高中数学必修一第一章集合章末检测

合集下载

09-章末培优专练高中数学必修一人教A版

09-章末培优专练高中数学必修一人教A版
card ∪ = card + card − card ∩ .某校举办田径运动会,
= {|是高三(2)班参加田赛的学生},card = 11, = {|是高三
(2)班参加径赛的学生},card = 10, = {|是高三(2)班既参加
田赛也参加径赛的学生},card = 4,那么高三(2)班参加田径运动会
的学生人数为( D )
A.25
B.14
C.15
D.17
【解析】 由题意得 = ∩ ,且 ∪ = {|是高三(2)班参加田径
运动会的学生},所以
card ∪ = card + card − card ∩ = 11 + 10 − 4 = 17.
2.(多选)[2024黑龙江龙东五地市联考]中国古代重要的数学著作《孙子
+2 = 5 × 46 + 3 = 7 × 33 + 2,故233 ∈ ∩ ∩ ,故D正确.
3.已知是非空数集,若非空集合1,2满足以下三个条件,则称 1, 2
为集合的一种真分拆,并规定 1, 2 与 2, 1 为集合的同一种真分拆.
①1 ∩ 2 = ⌀ ;②1 ∪ 2 = ;③ = 1,2 的元素个数不是 中的元素.
C.∁ ∩
D. ∪ ∁
【解析】 ∪ = {| < 2},所以∁ ( ∪ ) = {| ≥ 2},故选A.
8.[2023新课标Ⅱ卷·2,5分]设集合 = {0,−}, = {1, − 2,2 − 2},若
⊆ ,则 =( B
A.2
)
B.1
2
C.
> 0且 ≠ 1,为使 最小,则 = {0,± ,±+1 ,±+2 } ∈ ,此

高一数学第一章集合及基本运算章末习题课

高一数学第一章集合及基本运算章末习题课

第一章章末习题课(时间:80分钟)一、单项选择题1.已知集合A={1,2},B={1},则下列关系正确的是(C)A.B∉A B.B∈AC.B⊆A D.A⊆B解析:两个集合之间不能用“∈或∉”,首先排除选项A,B,因为集合A={1,2},B={1},所以集合B中的元素都是集合A中的元素,由子集的定义知B⊆A.故选C.2.命题“存在一个无理数,它的平方是有理数”的否定是(B)A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数3.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=(A)A.{x|x>-3} B.{x|-3<x≤5}C.{x|3<x≤5} D.{x|x≤5}解析:在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.4.“-2<x<4”是“x<4”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由“-2<x<4”可得“x<4”,反之不成立,故“-2<x<4”是“x<4”的充分不必要条件.故选A.5.已知集合U={1,2,3,4,5},集合A={1,3,4},集合B={2,4},则(∁U A)∪B=(A) A.{2,4,5} B.{1,3,4}C.{1,2,4} D.{2,3,4,5}解析:由题意知∁U A={2,5},所以(∁U A)∪B={2,4,5}.故选A.6.“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为⎩⎨⎧ x >0,y >0⇒1xy >0,1xy >0⇒⎩⎨⎧ x >0,y >0或⎩⎪⎨⎪⎧ x <0,y <0,所以“⎩⎨⎧x >0,y >0”是“1xy >0”的充分不必要条件.故选A.7.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( B )A .1B .2C .3D .4 解析:集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M ={a 1,a 2,a 4}.8.设全集U =A ∪B ,定义:A -B ={x |x ∈A ,且x ∉B },集合A ,B 分别用圆表示,则下列图中阴影部分表示A -B 的是( C )解析:因为A -B ={x |x ∈A ,且x ∉B },所以A -B 是集合A 中的元素去掉A ∩B 中的元素构成的集合.故选C.二、多项选择题9.下列命题正确的有( ABD )A .0是最小的自然数B .每个正方形都有4条对称轴C .∀x ∈{1,-2,0},2x +1>0D .∃x ∈N ,使x 2≤x解析:对于A :根据自然数集的定义知,最小的自然数是0,命题A 正确;对于B :由正方形的图形特点知,每个正方形都有两条对角线和过对边中点的直线四条对称轴,命题B 正确;对于C:这是全称量词命题,当x=-2时,2×(-2)+1<0,命题C错误;对于D:这是存在量词命题,当x=1或x=0时,可得x2≤x成立,命题D正确.故选ABD.10.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x可能为(AC)A.2 B.-2C.-3 D.1解析:由题意得2=3x2+3x-4或2=x2+x-4,若2=3x2+3x-4,即x2+x-2=0,所以x=-2或x=1,检验:当x=-2时,x2+x-4=-2,与元素互异性矛盾,舍去;当x=1时,x2+x-4=-2,与元素互异性矛盾,舍去.若2=x2+x-4,即x2+x-6=0,所以x=2或x=-3,经验证x=2或x=-3为满足条件的实数x.故选AC.11.下列命题正确的有(CD)A.A∪∅=∅B.∁U(A∪B)=(∁U A)∪(∁U B)C.A∩B=B∩AD.∁U(∁U A)=A解析:在A中,A∪∅=A,故A错误;在B中,∁U(A∪B)=(∁U A)∩(∁U B),故B错误;在C中,A∩B=B∩A,故C正确;在D中,∁U(∁U A)=A,故D正确.故选CD.12.若-1<x<2是-2<x<a的充分不必要条件,则实数a的值可以是(BCD)A.1 B.2C.3 D.4解析:由题意得a≥2.所以实数a的值可以是2,3,4.故选BCD.三、填空题13.若命题p:∀a,b∈R,方程ax2+b=0恰有一解,则命题p的否定为∃a,b∈R,方程ax2+b=0无解或至少有两解.14.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁B)=__{3}__.U解析:由U={1,2,3,4},且∁U(A∪B)={4},得A∪B={1,2,3},又B={1,2},所以A中一定有元素3,没有元素4,所以A∩(∁U B)={3}.15.设p:-m≤x≤m(m>0),q:-1≤x≤4,若p是q的充分条件,则m的最大值为__1__;若p 是q 的必要条件,则m 的最小值为__4__.解析:设A ={x |-m ≤x ≤m }(m >0),B ={x |-1≤x ≤4},若p 是q 的充分条件,则A ⊆B ,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤4,所以0<m ≤1,所以m 的最大值为1;若p 是q 的必要条件,则B ⊆A ,所以⎩⎪⎨⎪⎧ -m ≤-1,m ≥4,所以m ≥4,所以m 的最小值为4. 16.若“x <-1”是“x ≤a ”的必要不充分条件,则a 的取值范围是__{a |a <-1}__. 解析:若“x <-1”是“x ≤a ”的必要不充分条件,则{x |x ≤a }⊆{x |x <-1},∴a <-1.四、解答题17.已知集合A ={x |2≤x ≤5},B ={x |-2m +1<x <m },全集为R .(1)若m =3,求A ∪B 和(∁R A )∩B ;(2)若A ∩B =A ,求实数m 的取值范围.解:(1)∵m =3,∴B ={x |-5<x <3}.又A ={x |2≤x ≤5},∴∁R A ={x |x <2或x >5}.∴A ∪B ={x |-5<x ≤5},(∁R A )∩B ={x |-5<x <2}.(2)∵A ∩B =A ,∴A ⊆B .∴⎩⎪⎨⎪⎧-2m +1<2,m >5,解得m >5. ∴实数m 的取值范围为{m |m >5}.18.在①{x |a -1≤x ≤a },②{x |a ≤x ≤a +2},③{x |a ≤x ≤a +3}这三个条件中任选一个,补充在下面问题中,若问题中的a 存在,求a 的值;若a 不存在,请说明理由.已知集合A =________,B ={x |1≤x ≤3}.若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.解:由题意知,A 不为空集,B ={x |1≤x ≤3}.当选条件①时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a -1≥1,a <3或⎩⎪⎨⎪⎧a -1>1,a ≤3,解得2≤a ≤3. 所以实数a 的取值范围是{a |2≤a ≤3}.当选条件②时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a ≥1,a +2<3或⎩⎪⎨⎪⎧a >1,a +2≤3,无解.故不存在满足题意的a . 当选条件③时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎨⎧a ≥1,a +3<3或⎩⎨⎧ a >1a +3≤3,无解. 故不存在满足题意的a .。

《金版新学案》高一数学 第一章集合章末质量评估练习题 新人教A版

《金版新学案》高一数学 第一章集合章末质量评估练习题 新人教A版

(本栏目内容,在学生用书中以活页形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题后给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={-1,0,1,2},B ={x|-3≤x<1},则A ∩B =( )A .{-1,0,1}B .{-1,0}C .{x|-1<x<0}D .{x|-1≤x ≤0}【解析】 集合A ={-1,0,1,2},B ={x|-3≤x<1},易得到A ∩B ={-1,0},故选B.【答案】 B2.函数y =1-x +x 的定义域为( )A .{x|x ≤1}B .{x|x ≥0}C .{x|x ≥1或x ≤0}D .{x|0≤x ≤1}【解析】 ⎩⎪⎨⎪⎧1-x ≥0,x ≥0⇔0≤x ≤1.故选D. 【答案】 D3.下列函数中,在区间(1,+∞)上是增函数的是( )A .y =-x +1B .y =11-xC .y =-(x -1)2D .y =1x +1【解析】由题意知y=-x+1,y=-(x-1)2,y=1x+1在(1,+∞)上是减函数,y=11-x在(1,+∞)上是增函数,故选B.【答案】 B4.若A为全体正实数的集合,B={-2,-1,1,2},则下列结论中正确的是()A.A∩B={-2,-1} B.(∁R A)∪B=(-∞,0)C.A∪B=(0,+∞) D.(∁R A)∩B={-2,-1}【解析】由题意得A∩B={1,2},(∁R A)∪B=(-∞,0]∪{1,2},A∪B=(0,+∞)∪{-1,-2},(∁R A)∩B={-2,-1}.故选D.【答案】 D5.下面四个结论中,正确命题的个数是()①偶函数的图象一定与y轴相交②奇函数的图象一定通过原点③偶函数的图象关于y轴对称④既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R)A.1 B.2C.3 D.4【解析】①不对;②不对,因为奇函数的定义域可能不包含原点;③正确;④不对,既是奇函数又是偶函数的函数可以为f(x)=0,x∈(-a,a).故选A.【答案】 A6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.-2 B.2C.-98 D.98【解析】由f(x+4)=f(x),得f(7)=f(3)=f(-1).又∵f(x)为奇函数,∴f(-1)=-f(1),f(1)=2×12=2,∴f(7)=-2.故选A.【答案】 A7.设T ={(x ,y)|ax +y -3=0},S ={(x ,y)|x -y -b =0},若S ∩T ={(2,1)},则a ,b 的值为( )A .a =1,b =-1B .a =-1,b =1C .a =1,b =1D .a =-1,b =-1【解析】 ∵(2,1)∈S ∩T ,∴(2,1)∈S ,有(2,1)∈T.即⎩⎪⎨⎪⎧ 2a +1-3=0,2-1-b =0⇒⎩⎪⎨⎪⎧a =1b =1.故选C. 【答案】 C8.定义在R 上的偶函数f(x),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f(x 2)-f(x 1)x 2-x 1<0,则( )A .f(3)<f(-2)<f(1)B .f(1)<f(-2)<f(3)C .f(-2)<f(1)<f(3)D .f(3)<f(1)<f(-2)【解析】 由已知f(x 2)-f(x 1)x 2-x 1<0,得f(x)在x ∈[0,+∞)上单调递减,由偶函数性质得f(3)<f(-2)<f(1),故选A.此类题能用数形结合更好.【答案】 A9.下列四种说法正确的有( )①函数是从其定义域到值域的映射;②f(x)=x -3+2-x 是函数; ③函数y =2x(x ∈N )的图象是一条直线;④f(x)=x 2x 与g(x)=x 是同一函数.A .1个B .2个C .3个D .4个【解析】 ①正确,函数是一种特殊的映射;②中要使f(x)有意义只须使⎩⎪⎨⎪⎧ x -3≥02-x ≥0无解,故不是函数,②不正确;③中函数y =2x(x ∈N )的图象是孤立的点,③不正确;④中f(x)的定义域为{x|x ≠0},g(x)的定义域为R ,不是同一函数,不正确.故选A.【答案】 A10.已知偶函数f(x)在区间[0,+∞)上单调增加,则满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13的x 取值范围是( )A.⎣⎢⎡⎭⎪⎫13,23B.⎝ ⎛⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23【解析】 作出示意图可知:f(2x-1)<f ⇔- <2x-1< ,即 <x< .故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.设f(x)=2x+3,g(x+2)=f(x),则g(x)=________.【解析】g(x+2)=f(x)=2x+3=2(x+2)-1.∴g(x)=2x-1.【答案】2x-112.设A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.【解析】如图所示,∴a≥2.【答案】a≥213.若函数f(x)=kx2+(k-1)x+2是偶函数,则f(x)的递减区间是________.【解析】∵f(x)是偶函数,∴f(-x)=kx2-(k-1)x+2=kx2+(k-1)x+2=f(x),∴k=1,∴f(x)=x2+2,其递减区间为(-∞,0].【答案】(-∞,0]14.已知集合A={x,xy,x-y},B={0,|x|,y},且A=B,则x=________,y=________.【解析】∵0∈B,A=B,∴0∈A.∵集合中元素具有互异性,∴x≠xy,∴x≠0.又∵0∈B,y∈B,∴y≠0.从而x-y=0,即x=y.这时A={x,x2,0},B={0,|x|,x},∴x2=|x|,则x=0(舍去),或x=1(舍去),或x=-1.经检验,x=y=-1是本题的解.【答案】-1,-1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁U A)∩B;(2)若A∩C≠Ø,求a的取值范围.【解析】(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁U A={x|x<2或x>8}.∴(∁U A)∩B={x|1<x<2}.(2)∵A∩C≠Ø,∴a<8.16.(12分)判断并证明f(x)=11+x2在(-∞,0)上的增减性.【解析】在(-∞,0)上单调递增.现证明如下:设x 1<x 2<0,f(x 1)-f(x 2)=11+x 12-11+x 22=x 22-x 12(1+x 12)(1+x 22)=(x 2-x 1)(x 2+x 1)(1+x 12)(1+x 22)∵x 2-x 1>0,x 1+x 2<0,1+x 12>0,1+x 22>0,∴f(x 1)-f(x 2)<0,∴f(x 1)<f(x 2),∴f(x)在(-∞,0)上单调递增.17.(12分)设f(x)是R 上的奇函数,且当x ∈(0,+∞)时,f(x)=x(1+x),求f(x)在R 上的解析式.【解析】 ∵f(x)是R 上的奇函数,∴f(-0)=-f(0),∴f(0)=0,设x <0 ,则-x >0,∴f(-x)=-x(1-x).又∵f(x)是奇函数,∴f(-x)=-f(x)=-x(1-x).∴f(x)=x(1-x),∴f(x)=⎩⎪⎨⎪⎧ x(1-x) (x <0)0 (x =0).x(1+x) (x >0)18.(14分)已知函数f(x)=ax 2+(2a -1)x -3在区间⎣⎢⎡⎦⎥⎤-32,2上的最大值为1,求实数a 的值.【解析】 当a =0时,f(x)=-x -3,f(x)在⎣⎢⎡⎦⎥⎤-32,2上不能取得1,故a ≠0. ∴f(x)=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为x 0=1-2a 2a . (1)令f ⎝ ⎛⎭⎪⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎢⎡⎦⎥⎤-32,2, 因为a<0,f(x 0)最大,所以f ⎝ ⎛⎭⎪⎫-32=1不合适; (2)令f(2)=1,解得a =34,此时x 0=-13∈⎣⎢⎡⎦⎥⎤-32,2, 因为a =34>0,x 0=-13∈⎣⎢⎡⎦⎥⎤-32,2,且距右端点2较远,所以f(2)最大,合适; (3)令f(x 0)=1,得a =12(-3±22),验证后知只有a =12(-3-22)才合适.综上所述,a =34,或a =-12(3+22).。

【步步高】高中数学 第一章 章末检测配套试题 新人教A版必修1

【步步高】高中数学 第一章 章末检测配套试题 新人教A版必修1

章末检测一、选择题1. 若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅2. 已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是 ( )A .a ≤ 3B .-3≤a ≤ 3C .0<a ≤ 3D .-3≤a <03. 若f (x )=ax 2-2(a >0),且f (2)=2,则a 等于( )A .1+22B .1-22C .0D .24. 若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -45. 已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩(∁I M )=∅,则M ∪N 等于( )A .MB .NC .ID .∅6. 已知函数f :A →B (A 、B 为非空数集),定义域为M ,值域为N ,则A 、B 、M 、N 的关系是( )A .M =A ,N =B B .M ⊆A ,N =BC .M =A ,N ⊆BD .M ⊆A ,N ⊆B 7. 下列函数中,既是奇函数又是增函数的为( )A .y =x +1B .y =-x 3C .y =1xD .y =x |x |8. 已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( )A.12B .-12C .1D .-19. 设f (x )=⎩⎪⎨⎪⎧x +3x >10f f x +5 x ≤10,则f (5)的值是( ) A .24B .21C .18D .16 10.f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(2,5)上是( ) A .增函数B .减函数C .有增有减D .增减性不确定11.若f (x )和g (x )都是奇函数,且F (x )=f (x )+g (x )+2在(0,+∞)上有最大值8,则在(-∞,0)上F (x )有( )A .最小值-8B .最大值-8C .最小值-6D .最小值-412. 在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系的图象可表示为( )二、填空题13.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=______.14.已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________.15.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥ba ,a <b ,则函数f (x )=x ⊙(2-x )的值域为________.16.用描述法表示如图中阴影部分的点(含边界)的坐标的集合(不含虚线)为________.三、解答题17.设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B .18.已知f (x ),g (x )在(a ,b )上是增函数,且a <g (x )<b ,求证:f (g (x ))在(a ,b )上也是增函数.19.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值. 20.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.21.某公司计划投资A 、B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图1,B 产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).(1)分别将A 、B 两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A 、B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.已知函数y =x +t x有如下性质:如果常数t >0,那么该函数在(0,t ]上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.答案1. C 2.D 3.A 4.B 5.A 6.C 7.D 8.A 9.A 10.B 11.D 12.B 13.-2 14.[25,+∞) 15.(-∞,1] 16.{(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0}17.解 ∵A ∩B ={12},∴12∈A .∴2×(12)2+3p ×(12)+2=0.∴p =-53.∴A ={12,2}.又∵A ∩B ={12},∴12∈B .∴2×(12)2+12+q =0.∴q =-1.∴B ={12,-1}.∴A ∪B ={-1,12,2}.18.证明 设a <x 1<x 2<b ,∵g (x )在(a ,b )上是增函数, ∴g (x 1)<g (x 2), 且a <g (x 1)<g (x 2)<b ,又∵f (x )在(a ,b )上是增函数, ∴f (g (x 1))<f (g (x 2)),∴f (g (x ))在(a ,b )上也是增函数. 19.解 f (x )=4(x -a2)2-2a +2,①当a2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数.∴f (x )min =f (0)=a 2-2a +2. 由a 2-2a +2=3,得a =1± 2. ∵a ≤0,∴a =1- 2. ②当0<a2<2,即0<a <4时,f (x )min =f (a2)=-2a +2.由-2a +2=3,得a =-12∉(0,4),舍去.③当a2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数,f (x )min =f (2)=a 2-10a +18.由a 2-10a +18=3,得a =5±10. ∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10. 20.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.21.解 (1)设投资x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元,依题意可设f (x )=k 1x ,g (x )=k 2x . 由图1,得f (1)=0.2,即k 1=0.2=15.由图2,得g (4)=1.6,即k 2×4=1.6,∴k 2=45.故f (x )=15x (x ≥0),g (x )=45x (x ≥0). (2)设B 产品投入x 万元,则A 产品投入10-x 万元,设企业利润为y 万元, 由(1)得y =f (10-x )+g (x )=-15x +45x +2(0≤x ≤10).∵y =-15x +45x +2=-15(x -2)2+145,0≤x ≤10.∴当x =2,即x =4时,y max =145=2.8.因此当A 产品投入6万元,B 产品投入4万元时,该企业获得最大利润为2.8万元. 22.解 (1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],1≤u ≤3, 则y =u +4u-8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1]. 由题意,f (x )的值域是g (x )的值域的子集,∴⎩⎪⎨⎪⎧-1-2a ≤-4-2a ≥-3,∴a =32.。

高中数学第一章集合章末检测北师大版必修1

高中数学第一章集合章末检测北师大版必修1

第一章集合章末检测班级__________ 姓名__________ 考号__________ 分数__________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部份.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列表示①{0}=∅,②{3}∈{3,4,5},③∅{0},④0∈{0}中,正确的个数为( )A .1B .2C .3D .4答案:B解析:③④正确.2.设全集U =R ,M ={x |x ≥1},N ={x |0≤x <5},则(∁U M )∪(∁U N )为( )A .{x |x ≥0)B .{x |x <1或x ≥5}C .{x |x ≤1或x ≥5} D.{x |x <0或x ≥5}答案:B解析:借助数轴直观选择.3.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( )A .{0,1,2,6}B .{3,7,8}C .{1,3,7,8}D .{1,3,6,7,8}答案:C解析:直接进行交并运算.4.若集合M ={a ,b ,c }中的元素是△ABC 的三边长,则△ABC 必然不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:D解析:由集合中元素的互异性可知.5.设集合A ={0,1},集合B ={1,2,3},概念A *B ={z |z =xy +1,x ∈A ,y ∈B },则A *B 集合中真子集的个数是( )A .14B .15C .16D .17答案:B解析:A *B ={1,2,3,4},故集合中有4个元素,则真子集有24-1=15个.6.设集合A ={(x ,y )|x -y =1},B ={(x ,y )|2x +y =8},则A ∩B =( )A .{(3,2)}B .{3,2}C .{(2,3)}D .{2,3}答案:A解析:解⎩⎪⎨⎪⎧ x -y =12x +y =8得⎩⎪⎨⎪⎧ x =3y =2.7.已知集合A ={x ∈R |x <5-2},B ={1,2,3,4},则(∁R A )∩B 等于( )A .{1,2,3,4}B .{2,3,4}C .{3,4}D .{4}答案:D解析:借助数轴直观判断.8.设集合P ={1,2,3,4,5,6},Q ={x ∈R |2≤x ≤6},那么下列结论正确的是( )A .P ∩Q =PB .P ∩Q QQ P。

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)

第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若命题 p:∃x 0∈Z ,e x 0<1,则 ¬p 为 ( ) A . ∀x ∈Z ,e x <1 B . ∀x ∈Z ,e x ≥1 C . ∀x ∉Z ,e x <1D . ∀x ∉Z ,e x ≥12. 已知 a,b ∈R ,则“1<b <a ”是“a −1>∣b −1∣”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件3. 命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题是 ( ) A .若 a ,b 都是偶数,则 a +b 不是偶数 B .若 a ,b 都是偶数,则 a +b 不是偶数 C .若 a ,b 不全是偶数,则 a +b 不是偶数 D .若 a +b 不是偶数,则 a ,b 不全是偶数4. 已知 x ∈R ,则“x 2>x ”是“x >1”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既非充分也非必要条件5. 下列表示正确的个数是 ( )(1)0∉∅;(2)∅⊆{1,2};(3){(x,y )∣∣∣{2x +y =10,3x −y =5}={3,4};(4)若 A ⊆B 则 A ∩B =A A . 3 B . 4 C . 2 D . 16. 命题“∀x ∈R ,(13)x>0”的否定是 ( ) A . ∃x 0∈R ,(13)x 0<0B . ∀x ∈R ,(13)x≤0 C . ∀x ∈R ,(13)x<0D . ∃x 0∈R ,(13)x 0≤07. 已知集合 A ={x∣x ≤1},B ={x∣−1<x <2},则 (∁RA )∩B 等于 ( ) A . {x∣1<x <2}B . {x∣x >1}C . {x∣1≤x <2}D . {x∣x ≥1}8. 已知集合 M 中的元素 x 满足 x =a +√2b ,其中 a,b ∈Z ,则下列实数中不属于集合 M 中元素的个数是 ( )① 0;② −1;③ 3√2−1;④ 3−2√2;⑤ √8;⑥ 1−√2A . 0B . 1C . 2D . 39. 设 x ,y 均为实数,则“x =0”是“xy =0”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件10. 已知集合 U =R ,A ={x ∣x 2<5,x ∈Z },B ={x ∣∣x <2且x ≠0},则图中阴影部分表示的集合为( )A . {2}B . {1,2}C . {0,2}D . {0,1,2}11. 已知集合 A ={x∣ x =3n +2,n ∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为 ( ) A . 5 B . 4 C . 3 D . 212. 命题“∀x ∈R ,2x 2−1≤0”的否定是 ( ) A . ∀x ∈R ,2x 2−1≥0 B . ∃x ∈R ,2x 2−1≤0 C . ∃x ∈R ,2x 2−1>0D . ∀x ∈R ,2x 2−1>0二、填空题(共4题)13. 若对于两个由实数构成的集合 X ,Y ,集合的运算 X ⊕Y 定义为:X ⊕Y ={x +y∣ x ∈X,y ∈Y };集合的运算 X ⊗Y 定义为:X ⊗Y ={x ⋅y∣ x ∈X,y ∈Y },已知实数集合 X ={a +b √2∣ a,b ∈Q},X ={a +b √3∣ a,b ∈Q}.试写出一个实数 m ,使得 m ∈X ⊗Y 但 m ∉X ⊕Y ,则 m = .14. 在平面直角坐标系 xOy 中,若直线 y =2a 与函数 y =∣x −a ∣−1 的图象只有一个交点,则 a的值为 .15. 若 f (x ) 是偶函数,其定义域为 (−∞,+∞),且在[0,+∞) 上单调递减,设 f (−32)=m ,f (a 2+2a +52)=n ,则 m ,n 的大小关系是 .16. 已知集合 M ={x∣ x >2},集合 N ={x∣ x ≤1},则 M ∪N = .三、解答题(共6题)17.判断下列命题中p是q的什么条件.(1) p:x>1,q:x2>1;(2) p:△ABC有两个角相等,q:△ABC是正三角形;(3) 若a,b∈R,p:a2+b2=0,q:a=b=0.18.设集合A={x∈N∣ x<4},B={3,4,5,6}.(1) 用列举法写出集合A.(2) 求A∩B和A∪B.19.已知集合A={x∣ x2−ax+a2−19=0},B={x∣ x2−5x+6=0},是否存在a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)∅⫋(A∩B).若存在,求出a的值;若不存在,请说明理由.20.用列举法表示下列给定的集合.(1) 大于1且小于6的整数组成的集合A.(2) 方程x2−9=0的实数根组成的集合B.(3) 小于8的质数组成的集合C.(4) 一次函数y=x+3与y=−2x+6的图象的交点组成的集合D.21.真子集对于两个集合A,B,如果,并且B中至少有一个元素不属于A,那么集合A称为集合B 的真子集,记为或,读作“ ”或“ ”.问题:真子集与子集有什么区别?22.已知集合A={x∣ −4<x<6},B={x∣ x2−4ax+3a2=0}.(1) 若A∩B=∅,求实数a的取值范围;(2) 若A∪B=A,求实数a的取值范围.答案一、选择题(共12题) 1. 【答案】B【解析】若命题为 p:∃x 0∈Z ,e x 0<1, 则 ¬p:∀x 0∈Z ,e x ≥1. 故选:B .【知识点】全(特)称命题的否定2. 【答案】B【解析】因为 a −1>∣b −1∣⇔1−a <b −1<a −1⇔{2<a +b,b <a,所以当 1<b <a 时,a −1>∣b −1∣ 成立;当 a −1>∣b −1∣ 成立时,如取 b =12,a =2,此时 1<b <a 不成立, 所以 1<b <a 是 a −1>∣b −1∣ 的充分不必要条件. 【知识点】充分条件与必要条件3. 【答案】C【解析】否命题就是对原命题的条件和结论同时进行否定,则命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题为:若 a ,b 不都是偶数,则 a +b 不是偶数. 【知识点】全(特)称命题的否定4. 【答案】A【知识点】充分条件与必要条件5. 【答案】A【知识点】交、并、补集运算6. 【答案】D【解析】全称命题“∀x ∈R ,(13)x>0”的否定是把量词“∀”改为“∃”,并对结论进行否定,把“>”改为“≤”,即“∃x 0∈R ,(13)x 0≤0”.【知识点】全(特)称命题的否定7. 【答案】A【知识点】交、并、补集运算8. 【答案】A【解析】当 a =b =0 时,x =0;当 a =−1,b =0 时,x =−1; 当 a =−1,b =3 时,x =−1+3√2;3−2√2=√2)(3−2√2)(3+2√2)=6+4√2,即 a =6,b =4;当 a =0,b =2 时,x =2√2=√8;1−√2=√2(1−√2)(1+√2)=−1−√2,即 a =−1,b =−1.综上所述:0,−1,3√2−1,3−2√2,√8,1−√2 都是集合 M 中的元素. 【知识点】元素和集合的关系9. 【答案】A【知识点】充分条件与必要条件10. 【答案】C【解析】因为集合 U =R ,A ={x ∣x 2<5,x ∈Z }={−2,−1,0,1,2},B ={x ∣∣x <2且x ≠0},∁U B ={x ∣∣x ≥2且x =0}, 所以图中阴影部分表示的集合为 A ∩(∁U B )={0,2}. 【知识点】集合基本运算的Venn 图示11. 【答案】D【知识点】交、并、补集运算12. 【答案】C【知识点】全(特)称命题的否定二、填空题(共4题)13. 【答案】可填“(1+√2)(1+√3)”等【知识点】交、并、补集运算14. 【答案】 −12【知识点】函数的零点分布15. 【答案】 m ≥n【知识点】抽象函数、函数的奇偶性、函数的单调性16. 【答案】 (−∞,1]∪(2,+∞)【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) 因为“x>1”能推出“x2>1”,即p⇒q,但“x2>1”推不出“x>1”,如x=−2,即q⇏p,所以p是q的充分不必要条件.(2) 因为“△ABC有两个角相等”推不出“△ABC是正三角形”,即p⇏q,但“△ABC是正三角形”能推出“△ABC有两个角相等”,即q⇒p,所以p是q的必要不充分条件.(3) 若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.【知识点】充分条件与必要条件18. 【答案】(1) 因为集合A={x∈N∣ x<4},所以A={0,1,2,3}.(2) 因为B={3,4,5,6},所以A∩B={3},A∪B={0,1,2,3,4,5,6}.【知识点】交、并、补集运算、集合的表示方法19. 【答案】假设存在a使得A,B满足条件,由题意得B={2,3}.因为A∪B=B,所以A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又因为∅⫋(A∩B),所以A≠∅,即A={2}或{3}.当A={2}时,代入得a2−2a−15=0,即a=−3或a=5.经检验a=−3时,A={2,−5},与A={2}矛盾,舍去;a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,代入得a2−3a−10=0,即a=5或a=−2.经检验a=−2时,A={3,−5},与A={3}矛盾,舍去;a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B满足条件.【知识点】包含关系、子集与真子集、交、并、补集运算20. 【答案】(1) A={2,3,4,5}.(2) B={−3,3}.(3) C={2,3,5,7}.(4) D={(1,4)}.【知识点】集合的概念21. 【答案】A⊆B;A⫋B;B⫌A;A真包含于B;B真包含A在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个元素x满足x∈B,但x∉A,也就是说集合B至少要比集合A多一个元素.【知识点】包含关系、子集与真子集22. 【答案】(1) a≤−4或a≥6.<a<2.(2) −43【知识点】交、并、补集运算。

2023版新教材高中数学滚动练习一第一章集合与常用逻辑用语新人教B版必修第一册

2023版新教材高中数学滚动练习一第一章集合与常用逻辑用语新人教B版必修第一册

滚动练习一 第一章 章末质量检测一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各组集合表示同一集合的是( )A.M={(3,2)},N={(2,3)} B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4} D.M={1,2},N={(1,2)}2.[2020·新高考Ⅰ卷]设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3} B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}3.已知全集U={1,2,3,4,5,6},集合A={2,3,4},集合B={2,4,5},则图中的阴影部分表示( )A.{2,4} B.{1,3}C.{5} D.{2,3,4,5}4.设集合M={x|x>2},N={x|x<3},那么“x∈M且x∈N”是“x∈M∩N”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.设集合A={x|-2<x<4},B={2,3,4,5},则(∁R A)∩B=( )A.{2} B.{4,5}C.{3,4} D.{2,3}6.已知∀x∈[0,2],p>x;∃x∈[0,2],q>x.那么p,q的取值范围分别为( )A.p∈(0,+∞),q∈(0,+∞) B.p∈(0,+∞),q∈(2,+∞)C.p∈(2,+∞),q∈(0,+∞) D.p∈(2,+∞),q∈(2,+∞)7.如图所示,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(∁I A∩B)∩C B.(∁I B∪A)∩CC.(A∩B)∩∁I C D.(A∩∁I B)∩C8.已知集合A={x|(a-1)x2+3x-2=0},若集合A有且仅有两个子集,则实数a 的取值为( )A.a>- B.a≥-C.a=- D.a=-或1二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知A、B为实数集R的非空集合,则A B的必要不充分条件可以是( )A.A∩B=A B.A∩(∁R B)=∅R A D.B∪(∁R A)=RC.∁R B∁10.下列命题的否定中,是全称量词命题且为真命题的有( )A.∃x∈R,x2-x+<0 B.所有的正方形都是矩形C.∃x∈R,x2+2x+2≤0 D.至少有一个实数x,使x3+1=011.已知p:x<-1,则下列选项中是p的充分不必要条件的是( )A.x<-1 B.x<-2C.-8<x<2 D.-10<x<-312.对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},则称A⊕B为集合A,B 的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是( )A.若A,B⊆R且A⊕B=B,则A=∅ B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆B D.存在A,B⊆R,使得A⊕B=(∁R A)⊕(∁R B)三、填空题(本题共4小题,每小题5分,共20分.)13.用列举法表示集合M==________.14.若集合A={-1,3},B={x|ax-2=0},且A∪B=A,则由实数a的取值构成的集合C=________.15.已知集合A为数集,则“A∩{0,1}={0}”是“A={0}”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)16.设p:-m≤x≤m(m>0),q:-1≤x≤4,若p是q的充分条件,则m的最大值为________,若p是q的必要条件,则m的最小值为________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(10分)设m为实数,集合A={x|-1≤x≤4},B={x|m≤x≤m+2}.(1)若m=3,求A∪B,∁R(A∩B);(2)若A∩B=∅,求实数m的取值范围.18.(12分)已知p:实数x满足a<x<4a(其中a>0),q:实数x满足2<x≤5.(1)若a=1,且p与q都为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.19.(12分)写出下列命题的否定,并判断所得命题的真假:(1)p:∀m∈R,<0;(2)q:圆上任意一点到圆心的距离是r;(3)r:∃x,y∈Z,2x+4y=;(4)s:存在一个无理数,它的立方是有理数.20.(12分)在①∃x∈R,x2+2ax+2-a=0,②存在集合A={x|2<x<4},B={x|a<x<3a},使得A∩B=∅,这2个条件中任选一个,补充在下面问题中,并求问题中实数a的取值范围.问题:求实数a,使得命题p:∀x∈{x|1≤x≤2},x2-a≥0,命题q:__________,都是真命题.(若选择两个条件都解答,只按第一个解答计分.)21.(12分)已知p:∀x∈R,m<x2-1,q:∃x∈R,x2+2x-m-1=0,若p,q 都是真命题,求实数m的取值范围.22.(12分)已知命题“关于x的方程x2+mx+2m+5=0有两个不相等的实数根”是假命题.(1)求实数m的取值集合A;(2)设集合B={x|1-2a≤x≤a-1},若x∈A是x∈B的充分不必要条件,求实数a 的取值范围.滚动练习一 第一章 章末质量检测1.解析:对于A,集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B,集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C,集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D,集合M表示的是数集,集合N为点集,故D错误.答案:C2.解析:因为A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.答案:C3.解析:根据题意可得阴影部分表示B∩(∁U A),而∁U A={1,5,6},所以B∩(∁U A)={5}.答案:C4.解析:当x∈M且x∈N成立时,根据集合的交集定义可知:x∈M∩N,当x∈M∩N成立时,根据集合的交集定义可知:x∈M且x∈N,故“x∈M且x∈N”是“x∈M∩N”的充分必要条件.答案:C5.解析:因为A={x|-2<x<4},所以∁R A={x|x≤-2或x≥4}.所以(∁R A)∩B ={4,5}.答案:B6.解析:由∀x∈[0,2],p>x,得p>2.由∃x∈[0,2],q>x,得q>0.所以p,q 的取值范围分别为(2,+∞)和(0,+∞).答案:C7.解析:补集∁I B画成Venn图如图(1),交集A∩∁I B画成Venn图如图(2),而(A∩∁I B)∩C画成Venn图就是题目的Venn图.答案:D8.解析:若A恰有两个子集,所以关于x的方程恰有一个实数解,讨论:①当a=1时,x=,满足题意,②当a≠1时,Δ=8a+1=0,所以a=-,综上所述,a=-或1.答案:DR A是A B的充分必要条件,9.解析:因为A B⇔∁R B∁R A,所以∁R B∁因为A B⇒A⊆B⇔A∩B=A⇔A∩(∁R B)=∅⇔B∪(∁R A)=R.答案:ABD10.解析:由条件可知:原命题为存在量词命题且为假命题,所以排除B,D;又因为x2-x+=(x-)2≥0,x2+2x+2=(x+1)2+1>0,所以A,C均为假命题,否定为真命题.答案:AC11.解析:设选项的不等式对应的集合为M,N={x|x<-1},如果集合M是N的真子集,则该选项是p的充分不必要条件.选项A对应的集合M=N,所以该选项是p的充要条件;选项C是p的非充分非必要条件.只有选项B,D的不等式对应的集合M是N的真子集.答案:BD12.解析:对于A选项,因为A⊕B=B,所以B={x|x∈A∪B,x∉A∩B},所以A⊆B,且B中的元素不能出现在A∩B中,因此A=∅,即选项A正确;对于B选项,因为A⊕B=∅,所以∅={x|x∈A∪B,x∉A∩B},即A∪B与A∩B是相同的,所以A=B,即选项B正确;对于C选项,因为A⊕B⊆A,所以{x|x∈A∪B,x∉A∩B}⊆A,所以B⊆A,即选项C 错误;对于D选项,A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确.答案:ABD13.答案:{0,1,2,3,5,11}14.解析:由A∪B=A,即B⊆A,故B=∅,{-1},{3}.若B=∅时,方程ax-2=0无解,a=0 ;若B={-1},则 -a-2=0,所以a=-2 ;若B={3},则3a-2=0,所以a=.综上:a=0,或a=-2,或a=.答案:15.解析:由“A={0}”可推出“A∩{0,1}={0}”,由“A∩{0,1}={0}”推不出“A={0}”,例如:A={0,2}时也有A∩{0,1}={0},所以“A∩{0,1}={0}”是“A={0}”的必要不充分条件.答案:必要不充分16.解析:设A=[-m,m],B=[-1,4],若p是q的充分条件,则A⊆B,所以所以0<m≤1,所以m的最大值为1,若p是q的必要条件,则B⊆A,所以所以m≥4,则m的最小值为4.答案:1 417.解析:(1)若m=3,则B={x|3≤x≤5},所以A∪B={x|-1≤x≤5},又因为A∩B={x|3≤x≤4},所以∁R(A∩B)={x|x<3或x>4}.(2)因为A∩B=∅,所以m+2<-1或m>4,所以m<-3或m>4.18.解析:(1)若a=1,p为真,p:1<x<4,q为真:2<x≤5,因为p,q都为真,所以x的取值范围为2<x<4.(2)设A={x|a<x<4a},B={x|2<x≤5}因为p是q的必要不充分条件,所以B A,所以解得<a≤2.综上所述,a的范围为.19.解析:(1)¬p:∃m∈R,≥0.-m2-1<0,所以<0,p是真命题,所以¬p是假命题.(2)¬q:圆上存在一点到圆心的距离不是r;因为q是真命题,所以¬q是假命题.(3)¬r:∀x,y∈Z,2x+4y≠;若x,y∈Z,则2x+4y也是整数,不可能等于,所以r是假命题,所以¬r是真命题.(4)¬s:任意一个无理数,它的立方都不是有理数.是无理数,()3=2是有理数,所以s是真命题,¬s是假命题.20.解析:选条件①由命题p为真,可得不等式x2-a≥0在x∈{x|1≤x≤2}上恒成立.因为x∈{x|1≤x≤2},则1≤x2≤4,所以a≤1.若命题q为真,则方程x2+2ax+2-a=0有解.所以判别式Δ=4a2-4(2-a)≥0,所以a≥1或a≤-2.又因为p,q都为真命题,所以所以a≤-2或a=1.所以实数a的取值范围是{a|a≤-2,或a=1}.选条件②由命题p为真,可得不等式x2-a≥0在x∈{x|1≤x≤2}上恒成立.因为x∈{x|1≤x≤2},则1≤x2≤4.所以a≤1.因为集合B={x|a<x<3a},又A∩B=∅,则当B≠∅时,a<3a,且a≥4或3a≤2,解得0<a≤或a≥4.当B=∅时,a≥3a,解得a≤0.又因为p,q都为真命题,所以解得a≤.所以实数a的取值范围是(-∞,].21.解析:由x∈R得x2-1≥-1,若p:∀x∈R,m<x2-1为真命题,则m<-1.若q:∃x∈R,x2+2x-m-1=0为真,则方程x2+2x-m-1=0有实根,所以4+4(m+1)≥0,所以m≥-2.因为p,q都是真命题,所以所以-2≤m<-1.所以实数m的取值范围为[-2,-1).22.解析:(1)若命题“关于x的方程x2+mx+2m+5=0有两个不相等的实数根”是真命题,则Δ=m2-4(2m+5)>0,解得m>10或m<-2.则当该命题是假命题时,可得A ={m|-2≤m≤10}.(2)因为A={m|-2≤m≤10},x∈A是x∈B的充分不必要条件,所以A B,所以B≠∅,即解得a≥11,所以实数a的取值范围为[11,+∞).。

高中数学必修一 第一章章末检测(含答案解析)

高中数学必修一 第一章章末检测(含答案解析)

第一章章末检测(时间:120 分钟 满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.设集合 M ={1,2,4,8},N ={x |x 是 2 的倍数},则 M ∩N 等于( ) A .{2,4} B .{1,2,4} C .{2,4,8} D .{1,2,8} 2.若集合 A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则 A ∩B 等于( ) A .{x |-1≤x ≤1} B .{x |x ≥0} C .{x |0≤x ≤1}D .∅3.若ax 2a >0),且 f ( 2),则 a 等于( )A .12B .12C.0 D .2 4.若函数 f (x )满足 f (3x +2)=9x +8,则 f (x )的解析式是( ) A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2 或 f (x )=-3x -45.设全集 U ={1,2,3,4,5},集合 M ={1,4},N ={1,3,5},则 N ∩(∁U M )等于( ) A .{1,3} B .{1,5} C .{3,5} D .{4,5}6. 已知函数 f (x )=1在区间[1,2]上的最大值为 A ,最小值为 B ,则 A -B 等于( )xA.1 2B. -1 2C.1 D .-1 7.f (x )=ax 2+(a 3-a )x (-∞,-1]上递增,则 a 的取值范围是( ) A .a B a ≤ 3 C .0<D a <0+3 (x >10)8.设 f (x )f (x +5)) (x ≤10),则 f (5)的值是( )A .24B .21C .18D .169.f (x )=(m -1)x 2+2mx +3 为偶函数,则 f (x )在区间(2,5)上是( ) A .增函数 B .减函数 C. 有增有减 D .增减性不确定10. 设 集 合 A =[01 1 , ),B =[ ,1],函数 f (x )=+1, x ∈A2 ,若 x 0∈A ,且 f [f (x 0)] 2 2 ∈A ,则 x 0 的取值范围是( ) A .(0,1] B .(11 , ](1-x ), x ∈B4 4 2 C .(1,1) D .[0,3]4 2 8 11. 若函数 f (x )=x 2+bx +c 对任意实数 x 都有 f (2+x )=f (2-x ),那么( ) A .f (2)<f (1)<f (4) B .f (1)<f (2)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 12. 若 f (x )和 g (x )都是奇函数,且 F (x )=f (x )+g (x )+2,在(0,+∞)上有最大值 8,则在(-∞,0)上 F (x )有( )A .最小值-8B .最大值-8C .最小值-6D .最小值-4二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知函数 y =f (x )是 R 上的增函数,且 f (m +3)≤f (5),则实数 m 的取值范围是 .14. 函数 f (x )=-x 2+2x +3 在区间[-2,3]上的最大值与最小值的和为 .15. 若函数 f (x )=x 2+(a +1)x +a为奇函数,则实数 a = .x16.如图,已知函数 f (x )的图象是两条直线的一部分,其定义域为(-1,0]∪(0,1),则不等式 f (x )-f (-x )>-1 的解集是 .三、解答题(本大题共 6 小题,共 70 分)17.(10 分)设集合 A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中 p 、q 为常数,x∈R ,当 A ∩B ={12}时,求 p 、q 的值和 A ∪B .18.(12 分)已知函数 f (x )=x +2,x -6(1)点(3,14)在 f (x )的图象上吗? (2)当 x =4 时,求 f (x )的值; (3)当 f (x )=2 时,求 x 的值.19.(12 分)函数 f (x )是 R 上的偶函数,且当 x >0 时,函数的解析式为 f (x )=2-1.x(1) 用定义证明 f (x )在(0,+∞)上是减函数; (2) 求当 x <0 时,函数的解析式.20.(12 分)函数 f (x )=4x 2-4ax +a 2-2a +2 在区间[0,2]上有最小值 3,求 a 的值.21.(12 分)已知函数 f (x )对一切实数 x ,y ∈R 都有 f (x +y )=f (x )+f (y ),且当 x >0 时,f (x )<0,又 f (3)=-2.(1) 试判定该函数的奇偶性;(2) 试判断该函数在 R 上的单调性;(3) 求 f (x )在[-12,12]上的最大值和最小值.22.(12 分)已知函数 y =x + t有如下性质:如果常数xt >0,那么该函数在(0, t ]上是减函数,在[ t ,+∞)上是增函数.(1) 已知 f (x ) 4x 2-12x -3x ∈[0,1],利用上述性质,求函数 f (x )的单调区间和值域;= ,2x +1(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a 的值.第一章章末检测答案解析1.C [因为N={x|x 是2 的倍数}={…,0,2,4,6,8,…},故M∩N={2,4,8},所以C 正确.]2.C [A={x|-1≤x≤1},B={y|yA∩B={x|0≤x≤1}.]3.A [f( 2)=2a-2=2,∴a=124.B [f(3x+2)=9x+8=3(3x+2)+2,∴f(t)=3t+2,即f(x)=3x+2.]5.C [∁U M={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.]6.A [f(x)=1在[1,2]上递减,x∴f(1)=A,f(2)=B,∴A-B=f(1)-f(2)=1-1=1.]2 27.D [由题意知a<0,-a3-a≥-1,2a-a22+1≥-1,即a2≤3.a<0.]8.A [f(5)=f(f(10))=f(f(f(15)))=f(f(18))=f(21)=24.]9.B [f(x)是偶函数,即f(-x)=f(x),得m=0,所以f(x)=-x2+3,画出函数f(x)=-x2+3 的图象知,f(x)在区间(2,5)上为减函数.] 10.C [∵x0∈A,∴f(x0)=x0+1∈B,2∴f[f(x0)]=f(x0+1)=2(1-x0-1),2 2即f[f(x0)]=1-2x0∈A,所以0≤1-2x0<1,2即1<x0≤1,又x0∈A,4 2∴1<x0<1,故选C.]4 211.A [由f(2+x)=f(2-x)可知:函数f(x)的对称轴为x=2,由二次函数f(x)开口方向,可得f(2)最小;又f(4)=f(2+2)=f(2-2)=f(0),在x<2 时y=f(x)为减函数.∵0<1<2,∴f(0)>f(1)>f(2),即f(2)<f(1)<f(4).]=- ≠,, 12.D [由题意知 f (x )+g (x )在(0,+∞)上有最大值 6,因 f (x )和 g (x )都是奇函数,所以f (-x )+g (-x )=-f (x )-g (x )=-[f (x )+g (x )],即 f (x )+g (x )也是奇函数,所以 f (x )+g (x )在(-∞,0)上有最小值-6, ∴F (x )=f (x )+g (x )+2 在(-∞,0)上有最小值-4.]13.m ≤2解析 由函数单调性可知,由 f (m +3)≤f (5)有 m +3≤5, 故 m ≤2. 14.-1解析 f (x )=-x 2+2x +3=-(x -1)2+4,∵1∈[-2,3],∴f (x )max =4,又∵1-(-2)>3-1,由 f (x )图象的对称性可知,f (-2)的值为 f (x )在[-2,3]上的最小值,即 f (x )min =f (-2)=-5,∴-5+4=-1. 15.-1解析 由题意知,f (-x )=-f (x ), x 2-(a +1)x +a x 2+(a +1)x +a 即 =- ,-xx ∴(a +1)x =0 对 x ≠0 恒成立, ∴a +1=0,a =-1.16.(-1,-1)∪[0,1)2解析 由题中图象知,当 x ≠0 时,f (-x )=-f (x ),所以 f (x )-[-f (x )]>-1,∴f (x )>-1,2 由题图可知,此时-1<x <-1或 0<x <1.当 x =0 时,2f (0)=-1,f (0)-f (-0)=-1+1=0,0>-1 满足条件.因此其解集是{x |-1<x <-12 0≤x <1}.17.解 ∵A ∩B ={1 2 },∴1∈A .2∴2( 1)2+3p (1 2 2)+2=0.∴p =-5.∴A ={1,2}.3 2 又∵A ∩B = 1 1B .∴ 1 2 { },∴ ∈2 21 2( ) +2 +q =0.∴q =-1.2 ∴B ={1,-1}.∴A ∪B ={-1 12 22}.18.解 (1)∵f (3) 3+2 5 14. 3-63 ∴点(3,14)不在 f (x )的图象上.(2)当 x =4 时,f (4) 4+2 = =-3. 4-6 (3)若 f (x )=2,则x +2=2,x -6∴2x -12=x +2,∴x =14. 19.(1)证明 设 0<x 1<x 2,则f (x 1)-f (x 2)=( 2 -1)-( 2-1)x 1 x 2= 或2(x 2-x 1) = ,x 1x 2∵0<x 1<x 2,∴x 1x 2>0,x 2-x 1>0, ∴f (x 1)-f (x 2)>0, 即 f (x 1)>f (x 2),∴f (x )在(0,+∞)上是减函数. (2)解 设 x <0,则-x >0,∴f (-x )=- 2-1,x又 f (x )为偶函数,∴f (-x )=f (x )=-2-1,x 即 f (x )=-2-1(x <0). x20.解 ∵f (x )=4(x -a)2-2a +2,2①当a≤0,即 a ≤0 时,函数 f (x )在[0,2]上是增函数.2∴f (x )min =f (0)=a 2-2a +由 a 2-2a +2=3,得 a =∵a ≤0,∴a =1- 2.②当 0<a<2,即 0<a <4 时,2 f (x )min =f (a)=-2a +2.2由-2a +2=3,得 a =- 1∉(0,4),舍去.2③当a≥2,即 a ≥4 时,函数 f (x )在[0,2]上是减函数,2f (x )min =f (2)=a 2-10a +18.由 a 2-10a +18 a =∵a ≥4,∴a =5综上所述,a =1 a =521.解 (1)令 x =y =0,得 f (0+0)=f (0)=f (0)+f (0) =2f (0),∴f (0)=0.令 y =-x ,得 f (0)=f (x )+f (-x )=0, ∴f (-x )=-f (x ), ∴f (x )为奇函数.(2)任取 x 1<x 2,则 x 2-x 1>0,∴f (x 2-x 1)<0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)<0, 即 f (x 2)<f (x 1)∴f (x )在 R 上是减函数.(3)∵f (x )在[-12,12]上是减函数, ∴f (12)最小,f (-12)最大.又 f (12)=f (6+6)=f (6)+f (6)=2f (6) =2[f (3)+f (3)]=4f (3)=-8, ∴f (-12)=-f (12)=8.∴f (x )在[-12,12]上的最大值是 8,最小值是-8.22.解 (1)y =f (x ) 4x 2-12x -3 4= =2x +1+ -8,2x +1设 u =2x +1,x ∈[0,1],1≤u ≤3,2x +1≤ 则 y =u +4-8,u ∈[1,3].u由已知性质得,当 1≤u ≤2,即 0≤x 1时, 2所以减区间为[0,1];2f (x )单调递减;当 2≤u ≤3,即 1≤x ≤1 时,f (x )单调递增;2 所以增区间为[1,1];2 由 f (0)=-3, f (1)=-4,f (1)=-11 2 3得 f (x )的值域为[-4,-3]. (2) g (x )=-x -2a 为减函数,故 g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意,f (x )的值域是 g (x )的值域的子集,1-2a ≤-4 2a ≥-3∴a =32 . ,。

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(37)

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(37)

第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若集合 M ={x∣ x <2},N ={x∣ 0≤x ≤1},则 M ∩N = ( ) A . [0,1] B . [0,2] C . [1,2) D . (−∞,2]2. 已知集合 A ={−1,0,1},B ={x∣ −1≤x <1},则 A ∩B = ( ) A . {−1,0,1} B . {0} C . {0,1} D . {−1,0}3. 已知 A ={x∣ x <1},B ={x∣ 2x +1<2},则 A ∩B = ( ) A . {x ∣∣x <12}B . {x ∣∣12<x <1}C . {x∣ x <1}D . R4. 命题“∃x ∈R ,使得 x 2+2x +3=0”的否定是 ( ) A . ∃x ∈R ,使得 x 2+2x +3≠0 B . ∀x ∈R ,都有 x 2+2x +3=0 C . ∀x ∈R ,都有 x 2+2x +3≠0D . ∀x ∉R ,都有 x 2+2x +3≠05. 命题 p:∃x 0∈R ,x 02+x 0+1≤0,则命题 p 的否定是 ( )A . ∃x 0∈R ,x 02+x 0+1>0B . ∀x ∈R ,x 2+x +1≥0C . ∀x ∈R ,x 2+x +1>0D . ∀x ∈R ,x 2+x +1≤06. 已知集合 A ={x∣ lgx >0},B ={x∣ x 2≤4},则 A ∩B = ( ) A . (1,2) B . (1,2] C . (0,2] D . (1,+∞)7. 已知 U ={1,2,3,4},A ={1,3,4},B ={2,3,4},那么 ∁U (A ∩B )= ( ) A . {1,2} B . {3,4} C . ∅ D . {1,2,3,4}8. 已知集合 M ={x∣ x 2−2<0},N ={−2,−1,0,1,2},则 M ∩N = ( ) A . ∅ B . {1} C . {0,1} D . {−1,0,1}9. 命题“所有能被 2 整除的整数都是偶数”的否定是 ( ) A .所有不能被 2 整除的整数都是偶数 B .所有能被 2 整除的整数都不是偶数 C .存在一个不能被 2 整除的整数是偶数 D .存在一个能被 2 整除的整数不是偶数10. 命题“∃x ∈(1,+∞),x 2+1≤3x ”的否定是 ( ) A . ∀x ∈(−∞,1],x 2+1>3x B . ∀x ∈(1,+∞),x 2+1≤3xC . ∃x ∈(−∞,1],x 2+1≤3xD . ∀x ∈(1,+∞),x 2+1>3x11.由大于−3且小于11的偶数组成的集合是( )A.{x∣ −3<x<11,x∈Q}B.{x∣ −3<x<11}C.{x∣ −3<x<11,x=2k,x∈Q}D.{x∣ −3<x<11,x=2k,k∈Z}12.已知集合Ω中的三个元素l,m,n分别是△ABC的三边长,则△ABC一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题(共4题)13.π是(选填“有理数”“无理数”).14.设M={x∣1<x<3},N={x∣2≤x<4},定义M与N的差集M−N={x∣∣x∈M且x∉N},则M−N=.15.已知集合A={−1,1,2},B={0,1},则A∪B=.16.设集合A={x∣ −1≤x≤2},B={x∣ 0≤x≤4},则A∩B=.三、解答题(共6题)17.下列命题中,α是β的充分条件吗?(1) α:a>b,β:ac>bc;(2) α:同位角相等,β:两直线平行.18.如何理解并集的含义?19.已知集合A={x∣ a−1<x<2a+1},B={x∣ 0<x<1}.,求A∩B;(1) 若a=12(2) 若A∩B=∅,求实数a的取值范围.20.如何理解交集的含义?21.集合论是德国数学家康托尔于19世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.22.若集合A={x∣ −5≤x<1},B={x∣ x≤2},求A∪B.答案一、选择题(共12题)1. 【答案】A【解析】因为M={x∣ x<2},N={x∣ 0≤x≤1},所以M∩N={x∣ 0≤x≤1}.【知识点】交、并、补集运算2. 【答案】D【解析】由题意可得A∩B={−1,0}、【知识点】交、并、补集运算3. 【答案】A},【解析】因为A={x∣ x<1},B={x∣∣x<12}.所以A∩B={x∣∣x<12【知识点】交、并、补集运算4. 【答案】C【解析】根据存在量词命题的否定是全称量词命题可知,命题“∃x∈R,使得x2+2x+3=0”的否定是“∀x∈R,都有x2+2x+3≠0”.故选C.【知识点】全(特)称命题的否定5. 【答案】C【解析】否定要把∃改为∀,≤改为>,故选C.【知识点】全(特)称命题的否定6. 【答案】B【解析】A=(1,+∞),B=[−2,2],故A∩B=(1,2],故选B.【知识点】交、并、补集运算7. 【答案】A【解析】易知A∩B={3,4},故∁U(A∩B)={1,2},故选A.【知识点】交、并、补集运算8. 【答案】B【解析】由x2−2x<0,得x∈(0,2),所以M∩N={1}.【知识点】交、并、补集运算9. 【答案】D【知识点】全(特)称命题的否定10. 【答案】D【知识点】全(特)称命题的否定11. 【答案】D【知识点】集合的表示方法12. 【答案】D【解析】因为集合中的元素是互异的,所以l,m,n互不相等,即△ABC不可能是等腰三角形,故选D.【知识点】集合中元素的三个特性二、填空题(共4题)13. 【答案】无理数【知识点】集合的概念14. 【答案】{x∣1<x<2}【解析】将集合M,N在数轴上标出,如图所示.因为M−N={x∣∣x∈M且x∉N},所以M−N={x∣1<x<2}.【知识点】交、并、补集运算15. 【答案】{−1,1,0,2}【解析】结合题中所给的集合和并集的定义可得:A∪B={−1,1,0,2}.【知识点】交、并、补集运算16. 【答案】{x∣ 0≤x≤2}【解析】A在数轴上表示出集合A与B,如图.则由交集的定义,A∩B={x∣ 0≤x≤2}.【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) α不是β的充分条件.(2) α是β的充分条件.【知识点】充分条件与必要条件18. 【答案】① A∪B仍是一个集合,由所有属于A或属于B的元素组成.②“或”的数字内涵的形象图示如下:③若集合A和B中有公共元素,根据集合元素的互异性,则在A∪B中仅出现一次.【知识点】交、并、补集运算19. 【答案】(1) 当a=12时,A={x∣ −12<x<2},B={x∣ 0<x<1},所以A∩B={x∣ 0<x<1}.(2) 若A∩B=∅,则当A=∅时,有a−1≥2a+1,解得a≤−2,符合题意;当A≠∅时,有{a−1<2a+1,2a+1≤0或a−1≥1,解得−2<a≤−12或a≥2.综上,实数a的取值范围为a≤−12或a≥2.【知识点】交、并、补集运算20. 【答案】①概念中“且”即“同时”的意思,两个集合交集中的元素必须同时是两个集合的元素,即由既属于A,又属于B的元素组成的集合为A∩B;②当集合A和集合B无公共元素时,不能说集合A,B没有交集,而是A∩B=∅.【知识点】交、并、补集运算21. 【答案】略【知识点】集合的概念22. 【答案】借助于数轴分别画出集合A,B,如图,故A∪B={x∣ x≤2}.【知识点】交、并、补集运算。

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(49)

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(49)

第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1.已知集合A={x∣ x2−2x−3≥0},B={x∣ −2≤x<2},则A∩B等于( )A.[−2,−1]B.[−1,1]C.[−1,2)D.[1,2)2.设集合U={x∈N∣ 0<x≤8},S={1,2,4,5},T={3,5,7},则S∩(∁U T)=( )A.{1,2,4}B.{1,2,3,4,5,7}C.{1,2}D.{1,2,4,5,6,8}3.“x=3”是“x2=9”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.设p:a>0,q:a2+a>0,那么p是q的( )A.充分不必要条件B.必要不充分条件C.必要条件D.既不充分也不必要条件5.已知a=log134,b=log23,c=2−0.3,则a,b,c的大小关系是( )A.a>b>c B.b>a>c C.c>a>b D.b>c>a6.已知集合A={x∣ x2−3x+2=0,x∈R},B={x∣ 0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1B.2C.3D.47.坐标轴上的点的集合可表示为( )A.{(x,y)∣ x=0,y≠0或x≠0,y=0}B.{(x,y)∣ x2+y2=0}C.{(x,y)∣ xy=0}D.{(x,y)∣ x2+y2≠0}8.设集合M={x∣ x∈Z},N={x∣ x=n2,n∈Z},P={x∣ x=n+12,n∈Z},则下列关系正确的是( )A.N⊆M B.N=M∪P C.N⊆P D.N=M∩P9.已知条件p:∣x+1∣>2,条件q:∣x∣>a,且¬p是¬q的必要不充分条件,则实数a的取值范围是( )A.0≤a≤1B.1≤a≤3C.a≤1D.a≥310.若“b=c=0”是“抛物线y=ax2+bx+c经过原点”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件>0成立的充分不必要条件是( )12.不等式1−1xA.x>1B.x>−1C.x<−1或0<x<1D.x<0或x>1二、填空题(共4题)13.集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G;(2)存在e∈G,对任意a∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”,现给出下列集合和运算:① G={非负整数},⊕为整数的加法;② G={偶数},⊕为整数的乘法;③ G={二次三项式},⊕为多项式的加法.其中G关于运算⊕为“融洽集”的有.(写出所有“融洽集”的序号)14.设集合S n={1,2,3,⋯,n},n∈N∗,X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.若n=4,则S n的所有奇子集的容量之和为.15.设全集U={2,3,a2+2a−3},A={∣ 2a−1∣ ,2},∁U A={5},则实数a=.16.“x∈A或x∈B”是“x∈A∩B”的条件.三、解答题(共6题)17.设全集U={x∣ x≤4},A={x∣ −1≤x≤2},B={x∣ 1≤x≤3}.求:(1) (∁U A)∪B;(2) (∁U A)∩(∁U B).x2+1(如图所示).18.已知抛物线y=14(1) 填空:抛物线的顶点坐标是,对称轴是.(2) 已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为点B.若△PAB是等边三角形,求点P的坐标.(3) 在(2)的条件下,点M在直线AP上,在平面内是否存在点N,使四边形OAMN为菱形?若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.19.已知集合A={a1,a2,a3,⋯,a n},其中a i∈R(1≤i≤n,n>2),l(A)表示a i+a j(1≤i<j≤n)的所有不同值的个数.(1) 已知集合P={2,4,6,8},Q={2,4,8,16},分别求l(P),l(Q);.(2) 若集合A={2,4,8,⋯,2n},求证:l(A)=n(n−1)220.已知集合M={x∣ x<−3或x>5},P={x∣ a≤x≤8}.(1) 求实数a的取值范围,使它成为M∩P={x∣ 5<x≤8}的充要条件;(2) 求实数a的一个值,使它成为M∩P={x∣ 5<x≤8}的一个充分不必要条件;(3) 求实数a的取值范围,使它成为M∩P={x∣ 5<x≤8}的一个必要不充分条件.21.已知命题p:方程x2−2x−a=0没有实数根;命题q:不等式x2−ax+4>0对一切实数x恒成立.若命题p和q都是真命题,求实数a的取值范围.22.已知集合A={a∣ a=x2−y2,x,y∈Z}.(1) 证明:2k+1∈A,其中k∈Z;(2) 请你指出集合A中元素所具有的至少三个性质,并加以证明;(3) 根据你的研究,若将A中的正整数由小到大排列,则第2008个数是多少?答案一、选择题(共12题)1. 【答案】A【解析】因为A={x∣ x≤−1或x≥3},故A∩B=[−2,−1].【知识点】交、并、补集运算2. 【答案】A【解析】因为U={1,2,3,4,5,6,7,8},所以∁U T={1,2,4,6,8},所以S∩(∁U T)={1,2,4}.【知识点】交、并、补集运算3. 【答案】A【解析】当x=3时,有x2=9,但当x2=9时,x=3或x=−3,故“x=3”是“x2=9”的充分不必要条件.【知识点】充分条件与必要条件4. 【答案】A【解析】充分性:当a>0时,a+1>0,则a(a+1)=a2+a>0,故充分性成立;必要性:解不等式a2+a>0得a(a+1)>0,即a<−1或a>0,故必要性不成立.所以p是q的充分不必要条件.【知识点】充分条件与必要条件5. 【答案】D【知识点】指数函数及其性质、对数函数及其性质6. 【答案】D【解析】因为集合A={1,2},B={1,2,3,4},所以当满足A⊆C⊆B时,集合C可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4},故满足条件的集合C的个数为4.【知识点】n元集合的子集个数7. 【答案】C【解析】坐标轴上的点的横、纵坐标至少有一个为0.故选C.【知识点】集合的表示方法8. 【答案】B,n∈Z},【解析】N={x∣ x=n2当n=2k,k∈Z时,N={x∣ x=k,k∈Z};当n=2k+1,k∈Z时,N={x∣ x=k+12,k∈Z}.故P⊆N,M⊆N,N=M∪P.故选B.【知识点】交、并、补集运算9. 【答案】C【解析】p:∣x+1∣>2⇒x>1或x<−3,当a≥0时,q:∣x∣>a⇒x>a或x<−a,当a<0时,q:∣x∣>a⇒x∈R,因为¬p是¬q的必要不充分条件,所以q是p的必要不充分条件,因此p⫋q.从而a<0或{a≥0,a≤1,−a≥−3⇒0≤a≤1,即a≤1.【知识点】充分条件与必要条件10. 【答案】A【知识点】充分条件与必要条件11. 【答案】A【解析】若a=1,则N={1},故N⊆M.若N⊆M,则a2=1或2,故“a=1”是“N⊆M”的充分不必要条件,故选A.【知识点】充分条件与必要条件、包含关系、子集与真子集12. 【答案】A【知识点】充分条件与必要条件二、填空题(共4题)13. 【答案】①【解析】根据题意,判断给出的集合对运算⊕是否满足条件(1)(2)即可.其中,条件(1)的含义是:集合G中任意两个元素关于运算⊕的结果仍然是集合G的元素;条件(2)的含义是:集合G中存在一个特殊元素e,它与G中任何一个元素a关于运算⊕满足交换律,且运算结果等于a.① G={非负整数},⊕为整数的加法,满足对任意a,b∈G,都有a⊕b∈G,且存在e=0,使得a⊕0=0⊕a=a,所以①中的G关于运算⊕为“融洽集”;② G= {偶数},⊕为整数的乘法,若存在e∈G,使a⊕e=e⊕a=a,则e=1,与e∈G矛盾,所以②中的G关于运算⊕不是“融洽集”;③ G={二次三项式},⊕为多项式的加法,两个二次三项式相加得到的可能不是二次三项式,所以③中的G关于运算⊕不是“融洽集”.综上所述,G关于运算⊕为“融洽集”的只有①.【知识点】元素和集合的关系14. 【答案】7【解析】根据题意,S4的所有奇子集为{1},{3},{1,3},分析可得{1}的容量为1,{3}的容量为3,{1,3}的容量为3,则其容量之和为1+3+3=7.【知识点】包含关系、子集与真子集15. 【答案】2【知识点】交、并、补集运算16. 【答案】必要非充分.【知识点】充分条件与必要条件三、解答题(共6题)17. 【答案】(1) 因为U={x∣ x≤4},A={x∣ −1≤x≤2},所以∁U A={x∣ x<−1或2<x≤4}.因为B={x∣ 1≤x≤3},所以(∁U A)∪B={x∣ x<−1或1≤x≤4}.(2) 因为U={x∣ x≤4},B={x∣ 1≤x≤3},所以∁U B={x∣ x<1或3<x≤4},所以(∁U A)∩(∁U B)={x∣ x<−1或3<x≤4}.【知识点】交、并、补集运算18. 【答案】(1) (0,1);y轴(或直线x=0)(2) 如图所示,因为△PAB是等边三角形,所以∠ABO=90∘−60∘=30∘.所以AB=2OA=4,所以PB=4.x2+1,得x=±2√3.方法一;把y=4代入y=14所以P1(2√3,4),P2(−2√3,4).方法二:因为OB=√AB2−OA2=2√3,所以P1(2√3,4).根据抛物线的对称性,得P2(−2√3,4).(3) 存在.因为四边形OAMN为菱形,所以AP∥ON.设直线AP1:y=kx+b,将点A(0,2),P1(2√3,4)的坐标分别代入,,b=2,得k=√33所以y=√33x+2.故点N在直线y=√33x上,设N(x0,√33x0),则x02+(√33x0)2=4,解得x0=±√3,所以N1(√3,1),N2(−√3,−1).同理得点M在直线AP2上时,N3(−√3,1),N4(√3,−1).综上所述,所有满足条件的点N的坐标分别为(√3,1),(−√3,−1),(−√3,1),(√3,−1).【知识点】二次函数的性质与图像19. 【答案】(1) 由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得l(P)=5,由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得l(Q)=6.(2) 因为a i+a j(1≤i<j≤n)共有(n−1)+(n−2)+(n−3)+⋯+4+3+2+1=n(n−1)2个值,所以l(A)≤n(n−1)2.又集合A={2,4,8,⋯,2n},不妨设a m=2m,m=1,2,⋯,n.a i+a j,a k+a l(1≤i<j≤n,1≤k<l≤n),当j≠l时,不妨设j<l,则a i+a j<2a j=2j+1≤a l<a k+a l,即a i+a j≠a k+a l,当j=l,i≠k时,a i+a j≠a k+a l,因此当且仅当i=k,j=l时,a i+a j=a k+a l.即所有a i+a j(1≤i<j≤n)的值两两不同,因此l(A)=n(n−1)2.【知识点】交、并、补集运算20. 【答案】(1) M∩P={x∣ 5<x≤8}的充要条件是−3≤a≤5,所以实数a的取值范围是{a∣ −3≤a≤5}.(2) 显然,满足−3≤a≤5的任意一个a的值都是M∩P={x∣ 5<x≤8}的充分不必要条件.比如a=0.(3) 若a=−5,显然M∩P={x∣ −5≤x<−3或5<x≤8},则a=−5是M∩P={x∣ 5<x≤8}的一个必要不充分条件.结合数轴可知a<−3时符合题意,则实数a的取值范围是{a∣ a<−3}.【知识点】充分条件与必要条件21. 【答案】当命题 p 是真命题时,应用 4+4a <0,解得 a <−1;当命题 q 是填命题时,应有 a 2−16<0,解得 −4<a <4. 所以当命题 p 与 q 都是真命题时,a 应满足 {a <−1,−4<a <4,即 −4<a <−1,因此,实数 a 的取值范围是 (−4,−1). 【知识点】全(特)称命题的概念与真假判断22. 【答案】(1) 2k +1=(k +1)2−k 2,则 2k +1∈A .(2) 1=12−02,3=22−12,4=22−02,5=32−22,7=42−32,8=32−12,⋯⋯ ① 4k ∈A ,其中 k ∈Z ;证明:4k =(k +1)2−(k −1)2,则 4k ∈A . ② 4k +2∉A ,其中 k ∈Z ;证明:假设 4k +2∈A ,即 4k +2=x 2−y 2,也即 2(2k +1)=(x +y )(x −y ). 因为 x +y 与 x −y 的奇偶性相同,所以 x +y 与 x −y 都为偶数. 则 x 2−y 2=(x +y )(x −y ) 是 4 的倍数,与 2(2k +1) 不是 4 的倍数矛盾. 故 4k +2∉A . ③ A ⫋Z ;证明:a =x 2−y 2=(x +y )(x −y )∈Z ,但 2∉A ,则 A ⫋Z . ④ A 为无穷集;证明:2k +1∈A ,奇数有无穷多个,则 A 为无穷集. ⑤集合 A 中的元素在数轴上关于原点对称;证明:若 a =x 2−y 2∈A ,则 −a =y 2−x 2∈A ,所以集合 A 中的元素关于原点对称. ⑥所有的完全平方数属于 A ; 证明:a =x 2=x 2−02.⑦集合 A 中的两个元素的积仍属于集合 A ;证明:设 a,b ∈A ,则 ab =(x 12−y 12)(x 22−y 22)=x 12x 22−x 12y 22−x 22y 12+y 12y 22=(x 1x 2+y 1y 2)2−(x 1y 2+x 2y 1)2, 所以 ab ∈A . ⋯⋯⋯⋯(3) 2008÷3=669⋯1,669×4+1=2677,则第 2008 个数是 2677. 【知识点】包含关系、子集与真子集、元素和集合的关系。

必修一第一章 集合单元检测

必修一第一章 集合单元检测

第一章章末检测(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题5分,共50分)1.设集合M={1,2,4,8},N={x|x是2的倍数},则M∩N等于A.{2,4} B.{1,2,4}C.{2,4,8} D.{1,2,8}2.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B等于A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1} D.∅3.下列说法正确的是A.很小的实数可以构成集合B.集合{y|y=x2-1}与集合{(x,y)|y=x2-1}是同一个集合C.自然数集N中最小的数是1D.空集是任何集合的子集4.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是A.M∪N B.M∩NC.(∁I M)∪(∁I N)D.(∁I M)∩(∁I N)5.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B 为A.{(0,1),(-1,2)} B.{(0,1),(1,1)}C.{(1,1),(-1,2)} D.{(-1,2)}6.设集合A={x|2≤x<2a-1},B={x|1≤x≤6-a},若3∈A∩B,则实数a的取值范围是A.a>2 B.2≤a<3C.2≤a≤3 D.2<a≤37.设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)等于A.{1,3} B.{1,5} C.{3,5} D.{4,5}8.已知全集U=N+,集合M={x|x=2n,n∈N+},N={x|x=4n,n∈N+},则A.U=M∪N B.U=(∁U M)∪NC.U=M∪(∁U N) D.U=∁U(M∩N)9.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系的Venn图如图所示,则阴影部分所示的集合的元素共有A.3个B.2个C.1个D.无穷多个10.已知集合U={1,2,3,4,5},A={1,2},B={2,5},则图中阴影部分表示的集合是A. {2}B. {2,5,1,3}C. {1,3,4,5}D. {1,2,4,5}二、填空题(本大题共5小题,每小题5分,共25分)11.已知集合A={-2,-1,1,2,3,4},B={x|x=t2,t∈A},用列举法表示集合B=。

新人教版高中数学必修第一册第一章章末检测试卷

新人教版高中数学必修第一册第一章章末检测试卷
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
14.设集合S={x|x<-1或x>5},T={x|a<x<a+8},S∪T=R,则a的取 值范围是_{_a_|_-__3_<_a_<_-__1_}_.
借助数轴可知aa<+-8>15,, ∴-3<a<-1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的
四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2
分,有选错的得0分)
9.设集合S={x|-2≤x≤8},T={x|0<x<4},若集合P⊆(∁RT)∩S,则P可 以是
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
四、解答题(本大题共6小题,共70分) 17.(10 分 ) 已 知 全 集 U = {1,2,3,4,5,6,7,8} , A = {x|x2 - 3x + 2 = 0} , B = {x∈Z|1≤x≤5},C={x∈Z|2<x<9}.求 (1)A∪(B∩C);
20.(12分)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适 合下列条件的a的值. (1)9∈(A∩B);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
∵9∈(A∩B), ∴2a-1=9或a2=9, ∴a=5或a=3或a=-3. 当a=5时,A={-4,9,25},B={0,-4,9}; 当a=3时,a-5=1-a=-2,不满足集合元素的互异性; 当a=-3时,A={-4,-7,9},B={-8,4,9}, 所以a=5或a=-3.

新教材苏教版高中数学必修第一册第一章集合 课时练习题及章末测验含答案解析

新教材苏教版高中数学必修第一册第一章集合 课时练习题及章末测验含答案解析

第一章集合1.1集合的概念与表示................................................................................................. - 1 -第1课时集合的概念.......................................................................................... - 1 -第2课时集合的表示.......................................................................................... - 5 -1.2子集、全集、补集................................................................................................. - 9 -1.3交集、并集 .......................................................................................................... - 14 -第1章测评 ................................................................................................................... - 19 - 1.1集合的概念与表示第1课时集合的概念1.(2020江苏南京高一检测)下列判断正确的个数为()①所有的等腰三角形构成一个集合;②倒数等于它自身的实数构成一个集合;③质数的全体构成一个集合;④由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3D.4,故①正确;若=a,则a2=1,解得a=±1,构成的集合中的元素为1,-1,故②正确;质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故③正确;集合中的元素具有互异性,由2,3,4,3,6,2构成的集合含有4个元素,分别为2,3,4,6,故④错误.故选C.2.下列说法:①集合N与集合N+是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的是()A.②④B.②③C.①②D.①④N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.3.用符号∈或∉填空:(1)-2N+;(2)(-4)2N+;(3)Z;(4)π+3Q.∉(2)∈(3)∉(4)∉4.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=.x∈N,2<x<a,且集合P中恰有三个元素,∴集合P中的三个元素为3,4,5,∴a=6.5.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.a∈A且3a∈A,∴解得a<2.又a∈N,∴a=0或1.6.(2020河北师范大学附属中学高一期中)设由“我和我的祖国”中的所有汉字组成集合A,则A中的元素个数为()A.4B.5C.6D.7,集合A中的元素分别为我、和、的、祖、国,共5个元素.故选B.7.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可2∈A可知,m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A 的元素为0,3,2,符合题意.8.(2020上海高一月考)如果集合中的三个元素对应着三角形的三条边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形,该三角形一定不可能是等腰三角形.故选D.9.(多选)(2020北京高一检测)下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数A,C,D中的元素都是确定的,能构成集合,选项B中“难题”的标准不明确,不符合确定性,不能构成集合.故选ACD.10.(多选)(2020广东深圳第二高级中学高一月考)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是()A.-1B.-2C.6D.2a2,2-a,4组成一个集合A,且集合A中含有3个元素,所以a2≠2-a,a2≠4,2-a≠4,解得a≠±2,且a≠1.故选AC.11.(多选)(2020山东济南高一检测)已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A.0∉MB.2∈MC.-4∈MD.4∈M,分4种情况讨论:①当x,y,z全部为负数时,则xyz也为负数,则=-4;②当x,y,z中只有一个负数时,则xyz为负数,则=0;③当x,y,z中有两个负数时,则xyz为正数,则=0;④当x,y,z全部为正数时,则xyz也为正数,则=4.则M中含有三个元素-4,0,4.分析选项可得C,D正确.故选CD.12.(2020山东潍坊高一检测)如果有一集合含有三个元素1,x,x2-x,则实数x满足的条件是.≠0,且x≠1,且x≠2,且x≠x≠1,x2-x≠1,x2-x≠x,解得x≠0,且x≠1,且x≠2,且x≠.13.若方程ax2+x+1=0的解构成的集合只有一个元素,则a的值为.或a=0时,原方程为一元一次方程x+1=0,满足题意,所求元素即为方程的根x=-1;当a≠0时,由题意知方程ax2+x+1=0只有一个实数根,所以Δ=1-4a=0,解得a=.所以a的值为0或.14.集合A是由形如m+n(m∈Z,n∈Z)的数构成的,试分别判断a=-,b=,c=(1-2)2与集合A的关系.a=-=0+(-1)×,而0∈Z,-1∈Z,∴a∈A.∵b=,而∉Z,∉Z,∴b∉A.∵c=(1-2)2=13+(-4)×,而13∈Z,-4∈Z,∴c∈A.15.设A为实数集,且满足条件:若a∈A,则∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.若a∈A,则∈A.又2∈A,∴=-1∈A.∵-1∈A,∴∈A.∵∈A,∴=2∈A.∴A中必还有另外两个元素,且为-1,.(2)若A为单元素集,则a=,即a2-a+1=0,方程无实数解.∴a≠,∴集合A不可能是单元素集.第2课时集合的表示1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4B.5C.6D.7,B={2,3,4,5,6,8},共有6个元素,故选C.3.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.集合3,,…用描述法可表示为()A.x x=,n∈N*B.x x=,n∈N*C.x x=,n∈N*D.x x=,n∈N*解析由3,,即从中发现规律,x=,n∈N*,故可用描述法表示为x x=,n∈N*.5.(2020山东济宁高一检测)已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为B=.-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.6.已知集合A={x|x2+2x+a=0},若1∈A,则A=.-3,1}x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1 000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.(2020福建厦门翔安一中高一期中)已知集合M={x|x(x+2)(x-2)=0},则M=()A.{0,-2}B.{0,2}C.{0,-2,2}D.{-2,2}M={x|x(x+2)(x-2)=0}={-2,0,2}.9.(2020河北沧州高一期中)已知集合M={a,2a-1,2a2-1},若1∈M,则M中所有元素之和为()A.3B.1C.-3D.-1a=1,则2a-1=1,矛盾;若2a-1=1,则a=1,矛盾,故2a2-1=1,解得a=1(舍)或a=-1,故M={-1,-3,1},元素之和为-3.故选C.10.(2020上海嘉定第一中学高一月考)已知集合A={a2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为()A.0B.-1C.1D.±1a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a2=1,此时(ab)2 021=(-1)2 021=-1;当b=-1时,a2=a,因为a≠0,所以a=1,此时(ab)2 021=(-1)2 021=-1.故选B.11.(多选)(2020山东潍坊高一检测)下列选项表示的集合P与Q相等的是()A.P={x|x2+1=0,x∈R},Q=⌀B.P={2,5},Q={5,2}C.P={(2,5)},Q={(5,2)}D.P={x|x=2m+1,m∈Z},Q={x|x=2m-1,m∈Z}A,集合P中方程x2+1=0无实数根,故P=Q=⌀;对于B,集合P中有两个元素2,5,集合Q中有两个元素2,5,故P=Q;对于C,集合P中有一个元素是点(2,5),集合Q中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|x=2m+1,m∈Z}表示所有奇数构成的集合,集合Q={x|x=2m-1,m∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.(多选)(2020山东济宁曲阜一中高一月考)下列选项能正确表示方程组的解集的是()A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.(多选)(2020江苏连云港高一期中)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是()A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉BA={y|y≥1},集合B是由抛物线y=x2+1上的点组成的集合,故A正确,B错误,C正确,D正确.故选ACD.14.(2020上海南洋模范中学高一期中)已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.答案,1解析由题意,集合A={x,y},B={2x,2x2},且A=B,则x=2x或x=2x2.若x=2x,可得x=0,此时集合B不满足集合中元素的互异性,舍去;若x=2x2,可得x=或x=0(舍去),当x=时,可得2x=1,2x2=,即A=B=,1.15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A=;用描述法表示“所有被4除余1的整数组成的集合”是.{x|x=4k+1,k∈Z}A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k∈Z}.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值..①若a+b=ac,a+2b=ac2,消去b,得a+ac2-2ac=0.当a=0时,集合B中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0, 所以c2-2c+1=0,即c=1,但当c=1时,B中的三个元素相同,不符合题意.②若a+b=ac2,a+2b=ac,消去b,得2ac2-ac-a=0.由①知a≠0,所以2c2-c-1=0,即(c-1)(2c+1)=0,解得c=-或c=1(舍去),当c=-时,经验证,符合题意.综上所述,c=-.17.(2020天津南开翔宇学校高一月考)已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.当a=0时,-3x+2=0,此时x=,所以A不是空集,不符合题意;当a≠0时,若A是空集,则Δ=9-8a<0,所以a>.综上可知,a的所有取值组成的集合为a a>.(2)当a=0时,-3x+2=0,此时x=,满足条件,此时A中仅有一个元素;当a≠0时,Δ=9-8a=0,所以a=,此时方程为x2-3x+2=0,即(3x-4)2=0,解得x=,此时A 中仅有一个元素.综上可知,当a=0时,A中只有一个元素为;当a=时,A中只有一个元素为.(3)A中至多有一个元素,即方程ax2-3x+2=0只有一个实数根或无实数根.则a=0或Δ=9-8a<0,解得a=0或a>.故a的所有取值组成的集合为a a=0,或a>.1.2子集、全集、补集1.(2020山东青岛高一检测)已知集合M={x|x2-2x=0},U={2,1,0},则∁U M=()A.{0}B.{1,2}C.{1}D.{0,1,2}M={x|x2-2x=0}={0,2},U={2,1,0},则∁U M={1}.故选C.2.集合A={x|-1<x<2},B={x|0<x<1},则()A.B∈AB.A⊆BC.B⊆AD.A=BA={x|-1<x<2},B={x|0<x<1},∴B⊆A.故选C.3.下列关系:①0∈{0};②⌀⫋{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.其中正确的个数为()A.1B.2C.3D.4正确,0是集合{0}的元素;②正确,⌀是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.4.已知集合B={-1,1,4},满足条件⌀⫋M⊆B的集合M的个数为()A.3B.6C.7D.8M是集合B的非空子集,集合B中有3个元素,因此非空子集有7个,故选C.5.若集合M=x x=,k∈Z,集合N=x x=,k∈Z,则()A.M=NB.N⊆MC.M⫋ND.以上均不对解析M=x x=,k∈Z=x x=,k∈Z,N=x x=,k∈Z=x x=,k∈Z.又2k+1,k∈Z 为奇数,k+2,k∈Z为整数,所以M⫋N.6.设A={x|1<x<2},B={x|x<a},若A⫋B,则实数a的取值范围是.a|a≥2},因为A⫋B,所以a≥2,即a的取值范围是{a|a≥2}.7.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是.m|m<1}∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1,即m的取值范围是{m|m<1}.8.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.B=⌀时,2a>a+3,即a>3,显然满足题意.当B≠⌀时,根据题意作出如图所示的数轴,可得解得a<-4或2<a≤3.综上可得,实数a的取值范围为{a|a<-4,或a>2}.9.(2020山东济宁高一月考)如果集合P={x|x>-1},那么()A.0⊆PB.{0}∈PC.⌀∈PD.{0}⊆PP={x|x>-1},∴0∈P,{0}⊆P,⌀⊆P,故A,B,C错误,D正确.故选D.10.已知M={x|x>1},N={x|x>a},且M⫋N,则()A.a≤1B.a<1C.a≥1D.a>1M={x|x>1},N={x|x>a},且M⫋N,∴a<1.故选B.11.集合M={x|x=4k+2,k∈Z},N={x|x=2k,k∈Z},P={x|x=4k-2,k∈Z},则M,N,P的关系为()A.M=P⊆NB.N=P⊆MC.M=N⊆PD.M=P=NM=P={±2,±6…},N={0,±2,±4,±6…},所以M=P⊆N.12.(2020山东济南高一检测)已知A={x|x2-3x+2=0},B={x|ax=1},若B⊆A,则实数a 取值的集合为()A.0,1,B.1,C.0,2,D.-2,解析因为A={x|x2-3x+2=0}={x|(x-1)(x-2)=0}={1,2},又B={x|ax=1},当B=⌀时,方程ax=1无解,则a=0,此时满足B⊆A;当B≠⌀时,a≠0,此时B={x|ax=1}=,为使B⊆A,只需=1或=2,解得a=1或a=.综上,实数a取值的集合为0,1,.故选A.13.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于()A.0或2B.0C.1或2D.2,知则a=2.14.(多选)(2020山东五莲教学研究室高一期中)已知集合M={x|-3<x<3,x∈Z},则下列符号语言表述正确的是()A.2∈MB.0⊆MC.{0}∈MD.{0}⊆MM={x|-3<x<3,x∈Z}={-2,-1,0,1,2},∴2∈M,0∈M,{0}⊆M.∴A,D正确,B,C错误.故选AD.15.(多选)(2020福建宁德高一期中)已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆AB.A⊆BC.0∉AD.1∈AA={y|y=x2+1}={y|y≥1},B={x|x>2},所以B⊆A,0∉A,1∈A.故选ACD.16.(多选)(2020北京高一检测)集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的可能取值为()A.-1B.0C.1D.2解析由题意,B⊆A,当a=0时,B=⌀符合题意;当a≠0时,B=-⊆A,则-=1或-=-1,解得a=-1或a=1,所以实数a的取值为-1,0或1.故选ABC.17.(2020山东东营高一月考)设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a=,b=.4U=R,A={x|a≤x≤b},∴∁U A={x|x<a,或x>b}.∵∁U A={x|x<3,或x>4},∴a=3,b=4.18.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为.或-A有两个子集可知,该集合中只有一个元素,当a=1时,满足题意;当a≠1时,由Δ=9+8(a-1)=0,可得a=-.19.设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.a=,则B={5},元素5是集合A={5,3}中的元素,集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,所以B⫋A.(2)当a=0时,由题意B=⌀,又A={3,5},故B⊆A;当a≠0时,B=,又A={3,5},B⊆A,此时=3或=5,则有a=或a=.所以C=0,.20.设集合A={x|-1≤x+1≤6},m为实数,B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若B⊆A,求m的取值范围.A得A={x|-2≤x≤5}.(1)∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集个数为28-2=254.(2)当m-1≥2m+1,即m≤-2时,B=⌀⊆A;当m>-2时,B≠⌀,因此,要使B⊆A,则只要解得-1≤m≤2.综上所述,m的取值范围是{m|m≤-2,或-1≤m≤2}.21.(2020山西平遥综合职业技术学校高一月考)已知全集U=R,集合A={x|-2≤x≤3},B={x|2a<x<a+3},且B⊆∁U A,求实数a的取值集合.A={x|-2≤x≤3},所以∁U A={x|x<-2,或x>3}.因为B⊆∁U A,当B=⌀时,2a≥a+3,解得a≥3;当B≠⌀时,由B⊆∁U A,得解得≤a<3或a≤-5.所以实数a的取值集合为a a≤-5,或a≥.1.3交集、并集1.(2020北京八中期末)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4},全集U={1,2,3,4},A={1,2},B={2,3},可得A∪B={1,2,3},所以∁U(A∪B)={4}.故选D.2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4A={1,2,3,4},B={2,4,6,8},∴A∩B={2,4}.∴A∩B中元素的个数为2.故选B.3.(2021全国甲,理1)设集合M={x|0<x<4},N=,则M∩N=()A. B.C.{x|4≤x<5}D.{x|0<x≤5}解析由交集的定义及图知M∩N=x≤x<4.4.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则()A.a=3,b=2B.a=2,b=3C.a=-3,b=-2D.a=-2,b=-3A∩B={(2,5)},∴解得故选B.5.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个A∪B=A,∴B⊆A.∵A={0,1,2,x},B={1,x2},∴x2=0或x2=2或x2=x,解得x=0或x=±或x=1.经检验,当x=或-时满足题意.故选B.6.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=.∩B={1,2,3}∩{y|y=2x-1,x∈A}={1,2,3}∩{1,3,5}={1,3}.7.(2020山东泰兴第三高级中学高一月考)设M={a2,a+1,-3},N={a-3,2a-1,a2+1},若M∩N={-3},则a的值为,此时M∪N=.1{-4,-3,0,1,2}M∩N={-3},∴a-3=-3或2a-1=-3,解得a=0或a=-1.当a=0时,M={0,1,-3},N={-3,-1,1},得M∩N={1,-3},不符合题意,舍去.当a=-1时,M={0,1,-3},N={-4,-3,2},得M∩N={-3},符合题意.此时M∪N={-4,-3,0,1,2}.8.(2020上海浦东华师大二附中高一月考)调查班级40名学生对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1,则对A,B都赞成的学生有人.A的人数为40×=24,赞成B的人数为24+3=27.设对A,B都赞成的学生数为x,则对A,B都不赞成的学生数为x+1,如图可得x+1+27-x+x+24-x=40,解得x=18.9.已知集合A={x|-2<x<4},B={x|x-m<0,m∈R}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A∩B=A,求实数m的取值范围.∵A={x|-2<x<4},B={x|x<m,m∈R},又A∩B=⌀,∴m≤-2.故实数m的取值范围为{m|m≤-2}.(2)由A∩B=A,得A⊆B.∵A={x|-2<x<4},B={x|x<m,m∈R},∴m≥4.故实数m的取值范围为{m|m≥4}.10.已知集合M={0,1},则满足M∪N={0,1,2}的集合N的个数是()A.2B.3C.4D.8,可知满足M∪N={0,1,2}的集合N有{2},{0,2},{1,2},{0,1,2},共4个.故选C.11.(2020江苏无锡期末)下图中的阴影部分,可用集合符号表示为()A.(∁U A)∩(∁U B)B.(∁U A)∪(∁U B)C.(∁U B)∩AD.(∁U A)∩BA与集合B的补集的交集,所以图中阴影部分可以用(∁U B)∩A表示.12.(2020江苏镇江月考)集合论是德国数学家康托尔于19世纪末创立的.在他的集合理论中,用card(A)表示有限集合中元素的个数,例如:A={a,b,c},则card(A)=3.若对于任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B).某校举办运动会,高一某班参加田赛的学生有14人,参加径赛的学生有9人,两项都参加的有5人,那么该班参加本次运动会的人数为()A.28B.23C.18D.16A,则card(A)=14,参加径赛的学生组成集合B,则card(B)=9,由题意得card(A∩B)=5,所以card(A∪B)=card(A)+card(B)-card(A∩B)=14+9-5=18,所以该班参加本次运动会的人数为18.故选C.13.(2020天津南开中学高一开学考试)已知集合A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则实数a的取值范围是()A.{a|a≥1}B.a a≥C.{a|a≥0}D.a0≤a≤解析因为A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则B≠⌀且B与A有公共元素,则需解得a≥.故选B.14.(多选)(2020江苏江浦高级中学期中)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B 中的元素有()A.-2B.-1C.0D.1A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.故选AB.15.(多选)(2020河北曲阳第一高级中学月考)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=x x<B.A∩B≠⌀C.A∪B=x x<D.A∪(∁R B)=R解析∵A={x|x<2},B={x|3-2x>0}=x x<,∁R B=x x≥,∴A∩B=x x<,A∩B≠⌀,A∪B={x|x<2},A∪(∁R B)=R.故选ABD.16.(多选)(2020山东菏泽高一月考)已知集合M={2,-5},N={x|mx=1},且M∪N=M,则实数m的值可以为()A. B.-5C.-D.0解析因为M∪N=M,所以N⊆M,当m=0时,N=⌀,满足N⊆M.当m≠0时,N=,若N⊆M,则=2或=-5,解得m=或m=-.综上所述,m=0或m=或m=-,故选ACD.17.已知M={x|y=x2-1},N={y|y=x2-1},则M∩N=.y|y≥-1}{x|y=x2-1}=R,N={y|y=x2-1}={y|y≥-1},故M∩N={y|y≥-1}.18.(2020山西太原第五十三中学月考)已知A={x|x2+px+1=0},M={x|x>0},若A∩M=⌀,则实数p的取值范围为.p|p>-2}A=⌀时,Δ=p2-4<0,解得-2<p<2;当A≠⌀,即p≤-2或p≥2时,此时方程x2+px+1=0的两个根需满足小于等于0,则x1x2=1>0,x1+x2=-p<0,得p>0,则p≥2.综上,实数p的取值范围为{p|p>-2}.19.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.{1,2},因为A∪B=A,所以B⊆A.若B=⌀,则方程x2-4x+a=0无实数根,所以Δ=16-4a<0,所以a>4.若B≠⌀,则a≤4,当a=4时,B={2}⊆A满足条件;当a<4时,1,2是方程x2-4x+a=0的根,此时a无解.所以a=4.综上可得,a的取值范围是{a|a≥4}.20.(2020天津宝坻大钟庄高中月考)已知集合A={x|-3≤x≤6},B={x|x<4},C={x|m-5<x<2m+3,m∈R}.(1)求(∁R A)∩B;(2)若A⊆C,求实数m的取值范围.因为A={x|-3≤x≤6},所以∁R A={x|x<-3,或x>6},故(∁R A)∩B={x|x<-3,或x>6}∩{x|x<4}={x|x<-3}.(2)因为C={x|m-5<x<2m+3},且A⊆C,所以<m<2,所以m的取值范围为m<m<2.21.(2020山东滕州第一中学新校高一月考)已知全集U=R,集合A={x|x>2},B={x|-4<x<4}.(1)求∁U(A∪B);(2)定义A-B={x|x∈A,且x∉B},求A-B,A-(A-B).因为A={x|x>2},B={x|-4<x<4},所以A∪B={x|x>-4},则∁U(A∪B)={x|x≤-4}.(2)因为A-B={x|x∈A,且x∉B},所以A-B={x|x≥4},因此A-(A-B)={x|2<x<4}.第1章测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给对象能构成集合的是()A.2020年全国Ⅰ卷数学试题中的所有难题B.比较接近2的全体正数C.未来世界的高科技产品D.所有整数A,B,C的标准不明确,所以不能构成集合;而选项D的元素具有确定性,能构成集合.故选D.2.(2021新高考Ⅰ,1)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}A={x|-2<x<4},B={2,3,4,5},∴A∩B={2,3}.故选B.3.(2020山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}数形结合)由数轴可知所以A∪B={x|1≤x<4},故选C.4.(2020江苏梅村高级中学月考)已知A={x,x+1,1},B={x,x2+x,x2},且A=B,则()A.x=1或x=-1B.x=1C.x=0或x=1或x=-1D.x=-1x=1时,集合A={1,2,1},B={1,2,1}不满足集合中元素的互异性,排除A,B,C;当x=-1时,A={-1,0,1},B={-1,0,1},A=B,满足题意.故选D.5.(2020江苏吴江中学月考)满足{2}⫋A⊆{1,2,3,4,5},且A中元素之和为偶数的集合A 的个数是()A.5B.6C.7D.8{2}⫋A⊆{1,2,3,4,5},所以2∈A.又A中元素之和为偶数,所以满足条件的集合A有{2,4},{1,2,3},{1,2,5},{2,3,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共7个,故选C.6.(2020安徽安庆白泽湖中学月考)已知集合A={x|x<1,或x>3},B={x|x-a<0},若B⊆A,则实数a的取值范围为()A.{a|a>3}B.{a|a≥3}C.{a|a<1}D.{a|a≤1}B={x|x<a},因为B⊆A,所以a≤1.故选D.7.(2020山东潍坊月考)设全集U=R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2,或x>3}D.{x|-2≤x≤2}∁R(M∪N).又M={x|x<-2,或x>2},N={x|1≤x≤3},所以M∪N={x|x<-2,或x≥1},则图中阴影部分表示的集合为∁R(M∪N)={x|-2≤x<1}.故选A.8.(2020山西高一月考)某学校组织强基计划选拔赛,某班共有30名同学参加了学校组织的数学、物理两科选拔,其中两科都取得优秀的有6人,数学取得优秀但物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,则两科均未取得优秀的人数是()A.8B.6C.5D.4,两科都取得优秀的有6人,数学取得优秀物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,这样共有22人至少取得一科优秀.某班共有30名同学,则两科均未取得优秀的人数是30-22=8.故选A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知集合M={1,m+2,m2+4},且5∈M,则m的可能取值有()A.1B.-1C.3D.25∈M,所以m+2=5或m2+4=5,解得m=3,或m=±1.当m=3时,M={1,5,13},符合题意,当m=1时,M={1,3,5},符合题意,当m=-1时,M={1,1,5},不满足元素的互异性,不成立.所以m=3或m=1.故选AC.10.(2020山东邹城第一中学高一月考)已知全集U=R,A={x|x<2,或x>4},B={x|x≥a},且∁U A⊆B,则实数a的取值可以是()A.1B.3C.2D.4A={x|x<2,或x>4},得∁U A={x|2≤x≤4}.因为∁U A⊆B,B={x|x≥a},所以a≤2,所以实数a的取值可以是1,2.故选AC.11.设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8A={0,1,4},B={0,1,3},所以A∩B={0,1},A∪B={0,1,3,4},选项A,C都正确;又全集U={0,1,2,3,4},所以∁U B={2,4},选项B错误;集合A={0,1,4}的真子集有7个,所以选项D错误.12.(2020重庆万州第二高级中学月考)给定数集M,若对于任意a,b∈M,有a+b∈M,且a-b∈M,则称集合M为闭集合,则下列说法错误的是()A.集合M={-4,-2,0,2,4}为闭集合B.正整数集是闭集合C.集合M={n|n=5k,k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合A,4∈M,2∈M,但4+2=6∉M,故A错误;对于B,1∈N*,2∈N*,但1-2=-1∉N*,故B错误;对于C,对于任意a,b∈M,设a=5k1,b=5k2,k1∈Z,k2∈Z,a+b=5(k1+k2),a-b=5(k1-k2),k1+k2∈Z,k1-k2∈Z,所以a+b∈M,a-b∈M,故C正确;对于D,A1={n|n=5k,k∈Z},A2={n|n=3k,k∈Z}都是闭集合,但A1∪A2不是闭集合,如5∈(A1∪A2),3∈(A1∪A2),但5+3=8∉(A1∪A2),故D错误.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.A={0,1},B={1,2},∴C={x|x=a+b,a∈A,b∈B}={1,2,3}有3个元素,∴集合C的真子集个数为23-1=7.14.(2020湖南雨花雅礼中学高一月考)设A={x|-1<x≤3},B={x|x>a},若A⊆B,则实数a的取值范围是.a|a≤-1},如图所示,∵A⊆B,∴a≤-1.15.(2020江苏玄武南京田家炳高级中学月考)集合A={x|x<1,或x≥2},B={x|a<x<2a+1},若A∪B=R,则实数a的取值范围是.答案a≤a<1集合A={x|x<1,或x≥2},B={x|a<x<2a+1},A∪B=R,∴解得≤a<1,∴实数a的取值范围是a≤a<1.16.(2020山西高一月考)设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串.如:(2,5)表示的是从左往右第2个字符为1,第5个字符为1,其余均为0的6位字符串010010,并规定空集表示的字符串为000000.若M={1,3,4},则∁U M表示6位字符串为;若A={2,3},集合A∪B表示的字符串为011011,则满足条件的集合B的个数为.4U={1,2,3,4,5,6},M={1,3,4},所以∁U M={2,5,6},则∁U M表示6位字符串为010011.因为集合A∪B表示的字符串为011011,所以A∪B={2,3,5,6}.又A={2,3},所以集合B可能为{5,6},{2,5,6},{3,5,6},{2,3,5,6},即满足条件的集合B的个数为4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020江苏镇江月考)已知全集U={0,1,2,3,4,5,6,7},集合A={1,2,3},B={1,3,4}.(2)集合C满足(A∩B)⊆C⊆(A∪B),请写出所有满足条件的集合C.由A={1,2,3},B={1,3,4},得A∩B={1,3},A∪B={1,2,3,4}.由U={0,1,2,3,4,5,6,7},得(∁U A)∩(∁U B)={0,5,6,7}.(2)由(A∩B)⊆C⊆(A∪B),A∩B={1,3},A∪B={1,2,3,4},得C可以为{1,3},{1,2,3},{1,3,4},{1,2,3,4}.18.(12分)已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x(a∈R,x ∈R).(1)若x2∈B,求实数x的值.(2)是否存在实数a,x,使A=B?若存在,求出a,x;若不存在,请说明理由.集合B中有三个元素:0,1,x.x2∈B,当x取0,1,-1时,都有x2∈B,∵集合中的元素都有互异性,∴x≠0,x≠1,∴x=-1.∴实数x的值为-1.(2)不存在.理由如下:a2+1≠0,若a-3=0,则a=3,A={0,5,10}≠B;若2a-1=0,则a=,A=0,-≠B,∴不存在实数a,x,使A=B.19.(12分)已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由.(2)若A⊆B成立,求出相应的实数对(a,b).不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时,A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).20.(12分)(2020山东枣庄第三中学高一月考)已知集合A={x|a-1<x<2a+1,a∈R},B={x|0<x<1},U=R.(2)若A∩B=⌀,求实数a的取值范围.解(1)当a=时,A=x-<x<2.因为B={x|0<x<1},所以∁U B={x|x≤0,或x≥1}.因此A∩B={x|0<x<1},A∩(∁U B)=x-<x≤0,或1≤x<2.(2)当A=⌀时,显然符合题意,因此有a-1≥2a+1,解得a≤-2;当A≠⌀时,因此有a-1<2a+1,解得a>-2,要想A∩B=⌀,则有2a+1≤0或a-1≥1,解得a≤-或a≥2,而a>-2,所以-2<a≤-或a≥2.综上所述,实数a的取值范围为a a≤-,或a≥2.21.(12分)(2020安徽芜湖一中月考)已知集合A={x|-1≤x≤3},B={x|x<0,或x>2},C={x|m-2≤x≤m+2},m为实数.(1)求A∩B,∁R(A∩B);(2)若A⊆∁R C,求实数m的取值范围.因为A={x|-1≤x≤3},B={x|x<0,或x>2},所以A∩B={x|-1≤x<0,或2<x≤3},∁R(A∩B)={x|x<-1,或0≤x≤2,或x>3}.(2)因为C={x|m-2≤x≤m+2},所以∁R C={x|x<m-2,或x>m+2}.因为A⊆∁R C,所以m-2>3或m+2<-1,解得m>5或m<-3,所以m的取值范围为{m|m<-3,或m>5}.22.(12分)(2020北京八中月考)设a为实数,集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B≠⌀,A∩C=⌀,求a的值.,B={2,3},C={-4,2}.(1)因为A∩B=A∪B,所以A=B.又B={2,3},则解得a=5.(2)由于A∩B≠⌀,而A∩C=⌀,则3∈A,即9-3a+a2-19=0,解得a=5或a=-2.由(1)知,当a=5时,A=B={2,3}.此时A∩C≠⌀,矛盾,舍去.当a=-2时,经检验,满足题意.因此a=-2.。

高一数学必修一 集合与函数章末检测题 附答案解析 人教版

高一数学必修一 集合与函数章末检测题 附答案解析 人教版

必修一 第一章 集合与函数概念章末检测题一、单选题1.已知全集U ={0,1,2}且U A ={2},则集合A 的真子集共有( ). A .3个B .4个C .5个D .6个2.设集合A ={x |1<x ≤2},B ={ x |x <a },若A ⊆B ,则a 的取值范围是( ). A .{a |a ≥1} B .{a |a ≤1} C .{a |a ≥2} D .{a |a >2} 3.A ={x |x 2+x -6=0},B ={x |mx +1=0},且AB A =,则m 的取值集合是( ).A .⎭⎬⎫⎩⎨⎧21- ,31B .⎭⎬⎫⎩⎨⎧21- ,31- ,0C .⎭⎬⎫⎩⎨⎧21- ,31 ,0 D .⎭⎬⎫⎩⎨⎧21 ,31 4.设I 为全集,集合M ,N ,P 都是其子集,则图中的阴影部分表示的集合为( ). A .M ∩(N ∪P )B .M ∩(P ∩I N )C .P ∩(I N ∩I M )D .(M ∩N )∪(M ∩P )5.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-,x y y x |)(, P ={(x ,y )|y ≠x +1},那么U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}6.下列四组中的f (x ),g (x ),表示同一个函数的是( ).A .f (x )=1,g (x )=x 0B .f (x )=x -1,g (x )=xx 2-1C .f (x )=x 2,g (x )=(x )4D .f (x )=x 3,g (x )=39x7.函数f (x )=x1-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 8.函数f (x )=11+x 2(x ∈R )的值域是( ).A .(0,1)B .(0,1]C .[0,1)D .[0,1]9.已知f (x )在R 上是奇函数,f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ). A .-2 B .2 C .-98 D .9810.定义在区间(-∞,+∞)的奇函数f (x )为增函数;偶函数g (x )在区间[0,+∞)的图(第4题)PN象与f (x )的图象重合.设a >b >0,给出下列不等式:①f (b )-f (-a )>g (a )-g (-b );②f (b )-f (-a )<g (a )-g (-b ); ③f (a )-f (-b )>g (b )-g (-a );④f (a )-f (-b )<g (b )-g (-a ). 其中成立的是( ).A .①与④B .②与③C .①与③D .②与④ 二、填空题11.函数x x y +-=1的定义域是 .12.若f (x )=ax +b (a >0),且f (f (x ))=4x +1,则f (3)= .13.已知函数f (x )=ax +2a -1在区间[0,1]上的值恒正,则实数a 的取值范围是 .14.已知I ={不大于15的正奇数},集合M ∩N ={5,15},(I M )∩(I N )={3,13},M ∩(I N )={1,7},则M = ,N = .15.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则m 的取值范围是_________.16.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+x 3),那么当x ∈(-∞,0]时,f (x )= .三、解答题17.已知A ={x |x 2-ax +a 2-19=0},B ={ x |x 2-5x +6=0},C ={x |x 2+2x -8=0},且∅(A ∩B ),A ∩C =∅,求a 的值.18.设A 是实数集,满足若a ∈A ,则a-11∈A ,a ≠1且1A ∉.(1)若2∈A ,则A 中至少还有几个元素?求出这几个元素. (2)A 能否为单元素集合?请说明理由. (3)若a ∈A ,证明:1-a1∈A .19.求函数f (x )=2x 2-2ax +3在区间[-1,1]上的最小值.20.已知定义域为R 的函数f (x )=ab-x x +2+21+是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.参考答案一、选择题1.A解析:条件U A={2}决定了集合A={0,1},所以A的真子集有∅,{0},{1},故正确选项为A.2.D解析:在数轴上画出集合A,B的示意图,极易否定A,B.当a=2时,2∉B,故不满足条件A⊆B,所以,正确选项为D.3.C解析:据条件A∪B=A,得B⊆A,而A={-3,2},所以B只可能是集合∅,{-3},{2},所以,m的取值集合是C.4.B解析:阴影部分在集合N外,可否A,D,阴影部分在集合M内,可否C,所以,正确选项为B.5.B解析:集合M是由直线y=x+1上除去点(2,3)之后,其余点组成的集合.集合P是坐标平面上不在直线y=x+1上的点组成的集合,那么M P就是坐标平面上除去点(2,3)外的所有点组成的集合.由此U(M P)就是点(2,3)的集合,即U(M P)={(2,3)}.故正确选项为B.6.D解析:判断同一函数的标准是两函数的定义域与对应关系相同,选项A,B,C中,两函数的定义域不同,正确选项为D.7.C解析:函数f(x)显然是奇函数,所以不难确定正确选项为C.取特殊值不难否定其它选项.如取x=1,-1,函数值不等,故否A;点(1,0)在函数图象上,而点(0,1)不在图象上,否选项D,点(0,-1)也不在图象上,否选项B.8.B解析:当x=0时,分母最小,函数值最大为1,所以否定选项A,C;当x的绝对值取值越大时,函数值越小,但永远大于0,所以否定选项D.故正确选项为B.9.A解析:利用条件f (x +4)=f (x )可得,f (7)=f (3+4)=f (3)=f (-1+4)=f (-1),再根据f (x )在R 上是奇函数得,f (7)=-f (1)=-2×12=-2,故正确选项为A .10.C解析:由为奇函数图像关于原点对称,偶函数图象关于y 轴对称,函数f (x ),g (x )在区间[0,+∞)上图象重合且均为增函数,据此我们可以勾画两函数的草图,进而显见①与③正确.故正确选项为C .二、填空题11.参考答案:{x | x ≥1}.解析:由x -1≥0且x ≥0,得函数定义域是{x |x ≥1}. 12.参考答案:319. 解析:由f (f (x ))=af (x )+b =a 2x +ab +b =4x +1,所以a 2=4,ab +b =1(a >0),解得a =2,b =31,所以f (x )=2x +31,于是f (3)=319.13.参考答案:⎪⎭⎫ ⎝⎛ 21,. 解析:a =0时不满足条件,所以a ≠0. (1)当a >0时,只需f (0)=2a -1>0; (2)当a <0时,只需f (1)=3a -1>0. 综上得实数a 的取值范围是⎪⎭⎫⎝⎛ 21,. 14.参考答案:{1,5,7,15},{5,9,11,15}.解析:根据条件I ={1,3,5,7,9,11,13,15},M ∩N ={5,15},M ∩(I N )={1,7},得集合M ={1,5,7,15},再根据条件(I M )∩(I N )={3,13},得N ={5,9,11,15}.15.参考答案:(2,4].解析:据题意得-2≤m +1<2m -1≤7,转化为不等式组⎪⎩⎪⎨⎧7 ≤1-21-2<1+2- ≥1+m m m m ,解得m 的取值范围是(2,4].16.参考答案:x (1-x 3).解析:∵任取x ∈(-∞,0],有-x ∈[0,+∞),+∞ +∞∴ f (-x )=-x [1+(-x )3]=-x (1-x 3), ∵ f (x )是奇函数,∴ f (-x )=-f (x ). ∴ f (x )=-f (-x )=x (1-x 3),即当x ∈(-∞,0]时,f (x )的表达式为f (x )=x (1-x 3). 三、解答题17.参考答案:∵B ={x |x 2-5x +6=0}={2,3}, C ={x |x 2+2x -8=0}={-4,2}, ∴由A ∩C =∅知,4A -∉,2∉A ; 由∅(A ∩B )知,3∈A .∴32-3a +a 2-19=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}=B ,与A ∩C =∅矛盾. 当a =-2时,经检验,符合题意. 18.参考答案:(1)∵ 2∈A ,∴a -11=2-11=-1∈A ; ∴a -11=1+11=21∈A ;∴a -11=21-11=2∈A .因此,A 中至少还有两个元素:-1和21. (2)如果A 为单元素集合,则a =a-11,整理得a 2-a +1=0,该方程无实数解,故在实数范围内,A 不可能是单元素集.(3)证明: a ∈A ⇒a -11∈A ⇒ a1-1-11∈A ⇒1+-1-1a a ∈A ,即1-a 1∈A .19.参考答案: f (x )=222⎪⎭⎫ ⎝⎛a x -+3-22a .(1)当2a<-1,即a <-2时,f (x )的最小值为f (-1)=5+2a ; (2)当-1≤2a ≤1,即-2≤a ≤2时,f (x )的最小值为⎪⎭⎫⎝⎛2a f =3-22a ;。

人教a版必修1章末检测:第一章《集合与函数概念》(含答案)

人教a版必修1章末检测:第一章《集合与函数概念》(含答案)

第一章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的是( )A .很小的实数可以构成集合B .集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合C .自然数集N 中最小的数是1D .空集是任何集合的子集2.设集合U ={1,2,3,4,5},M ={1,2,3},N ={2,5},则M ∩(∁U N )等于( )A .{2}B .{2,3}C .{3}D .{1,3}3.下列集合不同于其他三个集合的是( )A .{x |x =1}B .{y |(y -1)2=0}C .{x =1}D .{1}4.设A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围是( )A .{a |a ≥2}B .{a |a ≤1}C .{a |a ≥1}D .{a |a ≤2}5.函数y =f (x )的图象与直线x =2的公共点有( )A .0个B .1个C .0个或1个D .不能确定6.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( ) A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)7.已知函数y =x 2的值域是[1,4],则其定义域不可能是( )A .[1,2]B .⎣⎡⎦⎤-32,2 C .[-2,-1] D .[-2,-1]∪{1} 8.已知函数f (x )=⎩⎪⎨⎪⎧x (x ≥0)x 2 (x <0), 则f (f (-2))的值是( )A .2B .-2C .4D .-49.若φ(x ),g (x )都是奇函数,f (x )=aφ(x )+bg (x )+2在(0,+∞)上有最大值5,则f (x )在 (-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-310.如果函数f (x )=x 2+bx +c 对任意实数x 都有f (2+x )=f (2-x ),那么( )A .f (2)<f (1)<f (4)B .f (1)<f (2)<f (4)C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1)11.已知函数f (x )=1+x 21-x 2,则有( ) A .f (x )是奇函数,且f (1x)=-f (x ) B .f (x )是奇函数,且f (1x)=f (x ) C .f (x )是偶函数,且f (1x)=-f (x ) D .f (x )是偶函数,且f (1x)=f (x ) 12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数,若x 1<0,且x 1+x 2>0,则( )A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小二、填空题(本大题共4小题,每小题4分,共16分)13.函数y=x+1+12-x的定义域为______.14.设函数f(x)={2,x>0,x2+bx+c,x≤0.若f(-4)=f(0),f(-2)=-2,则f(x)的解析式是____________________.15.若函数f(x)=x2+2(a-1)x+2在[-4,4]上是单调函数,那么实数a的取值范围是________.16.已知f(x)是奇函数,g(x)是偶函数,并且f(x)+g(x)=x+1,则f(x)=________,g(x)=________(填函数解析式).三、解答题(本大题共6小题,共74分)17.(12分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁U A)∩B;(2)若A∩C≠∅,求a的取值范围.18.(12分)已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出对应的a;若不存在,试说明理由;(2)若A⊆B成立,求出对应的实数对(a,b).19.(12分)已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等实根.(1)求函数f(x)的解析式;(2)当x∈[1,2]时,求f(x)的值域;(3)若F(x)=f(x)-f(-x),试判断F(x)的奇偶性,并证明你的结论.20.(12分)函数f(x)=4x2-4ax+a2-2a+2在区间[0,2]上有最小值3,求a的值.21.(12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤).采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.(1)设月用电x度时,应交电费y元.写出y关于x的函数关系式;(2)小明家第一季度交纳电费情况如下:22.(14分)已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).(1)求函数g(x)的定义域;(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.第一章 章末检测 答案1.D2.D [∁U N ={1,3,4},M∩(∁U N)={1,2,3}∩{1,3,4}={1,3}.]3.C [A 、B 、D 都表示元素是1的集合,C 表示元素为“x =1”的集合.]4.A [如图所示,∴a ≥2.]5.C [如果x =2与函数y =f(x)有公共点,则只有一个公共点,因为自变量取一个值只对应一个函数值;若无交点,则没有公共点,此时的x =2不在y =f(x)的定义域内.]6.D [∵f(x)为奇函数,∴f(x)=-f(-x),∴f (x )-f (-x )x =2f (x )x<0, 即⎩⎪⎨⎪⎧ f (x )<0,x>0,或⎩⎪⎨⎪⎧ f (x )>0,x<0. 因为f(x)是奇函数且在(0,+∞)上是增函数,故f(x)在(-∞,0)上是增函数.由f(1)=0知f(-1)=0,∴⎩⎪⎨⎪⎧ f (x )<0,x>0,可化为⎩⎪⎨⎪⎧ f (x )<f (1),x>0, ∴0<x<1;⎩⎪⎨⎪⎧f (x )>0,x<0,可化为⎩⎪⎨⎪⎧ f (x )>f (-1),x<0, ∴-1<x<0.]7.B8.C [∵x =-2<0,∴f(-2)=(-2)2=4,又4>0,∴f(f(-2))=f(4)=4.]9.C [由已知对任意x ∈(0,+∞),f(x)=aφ(x)+bg(x)+2≤5.对任意x ∈(-∞,0),则-x ∈(0,+∞),且φ(x),g(x)都是奇函数,有f(-x)=aφ(-x)+bg(-x)+2≤5.即-aφ(x)-bg(x)+2≤5,∴aφ(x)+bg(x)≥-3.∴f(x)=aφ(x)+bg(x)+2≥-3+2=-1.]10.A [由已知x =2是f(x)的对称轴且f(x)开口向上,∴f(1)=f(3)且当x>2时,f(x)为增函数,∴f(2)<f(1)<f(4).]11.C [由1-x 2≠0,得x ≠±1,定义域关于原点对称,f(-x)=1+(-x )21-(-x )2=1+x 21-x 2=f(x), ∴f(x)是偶函数,∴f(1x )=1+1x 21-1x 2=x 2+1x 2-1=-f(x).] 12.C [由题意可知:-x 2<x 1<0,又f(x)在(-∞,0)上为减函数,∴f(-x 2)>f(x 1),又f(x)是R 上的偶函数,∴f (-x 2)=f (x 2),∴f (x 2)>f (x 1).]13.[-1,2)∪(2,+∞)解析 由题意知⎩⎪⎨⎪⎧ x +1≥02-x ≠0, ∴x ≥-1且x ≠2.14.f (x )=⎩⎪⎨⎪⎧2,x >0,x 2+4x +2,x ≤0 解析 由题意,得⎩⎪⎨⎪⎧ 16-4b +c =c 4-2b +c =-2⇒⎩⎪⎨⎪⎧ b =4,c =2,∴f (x )=⎩⎪⎨⎪⎧2,x >0,x 2+4x +2,x ≤0. 15.a ≥5或a ≤-3解析 由f (x )的对称轴为x =1-a ,∴1-a ≤-4或1-a ≥4解得a ≥5或a ≤-3.16.x 1解析 由已知f (x )+g (x )=x +1,①∴f (-x )+g (-x )=-x +1,即-f (x )+g (x )=-x +1.②由①-②,得f (x )=x ,由①+②,得g (x )=1.17.解 (1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.∵∁U A ={x |x <2或x >8},∴(∁U A )∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,∴a <8.18.解 (1)设存在实数a ,使得对任意的实数b ,都有A ⊆B ,则当且仅当1、2都是A 中的元素.∵A ={a +4,a -4},∴⎩⎪⎨⎪⎧a +4=2a -4=1, 这都不可能,∴这样的实数a 不存在.(2)因为A ⊆B 成立,于是有⎩⎪⎨⎪⎧ a -4=1a +4=b 或⎩⎪⎨⎪⎧ a -4=2a +4=b 或⎩⎪⎨⎪⎧ a -4=b a +4=1或⎩⎪⎨⎪⎧ a -4=b a +4=2, 解得⎩⎪⎨⎪⎧ a =5b =9或⎩⎪⎨⎪⎧ a =6b =10或⎩⎪⎨⎪⎧ a =-3b =-7或⎩⎪⎨⎪⎧a =-2b =-6. ∴实数对为(5,9)、(6,10)、(-3,-7)、(-2,-6).19.解 (1)已知f (x )=ax 2+bx .由f (2)=0,得4a +2b =0,即2a +b =0.①方程f (x )=x ,即ax 2+bx =x ,即ax 2+(b -1)x =0有两个相等实根,且a ≠0,∴b -1=0,∴b =1,代入①得a =-12. ∴f (x )=-12x 2+x . (2)由(1)知f (x )=-12(x -1)2+12. 显然函数f (x )在[1,2]上是减函数,∴x =1时,y max =12,x =2时,y min =0.∴x ∈[1,2]时,函数的值域是[0,12]. (3)∵F (x )=f (x )-f (-x )=(-12x 2+x )-⎣⎡⎦⎤-12(-x )2+(-x ) =2x ,∴F (x )是奇函数.证明如下:∵F (-x )=2(-x )=-2x =-F (x ),∴F (x )=2x 是奇函数.20.解 ∵f (x )=4(x -a 2)2-2a +2, ①当a 2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数. ∴f (x )min =f (0)=a 2-2a +2.由a 2-2a +2=3,得a =1±2.∵a ≤0,∴a =1-2.②当0<a 2<2,即0<a <4时, f (x )min =f (a 2)=-2a +2. 由-2a +2=3,得a =-12∉(0,4),舍去. ③当a 2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数, f (x )min =f (2)=a 2-10a +18.由a 2-10a +18=3,得a =5±10.∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10.21.解 (1)当0≤x ≤100时,y =0.57x ;当x >100时,y =0.5×(x -100)+0.57×100=0.5x -50+57=0.5x +7. ∴所求函数式为y =⎩⎪⎨⎪⎧ 0.57x (0≤x ≤100),0.5x +7 (x >100). (2)据题意,一月份:0.5x +7=76,∴x =138(度),二月份:0.5x +7=63,∴x =112(度),三月份:0.57x =45.6,∴x =80(度).所以第一季度共用电:138+112+80=330(度).答 小明家第一季度共用电330度.22.解 (1)由题意可知⎩⎪⎨⎪⎧-2<x -1<2,-2<3-2x <2, ∴⎩⎪⎨⎪⎧-1<x <3,12<x <52. 解得12<x <52. 故函数g (x )的定义域为⎝⎛⎭⎫12,52.(2)由g (x )≤0,得f (x -1)+f (3-2x )≤0,∴f (x -1)≤-f (3-2x ).∵f (x )为奇函数,∴f (x -1)≤f (2x -3).而f (x )在(-2,2)上单调递减,∴⎩⎪⎨⎪⎧x -1≥2x -3,12<x <52. 解得12<x ≤2. ∴g (x )≤0的解集为⎝⎛⎦⎤12,2.。

高一数学第1章 集合与常用逻辑用语 章末测试(提升)(解析版)

高一数学第1章 集合与常用逻辑用语 章末测试(提升)(解析版)

第1章 集合与常用逻辑用语 章末测试(提升)第I 卷(选择题)一、单选题(每题5分,8题共40分)1.(2022·湖南岳阳·模拟预测)已知集合A ={0,1,2,3,4},B ={x |x >m },若()RA B 有三个元素,则实数m 的取值范围是( ) A .[3,4) B .[1,2)C .[2,3)D .(2,3]【答案】C【解析】根据题意则A={0,1,2,3,4},B ={x |x >m },{}R B x x m =≤, 若()RAB 有三个元素,则有23m ≤<,即实数m 的取值范围是[2,3);故选:C2.(2022·广东茂名)设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集个数有 A .2 B .3 C .4 D .8【答案】D【解析】{}2|8150{3,5}A x x x =-+==,因为A B B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D.3.(2022·浙江宁波)已知a ,b 为实数,则“2a b >”是a b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A【解析】因为2a b >,则20a b >≥a b b >≥,即由2a b >a b >, 取4,3a b ==-a b >,而2a b <a b >不可推出2a b >, 所以“2a b >”是a b >”的充分不必要条件,故A 对,B,C,D 错,故选:A.4.(2022·陕西汉中)设集合M={x |x <4},集合2{|20}N x x x =-<,则下列关系中正确的是( ) A .M ∪N=M B .M ∪∁RN=M C .N ∪∁RM=R D .M ∩N=M【答案】A【解析】集合{|4}M x x =<,集合2{|20}{|02}N x x x x x =-<=<<,则M N M ⋃=,A 正确;{|0R N x x =≤或2}x ≥,∪R M N R M ⋃=≠,B 错误;{|4}R M x x =≥,∪{|02R N M x x ⋃=<<或4}x R ≥≠,C 错误;{|02}M N x x M ⋂=<<≠,D 错误,故选A.5.(2022·江苏)已知集合{}22(,)4A x y x y =+=,(){},34B x y y x ==+,则A B 中元素的个数为( )A .0B .1C .2D .3【答案】B【解析】集合{}22(,)4A x y x y =+=,{}(,)34B x y y x ==+,把34y x =+代入224x y +=,得22330x x ++=,即3x =-有唯一解,故集合A B 中元素的个数为1. 故选:B6.(2022·全国·模拟预测)已知集合()()2,R P Q ⋃=-+∞,()2,1P Q ⋂=-,则Q =( ) A .()2,-+∞ B .(),1-∞C .(],2-∞-D .[)1,+∞【答案】B【解析】根据下面的Venn 图:I 区表示()PQ R;∪区表示P Q ; ∪区表示()R Q P ⋂; ∪区表示()RP Q ⋃.由题,集合()R P Q ⋃对应于I 区,∪区,∪区的并集,所以∪区对应(],2-∞-,从而Q 对应∪区,∪区的并集,故(),1Q =-∞. 故选:B7.(2022·全国·模拟预测)如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂ B .()I A C B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B【解析】如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4. 故选:B8.(2021·全国·高一专题练习)若非空实数集X 中存在最大元素M 和最小元素m ,则记()X M m ∆=-.下列命题中正确的是( )A .已知{1,1}X =-,{0,}Y b =,且()()X Y ∆=∆,则2b =B .已知[,2]X a a =+,{}2|,Y y y x x X ==∈,则存在实数a ,使得()1Y ∆<C .已知{|()(),[1,1]}X x f x g x x =>∈-,若()2X ∆=,则对任意[1,1]x ∈-,都有()()f x g x ≥D .已知[,2]X a a =+,[,3]Y b b =+,则对任意的实数a ,总存在实数b ,使得()3X Y ∆⋃≤ 【答案】D【解析】对于A :由{1,1}X =-,则()()11=2X ∆=--;{0,}Y b =,则()0=2Y b ∆=-,解得:2b =±,故A 错误;对于B :由[,2]X a a =+,则()2=2X a a ∆=+-;{}2|,Y y y x x X ==∈,则max min ()Y y y ∆=-,∪当2a ≤-时,2yx 在[],2a a +上单减,所以()22max min ()=2441Y y y a a a ∆=--+=--<,解得:54a >-,又2a ≤-,所以a 不存在; ∪当21a -<≤-时,2yx 在[,0]a 上单减,在[0,2]a +上单增,且()222a a >+所以22max min ()=01Y y y a a ∆=--=<,解得:11a -<<,又21a -<≤-,所以a 不存在;∪当10a -<≤时,2yx 在[,0]a 上单减,在[0,2]a +上单增,且()222a a <+所以()()22max min ()=2021Y y y a a ∆=-+-=+<,解得:31a -<<-,又10a -<≤,所以a 不存在;∪当0a >时,2yx 在[],2a a +上单增,所以()22max min ()=2441Y y y a a a ∆=-+-=+<,解得:34a <-,又0a >,所以a 不存在;综上所述:不存在实数a ,使得()1Y ∆<. 故B 错误;对于C :∪{|()(),[1,1]}X x f x g x x =>∈-,而()2X ∆=,则M =1,N =-1,但对任意[1,1]x ∈-,都有()()f x g x ≥,不一定成立;对于D :∪[,2]X a a =+,∪()2X ∆=,由[,3]Y b b =+得()=3Y ∆,所以则对任意的实数a ,总存在实数b ,使得()3X Y ∆⋃≤,故D 成立. 故选:D二、多选题(每题至少有两个选项为正确答案,少选且正确得2分,每题5分。

最新人教A版高中数学必修一第一章集合与常用逻辑用语质量检测试卷及解析

最新人教A版高中数学必修一第一章集合与常用逻辑用语质量检测试卷及解析

章末质量检测(一) 集合与常用逻辑用语考试时间:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={-1,0,3},B ={0,2}, 那么A ∪B 等于( )A .{-1,0,2,3}B .{-1,0,2}C .{0,2,3}D .{0,2}2.命题:“∃x ∈R ,x 2-1>0”的否定为( )A .∃x ∈R ,x 2-1≤0B .∀x ∈R ,x 2-1≤0C .∃x ∈R ,x 2-1<0D .∀x ∈R ,x 2-1<03.已知全集U ={1,2,3,4,5,6},A ={2,3,5},B ={1,3,6},则∁U (A ∩B )=( )A .{}4B .∅C .{}1,2,4,5,6D .{}1,2,3,5,64.“2<x <5”是“3<x <4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知命题p :∀x <2,x 3-8<0,那么¬p 是( )A .∀x ≤2,x 3-8>0B .∃x ≥2,x 3-8≥0C .∀x >2,x 3-8>0D .∃x <2,x 3-8≥06.已知集合U =R ,集合A ={0,1,2,3,4,5},B ={x |x >1},则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{1,2}D .{0,1,2}7.已知a ,b ∈R ,则“a >b ”是“a b>1”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.设A ,B 是两个非空集合,定义A ×B ={x ∈A ∪B 且 }x ∉A ∩B ,已知A ={}x |0≤x ≤2 ,B ={}y |y >1 ,则A ×B =( )A .∅B .{}x |0≤x ≤1 ∪{}x |x >2C .{}x |0≤x ≤1D .{}x |0≤x ≤2二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下面四个说法中错误的是( )A .10以内的质数组成的集合是{2,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,1,2}C .方程x 2-2x +1=0的所有解组成的集合是{1,1}D .0与{0}表示同一个集合10.满足M ⊆{}a 1,a 2,a 3,a 4 ,且M ∩{}a 1,a 2,a 3 ={}a 1,a 2 的集合M 可能是( )A .{}a 1,a 2B .{}a 1,a 2,a 3C .{}a 1,a 2,a 4D .{}a 1,a 2,a 3,a 411.下列说法正确的是( )A .“对任意一个无理数x ,x 2也是无理数”是真命题B .“xy >0”是“x +y >0”的充要条件C .命题“∃x ∈R ,x 2+1=0”的否定是“∀x ∈R ,x 2+1≠0”D .若“1<x <3”的必要不充分条件是“m -2<x <m +2”,则实数m 的取值范围是[1,3]12.给定数集M ,若对于任意a ,b ∈M ,有a +b ∈M ,且a -b ∈M ,则称集合M 为闭集合,则下列说法中不正确的是( )A .集合M ={}-4,-2,0,2,4 为闭集合B .正整数集是闭集合C .集合M ={}n |n =3k ,k ∈Z 为闭集合D .若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.命题“∃x >1,x 2>1”的否定为________.14.已知集合A ={1,a 2},B ={a ,-1},若A ∪B ={-1,a ,1},则a =________.15.已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m },若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.16.已知集合A ={1,3,a },B ={1,a 2-a +1}.若B ⊆A ,则实数a =________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知集合A ={x |-2<x <4},B ={x |-1<x ≤5},U =R .(1)求A ∩B ,A ∪B ;(2)求(∁R A )∩B .18.(本小题满分12分)已知集合A ={x |-1<x <2},B ={x |k <x <2-k }.(1)当k =-1时,求A ∪B ;(2)若A ∩B =B ,求实数k 的取值范围.19.(本小题满分12分)在①B ={x |-1<x <4},②∁R B ={x |x >6},③B ={x |x ≥7}这三个条件中任选一个,补充在下面的问题中.问题:已知集合A ={x |a <x <10-a },________,若A ∩B =∅,求a 的取值范围. 注:如果选择多个条件分别解答,按第一个解答计分.20.(本小题满分12分)在①A ∪B =B ;②“x ∈A ”是“x ∈B ”的充分不必要条件;③A ∩B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合A ={x |a -1≤x ≤a +1},B ={x |-1≤x ≤3}.(1)当a =2时,求A ∪B ;(2)若________,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.21.(本小题满分12分)已知集合M ={}x |-3<x <3 ,集合N ={}x |-m <x <2m ,(1)当m =2时,求M ∩N ;(2)若x ∈M 是x ∈N 的必要不充分条件,求实数m 的取值范围.22.(本小题满分12分)已知集合M ={x |x <-3,或x >5},P ={x |(x -a )·(x -8)≤0}.(1)求M ∩P ={}x |5<x ≤8 的充要条件;(2)求实数a 的一个值,使它成为M ∩P ={}x |5<x ≤8 的一个充分但不必要条件.1.解析:由题意A ∪B ={-1,0,2,3}.故选A.答案:A2.解析:命题:“∃x ∈R ,x 2-1>0”的否定为“∀x ∈R ,x 2-1≤0”,故选B. 答案:B3.解析:因为A ={}2,3,5,B ={}1,3,6,所以A ∩B ={}3,又全集U ={}1,2,3,4,5,6,所以∁U ()A ∩B ={}1,2,4,5,6,故选C.答案:C4.解析:若“3<x <4”,则“2<x <5”是真命题,若“2<x <5”,则“3<x <4”是假命题,所以“2<x <5”是“3<x <4”的必要不充分条件.故选B.答案:B5.解析:命题p :∀x <2,x 3-8<0,则綈p 为:∃x <2,x 3-8≥0,故选D.答案:D6.解析:图中阴影部分表示A ∩(∁U B ),∁U B ={x |x ≤1},∴A ∩(∁U B )={0,1}.故选B.答案:B7.解析:当a =-1,b =-2时,a >b ,但a b =12<1;当a =-2,b =-1时,a b>1,但a <b ;综上,“a >b ”是“a b>1”的既不充分也不必要条件. 故选D.答案:D8.解析:A ={x |0≤x ≤2},B ={y |y >1},∴A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},又A ×B ={ x ∈A ∪B 且 }x ∉A ∩B ,∴A ×B ={x |0≤x ≤1或x >2}.故选B.答案:B9.解析:10以内的质数组成的集合是{2,3,5,7},故A 正确;由集合中元素的无序性知{1,2,3}和{3,1,2}表示同一集合,故B 正确;方程x 2-2x +1=0的所有解组成的集合是{1},故C 错误;由集合的表示方法知0不是集合,故D 错误.故选CD.答案:CD10.解析:∵M ∩{}a 1,a 2,a 3={}a 1,a 2,∴集合M 一定含有元素a 1,a 2,一定不含有a 3,∴M ={a 1,a 2}或M ={a 1,a 2,a 4}.故选AC.答案:AC11.解析:x =2是无理数,x 2=2是有理数,A 错;x =-1,y =-2时,xy >0,但x +y =-3<0,不是充要条件,B 错;命题∃x ∈R ,x 2+1=0的否定是:∀x ∈R ,x 2+1≠0,C 正确;“1<x <3”的必要不充分条件是“m -2<x <m +2”,则⎩⎪⎨⎪⎧m -2≤1m +2≥3,两个等号不同时取得.解得1≤m ≤3.D 正确.故选CD.答案:CD12.解析:A.当集合M ={}-4,-2,0,2,4时,2,4∈M ,而2+4∉M ,所以集合M 不为闭集合.B.设a ,b 是任意的两个正整数,当a <b 时,a -b <0不是正整数,所以正整数集不为闭集合.C.当M ={}n | n =3k ,k ∈Z 时,设a =3k 1,b =3k 2,k 1,k 2∈Z ,则a +b =3()k 1+k 2∈M ,a -b =3()k 1-k 2∈M ,所以集合M 是闭集合.D.设A 1={}n | n =3k ,k ∈Z ,A 2={}n | n =2k ,k ∈Z 由C 可知,集合A 1,A 2为闭集合,2,3∈A 1∪A 2,而2+3∉A 1∪A 2,此时A 1∪A 2不为闭集合.所以说法中不正确的是ABD ,故选ABD.答案:ABD13.解析:因为特称命题的否定为全称命题,则命题“∃x >1,x 2>1”的否定为“∀x >1,x 2≤1”.答案:∀x >1,x 2≤1.14.解析:因为A ={1,a 2},B ={a ,-1},A ∪B ={-1,a,1},所以a =a 2,解得a =0或a =1(舍去,不满足集合元素的互异性).答案:015.解析:由x 2-8x -20≤0得-2≤x ≤10.∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .又∵S ≠∅,如图所示.则⎩⎪⎨⎪⎧ 1-m ≤1+m 1-m ≥-21+m ≤10,∴0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].答案:[0,3]16.解析:∵B ⊆A ,∴a 2-a +1=3或a 2-a +1=a ,由a 2-a +1=3,得a =-1或a =2,符合题意.当a 2-a +1=a 时,得a =1,不符合集合的互异性,故舍去,∴a 的值为-1或2.答案:-1或217.解析:(1)由题意,集合A ={x |-2<x <4},B ={x |-1<x ≤5},所以A ∩B ={x |-1<x <4},A ∪B ={x |-2<x ≤5}.(2)由题意,可得∁R A ={x |x ≤-2或x ≥4},所以(∁R A )∩B ={x |4≤x ≤5}.18.解析:(1)当k =-1时,B ={}x |-1<x <3,则A ∪B ={}x |-1<x <3.(2)∵ A ∩B =B ,则B ⊆A .①当B =∅时,k ≥2-k ,解得k ≥1;②当B ≠∅时,由 B ⊆A 得⎩⎪⎨⎪⎧ k <2-k k ≥-12-k ≤2,即⎩⎪⎨⎪⎧k <1k ≥-1k ≥0,解得0≤k <1. 综上,k ≥0 .19.解析:若A =∅,则10-a ≤a ,解得a ≥5;选①,设A ≠∅,因为A ∩B =∅,所以⎩⎪⎨⎪⎧ a <5a ≥4或10-a ≤-1 解得4≤a <5.所以a 的取值范围是{a |a ≥4}.选②,设A ≠∅,因为∁R B ={x |x >6},所以B ={x ∣x ≤6},因为A ∩B =∅所以⎩⎪⎨⎪⎧a <5a ≥6,解得a ∈∅,故a 的取值范围是{}a |a ≥5.选③,若A ≠∅,因为A ∩B =∅,所以⎩⎪⎨⎪⎧a <510-a ≤7,解得3≤a <5,故a 的取值范围是{a |a ≥3}.20.解析:(1)当a =2时,集合A ={}x |1≤x ≤3,集合B ={}x |-1≤x ≤3,A ∪B ={}x |-1≤x ≤3,(2)若选择①,A ∪B =B ,则A ⊆B ,因为A ={}x |a -1≤x ≤a +1,所以A ≠∅, 又B ={}x |-1≤x ≤3所以⎩⎪⎨⎪⎧a -1≥-1a +1≤3解得:0≤a ≤2所以实数a 的取值范围是{a |0≤a ≤2}.若选择②,“x ∈A ”是“x ∈B ”的充分不必要条件,则集合A 为集合B 的真子集因为A ={}x |a -1≤x ≤a +1,所以A ≠∅, 又B ={}x |-1≤x ≤3所以⎩⎪⎨⎪⎧a -1≥-1a +1≤3,且符号不能同时成立. 解得:0≤a ≤2所以实数a 的取值范围是{a |0≤a ≤2}.若选择③,A ∩B =∅, 又因为A ={}x |a -1≤x ≤a +1,B ={}x |-1≤x ≤3,所以a -1>3或a +1<-1解得:a >4或a <-2所以实数a 的取值范围是{a |a >4或a <-2}.21.解析:(1)当m =2时,N ={}x |-2<x <4所以M ∩N ={}x |-3<x <3∩{}x |-2<x <4={}x |-2<x <3.(2)因为x ∈M 是x ∈N 的必要不充分条件,所以⎩⎪⎨⎪⎧ -m ≥-32m ≤3,且等号不能同时成立, 解得m ≤32,又m >0, 所以实数m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪ 0<m ≤32. 22.解析:(1)由M ∩P ={}x |5<x ≤8,得-3≤a ≤5,因此M ∩P ={}x |5<x ≤8的充要条件是-3≤a ≤5;(2)求实数a 的一个值,使它成为M ∩P ={}x |5<x ≤8的一个充分但不必要条件,就是在集合{}a |-3≤a ≤5中取一个值,如取a =0,此时必有M ∩P ={}x |5<x ≤8;反之,M ∩P ={}x |5<x ≤8未必有a =0,故a =0是M ∩P ={}x |5<x ≤8的一个充分不必要条件.。

高中数学同步讲义必修一——第一章 章末检测试卷一

高中数学同步讲义必修一——第一章 章末检测试卷一

章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)等于()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}考点交并补集的综合问题题点有限集合的交并补运算答案 A解析根据补集的定义可得∁U B={2,5,8},所以A∩(∁U B)={2,5},故选A.2.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图所示的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))等于()A.3 B.2 C.1 D.0考点函数的表示法题点函数的表示法综合答案 B解析 由函数图象可知g (2)=1,由表格可知f (1)=2,故f (g (2))=2. 3.若函数f (2x +1)=x 2-2x ,则f (3)等于( ) A .0 B .1 C .2 D .3 考点 求函数的解析式 题点 换元法求函数解析式 答案 A解析 ∵f (2x +1)=x 2-2x , ∴f (2×2+1)=22-2×2,即f (3)=0.4.函数f (x )=1x -2x 在区间⎝⎛⎦⎤-2,-12上的最小值为( ) A .1 B.72 C .-72 D .-1考点 函数的最值及其几何意义 题点 由函数单调性求最值 答案 D解析 ∵f (x )在⎝⎛⎦⎤-2,-12上为减函数, ∴f (x )min =f ⎝⎛⎭⎫-12=1-12-2×⎝⎛⎭⎫-12=-1. 5.函数y =(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.322考点 函数的最值及其几何意义 题点 二次函数最值 答案 B 解析 因为(3-a )(a +6)=18-3a -a 2=-⎝⎛⎭⎫a +322+814(-6≤a ≤3), 所以当a =-32时,(3-a )(a +6)的值最大,最大值为92.故选B.6.下列函数中,既是奇函数又是增函数的是( ) A .y =x +1 B .y =-x 3 C .y =1xD .y =x |x |考点 单调性与奇偶性的综合应用题点 判断函数的单调性、奇偶性 答案 D7.已知函数f (x )=ax 3+bx (a ≠0)满足f (-3)=3,则f (3)等于( ) A .2 B .-2 C .-3 D .3 考点 函数奇偶性的应用 题点 利用奇偶性求函数值 答案 C解析 ∵f (-x )=a (-x )3+b (-x )=-(ax 3+bx )=-f (x ), ∴f (x )为奇函数,∴f (3)=-f (-3)=-3.8.若函数f (x )=ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2D .0考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 C解析 f (x )=ax +1的图象是一条直线,它在[1,2]上的最大值、最小值必在x =1,2处取到. 故有|f (1)-f (2)|=2,即|a |=2,∴a =±2. 9.若函数f (x )=ax 2+(a -2b )x +a -1是定义在(-a,0)∪(0,2a -2)上的偶函数,则f⎝⎛⎭⎫a 2+b 25等于( )A .1B .3 C.52 D.72考点 函数奇偶性的应用题点 其他已知函数奇偶性求参数值问题 答案 B解析 因为偶函数的定义域关于原点对称,则-a +2a -2=0,解得a =2.又偶函数不含奇次项,所以a -2b =0,即b =1,所以f (x )=2x 2+1.于是f ⎝ ⎛⎭⎪⎫a 2+b 25=f (1)=3. 10.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,x 2-2x ,x ≥0,若f (-a )+f (a )≤0,则实数a 的取值范围是( )A .[-1,1]B .[-2,0]C .[0,2]D .[-2,2] 考点 单调性与奇偶性的综合应用 题点 利用奇偶性、单调性解不等式答案 D解析 方法一 依题意,可得⎩⎪⎨⎪⎧a >0,(-a )2+2(-a )+a 2-2a ≤0或⎩⎨⎧a <0(-a )2-2(-a )+a 2+2a ≤0或⎩⎪⎨⎪⎧a =0,2(02-2×0)≤0,解得-2≤a ≤2.方法二 f (x )是偶函数,其图象如图所示. f (-a )+f (a )=2f (a )≤0,即f (a )≤0. 由图知-2≤a ≤2.11.若f (x )和g (x )都是奇函数,且F (x )=f (x )+g (x )+2在(0,+∞)上有最大值8,则在(-∞,0)上F (x )有( ) A .最小值-8 B .最大值-8 C .最小值-6D .最小值-4考点 函数的单调性、奇偶性、最值的综合应用 题点 利用奇偶函数的性质求最值 答案 D解析 设x ∈(-∞,0),则-x ∈(0,+∞),∴F (-x )=f (-x )+g (-x )+2≤8且存在x 0∈(0,+∞)使F (x 0)=8. 又∵f (x ),g (x )都是奇函数,∴f (-x )+g (-x )=-[f (x )+g (x )]≤6, f (x )+g (x )≥-6,∴F (x )=f (x )+g (x )+2≥-4,且存在x 0∈(-∞,0)使F (x 0)=-4. ∴F (x )在(-∞,0)上有最小值-4. 12.已知函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设F (x )=x 2·f (x ),则F (x )是( )A .奇函数,在(-∞,+∞)上单调递减B .奇函数,在(-∞,+∞)上单调递增C .偶函数,在(-∞,0)上单调递减,在(0,+∞)上单调递增D .偶函数,在(-∞,0)上单调递增,在(0,+∞)上单调递减 考点 单调性与奇偶性的综合应用 题点 判断函数的单调性、奇偶性 答案 B解析 F (x )=⎩⎪⎨⎪⎧x 2,x >0,0,x =0,-x 2,x <0,其图象如图所示.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设f (x )是定义在R 上的奇函数,f (1)=2,且f (x +1)=f (x +6),则f (10)+f (4)=________. 考点 函数奇偶性的应用 题点 利用奇偶性求函数值答案 -2解析 因为f (x +1)=f (x +6),所以f (x )=f (x +5).因为f (x )是R 上的奇函数,所以f (0)=0,则f (10)=f (5)=f (0)=0,f (4)=f (-1)=-f (1)=-2. 所以f (10)+f (4)=-2.14.已知集合A ={1,2},B ={x |x 2+ax +b =0},C ={x |cx +1=0},若A =B ,则a +b =________,若C ⊆A ,则常数c 组成的集合为________. 考点 集合相等的概念 题点 由集合相等求参数的值 答案 -1 ⎩⎨⎧⎭⎬⎫-1,-12,0解析 ∵A =B ,∴1,2为方程x 2+ax +b =0的根,∴⎩⎪⎨⎪⎧1+2=-a ,1×2=b , 即a +b =-1.当c =0时,集合C =∅⊆A ,当c ≠0时,集合C =⎩⎨⎧⎭⎬⎫-1c ,∴-1c =1或-1c =2.解得c =-1或c =-12.∴常数c 组成的集合为⎩⎨⎧⎭⎬⎫0,-1,-12.15.设f (x )=⎩⎪⎨⎪⎧x ,x <a ,x 2,x ≥a ,若f (2)=4,则a 的取值范围为________.考点 分段函数 题点 分段函数求参数值 答案 a ≤2解析 若2∈(-∞,a ),则f (2)=2不合题意. ∴2∈[a ,+∞),∴a ≤2.16.定义在R 上的函数f (x )满足f (1+x )=f (1-x ),且x ≥1时,f (x )=x +1,则f (x )的解析式为________.考点 分段函数 题点 求分段函数解析式答案 f (x )=⎩⎨⎧x +1,x ≥1,2-x +1,x <1解析 设x <1,则2-x >1,且f (x )=f ()(x -1)+1=f (1-(x -1))=f (2-x )=2-x +1.∴f (x )=⎩⎪⎨⎪⎧x +1,x ≥1,2-x +1,x <1.三、解答题(本大题共6小题,共70分)17.(10分)设集合A ={x |x +1≤0或x -4≥0},B ={x |2a ≤x ≤a +2,x ∈R }. (1)若A ∩B ≠∅,求实数a 的取值范围; (2)若A ∩B =B ,求实数a 的取值范围. 考点 交集的概念及运算题点 由交集的运算结果求参数的值 解 ∵A ={x |x +1≤0或x -4≥0}, ∴A ={x |x ≤-1或x ≥4}. (1)∵A ∩B ≠∅,∴⎩⎪⎨⎪⎧ 2a ≤a +2,a +2≥4或⎩⎪⎨⎪⎧2a ≤a +2,2a ≤-1, ∴⎩⎨⎧a ≤2,a ≥2或⎩⎪⎨⎪⎧a ≤2,a ≤-12,∴a =2或a ≤-12.∴a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪a =2或a ≤-12. (2)由A ∩B =B 知,B ⊆A ,有三种情况:①⎩⎪⎨⎪⎧2a ≤a +2,a +2≤-1,解得a ≤-3;②⎩⎪⎨⎪⎧2a ≤a +2,2a ≥4,解得a =2;③B =∅,则2a >a +2,解得a >2. ∴a 的取值范围为{a |a ≤-3或a ≥2}.18.(12分)如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成.(1)求f (x )的解析式; (2)写出f (x )的值域. 考点 求函数的解析式 题点 待定系数法求函数解析式解 (1)当-1≤x ≤0时,设解析式为y =kx +b (k ≠0).则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1.∴y =x +1(-1≤x ≤0).当x >0时,设解析式为y =a (x -2)2-1, ∵图象过点(4,0),∴0=a (4-2)2-1,得a =14.∴f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0.(2)当-1≤x ≤0时,y ∈[0,1]. 当x >0时,y ∈[-1,+∞).∴函数值域为[0,1]∪[-1,+∞)=[-1,+∞). 19.(12分)已知函数f (x )=2x +1x +1.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[1,4]上的最大值与最小值. 考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 解 (1)函数f (x )在[1,+∞)上是增函数.证明如下: 任取x 1,x 2∈[1,+∞),且x 1<x 2, f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1).∵x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在[1,+∞)上是增函数. (2)由(1)知函数f (x )在[1,4]上是增函数, 故最大值f (4)=95,最小值f (1)=32.20.(12分)某公司计划投资A ,B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图1,B 产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).(1)分别将A ,B 两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A ,B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元? 考点 求函数的解析式 题点 实际问题的函数解析式解 (1)设投资x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元, 依题意可设f (x )=k 1x ,g (x )=k 2x . 由图1,得f (1)=0.2,即k 1=0.2=15.由图2,得g (4)=1.6,即k 2×4=1.6,∴k 2=45.故f (x )=15x (x ≥0),g (x )=45x (x ≥0).(2)设B 产品投入x 万元,则A 产品投入10-x 万元,设企业利润为y 万元, 由(1)得y =f (10-x )+g (x )=-15x +45x +2(0≤x ≤10).∵y =-15x +45x +2=-15(x -2)2+145,0≤x ≤10.∴当x =2,即x =4时,y max =145=2.8. 因此当A 产品投入6万元,B 产品投入4万元时,该企业获得最大利润为2.8万元. 21.(12分)(2017·马鞍山检测)对于区间[a ,b ]和函数y =f (x ),若同时满足: ①f (x )在[a ,b ]上是单调函数;②函数y =f (x ),x ∈[a ,b ]的值域是[a ,b ],则称区间[a ,b ]为函数f (x )的“不变”区间;(1)求函数y =x 2(x ≥0)的所有“不变”区间;(2)函数y =x 2+m (x ≥0)是否存在“不变”区间?若存在,求出m 的取值范围;若不存在,说明理由.考点 函数单调性的应用题点 函数单调性的综合应用解 (1)易知函数y =x 2(x ≥0)单调递增,故有⎩⎪⎨⎪⎧ a 2=a ,b 2=b ,解得⎩⎪⎨⎪⎧ a =0或a =1,b =0或b =1, 又a <b ,所以⎩⎪⎨⎪⎧ a =0,b =1,所以函数y =x 2(x ≥0)的“不变”区间为[0,1]. (2)易知函数y =x 2+m (x ≥0)单调递增,若函数y =x 2+m 存在“不变”区间,则有:b >a ≥0,所以⎩⎪⎨⎪⎧a 2+m =a ,b 2+m =b , 消去m 得a 2-b 2=a -b ,整理得(a -b )(a +b -1)=0.因为a <b ,所以a +b -1=0,即b =1-a .又⎩⎪⎨⎪⎧a ≥0,a <1-a ,所以0≤a <12. 因为m =-a 2+a=-⎝⎛⎭⎫a -122+14⎝⎛⎭⎫0≤a <12, 所以0≤m <14. 综上,当0≤m <14时,函数y =x 2+m (x ≥0)存在“不变”区间. 22.(12分)已知函数y =x +t x有如下性质: 如果常数t >0,那么该函数在(0,t ]上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域; (2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.考点 函数的单调性、奇偶性、最值的综合应用题点 奇偶性、单调性及最值的综合问题解 (1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8, 设u =2x +1,x ∈[0,1],则1≤u ≤3,则y =u +4u-8,u ∈[1,3]. 由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以单调递减区间为⎣⎡⎦⎤0,12; 当2≤u ≤3,即12≤x ≤1时,f (x )单调递增, 所以单调递增区间为⎣⎡⎦⎤12,1;由f (0)=-3,f ⎝⎛⎭⎫12=-4,f (1)=-113,得f (x )的值域为[-4,-3]. (2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意得,f (x )的值域是g (x )的值域的子集,所以⎩⎪⎨⎪⎧ -1-2a ≤-4,-2a ≥-3,所以a =32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末检测
一、选择题
1.设P ={x|x<4},Q ={x|x 2<4},则 ( B ) A .P ⊆Q B .Q ⊆P C .P ⊆∁R Q D .Q ⊆∁R P 2.已知集合M ={1,2},则集合M 的子集个数为 ( D ) A .1 B .2 C .3 D .4 3.符合条件{a}ØP ⊆{a ,b ,c}的集合P 的个数是 ( B ) A .2 B .3 C .4 D .5 4.若集合A ={x||x|≤1,x ∈R},B ={y|y =x 2,x ∈R},则A∩B 等于
(
C )
A .{x|-1≤x≤1}
B .{x|x≥0}
C .{x |0≤x≤1}
D .∅
5.已知集合A 中有且仅有两个元素2-a 和a 2
,且a ∈R ,则A 中一定不含元素 ( D ) A .0和1 B .1和-2 C .-1和2 D .1和4
6.设全集I ={a ,b ,c ,d ,e},集合M ={a ,b ,c},N ={b ,d ,e},那么∁I M∩∁I N 等于 ( A ) A .∅ B .{d} C .{b ,e} D .{a ,c}
7.已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R|x≥3},下图中阴影部分所表示的集合为 ( B ) A .{1} B .{1,2} C .{1,2,3} D .{0,1,2}
8.有下列说法:
①0与{0}表示同一个集合;
②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};
③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};
④集合{x|4<x<5}是有限集. 其中正确的说法是 ( C ) A .只有①和④ B .只有②和③ C .只有② D .以上四种说法都不对
9.已知全集I ={1,2,3,4,5,6,7,8},集合M ={3,4,5},集合N ={1,3,6},则集合{2,7,8}是 ( D ) A .M ∪N B .M∩N C .∁I M ∪∁I N D .∁I M∩∁I N
10.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N∩∁I M =∅,则M ∪N 等于 ( A ) A .M B .N C .I D .∅
11.已知集合A ={x|x<3或x≥7},B ={x|x<a}.若∁R A∩B≠∅,则a 的取值范围为 ( A ) A .a>3 B .a≥3 C .a≥7 D .a>7
12.已知集合A ,B 均为集合U ={1,3,5,7,9}的子集,若A∩B ={1,3},∁U A∩B ={5},则集合B 等于 ( D ) A .{1,3} B .{3,5} C .{1,5} D .{1,3,5} 二、填空题
13.已知P ={x|x =a 2+1,a ∈R},Q ={x|x =a 2-4a +5,a ∈R},则P 与Q 的关系为_ P =Q _. 14.已知全集U ={3,7,a 2-2a -3},A ={7,|a -7|},∁U A ={5},则a =__4__. 15.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”则A 中孤立元素的个数为_1_.
16.用描述法表示图中阴影部分的点(含边界)的坐标的集合为_{(x ,y)|-1≤x≤2,-1
2
≤y≤1,且xy≥0}_.
三、解答题
17.(12分)已知全集U =R ,集合M ={x|x ≤3},N ={x|x<1},求M ∪N ,∁U M∩N ,∁U M ∪∁U N.
18.A ={x|-2<x <-1或x >1},B ={x|a≤x <b},A ∪B ={x|x >-2},A∩B ={x|1<x <3},求实数a ,b 的值. 解:∵A∩B ={x|1<x <3},
∴b =3,又A ∪B ={x|x >-2},
∴-2<a ≤-1,又A∩B ={x|1<x <3}, ∴-1≤a <1,∴a =-1.
19.已知非空集合M⊆{1,2,3,4,5},且当a∈M时,也有6-a∈M,试求所有这样的集合M.
解:由a∈M,且6-a∈M,知当1∈M时,必有5∈M;
当2∈M时,必有4∈M;又3=6-3,
∴集合M可以是{3}、{1,5}、{2,4}、{1,3,5}、{2,3,4}、{1,2,4,5}和{1,2,3,4,5}.
20.设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A∪B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},
∴3∈B,
∴32+3c+15=0,
∴c=-8.
由方程x2-8x+15=0解得x=3或x=5,
∴B={3,5}.
由A⊆(A∪B)={3,5}知,
3∈A,5 A
(否则5∈A∩B,与A∩B={3}矛盾),
故必有A={3},
∴方程x2+ax+b=0有两相同的根3,
由根与系数的关系得3+3=-a,3×3=b,
即a=-6,b=9,c=-8.
21.设A={-4,2a-1,a2},B={a-5,1-a,9},已知A∩B={9},求A∪B.
解:∵A∩B={9},
∴9∈A,
所以a2=9或2a-1=9,解得a=±3或a=5.
当a=3时,A={9,5,-4},B={-2,-2,9},B中元素违背了互异性,舍去.
当a=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,
故A∪B={-7,-4,-8,4,9}.
当a=5时,A={25,9,-4},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去.
综上所述,A∪B={-7,-4,-8,4,9}.
22.若集合A={x|x2-2x-8<0},B={x|x-m<0}.
(1)若m=3,全集U=A∪B,试求A∩∁U B;
(2)若A∩B=∅,求实数m的取值范围;
(3)若A∩B=A,求实数m的取值范围.
解:
(1)由x2-2x-8<0,得-2<x<4,
∴A={x|-2<x<4}.
当m=3时,由x-m<0,得x<3,
∴B={x|x<3},
∴U=A∪B={x|x<4},∁U B={x|3≤x<4}.
∴A∩∁U B={x|3≤x<4}.
(2)∵A={x|-2<x<4},B={x|x<m},
又A∩B=∅,
∴m≤-2.
(3)∵A={x|-2<x<4},B={x|x<m},
由A∩B=A,得A⊆B,∴m≥4.。

相关文档
最新文档