八年级数学二次根式大小比较练习题

合集下载

八年级二次根式练习题及答案

八年级二次根式练习题及答案

一、单选题1、当x≥3时,化简二次根式√(3−x)2的结果是( ) A. 3-x B. 3+x C. x-3 D. -3-x参考答案: C 【思路分析】考查含字母的根式化简。

本考点主要是化简含字母的二次根式,熟练掌握二次根式的性质是解决问题的关键。

【解题过程】 解:∵x≥3, ∴3-x≤0,∴√(3−x)2=|3-x|=x-3。

故选C 。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2、比较二次根式的大小:2−√3( )√3−√2。

A. < B. > C. = D. ≤参考答案: B 【思路分析】先将两数分母有理化,而后再利用分子进行比较,都为正时分子大的数大,都为负时分子大的数小,正数永远大于负数。

【解题过程】解:2−√3=2+√3>0,√3−√2=√3+√2>0,∴2+√3>√3+√2∴12−√3>1√3−√2故选B 。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、比较二次根式的大小:√15−√14( )√13−√12 A. < B. >C. =D. ≤参考答案: A 【思路分析】此题考查运用分子有理化法对二次根式大小的比较,运用分子有理化法时需注意:都是正数时分母大的,原二次根式反而小。

【解题过程】先将两数分子有理化,然后比较分母。

都是正数时分母大的,原二次根式小。

解:√15−√14=√15+√14>0, √13−√12=√13+√12>0, ∵√15+√14>√13+√12, ∴√15+√14<√13+√12 ∴√15−√14<√13−√12 故选A 。

八年级数学下册《二次根式》练习题带答案

八年级数学下册《二次根式》练习题带答案

八年级数学下册《二次根式》练习题班级:__________ 座号:__________ 姓名:__________________ 成绩:___________一、选择题(每小题4分,共24分)1.二次根式1-a 中,字母a的取值范围是…………………………………………()A.a<1 B.a≤1 C.a≥1 D.a>12.下列与 2 是同类二次根式的是……………………………………………………()A. 3 B.12 C.8 D. 2 -13.下列计算正确的是……………………………………………………………………()A. 2 × 3 = 6 B. 2 + 3 = 5 C.8 =4 2 D. 4 - 2 = 24.若(3-b)2=3-b,则…………………………………………………………………()A.b>3 B.b<3 C.b≥3 D.b≤35.下列根式中不是最简二次根式的是…………………………………………………()A.10 B.8 C. 6 D. 26.已知12-n 是正整数,则实数n的最大值为………………………………………()A.12 B.11 C.8 D.3二、填空题(每题3分,共36分)7.使式子4-x 无意义的x取值的是______________;8.计算:(6)2=____________;9.化简:81×49 =______________;10.化简:153=_________;11.比较大小:-32___________-2 3 ;12.写出一个无理数,使它与32的积为有理数_____________;13.若x-23-x=x-23-x成立,则x满足________________;14.已知一个正数的平方根是2x-6和x+3 ,则这个数是___________;15.如果最简二次根式3a-3 与7-2a 是同类二次根式,那么a的值是________;16.已知a、b为两个连续整数,且a<7<b,则a+b=_________;17.把二次根式313中根号外的因数移到根号内,结果是______________;18.观察并分析右边的数据,寻找规律:0,6,3,23,15,32,…,那么第10个数据应是_____________。

初中数学《二次根式的大小比较》专题训练(含答案)

初中数学《二次根式的大小比较》专题训练(含答案)

二次根式的大小比较一、选择题1.设22a b c====,则a,b,c的大小关系是()A a b c>> B a c b>> C c b a>> D b c a>>二、填空题2.比较大小:3.实数-3-的大小关系是.(用“>”表示)4.-5.5-的整数部分是.6.若4m=,则估计m的取值范围.的整数部分是.8.如下图,在数轴上A,B两点之间表示整数的点有个.三、解答题9.比较大小(1)1+(2)133-10.比较大小(1(211.比较312.二次根式的大小比较答案解析一 、选择题1.A ;1a ===,同理1122bc ==220>>,所以1110,c b a c b a>>><<.二 、填空题 2.>3.3->-.4.直接比较大小,无从入手,所以可以通过做差的方法比较大小.0=<,5.2;253,32,53552,253,<<∴-<-∴-<-∴<-∴整数部分为2.6.243<<;67,243<∴<<7.156253,32333,536,,44<<∴+<<+∴<+∴<<∴整数部分为1.8.23<,45<<,∴有2个.三 、解答题9.比较大小可以左右平方,比较平方数的大小,对于两个正数,平方大的就大;对于两个负数,平方大的反而小.(1)2(13=+23=,3223+>,1∴>(2)2(10=,221101001(3)()113399-===,110119<,133-.10.(1=====65+<,<(2=,,2011+∴(1<;(211.采用平方法比较大小.22=+=+(31515==+<+6615153=,2011+>。

【初二数学】二次根式练习题(共4页)

【初二数学】二次根式练习题(共4页)

二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( ) A .m≤3 B .m <3 C .m≥3 D .m >32.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个 3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个5.化简二次根式352⨯-)(得 ( ) A .35- B .35 C .35± D .306.对于二次根式92+x ,以下说法不正确的是 ( ) A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是3 7.把aba 123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b 2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:ab ab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.14.=⋅baa b 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216acb =_________________. 17.当a=3时,则=+215a ___________.18.若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -. 20.(12分)计算:⑴))((36163--⋅-; ⑵63312⋅⋅; ⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-. 21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..;⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式:⑴27121352722-; ⑵ba c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.参考答案: 一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A . 二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3. 三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角。

八年级数学下册第12章二次根式:比较二次根式值大小的八种方法习题pptx课件新版苏科版

八年级数学下册第12章二次根式:比较二次根式值大小的八种方法习题pptx课件新版苏科版

(2)利用上面的规律,计算:
21+1+
1 3+
+ 2
1 4+
3+…+
1 2 025+
; 2 024
【解】原式= (
2+12)-( 12-1)+(
3+
3- 2)(
2 3-
+ 2)
(
4+
4- 3)(
3 4-
3)+…+(
2 025+
2 025- 2 024)(
2 024 2 025-
2 024)
=( 2- 1)+( 3- 2)+( 4- 3)+…+( 2 025- 2 024)
∴1x>1y>0.∴x<y.
7 [2023·苏州中学月考]观察下列一组等式,然后解答问题: ( 2+1)( 2-1)=1, ( 3+ 2)( 3- 2)=1, ( 4+ 3)( 4- 3)=1, ( 5+ 4)( 5- 4)=1,….
(1)观察以上规律,请写出第n个等式: ___(__n_+__1_+____n_)(__n__+__1_-___n_)_=__1___(n为正整数);
14+
13>0,∴
1 15+
14<
1 14+
, 13
∴ 15- 14< 14- 13.
6 已知 x= n+3- n+1,y= n+2- n,比较 x,y 的 大小:_____x_<__y____.
【点拨】
1x=
1 n+3-
n+1=
n+3+ 2
n+1,1y=
1 n+2-
= n
n+2+ 2
n .
∵ n+3+ n+1> n+2+ n>0,
与 2 99的大小.
【解】 100+ 98-2 99=( 100- 99)-( 99- 98)

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

初二数学二次根式试题

初二数学二次根式试题

初二数学二次根式试题1.规定用符号[m]表示一个实数m的整数部分. 例如:[]="0" ,[3.14]="3" ,按此规定[]的值为_________ .【答案】4.【解析】∵9<10<16,∴. ∴.试题解析:【考点】1.新定义;2.估计无理数的大小.2.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C.【解析】∵式子有意义,∴.根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故P(a,b 位于第三象限.故选C.【考点】1.二次根式的性质;2.平面直角坐标系中各象限点的特征.3.计算(6分)[(1)(2)【答案】(1);(2).【解析】(1)按照运算顺序计算即可.(2)应用平方差公式计算即可.(1).(2)【考点】二次根式计算.4.下列各根式、、、、其中最简二次根式的个数有。

A. 1B.2C.3D.4【答案】B.【解析】∵、、、、∴、有二个最简二次根式.故选B.考点:5.的平方根是,的算术平方根是 .【答案】3【解析】;,所以的算术平方根是3.6.计算:【答案】.【解析】原式=.【考点】实数的运算.7.在实数,,,,,,,7.1010010001中,无理数有()A.1个B.2个C.3个D.4个【答案】C【解析】根据无理数的概念,无限不循环小数,开方开不尽的数是无理数,在实数,,,,,,,7.1010010001中,,是无理数【考点】无理数点评:本题考查无理数,解答本题的关键是掌握无理数的概念,会以此来判断一个数是否是无理数8.若,则的值等于()A.B.C.D.或【答案】A【解析】由可得,再整体代入求值即可.由可得则故选A.【考点】代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.9.已知最简二次根式和的和是一个二次根式,那么b=_ __,它们的和是____。

八年级数学下册12.1二次根式二次根式大小比较的常用方法素材新版苏科版

八年级数学下册12.1二次根式二次根式大小比较的常用方法素材新版苏科版

八年级数学下册12.1二次根式二次根式大小比较的常
用方法素材新版苏科版
二次根式的化简具有极强的技巧性,而在不求近似值的情况下比较两个无理数(即二次根式)的大小同样具有很强的技巧性,对初中生来说是一个难点,但掌握一些常见的方法对它的学习有很大的帮助和促进作用.
1.根式变形法.
【例1】比较35与53的大小.
【解】将两个二次根式作变形得35=5×32=45,52×3=53=75;
∵75>45;∴75>45,即35<53.
【解后评注】本解法依据是:当a>0,b>0时,①a>b,则a>b;
②若a<b,则a<b.
2.平方法.
【例2】比较32与23的大小.
【解】(32)2=18,(23)2=12.
∵18>12;∴32>23.
【解后评注】本法的依据是:当a>0,b>0 时,如果a2>b2,则a>b,如果a2<b2,则a <b.
另外根式的无理数大小的比较往往可采用:分母有理化法、分子有理化法、等式的基本性质法、作差比较法、求商比较法等多种方法,来求解.有时还需各种方法配合使用,其中根式变形法,平方法是最基本的,对于具体的问题要作具体分析,以求用最佳的方法解出正确的结果.
1。

【解析】专题二 二次根式大小比较

【解析】专题二 二次根式大小比较

5 1
4
4
7 3
4
4
5 1 7 3
9. 已知 M 101 100 , N 99 98 ,则 M 与 N 的大小关系是(

A. M N
B. M N
【考点】根式的大小比较
C. M N
D. M ≤ N
【解析】∵ M 101 100
1
, N 99 98 1
bc
ac
ab
∴ abc 1 abc 1 abc 1
bc
ac
ab
∴ ab ac bc ∴ a b c ,选 B.
王文君老师
保持优秀是种习惯
不进则退
18. 正实数 a , b , c , d 满足 a b c d 1 ,
设 p 3a 1 3b 1 3c 1 3d 1 ,则(
101 100
99 98
∴ M N ,选 B .
10. 已知 a 2 1, b 2 2 6 , c 6 2 ,那么 a , b , c 的大小关系是____.
A. a b c B. b a c 【考点】根式的大小比较
C. c b a D. c b a
⑵ 2 3 2 与 1 3 20
2
【考点】根式的大小比较
【解析】⑴ 23 7 3 23 7 3 56 , 33 2 3 33 2 3 54 ,因为 3 56 3 54 ,所以 2 3 7 33 2
⑵ 2 3 2 3 16 , 1 3 20 3 5 ,因为 3 16 3 5 ,所以 2 3 2 1 3 20
1

1

二次根式比较大小基础题

二次根式比较大小基础题

二次根式比较大小基础题哎呀,今天咱们聊聊这个二次根式的比较,听起来可能有点枯燥,但其实它的乐趣无穷,就像挖掘宝藏一样。

你知道的,生活中总有些数字让人琢磨不透,特别是那些带根号的家伙。

比如说,根号2和根号3,你觉得哪个大?一开始看着这俩,真让人抓耳挠腮。

根号2,嘿,那可是个常见的角色,通常在各种计算里都能见到。

而根号3,哇,那可是个稍微不那么常见的选手,听着名字就有点神秘。

好吧,咱们先来聊聊根号2。

它就像个不拘小节的朋友,随便走到哪儿都能引起关注。

大约1.414的样子,差不多就是个1.4的水准,基本上在我们生活中经常能见到,像是很多建筑的比例啊,或者设计的灵感,简直就是一个神奇的数字。

而根号3呢,唉,稍微有点腼腆,但它的身世背景也不简单,约等于1.732,哎,这数字听起来就比较高深。

你看,这俩数字就像两个性格截然不同的朋友,走在一起总能擦出一些火花。

说实话,比较它们的时候,感觉就像在做一次友谊测试,谁能赢得这个“比较”的桂冠呢?咱们可以把它们的平方拿出来比一比,哦,听起来像是打牌,谁的牌更大。

不过,咱们可不是在赌博,只是在寻找真相。

根号2的平方是2,而根号3的平方是3,嘿,这下就清楚了,根号3确实更大。

真是让人意外吧?根号2虽然在生活中比根号3常见,但在这场比较中,它还是得甘拜下风,唉,谁让人家背景深厚呢。

再说说根号4,喔,这可是个老朋友,大家都知道,它就是2,乍一看好像没什么特别之处,但它的到来总能让人眼前一亮。

根号4在这个家族里可算是个小明星,真的是能把根号2和根号3都比下去。

你想想,在学校里,老师说根号4等于2,结果同学们都在心里嘀咕:这不是小儿科吗?但就是这个简单的数字,让复杂的事情变得明朗。

话说回来,有时候比较根号也是一种乐趣,就像在群聊里讨论谁的长相更好看,大家各抒己见,热闹非凡。

而在数学这条路上,根号的比较就像是一场无声的争吵,大家争先恐后,谁都不甘示弱。

说到这,不禁让我想起小时候做题的情景,唉,满桌的习题,有时候就像玩拼图,拼来拼去就是拼不出个头绪,但慢慢来,思路一开,哦,原来是这么简单。

2019—2020学年度最新冀教版八年级数学上册专训1比较二次根式大小的八种方法及答案.docx

2019—2020学年度最新冀教版八年级数学上册专训1比较二次根式大小的八种方法及答案.docx

专训1 比较二次根式大小的八种方法名师点金:二次根式的大小比较,是教与学的一个难点,如能根据二次根式的特征,灵活地、有针对性地采用不同的方法,将会得到简捷的解法.较常见的比较方法有:平方法、作商法、分子有理化法、分母有理化法、作差法、倒数法、特殊值法、定义法等.平方法1.比较6+11与14+3的大小.作商法2.比较4-3与2+3的大小.分子有理化法3.比较15-14与14-13的大小.分母有理化法4.比较12-3与13-2的大小.作差法5.比较19-13与23的大小.倒数法6.已知x =n +3-n +1,y =n +2-n ,试比较x ,y 的大小.特殊值法7.用“<”连接x ,1x,x 2,x.(0<x<1)定义法8.比较5-a与3a-6的大小.答案1.解:因为(6+11)2=17+266,(14+3)2=17+242, 17+266>17+242, 所以(6+11)2>(14+3)2. 又因为6+11>0,14+3>0, 所以6+11>14+ 3. 2.解:因为4-32+3=(4-3)(2-3)=11-63,63≈10.39, 所以11-63<1. 又因为4-3>0,2+3>0, 所以4-3<2+3. 3.解:因为15-14 =(15-14)(15+14)15+14 =115+14, 14-13 =(14-13)(14+13)14+13=114+13, 且15+14>14+13,15+14>0,14+13>0,所以115+14<114+13, 即15-14<14-13. 4.解:因为12-3=2+3,13-2=3+2,2+3>3+2,所以12-3>13-2.5.解:因为19-13-23=19-33,19-3>0,所以19-33>0.所以19-13>23. 6.解:1x =1n +3-n +1= n +3+n +12>0, 1y =1n +2-n =n +2+n 2>0. 因为n +3+n +1>n +2+n >0, 所以1x >1y>0.所以x <y. 7.解:因为0<x <1,所以不妨取特殊值x =14,则x 2=116,x =12,1x =4. 所以x 2<x <x <1x . 8.解:因为5-a ≥0,所以a ≤5. 所以a -6<0.所以3a -6<0.所以5-a >3a -6.。

第十六章二次根式专题训练(一) -2023-2024学年人教版数学八年级下册

第十六章二次根式专题训练(一) -2023-2024学年人教版数学八年级下册

二次根式专题训练(一)20 年 月 日学习目标:1、借助试题,梳理本章的知识内容;2、检验本章内容学习效果,寻找学习漏洞;3、检验二次根式相关的计算能力。

【学习重点】检验本章内容学习效果,寻找学习漏洞;检验二次根式相关的计算能力。

【专题训练(基础试题)】说明:本试卷共8页,用时60分钟以内。

一、选择题(本题共8小题,每小题3分,共24分)19 )A .3B .-3C .±3D .32. 下列计算正确的是( )A 822-=B 235C 236=D 824=3. 12x +有意义,则x 的取值范围为( )A .x ≥12B . x ≤12C .x ≥12-D .x ≤12- 4. 下列二次根式中,最简二次根式是( ). A 15 B 0.5 C 5 D 50 5.24a -2a 的值为( ) B.4 C.5 D.66.171的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.已知实数a 在数轴上的位置如图所示,则化简2|1|a a -+的结果为( ) A .1 B .1- C .12a - D .21a -8. 已知21+=m ,21-=n ,则代数式mn n m 322-+的值为( )A.9B.±3C.3D. 5二、填空题(本题共8小题,每小题3分,共24分)9. 41x -x 的取值范围是 .10.比较大小:3 13“>”“<”或“=” )11.28218= .12.已知231,3a b ab -==(1)(1)a b +-= .13.()0201112=-++y x 则y x = . 14.2233x x x x--=--成立,则x 满足_______________. 15.12a a 的最小值是 .1- a16.若433+-+-=x x y ,则=+y x .三、解答题17.计算:(每题6分,共12分)(1)182712⨯÷ (2)x x x x 1246932-+18.计算:(每题8分,共16分)(1)222333--- (2)()()13132+-19.(本题满分10分)计算:0(3)271232---+20.本题满分12分) 先化简,再求值:)111(+-x x x ,其中15-=x .21.(本题满分12分)已知:32-=x ,32+=y ,求代数式22y x +的值.22.(本题满分12分)已知a 、b 、c 满足2(8)5320a b c --=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长; 若不能构成三角形,请说明理由.23. (本题满分14分)教师节快到了,欢欢同学为了表达对老师的一份敬意,做了两张大小不同的正方形壁画送给老师,其中一个面积为800cm 2,另一个面积为450cm 2,她想用金彩带把壁画的边镶上现在有1.2m 的金彩带,请你帮忙算一算,她的金彩带够用吗?如果不够用,还需要买多长的金彩带2≈1.414,结果保留整数).24.阅读下面问题:(本题满分14分)12)12)(12()12(1211-=-+-⨯=+; 23)23)(23(23231-=-+-=+; 25)25)(25(25251-=-+-=+.试求:(1)671+的值; (2)nn ++11(n 为正整数)的值. (3n 1n +n n 1-.通过专题训练,你的收获有哪些:。

新沪科版八年年级数学下练习:16.第3课时 二次根式的

新沪科版八年年级数学下练习:16.第3课时 二次根式的

第3课时二次根式的大小比较
知识要点基础练
知识点二次根式的大小比较
1.下列式子中,值最小的是(A)
A.-2
B.0
C. D.
2.下列式子中,值最大的是(D)
A. B.2
C. D.
3.比2小的正整数有(B)
A.4个
B.3个
C.2个
D.1个
4.请写出两个比大的无理数,结果是本题答案不唯一,如,π等.
综合能力提升练
5.比较2与3的大小,结果是(C)
A.前者大
B.一样大
C.后者大
D.无法确定
6.比较大小:的结果是(B)
A.前者大
B.一样大
C.后者大
D.无法确定
7.若m=2-,n=,则m,n的大小关系是(A)
A.m>n
B.m=n
C.m<n
D.无法确定
8.请写出一个比0大且比小的无理数,结果是本题答案不唯一,如,π
等.
9.(酒泉中考)估计与0.5的大小关系:>0.5.(填“>”“=”或“<”)
10.比较大小:(求差法).
解:∵()-()=<0,
∴.
11.比较大小:-3与-2(平方法).
解:∵(-3)2=45,(-2)2=24,而45>24,
∴(-3)2>(-2)2,
∴-3<-2.
拓展探究突破练
12.阅读下列材料,解答后面的问题.
材料:,我们把这种化简的方法叫做分子有理化.
问题:采用分子有理化,比较大小.
解:∵,
,又,
∴,
∴.。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.已知n是正整数,是整数,则n的最小值是.【答案】21【解析】∵189=32×21,∴,∴要使是整数,n的最小正整数为21.故填:21.【考点】二次根式的定义2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.列二次根式中,最简二次根式是()A.B.C.D.【答案】B.【解析】A、,被开方数含能开得尽方的因数,不是最简二次根式,故A选项错误;B、,满足最简二次根式条件,故B选项正确;C、,被开方数含分母,不是最简二次根式,故C选项错误;D、,被开方数含能开得尽方的因数和因式,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.计算下列各题(1)(2)(3)(4)【答案】(1);(2);(3);(4).【解析】(1)先将括号里面的式子进行通分化简,然后再进行除法运算即可;(2)先化简二次根式,再合并同类二次根式即可;(3)先把方程组中的①化简,利用加减消元法或者代入消元法求解即可;(4)先去分母,然后利用前两个方程消掉y,第一个方程和第三个方程消掉y得到两个关于x、z的方程,然后根据二元一次方程组的解法求出x、z的值,再代入第一个方程求出y的值,从而得解.试题解析:(1)原式=;(2)原式=;(3),由①得:③,③×3-②×2得:,解得:,把代入①得:,∴;(4)整理得:,①+②×2,得:④,①+③得:⑤,④+⑤×7,得:,把代入⑤,得:,把,代入①,得:,∴.【考点】1.二次根式的混合运算;2.解二元一次方程组;3.解三元一次方程组.5.(1)已知:(x+5)2=16,求x;(2)计算:【答案】(1),;(2).【解析】本题考查了平方根、立方根的定义及性质和绝对值的性质.(1)根据平方根的定义,先得出:,再分别计算出的值;(2)先利用平方根、立方根的性质及绝对值的性质分别计算出每个式子的值,最后相加.试题解析:解:(1)∵∴∴,原式【考点】1、平方根的定义及性质;2、立方根的定义及性质;3、绝对值的性质.6.如果实数满足y=,那么的值是().A.0B.1C.2D.-2【答案】C【解析】由题意可知,,,所以,,所以.故选.【考点】1、算术平方根的非负性.7.-的相反数是.【答案】.【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此-的相反数是.【考点】相反数.8.若m=-2,则m的范围是A.1 < m < 2B.2 < m < 3C.3 < m < 4D.4 < m < 5【答案】C【解析】根据,可得,即可作出判断.故选C.【考点】无理数的估算点评:解题的关键是熟练掌握“夹逼法”是估算无理数的常用方法,也是主要方法.9.设,,则的值等于 .【答案】-【解析】先解方程同时结合得到a与b的关系,再代入求值即可.解方程得当时,当时,.【考点】解方程,代数式求值点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.10.当时,二次根式的值为 .【答案】3【解析】先把代入二次根式,再根据二次根式的性质求值即可.当时,.【考点】绝对值的规律,二次根式的性质点评:解题的关键是熟练掌握二次根式的性质:当,;当,.11.(1)计算: ①;②÷(2)解方程:①;②【答案】(1)①;②;(2)①;②【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)①先移项,方程两边同加一次项系数一半的平方,再根据完全平方公式分解因式,最后根据直接开平方法求解即可;②先去括号,再移项、合并同类项,最后选择恰当的方法解方程即可.(1)①;②;(2)①解得;②解得.【考点】实数的运算,解一元二次方程点评:点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.平方等于64的数是 .【答案】±8【解析】由题意分析可知,,所以平方等于64的数是±8【考点】平方根点评:本题属于对平方的基本知识和平方根定义的熟练把握13.把下列各数分别填入相应的集合中: -,, 0.232323有理数集合无理数集合【答案】无理数:,-有理数是,0.232323【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,所以无理数是,-,有理数是,0.232323【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.14.下列说法正确的是()A.8的立方根是±2B.负数没有立方根C.互为相反数的两个数立方根也互为相反数D.立方根是它本身的数是0【答案】C【解析】根据立方根的定义依次分析各选项即可判断.A.8的立方根是2,B.负数的立方根是负数,D.立方根是它本身的数是0,±1,故错误;C.互为相反数的两个数立方根也互为相反数,本选项正确.【考点】立方根点评:解题的关键是熟练掌握正数的立方根是正数,0的立方根是0,负数的立方根是负数.15.设,则代数式的值为( ).A.-6B.24C.D.【答案】A【解析】先根据完全平方公式配方,再代入求值即可.当时,故选A.【考点】代数式求值点评:解题的关键是熟练掌握完全平方公式:16.如果一个数的平方根与它的立方根相同,那么这个数是()A.±1B.0C.1D.0和1【答案】B【解析】根据平方根、立方根的定义依次分析各选项即可判断.∵1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1∴平方根与它的立方根相同的数是0故选B.【考点】平方根,立方根点评:本题属于基础应用题,只需学生熟练掌握平方根、立方根的定义,即可完成.17.估算的值是()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【答案】B【解析】根据,即可作出判断.的值是在2和3之间故选B.【考点】无理数的估算点评:解答本题的关键是熟练掌握“夹逼法”是估算无理数的常用方法,也是主要方法.18.若,,那么a b的值等于A.-8B.8C.-16D.16【答案】D【解析】先根据立方根及算术平方根的定义求得a、b的值,再根据乘方法则计算即可.∵,∴故选D.【考点】立方根、算术平方根点评:解题的关键是熟记一个正数有两个平方根,且它们互为相反数,其中正的平方根叫算术平方根.19.在,,,,这五个实数中,无理数的是.【答案】,【解析】是循环小数,不是无理数;是整数之比,不是无理数;开放后是无限小数,是有理数;为无限小数;,不是无理数。

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)一.选择题(共15小题)1.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠22.若式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≥1 C.x>1 D.x>03.若在实数范围内有意义,则x的取值范围是()A.x>﹣B.x>﹣且x≠0 C.x≥﹣D.x≥﹣且x≠04.式子+有意义的条件是()A.x≥0 B.x≤0 C.x≠﹣2 D.x≤0且x≠﹣25.若有意义,则x满足条件是()A.x≥﹣3且x≠1 B.x>﹣3且x≠1 C.x≥1 D.x≥﹣36.已知y=++2,则x y的值为()A.9 B.8 C.2 D.37.在式子中,二次根式有()A.2个B.3个C.4个D.5个8.下列各式中,一定是二次根式的有()①②③④⑤A.2个B.3个C.4个D.5个9.已知n是正整数,是整数,n的最小值为()A.21 B.22 C.23 D.2410.已知,则=()A.B.C.D.﹣11.若二次根式在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.12.如果y=,则2x﹣y的平方根是()A.﹣7 B.1 C.7 D.±113.若是二次根式,则下列说法正确的是()A.x≥0 B.x≥0且y>0C.x、y同号D.x≥0,y>0或x≤0,y<014.若,则a的取值范围是()A.a>0 B.a≥1 C.0<a<1 D.0<a≤115.使下列式子有意义的实数x的取值都满足x≥1的式子的是()A.B.C.+D.二.填空题(共10小题)16.若实数a,b满足,则a﹣b的平方根是.17.当x时,在实数范围内有意义.18.若在实数范围内有意义,则x的取值范围是.19.若|2017﹣m|+=m,则m﹣20172=.20.使代数式有意义的整数x的和是.21.观察与思考:形如的根式叫做复合二次根式,把变成=叫复合二次根式的化简,请化简=.22.若代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,则x的取值范围是.23.设x,y为实数,且,则点(x,y)在第象限.24.代数式﹣3﹣的最大值为,若有意义,则=.25.当a时,无意义;有意义的条件是.三.解答题(共15小题)26.已知+=b+8.(1)求a、b的值;(2)求a2﹣b2的平方根和a+2b的立方根.27.(1)若++y=16,求﹣的值(2)若a,b互为相反数,c,d互为倒数,m的绝对值为2,求+m﹣cd的值28.若y=++x3,求10x+2y的平方根.29.已知n=﹣6,求的值.30.若b=+﹣a+10.(1)求ab及a+b的值;(2)若a、b满足x,试求x的值.31.(1)已知y=+x+3,求的值.(2)比较大小:3与2.32.已知x,y为实数,y=,求xy的平方根.33.若x,y为实数,且y=++.求﹣的值.34.已知a,b分别为等腰三角形的两条边长,且a•b满足b=4++3,求此三角形的周长.35.若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.36.(1)已知a+3与2a﹣15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y=﹣+4,求的值.37.(1)计算:(﹣)﹣1﹣|﹣3|﹣20160+()2;(2)解方程:4(x﹣1)2﹣1=24;(3)已知y=++3,则xy的算术平方根.38.请认真阅读下列这道例题的解法,并完成后面两问的作答:例:已知y=+2018,求的值.解:由,解得:x=2017,∴y=2018.∴.请继续完成下列两个问题:(1)若x、y为实数,且y>+2,化简:;(2)若y•=y+2,求的值.39.若a,b为实数,且,求.40.已知a、b、c为一个等腰三角形的三条边长,并且a、b满足b=2,求此等腰三角形周长.参考答案与试题解析一.选择题(共15小题)1.【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+1≥0,解得:x≥﹣1.故选:B.2.【分析】根据被开方数是非负数、除数不等于0,确定x的取值范围.【解答】解:由题意,可得x﹣1>0,所以x>1故选:C.3.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,2x+5≥0,解得,x≥﹣,故选:C.4.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.【分析】直接利用二次根式有意义的条件得出x的值,进而求出y的值,即可得出答案, 【解答】解:∵y=++2,∴x﹣3=3﹣x=0,解得:x=3,则y=2,则x y=32=9.故选:A.7.【分析】根据二次根式的定义对各数分析判断即可得解.【解答】解:根据二次根式的定义,y=﹣2时,y+1=﹣2+1=﹣1,所以二次根式有(x>0),,(x<0),,共4个.故选:C.8.【分析】利用二次根式定义判断即可.【解答】解:①是二次根式;②,当a≥0时是二次根式;③是二次根式;④是二次根式;⑤,当x≤0时是二次根式,故选:B.9.【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.10.【分析】根据二次根式有意义的条件求出x,根据题意求出y,分母有理化化简即可.【解答】解:由题意得,x2﹣2≥0,2﹣x2≥0,∴x2=2,解得,x=±,当x=时,无意义,当x=﹣时,2=2y,解得,y=,∴==+,故选:C.11.【分析】直接利用二次根式有意义的条件结合数轴得出答案.【解答】解:二次根式在实数范围内有意义,则2x﹣6≥0,解得:x≥3,则x的取值范围在数轴上表示为:.故选:A.12.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意可得:x2﹣4=0,x+2≠0,解得:x=2,故y=3,则2x﹣y=1,故2x﹣y的平方根是:±1.故选:D.13.【分析】二次根式中的被开方数必须是非负数.【解答】解:依题意有≥0且y≠0,即≥0且y≠0.所以x≥0,y>0或x≤0,y<0.故选:D.14.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:∵,∴,解得:0<a≤1.故选:D.15.【分析】根据分式有意义的条件以及二次根式有意义的条件即可求出答案【解答】解:(A)由,可得:x≤0且x≠﹣1,故x≥1时,无意义,故不选A,(B)由x+1>0,可得:x>﹣1,此时有意义,不都满足x≥1,故不选B;(C)由可得:﹣1≤x≤1,故C不选;(D)解得:x>1,满足x≥1,故选D故选:D.二.填空题(共10小题)16.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵和有意义,则a=5,故b=﹣4,则===3,∴a﹣b的平方根是:±3.故答案为:±3.17.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x+1≥0,|x|﹣2≠0,解得,x≥﹣1且x≠2,故答案为:≥﹣1且x≠2.18.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,﹣>0,解得x<﹣3.故答案为:x<﹣3.19.【分析】根据二次根式的性质求出m≥2018,再化简绝对值,根据平方运算,可得答案.【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:201820.【分析】直接利用二次根式的性质得出不等式组求出答案.【解答】解:使代数式有意义,则,解得:﹣4<x≤,则整数x有:﹣3,﹣2,﹣1,0,故整数x的和是:﹣3﹣2﹣1=﹣6.故答案为:﹣6.21.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:==﹣.故答案为:﹣.22.【分析】直接利用二次根式有意义的条件以及零指数幂的性质和负指数幂的性质分别判断得出答案.【解答】解:∵代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,∴x+1≥0,且x﹣1≠0,x﹣2≠0,x﹣3≠0,解得:x≥﹣1且x≠1,x≠2,x≠3.故答案为:x≥﹣1且x≠1,x≠2,x≠3.23.【分析】直接利用二次根式有意义的条件得出x的值,进而得出y的值,再利用点的坐标特点得出答案.【解答】解:由题意可得:,解得:x=5,故y=﹣4,则点(x,y)为(5,﹣4)在第四象限.故答案为:四.24.【分析】根据算术平方根具有非负性可得当=0时,代数式﹣3﹣有最大值,进而可得代数式﹣3﹣的最大值为﹣3;再根据二次根式被开方数为非负数可得x=0,进而可得答案.【解答】解:∵≥0,∴当=0时,代数式﹣3﹣有最大值,∴代数式﹣3﹣的最大值为﹣3;∵有意义,∴,解得:x=0,则=1,故答案为:﹣3;1.25.【分析】根据二次根式成立的条件:被开方数是非负数;无意义:被开方数小于0,列不等式可得结论.【解答】解:3a﹣2<0,a<,由有意义得:,解得,当a时,无意义;有意义的条件是:x≤2且x≠﹣8,故答案为:a,x≤2且x≠﹣8.三.解答题(共15小题)26.【分析】(1)关键二次根式有意义的条件即可求解;(2)将(1)中求得的值代入即可求解.【解答】解:(1)由题意得a﹣17≥0,且17﹣a≥0,得a﹣17=0,解得a=17,把a=17代入等式,得b+8=0,解得b=﹣8.答:a、b的值分别为17、﹣8.(2)由(1)得a=17,b=﹣8,±=±=±15,===1.答:a2﹣b2的平方根为±15,a+2b的立方根为1.27.【分析】(1)根据二次根式的被开方数是非负数;(2)根据相反数、倒数的定义以及绝对值得到:a+b=0,cd=1,m=±2,代入求值即可.【解答】解:(1)由题意,得解得x=8.所以y=16所以原式=﹣=2﹣4=﹣2.(2)∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴=+m﹣1=m﹣1.当m=2时,原式=1.当m=﹣2时,原式=﹣2﹣1=﹣3.综上所述,+m﹣cd的值是1或﹣3.28.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出10x+2y的值,再求平方根.【解答】解:由题意得:,解得:x=2,则y=8,10x+2y=20+16=36,平方根为±6.29.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.30.【分析】(1)直接利用二次根式有意义的条件得出ab,a+b的值;(2)利用已知结合完全平方公式计算得出答案.【解答】解:(1)∵b=+﹣a+10,∴ab=10,b=﹣a+10,则a+b=10;(2)∵a、b满足x,∴x2=,∴x2===8,∴x=±2.31.【分析】(1)直接利用二次根式有意义的条件分析得出x,y的值,进而答案;(2)直接将二次根式变形进而比较即可.【解答】解:(1)∵y=+x+3,∴x=3,故y=6,∴==3;(2)∵3=,2=,∴>,即3>2.32.【分析】根据被开方数是非负数且分母不等于零,可得x,y的值,根据开平方,可得答案.【解答】解:由题意,得,,且x﹣2≠0解得x=﹣2,y=﹣xy=,xy的平方根是.33.【分析】根据二次根式的被开方数是非负数求得x的值,进而得到y的值,代入求值即可.【解答】解:依题意得:x=,则y=,所以==,==2,所以﹣=﹣=﹣=.34.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.35.【分析】根据被开方数大于等于0列式求出a,再求出b,然后分a是腰长与底边两种情况讨论.【解答】解:根据题意得,3a﹣6≥0且2﹣a≥0,解得a≥2且a≤2,所以a=2,b=4,①a=2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②a=2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,所以此等腰三角形的周长为10.36.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a+3+2a﹣15=0,解得:a=4,答:a的值为4;(2)满足二次根式与有意义,则,解得:x=9,∴y=4,∴=+=5.37.【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案;(2)利用直接开平方法解方程得出答案;(3)直接利用二次根式的性质分析得出x,y的值进而得出答案.【解答】解:(1)(﹣)﹣1﹣|﹣3|﹣20160+()2=﹣4﹣3﹣1+2=﹣6;(2)∵4(x﹣1)2﹣1=24,∴(x﹣1)2=,∴x﹣1=±,解得:x1=,x2=﹣;(3)∵y=++3,∴,解得:x=4,∴y=3,则xy=12,故12的算术平方根为:2.38.【分析】根据题意给出的方法即可求出答案.【解答】解:(1)由,解得:x=3,∴y>2.∴;(2)由:,解得:x=1.y=﹣2.∴.39.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得a2﹣1=0,且a+1≠0,解得a=1,b=.﹣=﹣3.40.【分析】由二次根式有意义的条件可得,解不等式可得a的值,进而可得b的值,然后再分两种情况进行计算即可.【解答】解:由题意得:,解得:a=3,则b=5,若c=a=3,此时周长为11,若c=b=5,此时周长为13.。

新人教版八年级下二次根式的比较大小练习题

新人教版八年级下二次根式的比较大小练习题

新人教版八年级下二次根式的比较大小练习题题目一:已知a = √2 + 1,b = √2 - 1,请比较a和b的大小。

解答一:利用二次根式的性质,即如果a > b,则a的平方 > b的平方。

首先计算a的平方和b的平方:a^2 = (√2 + 1)^2 = (√2)^2 + 2√2 + 1 = 2 + 2√2 + 1 = 3 + 2√2b^2 = (√2 - 1)^2 = (√2)^2 - 2√2 + 1 = 2 - 2√2 + 1 = 3 - 2√2比较a^2和b^2的大小:3 + 2√2 > 3 - 2√2由于两个数的和相同,但前者的二次根式系数更大(2√2 > -2√2),所以a^2 > b^2。

因此,根据二次根式的性质,a > b。

题目二:已知c = √3,d = √12,请比较c和d的大小。

解答二:首先需要将d化简为最简形式,然后再进行比较。

计算d的值:√12 = √(4 × 3) = √4 × √3 = 2√3比较c和d的大小:√3 = 2√3由于两者相等,所以c = d。

题目三:已知e = √5,f = 2√2,请比较e和f的大小。

解答三:类似于题目二,首先需要将f化简为最简形式,然后再进行比较。

比较e和f的大小:√5 < √8由于√5是一个非完全平方数(不是一个整数),而√8可以进一步化简为2√2,是一个正整数,所以e < f。

题目四:已知g = 2 - √3,h = 3 - √2,请比较g和h的大小。

解答四:利用二次根式的性质,即如果a < b,则a的平方 < b的平方。

首先计算g的平方和h的平方:g^2 = (2 - √3)^2 = (2)^2 - 2 × 2 × √3 + (√3)^2 = 4 - 4√3 + 3 = 7 - 4√3h^2 = (3 - √2)^2 = (3)^2 - 2 × 3 × √2 + (√2)^2 = 9 - 6√2 + 2 = 11 - 6√2比较g^2和h^2的大小:7 - 4√3 < 11 - 6√2由于两个数的差不同,但后者的二次根式系数更大(-4√3 < -6√2),所以g^2 < h^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 二次根式大小比较“八法”
(一) 运用根式的定义
例1比较,2 a 与3 a 3的大小
解:由题意知:2 a 0, a 2 , a 3 V 0, 3 a 3 V 0 而2 a > 0
,2 a > 3 a 3
(二) 化为同次根式
例2 .比较.5和 3 11大小
解: 5=
6 125 , 3 11 = 6 121 , 丁 6 125 V 6 121 ,二.5 V 3 11
(三) 求差法
常用性质:若a b >0,则a > b
11 .7 5
G-7 2)0.11 3)'
2 ( 11 3) > 0, 7
3 V 11 2
J7 2 v11 3
(四) 求商法
常用性质:若a >0, b >0, a
> 1,贝S a >b
b 例4. 比较12 .13和<13 ,14的大小
解:屁用 (12 13)血尿) • <13 尿 (13 14)血 v'13) /. .12 ■. 13 V .13 ,14
例3 .比较7 3 11 2 寸7 2 v'11 3 而 J1 .、7 ・、5 V 0, 13 14 > 1, V 13 .14 V 12 13
(五)倒数法
常用性质:若a>0, b>0, 1> -,则b>a a b
例5.比较,5 2和...T,6的大小
解:.、5 2 倒数为一1一二、.5 2 , .. 7 ,6 倒数—_1一=、7 ,6 £5 2 v'7 46•/ ,5 2 V ,7 ,6 二、.5 2 > •.、7 ,6
(六)平方法
常用性质:若a>0, b>0且a2>b2,贝S a> b
例6. 比较.6 .14与・,7 .13
解:(、.6 14)2 20 2. 84 , ( , 7 . 13)2 20 2 .91
而20+2、84 V 20+2、91,二.6 . 14 V、7 .. 13
(七)放缩法
常用性质:若a>c,c V b,则a v b
例7.比较.6 2与57 2的大小
解: V 2v .6 V 3, 7V , 57 V 8,二 6 2 V 5V .. 57 -2
(八)将根式外的因式移到根式
常用性质:若a>b>0,则、a > ,b
例&比较3\2和2、. 3的大小
解: V 3 2= 322 = 18 , 3 = 223 =12
又V 18> 12, 3 2 >2 3。

相关文档
最新文档