1(1 y1 +2 y2 ) T 1[1T (x1) 2T (x2 )] T 1[T (1x1 2 x2 )] 1x1 2 x2 1T 1( y1) 2T 1( y2 ),
故T 1 : Y X是线性的. 7. 解 首先验证: 22 22是线性的,然后求其在即B下的矩阵A.
X1, X2 22 ,k1, k2 ,由的定义,有
( B
1 0
0 0 1 0 0 0 , 0 0 , 1 0 , 0
(k1 X1 +k2 X2 ) A0 (k1 X1 +k2 X2 ) k1 A0 X1 +k2 A0 X2 k1 (X1)+k2 (X2 ),
故: 22 22是线性的.
)0 0
1
关键是求基元E1
高等数学基础第一次作业有答案

A. y x 1
B. y x
C. y x 2
1, x 0 D. y
1, x 0
⒌下列极限存计算不正确的是( D ).
x2
A.
lim
x
2
x
2
1
B. lim ln(1 x) 0 x0
sin x
C. lim
0
x
x
1
D. lim x sin 0
x
x
⒍当 x 0 时,变量( C )是无穷小量.
sin x A.
x x0
x x0
(二)填空题
⒈函数 f (x)
x2 9 ln(1 x) 的定义域是 x 3, 3.
x3
⒉已知函数 f ( x 1) x2 x ,则 f (x)
2
xx
⒊ lim (1 1 ) x
x
2x
⒋若函数 f (x)
e.
1
(1 x) x , x 0 ,在 x 0处连续,则 k x k, x 01
lg
0
x
2x 1 1 x
x0
x0
或
2x 1 x
2x 1 x
定义 域是 x 1 或 x 0
x 1 或x 0
⒊在半径为 R 的半圆内内接一梯形, 梯形的一个底边与半圆的直径重合, 另一底 边的两个端点在半圆上,试将梯形的面积表示成其高的函数.
⒋求 lim sin 3x . x 0 sin 2 x
解: f ( x)在x 1处左极限 lim ( x 1) 0,
x1
f (x) 在x 1处右极限 lim x 1, x1
f ( x) 在x 1处极限不存在 , 即 f (x)在x
1处间断;
又 f (x)在x 1处左极限 lim x 1,
西南交通大学新学期《工程数学I》在线作业一

西南交《工程数学I》在线作业一
如果矩阵A满足A^2=A,则( )
A:A=0
B:A=E
C:A=0或A=E
D:A不可逆或A-E不可逆
参考选项:D
A、B均为n阶方阵,则必有
A:det(A)det(B)=det(B)det(A)
B:det(A+B)=det(A)+det(B)
C:(A+B)的转置=A+B
D:(AB)的转置=A的转置乘以B的转置
参考选项:A
设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是
()
A:Ax=0只有零解
B:Ax=0的基础解系含r(A)个解向量
C:Ax=0的基础解系含n-r(A)个解向量
D:Ax=0没有解
参考选项:C
n阶行列式的展开式中共有()项
A:n
B:n^2
C:n!
D:n(n+1)/2
参考选项:C
设3阶实对称矩阵A的特征值分别为2,0,-3,则()
A:|A|≠0
B:A负定
C:A正定
D:|A|=0
参考选项:D
设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).A:A=E
B:B=O
C:A=B
D:AB=BA
1。
工程数学(本)形考一资料答案

工程数学(本)形考一资料答案一、选择题1.答案:B解析:选项 A 是指数函数,B是幂函数, C 是常数,D 是常数函数。
2.答案:C解析:通过计算得出,$\frac{{\ln 81}}{{\ln 3}}= 4 $3.答案:D解析:上面的系数矩阵 A 不是奇异的,所以行列式|A|AA0。
4.答案:A解析:根据题目给出的数据,化简得出 $\\frac{21}{40} = 0.525$。
5.答案:C解析:若 $f(x) = C\\text{e}^{\\lambda x}$ 是微分方程$f'(x) = \\lambda f(x)$ 的解,其中A是常数,则 $f(x) =C\\text{e}^{- x}$ 是所给微分方程的解。
6.答案:D解析:可以根据数据计算出$\\sqrt{\\frac{{\\sum\\limits_{i=1}^{n} x_i -\\overline{x}}^2}{n-1}} = 4.47$。
7.答案:C解析:能够观察到 $\\sin x$ 的周期为 $2\\pi$,所以$[\\sin(\\pi/2) - \\sin (pi/6)]^2$ 上周期相等,根据选项得出答案。
8.答案:B解析:根据几何級数公式,可知 $S = \\frac{4}{1 - 0.5} = \\frac{8}{0.5} = 16$。
9.答案:D解析:利用计算器或计算机程序计算得出结果为−1。
10.答案:C解析:经过计算得到 $\\cos 2\\alpha = -\\frac{4}{5}$,所以 $\\cos \\alpha = \\sqrt{\\frac{1}{2} -\\frac{1}{2}\\sqrt{\\frac{4}{5}}}$。
二、填空题1.答案:偏导数解析:题目描述了对多元函数的求导,输入输出都是多维的,因此可以判断出应为偏导数。
2.答案:1/2解析:这是一道求概率题,设 A 为事件“至少有一个 A 测试装置坏”,则 $P(A) = 1-P(\\overline{A})=1-P(\\text{A,\\text{B},\\text{C} 都正常工作})=1-0.4*0.6*0.8=0.488$。
工程数学基础教程课后习题答案

.工程数学基础习题解答习 题 一A一、判断题1.√;,2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.√;10.×.二、填空题1.;C C A B2.111(){1,2,3,4},(){,,},(){,,},(){1,4},(){2,3};f f a b e f A a b e f B f b --=====D R3.满;4.2sup =E ,3inf -=E ; 5.0; 6.0; 7. n ; 8.Y .B1.证 ()y f A B ∀∈⋂,x A B ∃∈⋂使得)(x f y =.由x A B ∈⋂,得x A ∈,且x B ∈故()()y f x f A =∈且()y f B ∈,即()()y f A f B ∈⋂,因此()()()f A B f A f B ⋂⊂⋂.当f 是单射时,只需证明()()()f A f B f A B ⋂⊂⋂即可: ()()(),y f A f B f ∀∈⋂⊂R f 由是单射知,().(),(),1X y f x y f A y f B x ∃=∈∈∈使得且,,()(),x A x B x A B y f x f A B ∴∈∈∈⋂=∈⋂且即从而故()()()f A f B f A B ⋂⊂⋂.是可能的,例如,2:,[2, 0],[1, 3],[1, 0].f xx A B A B =-=-⋂=-取则()([1,0])[0, 1], f A B f ⋂=-=于是而[][]()()0, 4[0, 9]0, 4.f A f B ⋂=⋂=从而有 .2. 证(1)n ∀∈,有)2 ,2(12 ,12][-⊂-+-n n ,故 ∞=-⊂-+-1)2 ,2(12 12][n n ,n .另一方面,)2 ,2(-∈∀x ,k ∃∈,使][12 ,12k k x -+-∈,故 ∞=-+-∈1][12 12n n ,n x ,于是⊂-)2 ,2( ∞=-+-1][12 12n n,n .因此, ∞=-+-=-1][12 ,12)2 ,2(n nn .(2)n ∀∈,有)12 ,12(]2 ,2[n n +--⊂-,故 ∞=+--⊂-1)12 ,12(]2 ,2[n n n .另一方面,对任意]2 ,2[-∉x ,即2>x ,k ∃∈,使得212>+>kx ,即)12 ,12(k k x +--∉,从而 ∞=+--∉1)12 ,12(n n n x ,故 ∞=-⊂+--1]2,2[)12 ,12(n n n .因此,∞=+--=-1)12,12(]2,2[n nn . 3. sup ,sup ,sup ,.A A A μμμμ''===证设且要证唯一只需证明即可sup ,,,sup ,,;.inf .A A A A A μμμμμμμμμμ'''=≤=''≤= 因为是最小上界而是的上界故又因为是最小上界而是的上界故因此 类似地可以证明是唯一的 4. 证 设{}D Y αα∈是线性空间X 的一族子空间,要证D Y X αα∈⋂也是的线性子空间.显然D Y αα∈⋂≠∅,z 只需证明.D Y X αα∈⋂对的线性运算是封闭的事实上,,Dx y Y αα∈∀∈⋂及,λ∀∈,从而对每一个D ∈α,有,x y Y α∈,故x y Y α+∈,x Y αλ∈.于是,D x y Y αα∈+∈⋂,D x Y ααλ∈∈⋂.因此,DY αα∈⋂是X 的线性子空间. 5. ,,,W f g W λ∀∈∀∈证显然包含零多项式故非空;又及,有()(0)()(0)(0)(0)(0)(0)[(0)(0)][(0)(0)]000,f g f g f g f g f f g g '''''+++=+++=+++=+=即;()(0)()(0)(0)(0)[(0)(0)]00,.f g W f f f f f f f W λλλλλλλ'''+∈+=+=+==∈即[0, 1].n W P 所以,是的线性子空间1111021121001121 [0, 1],(),()2.(0)(0)0,0,,()(1).n n n n n n n n n n n f W P f x a x a x a x a f x na x a x a f f a a a a f x a x a x a x a x -----'∀∈⊂=++++=+++'+=+==-=++++-设则由得即故23(1,,,,),dim .n x x x x W W n -=由上可知,是的一个基故6. 1(1),(0)0.()0,0.T T T x T T x -⇒===“”:因为是线性的故有于是,若则由存在知是单射,从而有 1T T -⇐“”:要证存在,只需证明是单射:121212121212,,((),()()()0,0,,.x x X T x T x T x x T x T x x x x x T ∀∈=-=-=-==当)即时由条件得即故是单射 1112121211221122(2),,,,,s.t.,,(),().y y Y x x X y Tx y Tx x T y x T y λλ--∀∈∀∈∃∈====及即于是有1111111221122112211221122(+)[()()][()]()(),T y y T T x T x T T x x x x T y T y λλλλλλλλλλ-----=+=+=+=+1:.T Y X -→故是线性的7. 2222:,.B A σ⨯⨯→解首先验证是线性的然后求其在即下的矩阵221212,,,,X X k k σ⨯∀∈∀∈由的定义,有 10010000,,,0001001()B ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1122011221012021122(+)(+)+()+(),k X k X A k X k X k A X k A X k X k X σσσ===2222:.σ⨯⨯→故是线性的1112212210010000,,,00001001E E E E B ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦关键是求基元的像在基下的坐标:()()()11111221221110000000,00,Tab acd cE aE E cE E E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()12111221221201000000,00,Tab a cd c E E aE E cE E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()21111221222100010000,00,T ab bcd d E bE E dE E E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()2211122122200001000,00,Tab b cd d E E bE E dE E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即 0000.0000aba b A c d c d ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎣⎦习 题 二A一、判断题1.√;2.×;3.√;4.√;5.×;6.√;7.×;8.×;9.√;10.√;11.×;12.×.二、填空题1.x ;2.n ;3.2,(1),i,i λλλλ-+-;4. 1,1λλ-+;5.200004014⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;6.200020012⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;7.O ; 8.O ;9.1λ-;10.6.三、单项选择题1.(d);2. (b);3. (b);4. (d);5. (a).B1.解(1)E A λ-()[]−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----=-+212]3,2[]2,1[020012201200120012λλλλλλλ ()[]()[]()[]()[]222311322132232)2(00)2(10001020)2(10201-⋅+-⋅-⋅--⋅+−−→−⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----λλλλλλλλ ()[]⎥⎥⎦⎤⎢⎢⎣⎡-−−→−⎥⎥⎦⎤⎢⎢⎣⎡---⋅3123)2(11)2(00010001λλ, 3123()()1, ()(2).d d d λλλλ∴===-(2)E A λ-[][]()[]−−→−⎥⎥⎦⎤⎢⎢⎣⎡------−−→−⎥⎥⎦⎤⎢⎢⎣⎡------=+-λλλλλλλ13123,1111111111111()[][]3211222311111011010011012λλλλλλλλλλ+⋅-⎡⎤⎣⎦+----⎡⎤⎡⎤⎢⎥⎢⎥+--−−−→+−−−→⎢⎥⎢⎥⎢⎥⎢⎥-------⎣⎦⎣⎦[]()[]⎥⎥⎦⎤⎢⎢⎣⎡-++−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-++---⋅-+)2)(1(11)2)(1(0001011117312λλλλλλλλ, 1()1d λ∴=,1)(2+=λλd ,)2)(1()(3-+=λλλd .(3)E A λ-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=52340100010012345100010001λλλλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++---→542300100100012λλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++--→543200100010001232λλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++→5432111234λλλλ, 12()()()1d d d λλλ∴===,5432)(2344++++=λλλλλd .(4)[]1,2310013004100140071211721761671E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=−−→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦ ()[]()()()21122314162131113001000021000(1)0004210(4)210611106111λλλλλλλλλλλλλλ+-+⎡⎤⎣⎦-+-⎡⎤⎣⎦+⋅-⎡⎤⎣⎦⋅-⎡⎤⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥−−−−→−−−−→⎢⎥⎢⎥-----+--⎢⎥⎢⎥--⎣⎦⎣⎦[]()2243232100010000(1)000(1)000621062106101010(1)0λλλλλλλλ+⋅⎡⎤⎣⎦+⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→−−−−→⎢⎥⎢⎥------⎢⎥⎢⎥---⎣⎦⎣⎦()()()2421[4()][24(1)]10[246][41][342]2210001000(1)0(1)0000010********(1)(1)0100101010λλλλλλ-⋅-⋅-+⋅-⋅-+⋅-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥−−−→−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦[][]242,4(2)3,4[32]1041000100(1)010001110(1)λλλ-+⋅⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 123()()()1d d d λλλ∴===,44)1()(-=λλd .2. 解 (1)∵4det ()(2)A λλ=-+,∴44)2()(+=λλD ,又∵01021210100≠-=++λλ,∴1)(3=λD ,从而1)()(21==λλD D .于是不变因子为1)()()(321===λλλd d d ,44)2()(+=λλd ;初等因子组为4)2(+λ. (2)2210010010010()00000()000()B λαλαλαλαλλαλαλαλα++⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥≅≅⎢⎥⎢⎥+-+⎢⎥⎢⎥+-+⎣⎦⎣⎦⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++≅22)()(11αλαλ, 故不变因子为 1)()(21==λλd d ,23)()(αλλ+=d ,24)()(αλλ+=d ; 初等因子组为 22)(,)(αλαλ++.(3)显然313()1,det ()(1)()D C D λλλλ==+=,而2(1)(5)08(1)adj ()3(1)(1)6(1)2(1)0(1)(3)C λλλλλλλλλλ+++⎡⎤⎢⎥=+++⎢⎥⎢⎥-++-⎣⎦, ∴1)(2+=λλD .因此2321)1()(,1)(,1)(+=+==λλλλλd d d ; 初等因子组:2)1(,1++λλ.(4)由第1题(4)知1)()()(321===λλλd d d ,44)1()(+=λλd .也可这样解:由行列式的Laplace 展开定理得43121det ()(1)411D λλλλλλ----=⋅=-+,故44)1()(-=λλD ;又)(λD 的左下角的三阶子式372471672170142+-=---+λλλλ与)(4λD 是互质的,所以1)(3=λD ,从而1)()(12==λλD D .因此44321)1()(,1)()(,1)(-====λλλλλd d d d ;初等因子组:4)1(-λ.3.解(1)∵12020(1)(1)(2)211E A λλλλλλλ---=-=+--+,∴1~12A J ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.(2)∵E A λ-611123034371230343104252373-+-+-=-++-+-=--+--=λλλλλλλλλλλλ 611123036411022-+-+++----=λλλλλλλ)i )(i )(1(123+--=-+-=λλλλλλ,∴~A J ⎥⎥⎦⎤⎢⎢⎣⎡-=i i 1. (3)∵[]1,231001300410014007121172117616171E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦[][][])1(12)1(13)6(14+⋅+-⋅+⋅+−−−→−λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------λλλλλλλλλλ2222)1()1(0100000)1(000011160124000)1(00031⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→22)1()1(11λλ, ∴初等因子组为2)1(-λ,2)1(-λ,于是⎥⎦⎤⎢⎣⎡=11011J ,⎥⎦⎤⎢⎣⎡=11012J ,故12111111JJ J ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (4)0001001E A λλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎣⎦,()det()n nD E A λλλ=-=,又有一个1-n 阶子式0)1(1111≠-=----n λλλ,∴1)()(11===-λλD D n ,故1)()()(121====-λλλn d d d ,n n d λλ=)(;初等因子组为n λ,所以010~110A J ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. (事实上,A 本身就是一个Jordan 块)4.解(1)由第1题(2)知1)(1+=λλϕ,2)2)(1()(22--=-+=λλλλλϕ,所以12100~002011CA C C -⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (2)由第1题(3)知5432)(234++++=λλλλλϕ,故B 的有理标准是0005100401030012C -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦.5.解 由J 立即可知A 的初等因子组为2)1(-λ,2-λ,2)2(-λ,于是不变因子为1)()()(321===λλλd d d ,()24-=λλd ,225)2()1()(--=λλλd .即2)(1-=λλϕ,412136)(2342+-+-=λλλλλϕ,故200000000401001200101300016C ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦.6.解 (1)744744()481099418418f E A λλλλλλλλλ----=-=-+=++++2)9)(9(71490847+-=++--=λλλλλ.因为2441644(9)(9)4171 4114117411A E A E O ---⎡⎤⎡⎤⎢⎥⎢⎥-+=---=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦,所以最小多项式为)9)(9()(+-=λλλm .(2)32310()det()0132(2)(1)23D E B λλλλλλλλλ-=-=-=--=-+--,∵有一个二阶子式01101≠=--λ,∴1)()(21==λλD D .因此,23)1)(2()()(+-==λλλλd m . (3)对E C λ-施行初等变换得其Smith 标准形23()diag(1, 1, 1,(3),(3))S λλλ=--,∴35)3()()(-==λλλd m .7.证 若A 可对角化,则A 的最小多项式)(λm 无重零点,必要性得证. 若A 有一个无重零点的零化多项式)(λϕ,则因为)(deg )(deg λϕλ≤m ,故)(λm 也无重零点,由定理2.16知A 可对角化.8. 证 (1) 22A A E +=,22A A E O +-=,∴)1)(2(2)(2+-=-+=λλλλλϕ是A 的一个无重零点的零化多项式,故A 可对角化. (2)mA E =,∴1-mλ是A 的零化多项式,其零点2i ek mk πλ=(0,1,,1)k m =-是互不相同的,故A 可对角化.习 题 三A一、判断题1.√;2.√;3.√;4.√;5.√;6.√;7.√;8.×;9.√;10.×;11.√;12.√;13.×; 14.× 15.√;16.√;17.√;18.√;19.√;20.×;21.√;22√;.23.×;24.√;25.√.二、填空题1.0;2.0y ;3.()T111,,,2n;4. 12;5.Banach ;6.1;7.3;8.15,2FA A A∞==+=;9.3.三、单项选择题1.(c);2. (c);3. (b);4. (a);5. (b);6.(c).B1. 证 仅验证三角不等式,其余是显然的.设Tn ),,(1ξξ =x ,T n ),,(1ηη =y 是n中的任意两个元素.∑∑∑∑====+=+=+≤+=+n i ni ni i ni i i i i i 1111111)(y x y x ηξηξηξ;i ni i ni i i ni i ni ηξηξηξ≤≤≤≤≤≤≤≤∞+≤+≤+=+11111max max }{max max y x∞∞+=y x .2. 证 因为[],, x y C a b ∀∈及∈∀α,有(N 1) t t x x bad )( 1⎰=0≥,显然若0=x ,即0)(≡t x ,则01=x ;反之,若01=x ,即0d )( =⎰t t x ba,则由)(t x 的连续性,知0)(≡t x ,即0=x ;(N 2) 11d )(d )(x t t x t t x xba b aαααα===⎰⎰;(N 3) t t y t t x t t y t x yx bab ab ad )(d )(d )()(1⎰⎰⎰+≤+=+11y x +=;所以1 ⋅是[], C a b 上的范数.3.解121i 1i 22,max{1,i ,1i}x x x ∞=+-++===-+= 4.解1max{101,210,i 11i }max{2,3,22max{12i ,011,101i }max{4,2,1 4.A A ∞=++-++-+-+-===++-++--++-==5.证 (1)lim ,lim ,.n n n n x x X x y Y x y →∞→∞=∈=∈=设又只需证明即可 {}0lim lim lim lim lim 000,0,0,.n n n n n n n n n n n x y x y x x x y x x x y x x x y x y x y x y →∞→∞→∞→∞→∞≤-=-=-+-≤-+-=-+-=+=∴-=-==故即122lim ,1,,1,1, 1. max{,,,,1},,().n n n n n n N n n x x X N n N x x x x x x x x M x x x x n x M x ε→∞=∈=∃∈>-≤-≤-≤≤+=+∀∈≤ ()设则对使得当时,恒有从而有即取则,有故有界6.证 设x 是,()n X x X x 中任意一点是中收敛于的任一序列.()():,lim ()();:,lim ()().lim()()()(),:.n n n n n n n f X Y Y f x f x g Y Z Z g f x g f x g f x g f x g f X Z x →∞→∞→∞→=→==∴→ 由连续知在中有又由连续知在中有即在点处连续,:.x X g f X Z ∈→由的任意性知是连续映射7. 证 由于()n x 和()n y 都是X 中的Cauchy 序列,则0>∀ε,12,N N ∃∈,使得当1,N m n >时,2ε<-m n x x ; 当2,N m n >时,2ε<-m n y y .令},m ax {21N N N =,则当N n m >,时,有)()( m m n n m m n n y x y x y x y x ---≤---εεε=+<-+≤22m n m n y y x x ,这表明()n n x y -是中Cauchy 的序列,由的完备性知,数列()n n x y -收敛.100001110101010121 (1)[0, 1],0,[0, 1],()0,max ()()0,(N ).d(())d(())[0, 1],,max ()maxmax ()max ,d d (N ). ,[0,dx d ddx x x x d f C f x f x f f x f x f x f x f C f f x f x fx x f g C λλλλλλλ≤≤≤≤≤≤≤≤≤≤∀∈≠∃∈>≥≥>⋅∀∈∀∈=+=+=⋅∀∈8.证且即使得故即满足即满足01010101010d(()())1],max ()()maxd d ()dg() max ()()max d d max ()max dx x x x x f x g x f gf xg x xf x x f xg x x x f x ≤≤≤≤≤≤≤≤≤≤++=++⎡⎤≤⎡+⎤++⎢⎥⎣⎦⎣⎦≤+101010101010131d ()dg()()max maxd d d ()dg()max ()maxmax ()max ,d d (N ).,[0, 1].x x x dd x x x x d d f x x g x x x f x x f x g x f g x x C ≤≤≤≤≤≤≤≤≤≤≤≤≤≤++⎡⎤⎡⎤=+++=+⎢⎥⎢⎥⎣⎦⎣⎦⋅⋅即满足 所以是上的范数(2):D ]1 ,0[1C ]1 ,0[C →显然是线性的.因为1[0, 1]f C ∀∈,有110101d ()d ()maxmax ()max ,d d dx x t f x f x Df f x f x x≤≤≤≤≤≤=≤+=故D 是有界的. 9. 证 由于 ⋅是n n⨯上的方阵范数,故,n nA B ⨯∀∈及α∀∈,有(1)1*0AS AS -=≥,并且11*0A S AS S AS O A O --==⇔=⇔=;(2)11**A S AS O S AS A αααα--====;(3)()11111*A B S A B S S AS S BS S AS S BS -----+=+=+≤+**A B =+;(4)111*()()AB S ABS S AS S BS ---==11**S AS S BS AB --≤=;因此,* ⋅是n n⨯上的方阵范数.10. 2;F A 解 21i()det(),()0;i1f E A A λλλλρλ--=-==∴=-+H HH 21i 1i 22i 22i,(4),()4,i 1i 12i 22i 22.A A E A A A A A λλλλρλ---⎡⎤⎡⎤⎡⎤==-==-=⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦∴=11. 证 显然A λ≤.∵λ是可逆阵A 的特征值,则λ1是1A -特征值,故11A λ-≤,即11Aλ-≥. ∴11A A λ-≤≤.12.证 要证0(),x T ∈N 只需证明00.Tx =()0()(),0.lim ,,n n nn x T Tx n xx T →∞⊂=∀∈=由知于是当且是有界线性算子时有N0(lim )lim ()lim00,n n n n n Tx T x T x →∞→∞→∞====故0().x T ∈N习 题 四A一、判断题1.×;2.√;3.√;4.×;5.√;6.√;7.×;8.×.二、填空题1.2213e e 001cos x x x x ⎡⎤⎢⎥⎣⎦;2.222(1)tE t -+;3.1;4. 3e t ;5.22222222e e e e e e tt t t tt t t t ------⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 6.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-t t t 2cos 2cos cos ;7.1; 8.3e -. B1. sin cos d (),d cos sin tt A t t tt -⎡⎤=⎢⎥--⎣⎦解 []22d d det ()cos sin 0d d A t t t t t =+=⎡⎤⎣⎦,22sin cos d ()det()sin cos 1.d cos sin t t A t t t t t t-==+=-- 2. 2213e e 0 ().01cos x x x f x ⎡⎤'=⎢⎥⎣⎦解x3. 1 1 0 0 11 10 0 0 110 0e d e d e 11 ()d d2d 11.sin d cos d 1cos1sin1t tt t t A t t t t t t t t t ⎡⎤-⎡⎤⎰⎰⎢⎥⎢⎥==⎰⎰⎰⎢⎥⎢⎥⎢⎥⎢⎥-⎰⎰⎣⎦⎣⎦解 4. 证明(1)d d d d d d ()()()()d d d d d d T T T T T f x x x x Ax Ax x Ax Ax x A t t t t t t==+=+d d d d d ()2;d d d d d T T T T T T T T x x x x x x A x A x A x A x A t t t t t=+=+=.(2)d d d d d d ()()2.d d d d d d T T T T T T T x x x x x x x x x x x x t t t t t t=+=+=5. 证(1)若lim k k A A →∞=,则2lim 0k k A A →∞-=. ∵222()T TTk k k A AA A A A -=-=-(可以证明[1]2222H T A A A A ===),∴2lim 0T Tk k A A →∞-=,即lim T Tk k A A →∞=. 同理可证lim k k A A →∞=,由上已证的结果立即可得lim H H k k A A →∞=.(2)000()lim ()lim ()NNTkT kk Tk k k N N k k k c A c A c A ∞→∞→∞=====∑∑∑0lim()Nk Tk N k c A →∞==∑ 0(lim )N k T k N k c A →∞==∑0()k Tk k c A ∞==∑ 6. 证 令()3200det()11120113E A λλλλλ--=---=-=--得A 的全部特征值均为 2. 于是13B A =的所有特征值都是32,故()213B ρ=<,因此lim k k B O →∞=.7. 证 方法一: 当0=t 时,显然成立,故设0≠t .记010100t t A t ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦. 22det()(i )(i )E A t t t λλλλ-=+=-+,t i 1=λ,t i 2-=λ.对t i 1=λ,解方程(i )0tE A x -=可得11i x ⎡⎤=⎢⎥⎣⎦;对t i 2-=λ解方程(i )0tE A x --=得21i x ⎡⎤=⎢⎥-⎣⎦.令11i i P ⎡⎤=⎢⎥-⎣⎦,则P 可逆且11/2i /21/2i /2P --⎡⎤=⎢⎥⎣⎦.所以01i 10i i 1i 111/2i /2e 0ee diag(e ,e )i i 1/2i /20e tt Attt P P ⎡⎤⎢⎥---⎣⎦--⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+---+=----t t t t t t t t t t t t cos sin sin cos )e e (21)e e (i 21)e e (i 21)e e (21i i i i i i i i .方法二:记0110B ⎡⎤=⎢⎥-⎣⎦,21det()11E B λλλλ--==+,{}()i,i B σ=-.B 的最小多项式1)(2+=λλϕ,2)(deg =λϕ. 故设01e ()()tB a t E a t B =+.∵λt e 与λ)()(10t a t a +在()B σ上的值相等,即⎩⎨⎧=-=+-tt t a t a t a t a i 10i 10e )(i )(e )(i )(, ∴t t a t t cos 2e e )(i i 0=+=-,t t a tt sin i2e e )(i i 1=-=-.因此0110cos sin ecos sin sin cos t t t tE tB t t ⎡⎤⎢⎥-⎣⎦⎡⎤=+=⎢⎥-⎣⎦.8. 2eJordan ,e e e .e e e 2ttAtt t tt A t t t ------⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦解是块 9. 解 2214det()02(2)(1)031E A λλλλλλ----=-=----.∵(2)()A E A E O --≠,∴A 的最小多项式)1()2()(2--=λλλϕ.3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=. 由()f t λ与()T t λ在{}()1,2A σ=上的值相等,于是(1)对()e Atf At =有⎪⎩⎪⎨⎧=+=++=++tttt t a t a t a t a t a t a t a t a 2212210210e )(4)(e )(4)(2)(e )()()(,解得⎪⎩⎪⎨⎧+-=-+-=+-=t t t t t t t t t t t a t t a t t a 222221220e e e )(e 3e 4e 4)(e 2e 3e 4)(所以22100e (4e 3e 2e )010001tA t t t t ⎡⎤⎢⎥=-+⎢⎥⎢⎥⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+130020412)e 3e 4e 4(22t t t t⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+19004012164)e e e (22t t t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-=ttt t t t t t t tt e e 3e 300e 0e 4e 4e 13e 12e 12e 222222(2)对()sin()f At At =有01201212()()()sin ()2()4()sin 2()4()cos 2a t a t a t t a t a t a t t a t a t t t ++=⎧⎪++=⎨⎪+=⎩,解得⎪⎩⎪⎨⎧+-=-+-=+-=tt t t t a t t t t t a t t t t t a 2cos 2sin sin )(2cos 32sin 4sin 4)(2cos 22sin 3sin 4)(210. ∴2012sin()()()()At a t E a t A a t A =++sin 212sin 12sin 213cos 24sin 4sin 20sin 2003sin 3sin 2sin t t t t t t t t t t t -+-+⎡⎤⎢⎥=⎢⎥⎢⎥-+⎣⎦(注)可利用(1)的结果求(2)(或cos()At ):在(1)中分别以t i 和t i -替代t 得i e tA 和i etA-,再由公式i i i i e e e e sin()(cos())2i 2tA tA tA tAAt At ---+==或即得. 10. 解 210det()01(+1)01+2E A λλλλλλ-==-()A A E O -≠且,故A 的最小多项式2()(1)φλλλ=+,3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=,即012100010001()()010()001()012001012023f At a t a t a t -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦012021212012()()()0()()()2()0()2()()2()3()a t a t a t a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥=--+⎢⎥⎢⎥--+⎣⎦. 由()f t λ与()T t λ在A 上的谱值相等,于是(1)对()e Atf At =有001212()1()()()e ()2()e tta t a t a t a t a t a t t --=⎧⎪-+=⎨⎪-=⎩,解得012()1()22e e ()1e e t t t t a t a t t a t t ----=⎧⎪=--⎨⎪=--⎩012021212012()()()e 0()()()2()0()2()()2()3()122e e 1e e 0e e e 0e e e At t t t t t t tt t ta t a t a t a t a t a t a t a t a t a t a t a t t t t t t t -----------⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦-++-+⎡⎤⎢⎥=+-⎢⎥⎢⎥-⎣⎦. (2)对()sin()f At At =有001212()0()()()sin ()2()cos a t a t a t a t t a t a t t t =⎧⎪-+=-⎨⎪-=⎩,解得012()0()2sin cos ()sin cos a t a t t t t a t t t t =⎧⎪=-⎨⎪=-⎩.012021212012()()()sin()0()()()2()0()2()()2()3()a t a t a t At a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦02sin cos sin cos 0sin cos cos 0cos sin cos t t t t t t t t t t t t t t t t -+-⎡⎤⎢⎥=-+-⎢⎥⎢⎥--⎣⎦11.tr 2i 332i det(e )e e e .A A +-===解12. 解 此处775885050A --⎡⎤⎢⎥=---⎢⎥⎢⎥-⎣⎦,122()()()()x t x t x t x t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321C ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.因为775det()885(5)(5)(15),deg ()3,05E A λλλλλλϕλλ+--=+=-++=故设2012e ()()()()At a t E a t A a t A T At =++=.由tλe 与)(t T λ在(){5,5,15}A σ=--上的值相同,得方程组⎪⎩⎪⎨⎧=+-=+-=++--ttt t a t a t a t a t a t a t a t a t a 1521052105210e )(225)(15)( e )(25)(5)( e )(25 )(5 )(,解得 ⎪⎩⎪⎨⎧+-=-=-+=-----)e e 2(e )( )e (e )( )e 6e (3e )(1555200125510111555810t t t t t t t tt a t a t a ;于是 0121775105800e ()1()885()12014501050404025At a t a t a t --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+---+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--+-+-+-+---+--++=---------------t t tt t t t t t t t t t tt t t t t t t t t t 551555155555155515555515551555e 5e 5e 2e e 3e 24e e 2e 5e 5e 6e e 3e64e 2e e 5e 5e 4e e 3e 44e e 2101. 所以,解为 55155515551517e 9e 4e 1()e 17e 9e 6e 1017e 9e 2e t t t At t t t t t tx t C ------++⎡⎤⎢⎥==--+⎢⎥⎢⎥-+⎣⎦,即⎪⎪⎩⎪⎪⎨⎧+-=+--=++=------)e 2e 9e 17(101)()e 6e 9e 17(101)()e 49e e 17(101)(155531555215551tt t t t t t t t t x t x t x .习 题 五A一、判断题1.√;2.×;3.√;4.√;5.√;6.×;7.√;8.√;9.×;10.√;11.√;12.×;13.√;14.√ 15.√.二、填空题1.0;2.{}0;3.span A ;4.1;5.3;6.O ;7.123()1,()1,()(1)(2)d d d λλλλλλ==-=--;8.实;9.0; 10.1;11.1,a b c ===.三、单项选择题1.(d);2. (c);3. (c).B1.证 121212(1)(,,,),(,,,),(,,,),,T T T nn n n x y z ξξξηηηςςςλμ∀===∈∀∈及,有1111(I ),(),,;nnnk k k k k k k k k k k k k x y z k k k x z y z λμλξμηςλξςμηςλμ===<+>=+=+=<>+<>∑∑∑211(I ),,;n nk k k k k k k k x y k k y x ξηηξ==<>===<>∑∑231221(I ),0, ,=01,2,,,=01,2,,,00;nk k k nk kk k k x x k x x k k n k n x ξξξξ==<>=≥<>=⇔∀=⇔∀==⇔=∑∑且有有,.nk <⋅⋅>故是上的一种内积(2),,,,n nij ij ij A a B b C c λμ⨯⎡⎤⎡⎤⎡⎤∀===∈∀∈⎣⎦⎣⎦⎣⎦及,有1111111(I ),(),,;nnnnnnij ij ij ij ij ij ij i j i j i j A B C a b c a c b c A C B C λμλμλμλμ======<+>=+=+=<>+<>∑∑∑∑∑∑2111111(I ),,;nnnnnnij ij ij ij ij ij i j i j i j A B a b a b a b B A ======<>====<>∑∑∑∑∑∑2311112211(I ),0, ,0,1,2,,,00;n n n nij ij ij i j i j nnijijij i j A A a a a A A a i j n a a A O ======<>==≥<>==⇔∀===⇔=∑∑∑∑∑∑且有即,.n n⨯<⋅⋅>故是上的一种内积12211.nnij F i j A a A ==⎛⎫>== ⎪⎝⎭∑∑2. 证 右端) , ,(41>--<->++<=y x y x y x y x><+><+><+><=y y x y y x x x ,,,,(41),,,,><-><+><+><-y y x y y x x x 1(4,)4x y =<>=左端.3.证 (1)若⊥∈B x ,则B y ∈∀皆有y x ⊥,由假设B A ⊂,于是对每一个A y ∈皆有y x ⊥,即⊥∈A x ,故⊥⊥⊂A B .(2)若A x ∈,则⊥∈∀A y 皆有y x ⊥,故⊥⊥∈)(A x ,于是⊥⊥⊂)(A A .4.解 显然123.det 20,det 110,det 380,.A A A A A =>=>=>∴是实对称矩阵正定其余略.5. 证 “⇒”: 若n nA ⨯∈正定,则det det 0n A A =>,故A 非奇异.“⇐”: 若A 非奇异,则1det 0ni i A λ==≠∏,从而),,2,1(0n i i =≠λ. 又因为A 半正定,故有0≥i λ,于是),,2,1(0n i i =>λ,所以A 是正定的.6.证 先验证2A 是Hermite 矩阵.22222()()(),Hermite .H H H H H H H H H H H A A AA AA A A AA A AA A AA AA AAA A A A A ======∴是矩阵再证2A 是正定的.12222 ,,Hermite 0(1,2,,).0(1,2,,),.n i i i A n A i n A i n A λλλλλλ∈≠=>=设是的个特征值,由是矩阵且可逆知,且从而的所有特征值故是正定矩阵7. 解 (1)令3i 1i 02010E A λλλλλλ---==-=-得01=λ,22=λ,23-=λ,由此判定A不是正定的.对01=λ解方程组0Ax -=,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000i 0100i 1i 0321ξξξ,亦即⎩⎨⎧==+ 00i 132ξξξ,得⎩⎨⎧==321i 0ξξξ. 若取13=ξ,则有10i 1x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=. 对22=λ解)0A x -=可得2i 1x ⎢⎥⎢⎥⎣⎦=-.对23-=λ解()0A x -=可得⎥⎥⎦⎤⎢⎢⎣⎡--=1i 23x .由于1x ,2x ,3x 分别对应于A 的不同特征值,故彼此正交.将它们单位化,得10i 1/α⎡⎤⎢⎢⎢⎣=,2i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦=-,3i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦-=-.令[]12301/,,i i /2i /21/21/2U ααα⎡-⎢==--⎢⎥⎢⎥⎢⎥⎣⎦,01/i /21/2i /21/2H U ⎡-⎢=⎢⎥⎢⎥-⎢⎥⎣⎦,则0H U AU ⎡⎤⎢⎥=⎢⎥⎢⎣.习 题 六A一、判断题1.×;2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.×.二、填空题1.1122112201010-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;2. (1)()12(1)(1)()213(1)(1)321( 3 24)41(3 30)(0,1,2,)41( 24)4k k k k k k k x x x x x k x x +++++⎧=-+⎪⎪=-++=⎨⎪⎪=-⎩;3.1()D L U --;4.Seidel,Jacobi .B1. 解(1)110000100005000.55000A-⎡⎤⎢⎥⎣⎦-=-, 3.0001A ∞=,120000A-∞=,∴cond 60002A ∞=.(2)1 1.38 2.1810.2106 2.79 4.56B -⎡⎤⎢⎥⎣⎦-=-,17.35B =,1132.00B -=,∴1cond 235.2B =.(3)12212max{,}1009910099,cond (6-3).min{,}99989998C C λλλλλλ--⎡⎤==⎢⎥--⎣⎦是实对称矩阵故见令12122019810,9999cond 39206.C λλλλλλ=--===∴==≈得 2. 解(1)对增广矩阵施行行的初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡330002121041123232300212104112522162134112得到等价的上三角方程组⎪⎩⎪⎨⎧==+-=++330212142332321x x x x x x .进行回代,得方程组的解为:12/)4( ,1)21/(21 ,13/3321323=--==--===x x x x x x .故解为(1,1,1).T x =(2)对增广矩阵施行初等行变换11034110341103421111011590115931123041715003132112314033280001319⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦得到等价的上三角方程组1242343443459313211319x x x x x x x x x ++=⎧⎪---=-⎪⎨+=⎪⎪-=-⎩.进行回代,得方程组的解:43419219/(13), (2113)/3,133x x x =--==-=2341244055(95), 433939x x x x x x =--++==--=-,故解为()5540192,,,.3939313Tx -=3. 解 首先用顺序Gauss 消去法.对增广矩阵施行初等行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1.982.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯-⨯→-65424101798.0104453.0101467.00104441.0108007.0106667.006781.0167.001.0012.0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯→-9924109774.0101762.000104441.0108007.0106667.006781.0167.001.0012.0,经回代得547.53=x ,43.722=x ,05.811-=x . 此时,620.174310Ax b -=⨯. 下面用列主元素Gauss 消去法.对增广矩阵施行初等行变换(下画横线者为主元素)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9812.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-6744.01670.0105500.00101179.0105909.04584.009812.41200320022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-5329.0109610.000101179.0105909.04584.009812.41200320012, 经回代得46.17,76.45,545.5123=-==x x x . 此时,289.22=-b Ax .列主元素Gauss 消去法比顺序Gauss 消去法的精度高.4. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ). 计算结果如下表:解为767354.01=x ,138410.12=x ,125368.23=x .Seidel 迭代格式与计算结果如下:()()()⎪⎪⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k );5. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ), 因为()()21113300044335110,det(),1,444481100044M E M M λλλλλρλ⎡⎤-⎢⎥⎢⎥=--=-=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以Jacobi 迭代格式收敛.Seidel 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ).因为系数矩阵A 对称,且123det 40,det 70,det 240,,A A A A =>=>=>从而正定故Seidel 迭代格式收敛.6. 解(1)Jacobi 迭代矩阵1111022()10111022M D L U -⎡⎤-⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎣⎦;215det()()4E M λλλ-=+,1()1M ρ=>.因此,Jacobi 迭代格式发散.Seidel 迭代矩阵12111000222011111()100010222000111000222M D L U -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--⎣⎦⎣⎦; 221det()()2E M λλλ-=+,21()2M ρ=.因此Seidel 迭代格式收敛.(2)Jacobi 迭代矩阵1100022022010101101001220220M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦;31det()E M λλ-=,1()0M ρ=.因此, Jacobi 迭代格式收敛.Seidel 迭代矩阵2100022022110001023021000002M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦;()22det()2E M λλλ-=-,2()21M ρ=>.因此, Seidel 迭代格式发散.*7.用追赶法解线性方程组12123233 1, 247, 259.x x x x x x x +=-⎧⎪++=⎨⎪+=⎩解 系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520142013A .31=u ,3/2/212==u l ,3/101422=⋅-=l u ,5/3/223==u l ,5/221533=⋅-=l u ;11-=y ,3/237122=-=y l y ,5/229233=-=y l y ;1/333==∴u y x ,2/)1(2322=⋅-=u x y x ,1/)1(1211-=⋅-=u x y x .即解为(1,2,1).Tx =- 8. 解 把方程组调整为⎪⎩⎪⎨⎧=+=+=++22846231312123x x x x x x x , 此时系数矩阵为312041102A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.Seidel 迭代矩阵111200033301211()000010044000111106263M D L U -⎡⎤⎡⎤--⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦, 11det()(66E M λλλλ-=---+,()1M ρ=<.因此,此时Seidel 迭代格式()()()()()()()⎪⎪⎩⎪⎪⎨⎧-=-=--=++++ )2(21)8(41)26(3113111121213k k k k k k k x x x x x x x 收敛.习 题 七A一、判断题1.×;2.√;3.×;4.×.二、填空题1.1,1n +;2. 11:455;:;:33-一阶差商,,二阶差商1,三阶差商;3.16.640,0.096,16.736.B1. 解 因为0120.15,0.00,0.10,0.20.x x x x ====故取则2(0.150.10)(0.150.20)(0.15)(0.15)0.000(0.000.10)(0.000.20)(0.150.00)(0.150.20)0.0998(0.100.00)(0.100.20)(0.150.00)(0.15 f L --≈=⨯----+⨯----+0.10)0.1987(0.200.00)(0.200.10)00.074850.074510.1494.⨯--=++= 521(0.15)(0.150.00)(0.150.10)(0.150.20) 6.2510.3!R -≤---=⨯2.解 对于点76.35x =,取076x =,177x =,278x =,379x =. 作差商表于是有2(1)(76.35)(76.35)2.832670.0689(76.3576)0.00306(76.3576)(76.3577) 2.832670.024120.00070 2.85609.f N ≈=+-+--=+-=32(2)(76.35)(76.35)(76.35)0.00017(76.3576)(76.3577)(76.3578) 2.856090.00006 2.85615.f N N ≈=+---=+=3. 解 选01220.20,0.40,0.60,0.80x x x x ====.作差商表:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首页- 我的作业列表- 《工程数学基础(Ⅰ)》第一次作业答案
欢迎你,你的得分:100.0
完成日期:2014年05月
说明:每道小题括号里的答案是您最高分那次所选的答案,标准答案将在本次作业结束(即2014年09月11日)后显示在题目旁边。
一、单项选择题。
本大题共20个小题,每小题4.0 分,共80.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.( D )
A.(-6, 2, -4)
B.(6, 2, 4)T
C.(2, 6, 4)
D.(3, 6, 4)T
2.( D )
A.
B.
C.
D.
3.设A为3x2矩阵,B为2x4矩阵,C为4x2矩阵,则可以进行的运算是( )( B )
A.AC T B
B.AC T B T
C.ACB T
D.ACB
4.设A是可逆矩阵,且A+AB=I,则A-1 等于( )( C )
A.B
B.1+ B
C.I + B
D.(I-AB)-1
5.( D )
A.|A+B|=| A |+|B|
B.| A B|=n| A||B|
C.|kA|=k|A|
D.|-kA|=(-k)n|A|
6.( D )
A. 6
B.-6
C.8
D.-8
7.设A B均为n阶方阵,则成立的等式是( )( B )
A.|A+B|=| A |+|B|
B.| A B|=| BA|
C.(AB)T= A T B T
D.AB= BA
8.设A,B,C均为n阶方阵,下列各式中不一定成立的是( )( A )
A.A(BC)=(AC)B
B.(A+B)+C=A+(C+B)
C.(A+B)C=AC+BC
D.A(BC)=(AB)C
9.设α1,α2,α3是3阶方阵A的列向量组,且齐次线性方程组Ax=b有唯一解,则( )( B )
A.α1可由α2,α3线性表出
B.α2可由α1,α3线性表出
C.α3可由α1,α2线性表出
D.A,B,C都不成立
10.设向量组A是向量组B的线性无关的部分向量组,则( )( D )
A.向量组A是B的极大线性无关组
B.向量组A与B的秩相等
C.当A中向量均可由B线性表出时,向量组A,B等价
D.当B中向量均可由A线性表出时,向量组A,B等价
11.设n阶方阵A的行列式|A|=0则A中( )( C )
A.必有一列元素全为0
B.必有两列元素对应成比例
C.必有一列向量是其余向量线性表示
D.任一向量是其余向量的线性组合
12.( A )
A.
B.
C.
D.
13.( A )
A.
B.
C.
D.
14.
( C )
A.0
B.-1
C. 2
D.-2
15.
( B )
A.
B.
C.
D.
16.
( C )
A.
B.
C.
D.
17.
( B )
A.有唯一解
B.无解
C.只有0解
D.有无穷多解
18.
( A )
A. 1
B. 2
C. 3
D. 4
19.
( D )
A.
B.
C.
D.
20.
( D )
A.
B.
C.
D.
三、判断题。
本大题共5个小题,每小题4.0 分,共20.0分。
1.设4阶行列式D的第i行第j列的元素为a ij,则D的展开式中, a12a23a31a44符号为负(错误)
2.设A,B,C,D都是n阶方阵,且ABCD=E,则一定有CDAB=E
(正确)
3.
(错误)
4.若α1,α2,α3,α4都是3维向量,则α1,α2,α3,α4必线性相关
(正确)
5.若A是6×4矩阵,则齐次线性方程组Ax=0必有非零解
(错误)。