第4章原子的精细结构:电子的自旋

合集下载

原子结构知识:原子结构中电子自旋和核自旋

原子结构知识:原子结构中电子自旋和核自旋

原子结构知识:原子结构中电子自旋和核自旋原子是构成物质的基本单位,其结构包括核和围绕核运动的电子。

在原子结构中,电子自旋和核自旋是两个非常重要的物理概念,它们对原子的性质和行为都有重要影响。

一、电子自旋1.电子自旋的概念电子自旋是电子固有的一种内禀性质,它并不是电子真正的旋转运动,而是描述电子的一种量子性质。

电子自旋可以用两种态来描述,即上自旋态和下自旋态,分别用↑和↓表示。

这两种态是对应于电子自旋在空间中的两个方向,它们之间没有中间态。

2.电子自旋的测量电子自旋的测量是基于量子力学的原理,它具有不确定性。

当进行电子自旋的测量时,不可能同时测量出电子的位置和自旋方向。

根据量子力学的测不准原理,测量电子的自旋方向会使得其位置的不确定性增加,反之亦然。

3.电子自旋的性质电子自旋在原子结构中具有重要的作用。

它决定了原子在外加磁场下的行为,从而影响了原子的磁性。

电子自旋还与化学键的形成和原子光谱的性质有关。

由于电子自旋的存在,原子的能级结构会呈现出一些特殊的规律,如Pauli不相容原理等。

4.康普顿散射电子自旋还与康普顿散射现象相关。

康普顿散射是指X射线与物质中的自由电子相互作用而发生散射的现象。

在康普顿散射中,X射线会与电子的自旋磁矩相互作用,使得散射角度发生变化,从而可以用来测量电子的自旋。

二、核自旋1.核自旋的概念核自旋是核子固有的自旋角动量,通常用I来表示。

与电子自旋类似,核子的自旋也具有量子性质,即其自旋角动量只能取离散的数值。

在自然界中,存在很多核素,它们的核自旋可以是整数或半整数。

2.核自旋的性质核自旋是核物理研究的重要参数之一,它与原子核的稳定性、核衰变、核磁共振等现象密切相关。

核自旋还可以影响原子的磁性和核荷分布,从而影响原子的化学性质。

3.核自旋共振核自旋可以通过核磁共振技术来研究。

核磁共振是一种利用核自旋的方法来研究物质结构和性质的技术。

在核磁共振中,外加磁场使得具有核自旋的原子核产生共振吸收信号,从而可以得到有关原子核的信息。

原子物理学 课后答案

原子物理学  课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。

第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。

1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。

难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。

2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。

3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。

第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。

第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。

第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。

原子结构知识:原子结构中电子自旋和核自旋

原子结构知识:原子结构中电子自旋和核自旋

原子结构知识:原子结构中电子自旋和核自旋1.引言原子结构是指原子内部的组成和排列方式,包括核子和电子的结构。

在原子结构中,电子自旋和核自旋是两个重要的概念,它们对于原子的性质和行为起着重要作用。

2.电子自旋电子是原子中最轻的带电粒子,它的自旋是电子最重要的特性之一。

电子自旋是指电子围绕自身轴心旋转的现象,它的大小和方向可以用自旋量子数来描述。

根据量子力学理论,电子自旋量子数可以取两个值,分别为+1/2和-1/2。

这意味着电子自旋可以分为两种状态,即自旋向上和自旋向下。

3.核自旋与电子自旋类似,核自旋也是原子结构中非常重要的一个概念。

核自旋是指原子核内部核子(质子和中子)围绕自身轴心旋转的现象。

核子的自旋量子数也可以取两个值,分别为+1/2和-1/2。

不同于电子自旋,核自旋的大小和方向会受到核外电子的屏蔽效应的影响。

这意味着核自旋的取值范围和性质会受到核外电子的影响而发生改变。

4.电子自旋和核自旋的相互作用在原子结构中,电子自旋和核自旋之间存在着相互作用。

这种相互作用会对原子的性质和行为产生影响。

在原子内部,电子与核子之间会发生自旋-轨道耦合,这是因为电子不仅有自旋运动,还有轨道运动。

这种耦合会导致电子的自旋和轨道运动不再是完全独立的,而是相互影响的。

另外,电子自旋和核自旋之间还会发生磁相互作用,这种相互作用会导致原子具有磁性。

5.电子自旋和核自旋在原子物理中的应用电子自旋和核自旋在原子物理中具有广泛的应用。

其中,最重要的应用之一是核磁共振(NMR)技术。

核磁共振是利用原子核的自旋性质来获取物质结构和性质的一种分析方法。

通过NMR技术,可以研究原子核自旋和化学环境之间的相互作用,从而获取大量化学信息。

此外,电子自旋和核自旋还在磁共振成像(MRI)领域得到广泛应用,用于医学诊断和研究。

6.结论电子自旋和核自旋是原子结构中重要的概念,它们对于原子的性质和行为具有重要影响。

在原子内部,电子自旋和核自旋之间存在相互作用,这种相互作用会引发许多重要的物理现象。

原子的精细结构.

原子的精细结构.
11
《原子物理学》第四章 原子的精细结构:电子的自旋
为使氢原子束在磁场区受力,则要求磁场在Å的线度 范围内是非均匀磁场(实验的困难所在)。 在外加非均匀磁场中原子束产生分裂。是对原子在外 磁场中取向量子化的首次直接观察,是原子物理学中最 重要的实验之一。
12
《原子物理学》第四章 原子的精细结构:电子的自旋
分析矢量μ的进动。图(b)取自与B 垂直的、μ进动平面上的一小块扇面。 μ与B的垂直距离即为扇面半径 显然:d sin d d d sin sin 于是: dt dt d d d dt sin d 由此知 即为角速度。 ( b) dt 6
3
《原子物理学》第四章 原子的精细结构:电子的自旋
§4-1 原子中电子轨道运动的磁矩
1.经典表示式
由经典电磁理论,载流 线圈的磁矩: iSn 电子绕核运动等效于一 载流线圈,必有一个磁矩。
i
n

r
i
n
L
r
v 设电子旋转频率: 2r
则原子中电 子绕核旋转 的磁矩为:
e
电子与自旋相联系的 磁矩类似于电子轨道 运动的磁矩。可写出 电子自旋的磁矩为:
3 s s ( s 1) B B 2 m 1 s B B sz 2
但这两个式子与实验不符,为此乌仑贝 克与古兹米特进一步假设:电子的磁矩 为一个玻尔磁子,即为经典数值的2倍。
(*如果视电子为带电小球,半径为0.01nm,它绕自身 1 的轴线旋转,则当其角动量为 时,表面处的切向线速 2 度大大超过光速!)
电子自旋假设受到各种实验的支持,是对电子认识的一 个重大发展。狄拉克于1928年找到一种与狭义相对论相融 洽的理论,可由狄拉克相对量子力学严格导出电子自旋的 自然结果。

原子的精细结构电子的自旋

原子的精细结构电子的自旋

原子的精细结构电子的自旋原子是化学分子的基本单位,也是化学反应和化学变化的基本参考物。

原子结构是原子面临化学反应和化学变化的基本特征。

原子由核,电子和电子云构成。

核是原子中带有正电荷的中心,而电子则存在于核外的电子云中,又称外层电子。

电子是原子中最活跃的成分,掌握对电子的研究可以掌握整个原子的特征和行为。

其中包括原子的精细结构和电子自旋。

一、原子的精细结构原子的精细结构是指原子中电子能级的精细结构,通过电子吸收能、发射能和电子竞争的方式进行研究,以探测电子的能级结构和运动规律。

(一)原子能级原子能级是指原子中每个电子在不同能量状态下所处的状态。

原子中的能级可被分为基态,电子激发态以及离散态。

基态是能量最低的状态,所有能量处于基态的状态。

离散态是中间状态,处于基态和激发态之间。

电子激发态是指原子中的电子因为吸收或者失去能量而移动到一个较高的能量状态,成为激发态。

电子跃迁是指电子在不同的能量态之间运动时所产生的变化,这种变化会产生一定的能量。

电子跃迁的能量差可以通过光谱来测量,也可以通过测量电触发的荧光强度来测量。

(二)光谱分析光谱分析是一种探测化学物质的工具,通过电子的吸收和发射能来进行化学分析。

光谱分析可以被用于化学分析,探测电子沿着不同化学反应模式的运动规律。

光谱分析可以被用于探测分子和原子的特征,包括丰度,引力能和外加势能等等。

从光谱分析中可以得知原子的基态,激发态和离散态之间的能差,以及电子传递特征,提供了关于原子的精细结构和电子自旋的信息。

二、电子自旋电子自旋是指电子的一个内禀性质,即电子在原子内部的旋转方向。

电子是一种带有负电荷的基本粒子,也是电子云中最活跃的成分。

电子的自旋是由于自身的旋转而产生的,它与电子的电荷和运动都有关系。

电子的自旋是一种内在的、量子力学的性质,是由能量的守恒和角动量的守恒原理共同决定的。

(一)电子的自旋量子数电子的自旋是用量子力学的方法描述的,它具有双重自性,既是粒子,又是波。

第四章 电子的自旋

第四章  电子的自旋

在原子内部,有两种角动量 L 和 S


必然存在一个总角动量以及相 应的磁矩。

s 与s



l 与 l

分别共线,合成后

j ls

l s


三、 总角动量
电子的运动=轨道运动+自旋运动
电子有轨道角动量l,又有自旋角动量s,所以电子的 总角动量是
总自旋角动量: S Si
i e e Li L 总轨道磁矩: l li 2m i 2m i
i
总自旋磁矩:
e e s si S i S m i m i
总角动量: J L S
总磁量子数 m j j, j 1,, j 1, j.共2j1个值
对于单电子s=1/2,所以
1 1 1 l 0, j ; l 0, j l , l 取两个值 2 2 2
例如:当
1 3 l 1 时, j 1 2 2
1 1 j 1 2 2
h h L l (l 1) 2 2 2
h 3 h S s( s 1) 2 2 2
J
h 15 h 3 h j ( j 1) , 2 2 2 2 2
J 2 L2 S 2 2LS cos
J 2 L2 S 2 j ( j 1) l (l 1) s( s 1) cos 2 LS 2 l (l 1) s( s 1)
e L l (l 1) B 2m
外场方向投影:

z cos ml B
2l 1 个奇数,但实验结果是偶数。

原子的精细结构—电子自旋

原子的精细结构—电子自旋

j , z m j g j B
轨道 g 1 l 运动
l , z
e Lz m l B 2me
S z ms
S s ( s 1)
e e s S s( s 1) 2 s( s 1) B me me
自旋 gs 2 运动
s , z
e e Sz m s 2m s B me me
自旋-轨道耦合 的附加能量。
作数量级估计(对氢,n=2):
U e2 ( c ) 2 4 0 2 E0 2 4a1 3 (1.44eV nm)(197eV nm) 2 105 eV 2(0.511106 eV ) 2 (4 0.53nm)3
精确计算:求 S L 2 2 2 J S L J S L 2S L
L 0, 1, 2, 3,
能级重数
2S+1
2
S1/ 2
S P D F
J 值= L S , S +1, ,L S L
见课本p163,表……
(4)施特恩-盖拉赫实验的解释
Bz dD z2 cos z 3kT
其中μ 应为原子的总磁矩,即轨道磁矩和自旋磁矩 的合成 cos J cos mJ g J B
§4.4 碱金属双线
(1)碱金属谱线的精细结构:定性考虑 碱金属的原子光谱有四个主要线系(以锂为例): 主线系:np→2s跃迁;
锐线系:ns→2p跃迁;
漫线系:nd→2p跃迁;
基线系:nf→3d跃迁。
当用高分辨率光谱仪观察,发现这些谱线有双 线结构:
主线系
np→2s
线系限
锐线系
ns→2p

第四章原子的精细结构:电子的自旋

第四章原子的精细结构:电子的自旋

第四章原子的精细结构:电子的自旋玻尔理论考虑了原子要紧的相互作用即核与电子的静电作用,较为有效地解释了氢光谱。

只是人们随后发现光谱线还有精细结构,这说明还需考虑其它相互作用即考虑引起能量变化的原因。

本章在量子力学基础上讨论原子的精细结构。

本章先介绍原子中电子轨道运动引起的磁矩,然后介绍原子与外磁场的相互作用,与原子内部的磁场引起的相互作用。

说明空间量子化的存在,且说明仅靠电子的轨道运动不能解释精细结构,还须引入电子自旋的假设,由电子自旋引起的磁相互作用才是产生精细结构的要紧因素。

§4-1原子中电子轨道运动的磁矩1.经典表示式在经典电磁学中载流线圈的磁矩为n iS ˆ=μ 。

(若不取国际单位制,则n S c i=μ)(S 为电流所围的面积,n 是垂直于该积的单位矢量。

这里假定电子轨道为圆形,可证明,关于任意形状的闭合轨道,其结果不变。

) 电子绕核的运动必定有一个磁矩,设电子旋转频率为r v πν2=,则原子中电子绕核旋转的磁矩为:L m e n vr m m e n r r v e n r e S i e e e22222-=-=-=-==ππνπμ 定义旋磁比:e defm e 2≡γ,则电子绕核运动的磁矩为L γμ-= 上式是原子中电子绕核运动的磁矩与电子轨道角动量之间的关系式。

磁矩μ 与轨道角动量L 反向,这是由于磁矩的方向是根据电流方向的右手定则定义的,而电子运动方向与电流反向之故。

从电磁学明白,磁矩在均匀外磁场中不受力,但受到一个力矩作用,力矩为B⨯=μτ 力矩的存在将引起角动量的变化,即B dt L d ⨯==μτ 由以上关系可得B dt d ⨯-=μγμ,可改写为μωμ ⨯=dt d 拉莫尔进动的角速度公式:B γω=,说明:在均匀外磁场B 中高速旋转的磁矩不向B 靠拢,而是以一定的ω绕B 作进动。

ω 的方向与B 一致。

进动角频率(or 拉莫尔频率)为:πων2=L2.量子化条件此前的两个量子数中,主量子数n 决定体系的能量,角动量量子数l 决定轨道形状。

第四章原子的精细结构:电子的自旋

第四章原子的精细结构:电子的自旋

不加磁场
加磁场经典预言
加磁场实验结果
斯特恩-盖拉赫实验对氢原子的结果 斯特恩盖拉赫实验时空间量子化的最直接的证明,它是第 一次量度原子的基态性质的实验,又是这个实验,进一步开辟 了原子束及分子束实验的新领域。
三、实验问题
1、先看例子(Ag、Zn l 0 )在屏上能看到几束
理论上:( 2l 1 1 )只有一个值
x vt
1 Fz 2 zt t 2m
d O
P
S1 S2
S N
z1

z2
x
D
通真空泵
原子束在经过磁场区(长度D)到达出口处时,已偏离x轴z1 距离,那时与x轴的偏角为:
Fz t dz1 Fz d arctan arctan arctan 2 dx mv mv d
§18 原子中电子轨道运动的磁矩
一、经典表示式
1、磁矩 从经典电磁学知道,一载流线圈有一个磁矩μ ,它可以表示成:
ˆ IS iSen
i
-----电流大小
S
-----载流线圈所围面积
ˆ en -----垂直与该面积的单位矢量,即和导线线圈平面垂直
因 和 S
线圈平面。
子的1/1836,实际核磁子值
因为核磁矩比电子磁矩
小得多,所以原子磁矩主要由电子磁矩组成。玻尔磁子
也可作为原子磁矩的单位。
2、磁相互作用比电相互作用小
4 0 2 e 1 e 2 B ec 2 2me 2 4 0 c me e 1 1 ea1 c c ea1 2 2
它在z方向的分量只有两个:
1 sz 2
1 : 即:自旋量子数在z方向的分量只能取 2

《原子物理学》部分习题解答(杨福家)

《原子物理学》部分习题解答(杨福家)
Bz dD z m v
gJ
2
z g J B
氢原子基态 氯原子基态
2
3 2 3
S1/ 2 P3 / 2

1 S ( S 1) L ( L 1) 2 2 J ( J 1)
两束
四束
2
gJ
1 S ( S 1) L ( L 1) 4 2 2 J ( J 1) 3
pc
E k ( E k 2m0c ) E k
2
所以
E k m in p m in c 6 2 M eV
4-2 解: 原子态
2
D3/2
1 2 , J 3 2
可得
gJ 3 2
L 2, S
mJ
1 2
,
3 2
1 S ( S 1) L ( L 1) 4 2 J ( J 1) 5
Ek Ek
3.1keV 0.0094keV
3-3 解:
Ek m0 c 0.511MeV
2
若按非相对论处理
Ek 1 2 m0 v ,有
2
1 2
m0 v m0 c
2
2
v 2c
显然不合理,需要用相对论来处理。
E Ek m0 c 2m0c
2 2
又E mc m0 c
有磁场
m mg
1 2
3
S
1
0
1
0
2
g 2
h 0
3
P0
0
0
m 2 g 2 m1 g 1
2
0
2
相邻谱线的频率差
c

原子物理学杨福家第四版课后答案

原子物理学杨福家第四版课后答案

原子物理学杨福家第四版课后答案原子物理学作为物理学的一个重要分支,对于理解物质的微观结构和性质具有至关重要的意义。

杨福家所著的《原子物理学》第四版更是众多学子深入学习这一领域的重要教材。

然而,课后习题的解答往往成为学习过程中的关键环节,它有助于巩固所学知识,加深对概念的理解。

以下便是对该教材课后答案的详细阐述。

首先,让我们来看第一章“原子的位形:卢瑟福模型”的课后习题。

其中,有一道关于α粒子散射实验的题目,要求计算α粒子在与金原子核发生散射时的散射角。

解答这道题,需要我们深刻理解库仑散射公式以及相关的物理概念。

我们知道,α粒子与金原子核之间的相互作用遵循库仑定律,通过对散射过程中动量和能量的守恒分析,可以得出散射角与α粒子的初始能量、金原子核的电荷量以及散射距离之间的关系。

经过一系列的数学推导和计算,最终得出具体的散射角数值。

第二章“原子的量子态:玻尔模型”中的课后习题,重点考察了对玻尔氢原子模型的理解和应用。

比如,有一道题让我们计算氢原子在不同能级之间跃迁时所发射光子的波长。

这就要求我们熟练掌握玻尔的能级公式以及光的波长与能量之间的关系。

根据玻尔的理论,氢原子的能级是量子化的,当电子从一个能级跃迁到另一个能级时,会释放出一定能量的光子。

通过计算两个能级之间的能量差,再利用光子能量与波长的关系式,就可以求出相应的波长。

在第三章“量子力学导论”的课后习题中,常常涉及到对波函数和薛定谔方程的理解和运用。

例如,有一道题给出了一个特定的势场,要求求解在此势场中粒子的波函数和可能的能量本征值。

解答此类问题,需要我们将给定的势场代入薛定谔方程,然后通过数学方法求解方程。

这个过程可能会涉及到一些复杂的数学运算,如分离变量法、级数解法等,但只要我们对量子力学的基本概念和方法有清晰的认识,就能够逐步推导得出答案。

第四章“原子的精细结构:电子的自旋”的课后习题,则更多地关注电子自旋与原子能级精细结构之间的关系。

比如,有题目要求计算在考虑电子自旋轨道耦合作用下,某原子能级的分裂情况。

原子物理学第4章

原子物理学第4章

价电子的轨道:n ≥ 2
Li: Z=3=212+1 Na:Z=11=2(12+22)+1 K: Z=19=2(12+22+22)+1 Rb:Z=37=2(12+22+32+22)+1 Cs:Z=55=2(12+22+32+32+22)+1 Fr:Z=87=2(12+22+32+42+32+22)+1
3、Na原子的能级与能级跃迁
主线系:从l=1的p态→n=3, l=0的3s态, n=3,4… 锐线(二辅)系:从l=0的s态→n=3, l=1的3p态, n=4,5… 漫线 (一辅)系:从l=2的d态→n=3, l=1的3p态, n=4,5… 基线(柏格曼)系:从l=3的f态→n=3, l=2的3d态, n=4,5,6…
Rhc En 2 (n D l )
-e

r Rnl

2
2
21
20
n=2
r r1
图4-5、轨道的贯穿
0
4
r Rnl
2
2
32
31
30
n=3
r r1
0 9
l 越小,电子波 函数靠近核的概率 越大,贯穿的几率 越大,能量越低
小结:碱金属原子光谱
1、实验规律:
所有的碱金属原子的光谱,具有相仿的结构,实验观 察的谱线一般分为四个线系。

~D相同而n不同的光谱 和
R R 2、碱金属原子的光谱项: Tnl 2 n (n D l ) 2
• 量子数亏损:D l

nn

原子物理学(原子的精细结构电子自旋)

原子物理学(原子的精细结构电子自旋)
通过调控材料中电子自旋的取向, 可以制备具有特殊磁学性质的自
旋极化材料。
自旋电子学
利用电子自旋的特性,开发新型 自旋电子学器件,如自旋晶体管
和自旋存储器等。
磁性材料研究
通过研究电子自旋的磁学性质, 有助于深入了解磁性材料的微观
结构和物理性质。
05 原子物理学的发展前景与 挑战
原子物理学与其他学科的交叉研究
原子核位于原子的中 心,电子围绕原子核 运动。
原子的电子排布
电子在原子核外的不同能级轨道 上运动,离原子核越远的轨道,
其能量越高。
电子按照一定的规律填充在不同 的能级轨道上,形成电子排布。
电子排布决定了原子的化学性质 和电子状态,是研究原子结构的
重要内容。
原子的能级与光谱
原子的能级是指原子内部电子 运动的能量状态,不同的能级 具有不同的能量。
原子物理学在新能源与技术中的应用
太阳能电池技术
01
原子物理学在太阳能电池技术中的应用,通过优化材料结构和
提高光电转换效率,为可再生能源的发展提供支持。
核聚变能源
02
通过原子物理学对核聚变反应过程的研究,实现可控核聚变能
源的开发,为未来能源供应提供可持续的解决方案。
磁约束核聚变装置
03
利用原子物理学的原理和技术,设计和建造磁约束核聚变装置,
当原子从一个能级跃迁到另一 个能级时,会吸收或释放一定 频率的光子,形成光谱。
光谱分析是研究原子能级结构 和性质的重要手段,可以用于 元素分析和化学分析等。
02 原子核的结构与性质
原子核的组成
01
02
03
质子和中子
原子核由质子和中子组成, 质子带正电荷,中子不带 电。

原子物理学-第4章-原子的精细结构

原子物理学-第4章-原子的精细结构
见相应的碱金属原子的简并度比氢原子要低.
第四章 原子的精细结构:电子的自旋
Manufacture: Zhu Qiao Zhong
9
例:对于l=1和l=2,电子角动量的大小及空间取向?
解:依题意知L 的大小:
L1(11) 2,(l1)
L
2(21)
6,(l2)
磁量子数: m mll 0 0,, 11,(, l 2,1()l2)
第四章 原子的精细结构:电子的自旋
Manufacture: Zhu Qiao Zhong
2
§4-1 原子中电子轨道运动的磁矩
1.经典表示式
电子绕核运动等效于一载流线圈,必有磁矩.
eˆ n
ie ˆ S n teS e ˆn 2 r e /vr2 e ˆn
2m eem eveˆrn2m eeL
本章引进电子自旋假设,对磁矩的合成以及磁场对磁矩的作用 进行分析,进而考察原子的精细结构.
本章还介绍史特恩-盖拉赫实验、碱金属双线和塞曼效应,它 们证明了电子自旋假设的正确性.
由电子自旋引起的磁相互作用是产生精细结构的主要因素.
到现在为止,我们的研究还只限于原子的外层价电子,其内层电 子的总角动量被设为零.
简并和简并度
简并:被当作同一较粗糙物理状态的两个或多个不同的较精细 物理状态. 简言之,能量相同的状态称为简并态.
简并度:简并态的数目. 例如原子中的电子,由其能量确定的同一能级状态,可以有两种 不同自旋的状态.所以该能级是两种不同自旋状态的简并态.
氢原子的能级只与n有关,而碱金属原子的能级与n、l 有关,可
iS
eˆ n
i
(电子)旋磁比
def
e
Ze
e
d

杨福家-原子物理-第四版-第四章

杨福家-原子物理-第四版-第四章

第四章原子的精细结构
第四章:原子的精细结构:电子的自旋
如果用分辨率足够高的摄谱仪观察,可以发现原子光谱 中每条谱线并不是简单的一条线,而是由多条谱线组成。 例如,氢原子的 H 线并不是单线,而是由七条谱线组成; nm 常见的钠原子黄光是由 1 588.996nm 和 2 589.593两条很靠 近的谱线组成的,其波长差约为0.6nm。
Bz Bz 0 x y
Bz 0 z
m 2 2 kT
热平衡时原子速度分布满足:
m F ( )= ( )e 3 2 kT dF (v) 3kT 由 0, 可得最可速率为v= dv m

mv 3kT
2
《原子物理学》(Atomic Physics)
第四章原子的精细结构

M B
另一方面,由刚体力学知识得
dL M B dt
《原子物理学》(Atomic Physics)
第四章原子的精细结构
第一节:原子中电子轨道运动磁矩
由 -L
代入

dL M B dt
B
d dL dt dt
M
i
《原子物理学》(Atomic Physics)
第四章原子的精细结构
磁场中,电子角动量量子化与角动量空间量子化
Z 2 ћ 0 -ћ -2ћ l =2
L
L L L L
h L l (l 1) 6 2
2 LZ ml 0 2
ml= 2, 1, 0, -1,-2
式中
Lz ml
(1)
l
称为角量子数,它的取值范围为
l 0,1, 2,…, n 1

原子物理学 第四章 碱金属原子和电子自旋

原子物理学 第四章 碱金属原子和电子自旋

的原子态,多重度:2
n 3 2 S1/ 2 表示: 3, 0, j 1/ 2 的原子态,多重度:2
32 D5 / 2
32 D3 / 2
Li原子能级图(考虑精细结构)
4.5 单电子辐射跃迁选择定则
1、选择定则
单电子辐射跃迁(吸收或发射光子)只能在下列条件下
发生:
l 1 j 0, 1
R hc (n l ) 2
n, 能级,即给定 En,l

Es 仍与 j 有关。
能量E由
n, l , j 三个量子数决定。
3、碱金属原子能级的分裂
1 时, j 能级不分裂 2 1 Rhc 2 Z *4 j El , s 1 2 3 2n (l )(l 1) 2 当 0 时, Rhc 2 Z *4 1 El , s j 1 2 2n3l (l ) 2

4.4 电子自旋与轨道运动的相互作用
一、电子自旋
1、电子自旋概念的提出
为了说明碱金属原子光谱的双线结构,和解释斯特恩-革拉赫 实验结果,两位不到25岁的荷兰大学生乌仑贝克和古兹米特 大胆地提出电子的自旋运动的假设。
“你们还年轻,有些荒唐没关系”(导师埃 按照这一假设,电子除轨道运动外,还存在一种自旋运动, 伦菲斯特)
和自旋运动相联系还存在自旋角动量。
2、电子自旋角动量量子数
1 s 2
3 电子自旋角动量大小 S s( s 1) 2
3、电子自旋角动量空间取向量子化
1 sz ms 2 1 1 ms s, s 1,......, s , 2 2 ms :自旋磁量子数
* * 0 q r 0 Z e (r m ) 0 Z e B 3 3 3 4 r 4 m r 4 m r e 0 Z *e 0 Z * e 2 s El , s s B S 2 3 3 4 m r m 4 mr

原子物理学第4章 原子的精细结构:电子的自旋

原子物理学第4章 原子的精细结构:电子的自旋
反向,写成矢量式则为:
e

e 称为旋磁比 2me
L
磁矩在外磁场 B 中将受到力矩的作用,力矩将使得磁矩 绕外磁场 B 的方向旋进。我们将这种旋进称为拉莫尔进动。相应
的频率称为拉莫尔频率 L,下面我们来计算这个频率。 由电磁学知在均匀外磁场中受到的力矩为
2、 L 有2l+1个取向,则 S 也应该有2s+1个取向
S s ( s 1)
其中s称为自旋量子数
S z ms , ms s, s 1,,s
实验表明:对于电子来说
s
ms
1 1 , 2 2
即 S 有两个空间取向
1 2
3、与自旋角动量 S 对应的自旋磁矩用 s 表示。由 L 式知,轨道磁矩与轨道角动量之间的对应关系是
二、量子表示式
量子的磁矩表示式与经典表示式有同样的形式,即:
但根据量子力学的计算,角动量 L 是量子化的,这包括它的 大小和空间取向都是量子化的。量子力学的结论为:
L
L l (l 1), Lz ml
式中l为角量子数,ll 0,1,2,, n 1; ml为轨道磁量子数,m l 0,1,2,,l

式中 是精细结构常数(1/137),a1为第一玻尔半径。 ea1 是原子的 电偶极矩的量度,而 B 则是原子的磁性偶极矩的量度,后者是前者的 1 倍,这说明:磁相互作用至少比电相互作用小两个数量级。
2
§4.2 史特恩—盖拉赫实验
上一节的讨论表明:不仅原子中电子轨道的 大小、形状和电子运动的角动量、原子内部的能
§4.1 原子中电子轨道运动磁矩
一、经典表示式
在电磁学中,我们曾经定义闭合回路的磁矩为:

原子物理学 原子的精细结构:电子的自旋 (4.2.1)--施特恩-盖拉赫实验

原子物理学 原子的精细结构:电子的自旋  (4.2.1)--施特恩-盖拉赫实验
sin d
d
e

L
进 动 角 频 率 :
frequency

2
dL dt
magnetic field
磁矩绕磁场进动示意图
d sin d
d
dt


sin ddtddt
sin


பைடு நூலகம்


d
dt
( 2 )量子表示式
l


L
L l l 1 l 0,1,2,, n 1
z d
o s1 s2
S
N
z1 a z2 x
D
通真空泵
z
S
x N
Bz x

Bz y
0
Fz

z
Bz z
原子束对应的最可几速 率:
mv 2 3kT
原子束在磁场区内的运动方程
x vt
z1

1 2
at 2

1 2
Fz m
t2
原子束经过磁场区到 达出口处时与 x 轴的偏角
a
l L ll 1
ZB

LZ
L

e
o
Y
X
L ll 1 l 0,1,2,, n 1
Lz ml
ml 0,1,2,,l
磁矩在 z 方向的投影
l,z


LZ


ml


e 2me
ml
玻尔磁子
Born magneton
e

1 2
a
( 3 )角动量取向量子
L ll 1 化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Z E0
4 4
4
• 碱金属双层能级之波数差
~
Z 1 5.84cm 3 n l (l 1)
4
例题
○试计算处于2D3/2状态的原子的磁 矩及在z方向上的投影的可能值。
解:对于处于2D3/2状态的原子有 l=2,s=1/2,j=3/2
LS耦合的朗德因子为
3 1 s( s 1) l (l 1) gj [ ] 2 2 j ( j 1) 3 1 1 2 (1 2 1) 2(2 1) 4 [ ] 2 2 3 2 (3 2 1) 5
h E2 E1 E2 E1 (m2 g 2 m1 g1 ) B B h (m2 g 2 m1 g1 ) B B

如果不考虑自旋:g2=g1=1
h h (m2 m1 )B B
由选择规则得:△m=0,±1
B B h h 0 B B
第四章 原子的精细结构: 电子的自旋
韶关学院物理系 李战 E-mail:sglz@
§18 原子中电子轨道运动的磁矩
(1)经典表达式
L
电子磁矩μ与轨道角动 量反方向 i 旋磁比 -e
n0 L
r
S
e 2me
μ

磁矩在均匀磁场中的拉 莫尔进动
Z
B μ ω θ -e
1 ms 2
1 s 2
(2)朗德因子

电子轨道磁矩
g=1
l l (l 1)B

( l 0, 1, 2, )
电子自旋磁矩
s s( s 1) g s B
3 B

1 ( s ; g s 2) 2
g称为Lande因子

电子轨道磁矩在Z方向的分量
谱线在外磁场下分 裂为三条 ——正常塞曼效应
单电子原子跃迁选择定则: △l=±1 △j=0,±1 △m=0,±1
有磁场 → 无磁场
1D 2
m=2
m=1 m=0 m=-1

h B B
h
h B B
m=1 m=0 m=-1
m=-2
1P 2
σ谱线的塞曼效应
π
σ+
(2)塞曼效应的偏振性 (3)反常塞曼效应

Bz dD z2 j z 3kT Bz dD m j g j B z 3kT 对基态氢原子:n=1,l=0,j=l+s=1/2,mj=±1/2
3 1 s( s 1) l (l 1) gj [ ]2 2 2 j ( j 1)
m j g j 1
• 单电子LS耦合(轨道与自旋叠加)的总角动量
J
j ( j 1)
j l s, l s 1, l s
j=l+1/2,l-1/2
• 单电子LS耦合的总磁矩及z方向上的投影
j j ( j 1) g j B
j ,Z m j g j B
( m j j,j 1 , j ) ,
S Z ms
1 ms 2
ms=s,s-1,……,-s
• 电子自旋磁矩及在z方向上的投影
s s( s 1) g s B
3 B
s , Z ms g s B
B 1 ( ms 2
4d 3d
F5/2,7/2
6f 5f 4f
4p 3p
基线系
3s
主线系 2p 锐线系 2s 漫线系
Li原子能级图
(1)碱金属谱线的精细结构的定性考虑
S态:l=0,s=1/2,j=1/2 →

2
S1 2 P 2 P2 1 3
2

P态:l=1,s=1/2,j=3/2、1/2→
2
2
2

D态:l=2,s=1/2,j=5/2,3/2→
• 单电子LS耦合的朗德因子
3 1 s ( s 1) l (l 1) gj [ ] 2 2 j ( j 1) ˆ 2 lˆ 2 3 1 s ( 2 ) ˆ 2 2 j
• 斯特恩-盖拉赫实验中原子束偏离x轴的 距离
Bz dD z2 j z 3kT Bz dD m j g j B z 3kT
当只考虑轨道角动量时:j=l,s=0
3 1 s( s 1) l (l 1) g j gl [ ] 1 2 2 j ( j 1)
当只考虑自旋角动量时:j=s,l=0
3 1 s( s 1) l (l 1) g j gs [ ]2 2 2 j ( j 1)
4 *4
4n
3
1 l (l 1)(l ) 2
得到
U
Z E0
4 *4
2n l (l 1)
3
§22 塞曼效应
(1)正常塞曼效应 原子磁矩μj在外磁场B中具有的势能为
U B z B mgB B
在外磁场B中,互相跃迁的两能级为
E2 E2 m2 g 2 B B E1 E1 m1 g1 B B
h L l (l 1) 6 2
2 LZ ml 0 2
ml= 2, 1, 0, -1,-2
§19 斯特恩-盖拉赫( Stern-Gerlach) 实验

原子物理学最重要的实验之一 有力地证明了原子在磁场中的取向是量子化的 问题:为什么氢原子在磁场中只有两个取向, 而不是奇数个取向?
D5 2 D3 2 F7 2 F5 2
2

F态:l=3,s=1/2,j=7/2,5/2→
2
S1/2
7s 6s 5s 4s
P1/2,3/2
7p 6p 5p
D3/2,5/2
7d 6d 5d
4d 3d
F5/2,7/2
6f 5f 4f
4p 3p
基线系
3s
主线系 2p 锐线系 2s 漫线系
Li原子能级图
(2)精细结构的定量考虑
旋磁比 e 2me
• 轨道角动量和轨道磁矩在z方向的投影
h L Z ml ml 2
l ,Z LZ ml B
( ml 0, 1, 2, l )
波尔磁子
e B 2me
• 电子自旋角动量及其在z方向上的投影
S s ( s 1) 1 s 2
§20 电子自旋的假设
(1)乌仑贝克(G.E.Uhlenbeck)与古兹米特 (S.Goudsmit)的假设:
轨道角动量
L l (l 1)
l 0, 1, 2,
电子
LZ ml ml 0, 1, 2, l
自旋角动量 S
s ( s 1)
S Z ms
(3)角动量取向量子化
轨道角动量以及在Z轴的分量的大小的量子化表明: 角动量在空间的取向量子化。
Z
ћ 0 L L L
h L l (l 1) 2 2

l =1
LZ ml 0
ml= 1, 0, -1
Z
2ћ ћ 0 -ћ -2ћ L l =2 L L L L
μl
轨道磁矩
μ
μj
总磁矩

单电子LS耦合的Lande因子 总角动量
J
j ( j 1)
j l s, l s 1, l s
j 为总角动量量子数
3 1 s ( s 1) l (l 1) gj [ ] 2 2 j ( j 1) 2 ˆ2 ˆ 3 1 s l ( 2 ) ˆ 2 2 j
此时,原子磁矩为
j j ( j 1) g j B 0
○在斯特恩-盖拉赫实验中,处于基态2S1/2 的银原子束通过极不均匀的横向磁场并射 到屏上,磁极的纵向范围d=10cm,磁极 中心到屏的距离D=25cm.银原子的质量 是107.87u,速率为400m/s,线束在屏 上的分裂间距为2.0mm,试问磁场强度 的梯度值为多大?
l ,Z ml B
( ml 0, 1, 2, l )
g=1

电子自旋磁矩在Z方向的分量
s , Z ms g s B
B 1 ( ms ; g s 2 ) 2
(3)单电子的Lande因子
总角动量 J L
轨道角 动量
S
自旋角 动量
μs
自旋磁 矩

电子自旋与轨道运动相互作用能
U
Z E0 [ j ( j 1) l (l 1) s( s 1)
4 *4
4n
3
1 l (l 1)(l ) 2
l≠0

对于单电子:s=1/2,j=l+1/2,l-1/2 双能级之差值可由
U
Z E0 [ j ( j 1) l (l 1) s( s 1)
此时,原子的磁矩及在z方向上的投影的可能值
j j ( j 1) g j B
4 3 2 (3 2 1) B 1.55 B 5
j ,Z m j g j B
(6 5, 5, 2 5, 6 5) B 2 ( m j 3 2, 1 2, 1 2, 3 2)
Bz dD z2 m j g j B z 3kT Bz dD B z 3kT

氢原子束在不均匀磁场中分裂成两层,计算结 果与实验相符合。
§21 碱金属双线
电子
原子实 z*=+1
S1/2
7s 6s 5s 4s
P1/2,3/2
7p 6p 5p
D3/2,5/2
相关文档
最新文档