天一大联考高三上学期期末考试数学(理)试卷(有答案)-名校版

合集下载

江苏省无锡市天一高级中学高三数学理上学期期末试卷含解析

江苏省无锡市天一高级中学高三数学理上学期期末试卷含解析

江苏省无锡市天一高级中学高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知一组样本数据点,用最小二乘法得到其线性回归方程为,若数据的平均数为1,则等于A.10B.12C.13D.14参考答案:B2. 下列函数与相等的是A.B.C.D.参考答案:A3. 设α,β∈(0,)且tanα-tanβ=,则()A.3α+β=B.2α+β=C.3α-β=D.2α-β=参考答案:D【考点】三角函数中的恒等变换应用.【分析】由题意和三角函数公式变形可得cosα=cos[﹣(α﹣β)],由角的范围和余弦函数的单调性可得.【解答】解:∵,∴﹣=,∴=+=,∴sinαcosβ=cosα(1+sinβ)=cosα+cosαsinβ,∴cosα=sinαcosβ﹣cosαsinβ=sin(α﹣β)由诱导公式可得cosα=sin(α﹣β)=cos[﹣(α﹣β)],∵,∴[﹣(α﹣β)]∈(0,π),∴α=﹣(α﹣β),变形可得2α﹣β=,故选:D.【点评】本题考查三角函数恒等变换,熟练应用三角函数公式是解决问题的关键,属中档题.4. 已知是双曲线的两个焦点,以为直径的圆与双曲线一个交点是P,且的三条边长成等差数列,则此双曲线的离心率是A. B.C.2D.5参考答案:D5. 函数f(x)=2x﹣x﹣的一个零点所在区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)参考答案:B【考点】函数零点的判定定理.【分析】函数零点附近函数值的符号相反,这类选择题通可采用代入排除的方法求解.【解答】解:由 f(1)=1﹣<0,f(2)=2﹣>0及零点定理知f(x)的零点在区间(1,2)上,故选B.6. 已知A,B是单位圆上的动点,且|AB|=,单位圆的圆心是O,则·=A.B.C.D.参考答案:C7. 若函数有三个不同的零点,则实数的取值范围是A.B. C.D.参考答案:答案:A8. 试在抛物线y2=﹣4x上求一点P,使其到焦点F的距离与到A(﹣2,1)的距离之和最小,则该点坐标为()A.B.C.D.参考答案:A【考点】抛物线的简单性质.【分析】先根据抛物线方程求出焦点坐标,再由抛物线的性质知:当P,A和焦点三点共线且点P在中间的时候距离之和最小,进而先求出纵坐标的值,代入到抛物线中可求得横坐标的值从而得到答案.【解答】解:∵y2=﹣4x∴p=2,焦点坐标为(﹣1,0)依题意可知当A、P及P到准线的垂足Q三点共线时,距离之和最小如图,故P的纵坐标为1,然后代入抛物线方程求得x=﹣,则该点坐标为:(﹣,1).故选A.9. 下列集合运算正确的是()A.B.C.D.参考答案:D逐一考查所给的选项:A. ,该选项错误;B. ,该选项错误;C. ,该选项错误;D. ,该选项正确本题选择D选项.10. 集合A={x|x≤a},B={1,2},A∩B=?,则a的取值范围为()A.(﹣∞,1)B.(1,+∞)C.(2,+∞)D.(﹣∞,2)参考答案:A【考点】交集及其运算.【分析】由已知可得a<1,且a<2,进而得到a的取值范围.【解答】解:∵集合A={x|x≤a},B={1,2},若A∩B=?,则a<1,且a<2,综上可得:a∈(﹣∞,1),故选:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,其中n∈N*,当n=1,2,3,…时,f n(x)的零点依次记作x1,x2,x3,…,则= .参考答案:﹣3考点:极限及其运算.专题:导数的综合应用.分析:利用等比数列的前n项和公式可得:函数f n(x)=+,令f n(x)=0,解得x n=﹣1.再利用极限的运算法则即可得出.解答:解:函数=+=+,令f n(x)=0,解得x n=﹣1.∴=﹣2×1﹣1=﹣3.故答案为:﹣3.点评:本题考查了等比数列的前n项和公式、数列极限的运算法则,属于基础题.12. 若函数在上可导,,则______;参考答案:因为,所以,所以,所以。

【精选】天一大联考高三上学期期末考试数学(理)试卷(有答案)

【精选】天一大联考高三上学期期末考试数学(理)试卷(有答案)

天一大联考2016—2017学年高三年级上学期期末考试数学(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}0,2,4,6,|233n A B x N ==∈<,则集合A B 的子集个数为A.8B. 7C. 6D. 42.设i 为虚数单位,复数21a i i++为纯虚数,则实数a 的值为 A. -1 B. 1 C. -2 D. 23.已知数列{}n a 的前n 项和21n n S =-,则数列{}2log n a 的前10项和等于A. 1023B. 55C. 45D. 354.三国时代吴国数学家赵爽所注《周髀算经》中给出了股股定理的绝妙证明。

下面是赵爽的弦图和注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实。

图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2⨯勾⨯股+(股-勾)2=4⨯朱实+黄实=弦实,化简得:+=222勾股弦.设勾股形中勾股比为1:1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为A. 866B. 500C. 300D. 1345.已知圆()22314x y -+=的一条切线y kx =与双曲线()2222:10,0x y C a b a b -=>>有两个交点,则双曲线C 的离心率的取值范围是A. (B. ()1,2C. )+∞ D.()2,+∞ 6.已知点M 的坐标(),x y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,N 为直线22y x =-+上任一点,则MN 的最小值是[)4,y ∈+∞,则7.已知0a >且1a ≠,如图所示的程序框图的输出值实数a 的取值范围是A. (]1,2B. 1,12⎛⎫ ⎪⎝⎭C. ()1,2D. [)2,+∞ 8.函数()cos 21x f x x x π=+的图象大致是9.如图,已知长方体1111ABCD A B C D -的体积为6,1C BC ∠的正切值为,当1AB AD AA ++的值最小时,长方体1111ABCD A B C D -外接球的表面积为A. 10πB. 12πC. 14πD. 16π10.已知函数()()1sin 20,022f x A x A πϕϕ⎛⎫=+-><< ⎪⎝⎭的图象在y 轴上的截距为1,且关于直线12x π=对称,若对任意的0,2x π⎡⎤∈⎢⎥⎣⎦,都有()23m m f x -≤,则实数m 的取值范围是 A. 31,2⎡⎤⎢⎥⎣⎦ B. []1,2 C. 3,22⎡⎤⎢⎥⎣⎦D. ⎣⎦ 11.某几何体的三视图如图所示,则该几何体的体积为A. 8B. 10C. 12D. 1412.已知定义在R 上的函数()f x 满足()()4f x f x +=,且(]2,2x ∈-时,()()2111,0222,20x x x x x f x x x x ⎧⎛⎫+--<≤⎪ ⎪=⎝⎭⎨⎪-+-<≤⎩,则函数()()4log g x f x x =-的零点个数是A. 4B. 7C. 8D.9第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知平面向量()()1,2,2,a b m ==-,且a b a b +=-,则2a b += .14.已知()3021n x dx =-⎰,则n的展开式中2x 的系数为 . 15.已知抛物线()21:0C y ax a =>的焦点F 也是椭圆()2222:104y x C b b +=>的一个焦点,点3,,12M P ⎛⎫ ⎪⎝⎭分别为曲线12,C C 上的点,则MP MF +的最小值为 . 16.已知数列{}n b 是首项为-34,公差为1的等差数列,数列{}n a 满足()12n n n a a n N *+-=∈,且137a b =,则数列n n b a ⎧⎫⎨⎬⎩⎭的最大值为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)如图,在圆内接四边形ABCD中,2,cos sin .AB AD CD αβ===+(1)求角β的大小;(2)求四边形ABCD 周长的取值范围.18.(本题满分12分)如图,已知四边形ABCD 和ABEG 均为平行四边形,点E 在平面ABCD 内的射影恰好为点A ,以BD 为直径的圆经过点,,A C AG 的中点为,F CD 的中点为P ,且.AD AB AE ==(1)求证:平面EFP ⊥平面BCE ;(2)求二面角P EF B --的余弦值.19.(本题满分12分)2016年是红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.然后在各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.(1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星对每个问题答对的概率均为2,求恰好2位幸运之星获得纪念品的概率;(3)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为X ,求X 的分布列和数学期望().E X20.(本题满分12分)已知椭圆()2222:10y x C a b a b +=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于M,N 两点,2MNF ∆,椭圆C 的离心率为2(1)求椭圆C 的标准方程; (2)已知O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于A,B 两个不同的点,若存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.21.(本题满分12分)已知函数()ln f x x a x =+与()3b g x x=-的图象在点()1,1处有相同的切线. (1)若函数()2y x m =+与()y f x =的图象有两个交点,求实数m 的取值范围;(2)设函数()()()()ln 1,0,x H x f x e x m =--∈,求证:()2m H x <.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

2020届河南省天一大联考高三上学期期末数学(理)试题(含答案解析)

2020届河南省天一大联考高三上学期期末数学(理)试题(含答案解析)
【详解】
.
当 时, ;
当 时,由 ,
可得 ,
两式相减,可得 ,故 ,
因为 也适合上式,所以 .
依题意, ,
故 .
故选:C.
【点睛】
本题考查利用 求 ,同时也考查了裂项求和法,考查计算能力,属于中等题.
11.已知函数 , , .若 , ,则 ()
A. B. C. D.
【答案】D
【解析】利用三角恒等变换思想化简函数 的解析式为 ,由 可知函数 的一条对称轴方程为 ,可得出 的表达式,再结合条件 可求出 的值.
(1)求此人这三年以来每周开车从家到公司的时间之和在 (时)内的频率;
(2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);
(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在 (时)内的周数为 ,求 的分布列以及数学期望.
【答案】(1) ;(2) ;(3)分布列见解析;数学期望 .
故选:A.
【点睛】
本题考查双曲线离心率的求解,涉及到直线斜率的应用,在计算时要注意将垂直、对称等关系转化为直线斜率之间的关系来求解,考查计算能力,属于中等题.
10.已知数列 满足 ,则 ()
A. B. C. D.
【答案】C
【解析】利用 的前 项和求出数列 的通项公式,可计算出 ,然后利用裂项法可求出 的值.
二、填空题
13. 的展开式中,含 项的系数为______.
【答案】
【解析】求出二项展开式的通项,利用 的指数为 ,求出参数的值,再将参数的值代入通项可得出结果.
【详解】
的展开式通项为 ,
令 ,得 ,因此, 的展开式中,含 项的系数为 .
故答案为: .

2020-2021学年河南省天一大联考高三(上)期末数学试卷(理科) (解析版)

2020-2021学年河南省天一大联考高三(上)期末数学试卷(理科) (解析版)

2020-2021学年河南省天一大联考高三(上)期末数学试卷(理科)一、选择题(共12小题).1.设集合,,则A∩B=()A.[﹣1,3)B.[﹣1,3]C.[﹣4,﹣1]D.[﹣4,3)2.若z+2=3﹣i,则|z|=()A.1B.C.D.23.已知的展开式中有常数项,则n的值可能是()A.5B.6C.7D.84.如图,位于西安大慈恩寺的大雁塔,是唐代玄奘法师为保存经卷佛像而主持修建的,是我国现存最早的四方楼阁式砖塔.塔顶可以看成一个正四棱锥,其侧棱与底面所成的角为45°,则该正四棱锥的一个侧面与底面的面积之比为()A.B.C.D.5.已知,则下列不等式:①;②|a|>|b|;③a3>b3;④.其中正确的是()A.①②B.③④C.②③D.①④6.从4双不同尺码的鞋子中随机抽取3只,则这3只鞋子中任意两只都不成双的概率为()A.B.C.D.7.已知函数f(x)=2sin(ωx+φ)(ω>0),点A,B是曲线y=f(x)相邻的两个对称中心,点C是f(x)的一个最值点,若△ABC的面积为1,则ω=()A.1B.C.2D.π8.已知函数f(x)=e x+e﹣x+cos x,则不等式f(2m)>f(m﹣2)的解集为()A.B.C.D.9.在△ABC中,内角A,B,C的对边a,b,c依次成等差数列,△ABC的周长为15,且(sin A+sin B)2+cos2C=1+sin A sin B,则cos B=()A.B.C.D.10.已知点A,B,C在半径为5的球面上,且AB=AC=2,BC=2,P为球面上的动点,则三棱锥P﹣ABC体积的最大值为()A.B.C.D.11.已知点A在直线3x+y﹣6=0上运动,点B在直线x﹣3y+8=0上运动,以线段AB为直径的圆C与x轴相切,则圆C面积的最小值为()A.B.C.D.12.已知α,β∈(0,2π),且满足sinα﹣cosα=,cosβ﹣sinβ=,则sin(α+β)=()A.1B.或1C.或1D.1或﹣1二、填空题(共4小题).13.平面向量,若,则λ=.14.若实数x,y满足约束条件,则的取值范围是.15.若函数f(x)=|e x﹣a|﹣1有两个零点,则实数a的取值范围是.16.设P为双曲线上的一个动点,点P到C的两条渐近线的距离分别为d1和d2,则3d1+d2的最小值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题17.已知数列{a n}的前n项和为S n,且和的等差中项为1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log4a n+1,求数列的前n项和T n.18.如图,直四棱柱ABCD﹣A1B1C1D1的底面ABCD为平行四边形,AD=3,AB=5,cos ∠BAD=,BD=DD1,E是CC1的中点.(Ⅰ)求证:平面DBE⊥平面ADD1;(Ⅱ)求直线AD1和平面BDE所成角的正弦值.19.某算法的程序框图如图所示,其中输入的变量x只能是1,2,3,…,24这24个整数中的一个,且是每个整数的可能性是相等的.(Ⅰ)当输入x=12和x=20时,求输出y的值;(Ⅱ)求输出的y值的分布列;(Ⅲ)某同学根据该程序框图编写计算机程序,并重复运行1200次,输出y的值为1,2,3的次数分别为395,402,403,请推测他编写的程序是否正确,简要说明理由.20.已知椭圆C1的离心率为,一个焦点坐标为,曲线C2上任一点到点和到直线的距离相等.(Ⅰ)求椭圆C1和曲线C2的标准方程;(Ⅱ)点P为C1和C2的一个交点,过P作直线l交C2于点Q,交C1于点R,且Q,R,P互不重合,若,求直线l与x轴的交点坐标.21.已知函数f(x)=ln(x+1)+a,g(x)=e x﹣a,a∈R.(Ⅰ)若a=0,曲线y=f(x)在点(x0,f(x0))处的切线也是曲线y=g(x)的切线,证明:ln(x0+1)=.(Ⅱ)若g(x)﹣f(x)≥1,求a的取值范围.选考题:请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(s为参数).(Ⅰ)设l1与l2的夹角为α,求tanα;(Ⅱ)设l1与x轴的交点为A,l2与x轴的交点为B,以A为圆心,|AB|为半径作圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求圆A的极坐标方程.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|ax+1|.(Ⅰ)当a=2时,解不等式f(x)≤5;(Ⅱ)当a=1时,若存在实数x,使得2m﹣1>f(x)成立,求实数m的取值范围.参考答案一、选择题(共12小题).1.设集合,,则A∩B=()A.[﹣1,3)B.[﹣1,3]C.[﹣4,﹣1]D.[﹣4,3)解:因为,即,解得﹣4≤x<3,故集合A={x|﹣4≤x<3},因为,所以x≥﹣1,故集合B={x|x≥﹣1},所以A∩B=[﹣1,3).故选:A.2.若z+2=3﹣i,则|z|=()A.1B.C.D.2解:设z=a+bi,则,因为z+2=3﹣i,所以a+bi+2(a﹣bi)=3﹣i,所以3a﹣bi=3﹣i,所以3a=3,﹣b=﹣1,所以a=1,b=1,所以z=1+i,故|z|=.故选:B.3.已知的展开式中有常数项,则n的值可能是()A.5B.6C.7D.8解:∵已知的展开式中的通项公式为T r+1=•x2n﹣3r,由于它的展开式中有常数项,则2n﹣3r=0,即2n=3r,即n=,r=0,1,2,…,n.故当r=4时,可得n=6,故选:B.4.如图,位于西安大慈恩寺的大雁塔,是唐代玄奘法师为保存经卷佛像而主持修建的,是我国现存最早的四方楼阁式砖塔.塔顶可以看成一个正四棱锥,其侧棱与底面所成的角为45°,则该正四棱锥的一个侧面与底面的面积之比为()A.B.C.D.解:塔顶是正四棱锥P﹣ABCD,如图,PO是正四棱锥的高,设底面边长为a,底面积为,因为,所以,所以△PAB是正三角形,面积为,所以.故选:D.5.已知,则下列不等式:①;②|a|>|b|;③a3>b3;④.其中正确的是()A.①②B.③④C.②③D.①④解:因为,所以b>a>0,所以,故①正确;|b|>|a|,故②错误;b3>a3,故③错误;由指数函数f(x)=为减函数,又b>a,所以f(a)>f(b),即,故④正确,故正确的是①④.故选:D.6.从4双不同尺码的鞋子中随机抽取3只,则这3只鞋子中任意两只都不成双的概率为()A.B.C.D.解:根据题意,从4双不同尺码的鞋子中随机抽取3只,有C83=56种取法,其中任意两只都不成双的情况有C43×2×2×2=32种,则这3只鞋子中任意两只都不成双的概率P==,故选:C.7.已知函数f(x)=2sin(ωx+φ)(ω>0),点A,B是曲线y=f(x)相邻的两个对称中心,点C是f(x)的一个最值点,若△ABC的面积为1,则ω=()A.1B.C.2D.π解:∵点A,B是曲线y=f(x)相邻的两个对称中心,∴AB=,点C是f(x)的一个最值点,则△ABC的高为2,∴三角形的面积S==1,∴T=2,∴=2,∴ω=π,故选:D.8.已知函数f(x)=e x+e﹣x+cos x,则不等式f(2m)>f(m﹣2)的解集为()A.B.C.D.解:f(﹣x)=e﹣x+e x+cos x=f(x),则f(x)是偶函数,f′(x)=e x﹣e﹣x﹣sin x,为奇函数,[f′(x)]′=e x+e﹣x﹣sin x≥2﹣sin x>0,即f′(x)为增函数,当x>0时,f′(x)>f′(0)=1﹣1﹣0=0,即f(x)在(0,+∞)上为增函数,则不等式f(2m)>f(m﹣2)等价为不等式f(|2m|)>f(|m﹣2|),即|2m|>|m﹣2|,平方得4m2>m2﹣4m+4,即3m2+4m﹣4>0,得(m+2)(3m﹣2)>0,得m>或m<﹣2,即不等式的解集为,故选:A.9.在△ABC中,内角A,B,C的对边a,b,c依次成等差数列,△ABC的周长为15,且(sin A+sin B)2+cos2C=1+sin A sin B,则cos B=()A.B.C.D.解:由于a,b,c依次成等差数列,所以可设a=x,b=x+d,c=x+2d,由于△ABC的周长为15,可得:x+d=5,因为(sin A+sin B)2+cos2C=sin2A+2sin A sin B+sin2B+1﹣sin2C=1+sin A sin B,即sin2A+sin A sin B+sin2B﹣sin2C=0,所以由正弦定理可得a2+b2﹣c2=﹣ab,可得cos C===﹣,即=﹣,将d=5﹣x代入到上式中,解得:x=3,d=2,∴a=3,b=5,c=7,∴由余弦定理可得:cos B===.故选:B.10.已知点A,B,C在半径为5的球面上,且AB=AC=2,BC=2,P为球面上的动点,则三棱锥P﹣ABC体积的最大值为()A.B.C.D.解:在△ABC中,由AB=AC=2,BC=2,得cos A==,∴sin A=,设△ABC的外接圆的半径为r,则2r=,即r=4,又三棱锥P﹣ABC的外接球的半径R=5,则球心到△ABC外接圆圆心的距离为.则当P到平面ABC距离最大时,三棱锥P﹣ABC的体积最大,此时P到平面ABC的最大距离为R+3=8,三棱锥P﹣ABC体积的最大值为V=.故选:A.11.已知点A在直线3x+y﹣6=0上运动,点B在直线x﹣3y+8=0上运动,以线段AB为直径的圆C与x轴相切,则圆C面积的最小值为()A.B.C.D.解:∵直线3x+y﹣6=0与直线x﹣3y+8=0垂直,且交点为(1,3),∴以AB为直径的圆过点(1,3),又圆C与x轴相切,∴圆C的面积最小时,其直径恰好为点(1,3)到x轴的距离,此时圆的直径为3,则圆C面积的最小值为.故选:C.12.已知α,β∈(0,2π),且满足sinα﹣cosα=,cosβ﹣sinβ=,则sin(α+β)=()A.1B.或1C.或1D.1或﹣1解:∵sinα﹣cosα=,sin2α+cos2α=1,∴8sin2α﹣4sinα﹣3=0,8cos2α+4cosα﹣3=0,又cosβ﹣sinβ=,sin2β+cos2β=1,∴8cos2β﹣4cosβ﹣3=0,8sin2β+4sinα﹣3=0,①若sinα=cosβ,则α+β=或,此时sin(α+β)=1,②若sinα≠cosβ,则sinα,cosβ是方程8x2﹣4x﹣3=0的根,故sinαcosβ=﹣,同时cosα,sinβ是方程8x2+4x﹣3=0的根,故cosαsinβ=﹣,故sin(α+β)=sinαcosβ+cosαsinβ=﹣,故sin(α+β)的值是1或﹣,故选:C.二、填空题13.平面向量,若,则λ=.解:∵向量,∴﹣=(3,﹣1),λ+=(2λ﹣1,2λ+3).∵,∴3(2λ﹣1)﹣1×(2λ+3)=0,解得λ=,故答案为:.14.若实数x,y满足约束条件,则的取值范围是.解:由约束条件作出可行域如图,联立,解得A(2,1),联立,解得B(1,2),则,,令,则≤t≤2,则=t+,在t=1时,取得最小值为2,在t=或t=2时,取得最大值为.∴的取值范围是[2,].故答案为:[2,].15.若函数f(x)=|e x﹣a|﹣1有两个零点,则实数a的取值范围是(1,+∞).解:f(x)的零点个数等价于曲线y=|e x﹣a|与直线y=1的交点个数,作出函数图象如图所示,由题意可知a>1.故答案为:(1,+∞).16.设P为双曲线上的一个动点,点P到C的两条渐近线的距离分别为d1和d2,则3d1+d2的最小值为.解:设点P为(m,n),则﹣n2=1,即(m﹣n)(m+n)=2,∴|m+n|=,双曲线C的两条渐近线方程为x±y=0,所以d1==,d2=,所以3d1+d2=3×+=×(3|m﹣n|+)≥×2=2,当且仅当3|m﹣n|=,即|m﹣n|=时,等号成立,所以3d1+d2的最小值为2.故答案为:2.三、解答题:解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题17.已知数列{a n}的前n项和为S n,且和的等差中项为1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log4a n+1,求数列的前n项和T n.解:(Ⅰ)由题意,可得,整理,得S n=2a n﹣2,当n=1时,a1=S1=2a1﹣2,解得a1=2,当n≥2时,由S n=2a n﹣2,可得S n﹣1=2a n﹣1﹣2.两式相减,可得a n=2a n﹣2a n﹣1,化简整理,得a n=2a n﹣1,∴数列{a n}是以2为首项,2为公比的等比数列,∴,n∈N*,(Ⅱ)由(Ⅰ),可得b n=log4a n+1=log42n+1=,则,∴T n=++…+=4×(﹣)+4×(﹣)+…+4×(﹣)===.18.如图,直四棱柱ABCD﹣A1B1C1D1的底面ABCD为平行四边形,AD=3,AB=5,cos ∠BAD=,BD=DD1,E是CC1的中点.(Ⅰ)求证:平面DBE⊥平面ADD1;(Ⅱ)求直线AD1和平面BDE所成角的正弦值.【解答】(I)证明:由题意可得BD2=AD2+AB2﹣2AB×AD cos∠BAD=16,所以AD2+BD2=AB2,因此AD⊥BD.在直四棱柱ABCD﹣A1B1C1D1中,DD1⊥平面ABCD,所以DD1⊥BD.又因为AD∩DD1=D,DD1⊂平面ADD1,AD⊂平面ADD1,所以BD⊥平面ADD1,因为BD⊂平面DBE,所以平面DBE⊥平面ADD1(II)解:由(I)知,DA,DB,DD1两两垂直,以D为原点,DA,DB,DD1所在直线为x,y,z轴建立如图所示的空间直角坐标系.则D(0,0,0),A(3,0,0),D1(0,0,4),B(0,4,0).由可得C(﹣3,4,0),所以E(﹣3,4,2).则,,,设是平面BDE的一个法向量,则,令x=2,可得设直线AD1和平面BDE所成的角为θ,则.19.某算法的程序框图如图所示,其中输入的变量x只能是1,2,3,…,24这24个整数中的一个,且是每个整数的可能性是相等的.(Ⅰ)当输入x=12和x=20时,求输出y的值;(Ⅱ)求输出的y值的分布列;(Ⅲ)某同学根据该程序框图编写计算机程序,并重复运行1200次,输出y的值为1,2,3的次数分别为395,402,403,请推测他编写的程序是否正确,简要说明理由.解:(I)当输入x=12时,因为12能被3整除,所以输出y=1;当输入x=20时,因为20不能被3整除,能被4整除,所以输出y=2.(II)当x为3,6,9,12,15,18,21,24这8个数时,输出y=1,所以;当x为4,8,16,20这4个数时,输出y=2,所以;当x为其余12个数时,输出y=3,所以.故y的分布列为:y123P(III)程序输出y的值为1,2,3的频率分别为,,,可近似地认为都是,与(II)中所得的概率分布相差较大,故推测该同学编写的程序不正确.20.已知椭圆C1的离心率为,一个焦点坐标为,曲线C2上任一点到点和到直线的距离相等.(Ⅰ)求椭圆C1和曲线C2的标准方程;(Ⅱ)点P为C1和C2的一个交点,过P作直线l交C2于点Q,交C1于点R,且Q,R,P互不重合,若,求直线l与x轴的交点坐标.解:(Ⅰ)设椭圆,根据条件可知,且,解得a2=12,b2=4,所以椭圆C1的标准方程为,曲线C2是以为焦点,为准线的抛物线,故C2的标准方程为y2=9x;(Ⅱ)联立,解得x=1,y=±3,不妨取P(1,3),若直线l的斜率不存在,Q和R重合,不符合条件;故可设直线l:y=k(x﹣1)+3,由题意可知k≠0,联立,解得,联立,解得,因为,所以P是QR的中点,所以,即,解得k=1,所以直线l的方程为y=x+2,其与x轴的交点坐标为(﹣2,0).21.已知函数f(x)=ln(x+1)+a,g(x)=e x﹣a,a∈R.(Ⅰ)若a=0,曲线y=f(x)在点(x0,f(x0))处的切线也是曲线y=g(x)的切线,证明:ln(x0+1)=.(Ⅱ)若g(x)﹣f(x)≥1,求a的取值范围.【解答】证明:(Ⅰ)若a=0,则f(x)=ln(x+1),g(x)=e x.∴,g'(x)=e x,曲线y=f(x)在点(x0,f(x0))处的切线方程为,令,则,曲线y=g(x)在点处的切线方程为,由题意知,整理可得,x0=0显然不满足,因此;解:(Ⅱ)令h(x)=g(x)﹣f(x)=e x﹣a﹣ln(x+1)﹣a,若a>0,h(0)=e﹣a﹣a<e0﹣0=1,不符合条件;若a=0,h(x)=e x﹣ln(x+1),,当x∈(﹣1,0)时,h'(x)<0,h(x)单调递减,当x∈(0,+∞)时,h'(x)>0,h(x)单调递增,∴h(x)≥h(0)=1,符合条件;若a<0,则h(x)=e x﹣a﹣ln(x+1)﹣a>e x﹣ln(x+1)≥1,符合条件.∴a的取值范围是(﹣∞,0].选考题:请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(s为参数).(Ⅰ)设l1与l2的夹角为α,求tanα;(Ⅱ)设l1与x轴的交点为A,l2与x轴的交点为B,以A为圆心,|AB|为半径作圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求圆A的极坐标方程.解:(Ⅰ)设直线l1和l2的倾斜角分别为β和γ,由参数方程知,则.(Ⅱ)令,得,所以A(1,0),令,得,所以B(﹣2,0),所以圆A的直角坐标方程为(x﹣1)2+y2=9,即x2+y2﹣2x=8,所以圆A的极坐标方程为ρ2﹣2ρcosθ=8.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|ax+1|.(Ⅰ)当a=2时,解不等式f(x)≤5;(Ⅱ)当a=1时,若存在实数x,使得2m﹣1>f(x)成立,求实数m的取值范围.解:(Ⅰ)当a=2时,f(x)=|x﹣1|+|2x+1|=;当x≥1时,不等式f(x)≤5化为3x≤5,解得;当时,不等式f(x)≤5化为x+2≤5,解得;当时,不等式化为﹣3x≤5,解得.综上所述,不等式f(x)≤5的解集为.(Ⅱ)当a=1时,f(x)=|x﹣1|+|x+1|≥|x+1+1﹣x|=2,当且仅当﹣1≤x≤1时,等号成立,即f(x)的最小值为2.因为存在实数x,使得2m﹣1>f(x)成立,所以2m﹣1>2.解得,所以m的取值范围是.。

2024学年天一大联盟高三数学第一学期期末达标检测模拟试题含解析

2024学年天一大联盟高三数学第一学期期末达标检测模拟试题含解析

2024学年天一大联盟高三数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=( ) A .134-B .54C .5D .1542.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角,A C 处作圆弧的切线,两条切线交于B 点,测得如下数据:6,6,10.392AB cm BC cm AC cm ===(其中30.8662≈).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )A .3π B .4π C .2π D .23π 3.若函数2sin(2)y x ϕ=+的图象过点(,1)6π,则它的一条对称轴方程可能是( )A .6x π=B .3x π=C .12x π=D .512x π=4.下列函数中,图象关于y 轴对称的为( ) A .2()1f x x =+B .727)2(f x x x =+-,[]1,2x ∈-C .si 8)n (f x x =D .2()x xe ef x x-+= 5.已知0.212a ⎛⎫= ⎪⎝⎭,120.2b -=,13log 2c =,则( )A .a b c >>B .b a c >>C .b c a >>D .a c b >>6.已知集合U =R ,{}0A y y =≥,{}1B y y x ==+,则UAB =( )A .[)0,1B .()0,∞+C .()1,+∞D .[)1,+∞7.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .8.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵.记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为( )A .10112020B .20192020C .20202021D .101020219.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对10.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )A .52B .23C .8D .8311.若2m >2n >1,则( ) A .11m n> B .πm ﹣n >1 C .ln (m ﹣n )>0D .1122log m log n >12.已知0x =是函数()(tan )f x x ax x =-的极大值点,则a 的取值范围是 A .(,1)-∞- B .(,1]-∞ C .[0,)+∞D .[1,)+∞二、填空题:本题共4小题,每小题5分,共20分。

2020届河南省天一大联考高三上学期期末考试理科数学试题(带答案)

2020届河南省天一大联考高三上学期期末考试理科数学试题(带答案)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
13. 的展开式中,含 项的系数为______.
14.设实数 、 满足 ,则 的最大值为______.
15.已知长方体 的体积为 , , 平面 ,若点 到直线 的距离与到直线 的距离相等,则 的最小值为______.
16.已知函数 ,若函数 仅有 个零点,则实数 的取值范围为______.
【详解】
依题意 ,
故 .
故选:A.
【点睛】
本题考查复数模的计算,同时也考查了复数的四则运算,考查计算能力,属于基础题.
3.C
【解析】
【分析】
由题意可知 ,由 得出 ,可得出 ,由此可得出 ,进而得解.
【详解】
由题意可知 ,由 得出 ,
,即 ,因此, .
故选:C.
【点睛】
本题考查向量模长的计算,同时也考查了向量垂直的等价条件的应用,解题的关键就是得出 ,考查计算能力,属于基础题.
2020届河南省天一大联考高三上学期期末考试
理科数学试题
第I卷(选择题)
, ,则 ()
A. B.
C. D.
2.设复数 ,则 ()
A. B. C. D.
3.已知向量 , , ,则 为()
A. B. C. D.
4.近年来,随着 网络的普及和智能手机的更新换代,各种方便的 相继出世,其功能也是五花八门.某大学为了调查在校大学生使用 的主要用途,随机抽取了 名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:
①可以估计使用 主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;
②可以估计不足 的大学生使用 主要玩游戏;

河南省天一大联考高三上学期期末考试数学(理)试卷(有答案)-优质版

河南省天一大联考高三上学期期末考试数学(理)试卷(有答案)-优质版

天一大联考高三年级上学期期末考试数学(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}0,2,4,6,|233n A B x N ==∈<,则集合A B 的子集个数为 A.8 B. 7 C. 6 D. 42.设i 为虚数单位,复数21a i i++为纯虚数,则实数a 的值为 A. -1 B. 1 C. -2 D. 23.已知数列{}n a 的前n 项和21n n S =-,则数列{}2log n a 的前10项和等于A. 1023B. 55C. 45D. 354.三国时代吴国数学家赵爽所注《周髀算经》中给出了股股定理的绝妙证明。

下面是赵爽的弦图和注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实。

图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2⨯勾股+(股-勾)2=4朱实+黄实=弦实,化简得:+=222勾股弦.设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为A. 866B. 500C. 300D. 1345.已知圆()22314x y -+=的一条切线y kx =与双曲线()2222:10,0x y C a b a b -=>>有两个交点,则双曲线C 的离心率的取值范围是A. (B. ()1,2C. )+∞ D.()2,+∞6.已知点M 的坐标(),x y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,N 为直线22y x =-+上任一点,则MN的最小值是A. 55C. 1D.2 7.已知0a >且1a ≠,如图所示的程序框图的输出值[)4,y ∈+∞,则实数a 的取值范围是A. (]1,2B. 1,12⎛⎫ ⎪⎝⎭C. ()1,2D. [)2,+∞ 8.函数()cos 21x f x x x π=+的图象大致是9.如图,已知长方体1111ABCD A B C D -的体积为6,1C BC ∠的正切值为,当1AB AD AA ++的值最小时,长方体1111ABCD A B C D -外接球的表面积为A. 10πB. 12πC. 14πD. 16π10.已知函数()()1sin 20,022f x A x A πϕϕ⎛⎫=+-><< ⎪⎝⎭的图象在y 轴上的截距为1,且关于直线12x π=对称,若对任意的0,2x π⎡⎤∈⎢⎥⎣⎦,都有()23m m f x -≤,则实数m 的取值范围是 A. 31,2⎡⎤⎢⎥⎣⎦ B. []1,2 C. 3,22⎡⎤⎢⎥⎣⎦D. ⎣⎦ 11.某几何体的三视图如图所示,则该几何体的体积为A. 8B. 10C. 12D. 1412.已知定义在R 上的函数()f x 满足()()4f x f x +=,且(]2,2x ∈-时,()()2111,0222,20x x x x x f x x x x ⎧⎛⎫+--<≤⎪ ⎪=⎝⎭⎨⎪-+-<≤⎩,则函数()()4log g x f x x =-的零点个数是A. 4B. 7C. 8D.9第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知平面向量()()1,2,2,a b m ==-,且a b a b +=-,则2a b += .14.已知()3021n x dx =-⎰,则n的展开式中2x 的系数为 . 15.已知抛物线()21:0C y ax a =>的焦点F 也是椭圆()2222:104y x C b b +=>的一个焦点,点3,,12M P ⎛⎫ ⎪⎝⎭分别为曲线12,C C 上的点,则MP MF +的最小值为 . 16.已知数列{}n b 是首项为-34,公差为1的等差数列,数列{}n a 满足()12n n n a a n N *+-=∈,且137a b =,则数列n n b a ⎧⎫⎨⎬⎩⎭的最大值为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)如图,在圆内接四边形ABCD中,2,cos sin .AB AD CD αβ===+(1)求角β的大小;(2)求四边形ABCD 周长的取值范围.18.(本题满分12分)如图,已知四边形ABCD 和ABEG 均为平行四边形,点E 在平面ABCD 内的射影恰好为点A ,以BD 为直径的圆经过点,,A C AG 的中点为,F CD 的中点为P ,且.AD AB AE ==(1)求证:平面EFP ⊥平面BCE ;(2)求二面角P EF B --的余弦值.19.(本题满分12分)2016年是红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.然后在各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.(1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星对每个问题答对的概率均为2,求恰好2位幸运之星获得纪念品的概率;(3)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为X ,求X 的分布列和数学期望().E X20.(本题满分12分) 已知椭圆()2222:10y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于M,N 两点,2MNF ∆C (1)求椭圆C 的标准方程; (2)已知O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于A,B 两个不同的点,若存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.21.(本题满分12分)已知函数()ln f x x a x =+与()3b g x x=-的图象在点()1,1处有相同的切线. (1)若函数()2y x m =+与()y f x =的图象有两个交点,求实数m 的取值范围;(2)设函数()()()()ln 1,0,x H x f x e x m =--∈,求证:()2m H x <.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

2020届河南省天一大联考高三上学期期末数学(理)试题(解析word版)

2020届河南省天一大联考高三上学期期末数学(理)试题(解析word版)

2020届河南省天一大联考高三上学期期末数学(理)试题一、单选题1.已知集合{}1,1,3,5A =-,{}0,1,3,4,6B =,则A B =( )A .{}1,3B .{}1C .{}1,0,1,1,3,4,5,6-D .{}1,0,1,3,4,5,6-【答案】D【解析】根据并集的定义可求出集合A B .【详解】 依题意,{}{}{}1,1,3,50,1,3,4,61,0,1,3,4,5,6A B =-=-.故选:D. 【点睛】本题考查并集的计算,考查计算能力,属于基础题. 2.设复数()()312iz i i i-=+-+,则z =( )A .BC .2D【答案】A【解析】利用复数的四则运算法则将复数z 表示为一般形式,然后利用复数的模长公式可计算出z . 【详解】依题意()()33112221221i i z i i i i i i -+=+-+=-+++=--,故z ==故选:A. 【点睛】本题考查复数模的计算,同时也考查了复数的四则运算,考查计算能力,属于基础题. 3.已知向量()3,0m =,()3,0n =-,()()q m q n -⊥-,则q 为( ) A .7 B .5C .3D .1【答案】C【解析】由题意可知n m =-,由()()q m q n -⊥-得出()()q m q m -⊥+,可得出()()0q m q m -⋅+=,由此可得出q m =,进而得解.【详解】由题意可知n m =-,由()()q m q n -⊥-得出()()q m q m -⊥+,()()0q m q m ∴-⋅+=,即22q m =,因此,22303q m ==+=.故选:C. 【点睛】本题考查向量模长的计算,同时也考查了向量垂直的等价条件的应用,解题的关键就是得出n m =-,考查计算能力,属于基础题.4.近年来,随着4G 网络的普及和智能手机的更新换代,各种方便的app 相继出世,其功能也是五花八门.某大学为了调查在校大学生使用app 的主要用途,随机抽取了56290名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用app 主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足10%的大学生使用app 主要玩游戏; ③可以估计使用app 主要找人聊天的大学生超过总数的14. 其中正确的个数为( )A .0B .1C .2D .3【答案】C【解析】根据利用app 主要听音乐的人数和使用app 主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用app 主要玩游戏的大学生所占的比例,可判断②的正误;计算使用app 主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【详解】使用app 主要听音乐的人数为5380,使用app 主要看社区、新闻、资讯的人数为4450,所以①正确;使用app 主要玩游戏的人数为8130,而调查的总人数为56290,81300.1456290≈,故超过10%的大学生使用app 主要玩游戏,所以②错误; 使用app 主要找人聊天的大学生人数为16540,因为165401562904>,所以③正确.故选:C. 【点睛】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.5.记等差数列{}n a 的前n 项和为n S ,若8114S a =+,则( ) A .282a a += B .284a a +=C .272a a +=D .274a a +=【答案】B【解析】由8114S a =+可得出234567814a a a a a a a ++++++=,再利用等差数列的基本性质可得出结果. 【详解】依题意,81234567814S a a a a a a a a -=++++++=,故()287142a a +=,即284a a +=.故选:B. 【点睛】本题考查等差数列基本性质的应用,考查计算能力,属于基础题. 6.已知实数a 、b 、c 满足134a =,1610b =,5log 50c =,则( ) A .c a b >> B .a c b >> C .c b a >> D .a b c >>【答案】A【解析】利用幂函数的单调性得出a 、b 、2三个数的大小关系,利用对数函数的单调性得出c 与2的大小关系,由此可得出a 、b 、c 的大小关系. 【详解】幂函数16y x =在()0,∞+上为增函数,且1111636610416642<=<=,即2b a <<;对数函数5log y x =在()0,∞+上为增函数,55log 50log 252c ∴=>=. 因此,c a b >>. 故选:A. 【点睛】本题考查指数式和对数式的大小比较,一般利用指数函数、对数函数和幂函数的单调性结合中间值法来比较,考查推理能力,属于中等题.7.下列函数中,既是偶函数又在()2,+∞上单调递减的是( )A .()11x x e f x e -=+B .()1lg 1x f x x +⎛⎫=⎪-⎝⎭C .()224,04,0x x x f x x x x ⎧-≥=⎨+<⎩D .()(ln 1f x =【答案】B【解析】分析每个选项中函数的奇偶性及各函数在区间()2,+∞上的单调性,由此可得出正确选项. 【详解】对于A 选项,函数()11x x e f x e -=+的定义域为R ,()()()()111111x xx xx xx x e e e e f x f x e ee e --------====-+++,该函数为奇函数, 又()()122111xx x e f x e e +-==-++,该函数在区间()2,+∞上单调递增;对于B 选项,解不等式101x x +>-,得1x <-或1x >,该函数的定义域为()(),11,-∞-+∞,关于原点对称,()()1111lg lg lg lg 1111x x x x f x f x x x x x -+-++⎛⎫⎛⎫⎛⎫⎛⎫-===-== ⎪ ⎪ ⎪ ⎪--+--⎝⎭⎝⎭⎝⎭⎝⎭,该函数为偶函数, 当2x >时,()121211111x x u x x x -++===+>---,则()1lg 1x f x x +=-, 内层函数11x u x +=-在区间()2,+∞上为减函数,外层函数lg y u =为增函数,所以,函数()1 lg1xf xx+⎛⎫= ⎪-⎝⎭在()2,+∞上单调递减;对于C选项,作出函数()224,04,0x x xf xx x x⎧-≥=⎨+<⎩的图象如下图所示:由图象可知,该函数为偶函数,且在()2,+∞上单调递增;对于D选项,函数()(2ln11f x x=-的定义域为(][),11,-∞-+∞,()()((()22ln11ln11f x x x f x-=+--=-=,该函数为偶函数.内层函数211u x=-()2,+∞上单调递增,外层函数lny u=也为增函数,所以,函数()(2ln11f x x=-()2,+∞上单调递增.故选:B.【点睛】本题考查函数单调性与奇偶性的判断,熟悉函数奇偶性的定义以及单调性的一些判断方法是解答的关键,考查推理能力,属于中等题.8.已知长方体1111ABCD A B C D-的表面积为208,118AB BC AA++=,则该长方体的外接球的表面积为()A.116πB.106πC.56πD.53π【答案】A【解析】由题意得出11118104AB BC AAAB BC BC AA AB AA++=⎧⎨⋅+⋅+⋅=⎩,由这两个等式计算出2221AB BC AA++,可求出长方体外接球的半径,再利用球体表面积公式可计算出结果. 【详解】依题意,118AB BC AA ++=,11104AB BC BC AA AB AA ⋅+⋅+⋅=, 所以,()()222211112116AB BC AA AB BC AA AB BC BC AA AB AA ++=++-⋅+⋅+⋅=,故外接球半径r ==,因此,所求长方体的外接球表面积24116S r ππ==. 故选:A. 【点睛】本题考查长方体外接球表面积的计算,解题的关键就是利用长方体的棱长来表示外接球的半径,考查计算能力,属于中等题.9.记双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线C 的渐近线l 上,点P 、P '关于x 轴对称.若12P F PF '⊥,12214PF PF k k k =⋅,其中1PF k 、2PF k 、1k 分别表示直线1PF 、2PF 、l 的斜率,则双曲线C 的离心率为( )A B C D .【答案】A【解析】设直线2PF 的斜率为k ,根据12P F PF '⊥以及1P F '与1PF 关于x 轴对称,可得出11PF k k =,由此可得出2241b a=,由此可计算出双曲线C 的离心率. 【详解】不妨设直线2PF 的斜率为k ,由题易知0k ≠,且直线1P F '与1PF 关于x 轴对称,11P F PF k k '∴=-, 因为12P F PF '⊥,所以直线1P F '的斜率为1k -,即111P F PF k k k '=-=-,11PF k k∴=, 由12214PF PF k k k =⋅可得241b a ⎛⎫⋅= ⎪⎝⎭,即2214b a =,所以,双曲线C 的离心率为e ==.故选:A. 【点睛】本题考查双曲线离心率的求解,涉及到直线斜率的应用,在计算时要注意将垂直、对称等关系转化为直线斜率之间的关系来求解,考查计算能力,属于中等题. 10.已知数列{}n a 满足()12347324n a a a n a n ++++-=,则23342122a a a a a a +++=( )A .58 B .34C .54D .52【答案】C【解析】利用()32n n a -的前n 项和求出数列(){}32nn a -的通项公式,可计算出na,然后利用裂项法可求出23342122a a a a a a +++的值.【详解】()12347324n a a a n a n ++++-=.当1n =时,14a =;当2n ≥时,由()12347324n a a a n a n ++++-=,可得()()1231473541n a a a n a n -++++-⋅=-,两式相减,可得()324n n a -=,故432n a n =-,因为14a =也适合上式,所以432n a n =-.依题意,()()12161611313433134n n a a n n n n ++⎛⎫==- ⎪++++⎝⎭,故233421221611111111161153477101013616434644a a a a a a ⎛⎫⎛⎫+++=-+-+-++-=-= ⎪ ⎪⎝⎭⎝⎭. 故选:C. 【点睛】本题考查利用n S 求n a ,同时也考查了裂项求和法,考查计算能力,属于中等题.11.已知函数()()22sin cos cos 2cos 1sin f x x x x ωωϕωϕ=+-,0ω≠,0,2πϕ⎛⎫∈⎪⎝⎭.若()3f x f x π⎛⎫-=⎪⎝⎭,()02f f ππω⎛⎫+= ⎪⎝⎭,则ϕ=( ) A .512π B .3π C .4π D .6π 【答案】D【解析】利用三角恒等变换思想化简函数()y f x =的解析式为()()sin 2f x x ωϕ=+,由()3f x f x π⎛⎫-=⎪⎝⎭可知函数()y f x =的一条对称轴方程为6x π=,可得出ϕ的表达式,再结合条件()02f f ππω⎛⎫+= ⎪⎝⎭可求出ϕ的值. 【详解】依题意()()sin 2cos cos2sin sin 2f x x x x ωϕωϕωϕ=+=+. 因为()3f x f x π⎛⎫-= ⎪⎝⎭,所以6x π=为函数()y f x =图象的一条对称轴,即32k πωπϕπ+=+,k ∈Z ,所以2366k πωππϕ=+-,①.因为()02f f ππω⎛⎫+= ⎪⎝⎭,所以()sin sin 2ϕπωϕ=+,②,结合①②可得sin sin 5ϕϕ=,又02πϕ<<,故5052πϕ<<,得5ϕϕπ+=或52ϕϕπ=+,解得6π=ϕ或2π(舍去). 故选:D. 【点睛】本题考查利用正弦型函数的对称性求参数,考查计算能力,属于中等题.12.已知抛物线()2:20C x py p =>的焦点F 到准线l 的距离为2,直线1l 、2l 与抛物线C 分别交于M 、N 和M 、P 两点,其中直线2l 过点F ,MR RN =,(),R R R x y .若2R py MN =-,则当MFN ∠取到最大值时,MP =( ) A .14 B .16C .18D .20【答案】B【解析】先求出p 的值,得出抛物线C 的方程为24x y =,设()11,M x y ,()22,N x y ,()33,P x y ,由抛物线的定义以及中点坐标公式得出2MF NF MN +=,然后在MNF ∆中利用余弦定理可求出cos MFN ∠的最小值,由等号成立的条件可知MNF∆为等边三角形,可设直线2l的方程为1y =+,将该直线方程与抛物线方程联立,利用韦达定理和抛物线定义可求出MP . 【详解】依题意,可知2p =,设()11,M x y ,()22,N x y ,()33,P x y , 由抛物线定义可得122y y MF NF ++=+. 因为2R py MN =-,即1212y y MN +=-,所以2MF NF MN +=. 由余弦定理可得()2222236111cos 284842MF NF MF NF MNMF NF MFN MF NFMF NFMF NF++-⋅∠==-≥-=⋅⋅⋅,当且仅当MF NF =时等号成立,故MFN ∠的最大值为3π,此时MFN ∆为等边三角形,不妨直线MP 的方程为1y =+,联立241x yy ⎧=⎪⎨=+⎪⎩,消去y 得240x --=,故13x x+=)1313214y y x x +=++=,故16MP =. 故选:B. 【点睛】本题考查利用抛物线的定义求焦点弦长,涉及韦达定理的应用,同时也考查了抛物线中角的最值的计算,综合性较强,计算量大,属于难题.二、填空题13.5212x x ⎛⎫+ ⎪⎝⎭的展开式中,含4x 项的系数为______. 【答案】80【解析】求出二项展开式的通项,利用x 的指数为4,求出参数的值,再将参数的值代入通项可得出结果.【详解】5212x x⎛⎫+ ⎪⎝⎭的展开式通项为()525103155122kk k k k k k T C x C x x ---+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭, 令1034k -=,得2k =,因此,5212x x ⎛⎫+ ⎪⎝⎭的展开式中,含4x 项的系数为352280C ⋅=. 故答案为:80. 【点睛】本题考查利用二项式定理求展开式中指定项的系数,考查计算能力,属于基础题.14.设实数x 、y 满足21323340y x x y x y ≥-⎧⎪+≥⎨⎪++≥⎩,则2z x y =+的最大值为______.【答案】173【解析】作出不等式组所表示的可行域,平移直线2z x y =+,观察直线在y 轴上截距最大时对应的最优解,代入目标函数计算可得出结果. 【详解】作出不等式组所表示的平面区域,如图中阴影部分所示.观察可知,当直线2z x y =+过点C 时,直线2z x y =+在y 轴上的截距最大,此时,z 取得最大值,联立21323y x x y =-⎧⎨+=⎩,解得5373x y ⎧=⎪⎪⎨⎪=⎪⎩,故z 的最大值为max 57172333z =⨯+=. 故答案为:173. 【点睛】本题考查线性规划问题,考查线性目标函数的最值问题,一般利用平移直线法找出最优解,考查数形结合思想的应用,属于中等题.15.已知长方体1111ABCD A B C D -的体积为32,24AB BC ==,E ∈平面11ABB A ,若点E 到直线1AA 的距离与到直线CD 的距离相等,则1D E 的最小值为______. 【答案】4【解析】根据长方体的体积得出14AA =,然后以D 为原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点()2,,E y z ,根据已知条件得出24y z =+,然后利用空间中两点间的距离公式结合二次函数的基本性质可求出1D E 的最小值.【详解】因为长方体1111ABCD A B C D -的体积为111132ABCD A B C D V -=,24AB BC ==,所以14AA =.以D 为原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,设()2,,E y z ,则点E 到直线1AA 的距离为y ,点E 到直线CD 的距离为24z +,故24y z =+.而()10,0,4D ,故()22214428244D E y z z z =++-=-+≥,故1D E 的最小值为4. 故答案为:4.【点睛】本题考查空间中两点间距离最值的计算,涉及到空间直角坐标系的应用,考查计算能力,属于中等题.16.已知函数()2ln ,0,e x x m f x e x m x<≤⎧⎪=⎨>⎪⎩,若函数()()g x f x m =-仅有1个零点,则实数m 的取值范围为______. 【答案】(]0,e【解析】令()0g x =,得出()f x m e e =,令()()f x h x e=,将问题转化为直线m y e =与函数()y h x =的图象有且仅有1个交点,然后对m 与e 的大小进行分类讨论,利用数形结合思想得出关于实数m 的等式或不等式,即可求出实数m 的取值范围. 【详解】令()0g x =,则()f x m =,得()f x me e =,令()()ln ,0,x x mf x h x e e x m x <≤⎧⎪==⎨>⎪⎩, 则问题转化为直线my e =与函数()y h x =的图象有且仅有1个交点, 当m e =时,1m y e ==,此时函数()y h x =的图象与直线my e=只有1个公共点(),1e ,符合题意;当0m e <<时,01m e <<,若函数()y h x =的图象与直线my e=只有1个公共点, 则ln m em e m<<,如下图所示,显然m ee m<成立,下面解不等式lnmme<,即ln1mm e<,构造函数()ln xF xx=,0x>,()1ln xF xx-'=,令()0F x'=,得x e=.当0x e<<时,()0F x'>,当x e=时,()0F x'<.所以,函数()y F x=在x e=处取得最大值,即()()max1F x F ee==,所以,当0m>且m e≠时,不等式ln1mm e<恒成立,此时,0m e<<.当m e>时,1me>,若函数()y h x=的图象与直线mye=有1个交点,则有lnmme≤,即ln1mm e≥,由上可知,m e=(舍去).综上所述,0m e<≤.故答案为:(]0,e.【点睛】本题考查利用函数的零点个数求参数的取值范围,解题的关键就是对m与e的大小关系进行分类讨论,并利用数形结合思想得出不等关系,考查分析问题和解决问题的能力,属于难题.三、解答题17.已知ABC∆中,角A、B、C所对的边分别为a、b、c,()sin2A B A+=,5b=,3AC MC=,2ABM CBM∠=∠.(1)求ABC∠的大小;(2)求ABC∆的面积.【答案】(1)34π;(2)52.【解析】(1)设CBMθ∠=,由3AC MC=可得出12BMCBMAS CMS AM∆∆==,再由()sin A B A +=,结合正弦定理得出AB =,代入12BMC BMA S CM S AM ∆∆==可求出cos θ的值,进而可求得ABC ∠的值;(2)在ABC ∆中,利用余弦定理可求出a 的值,然后利用三角形的面积公式可求出该三角形的面积. 【详解】(1)因为3AC MC =,所以点M 在线段AC 上,且2AM CM =,故12BMC BMA S CM S AM ∆∆==,① 记CBM θ∠=,则1sin 2BMC S BC BM θ∆=⋅⋅,1sin 22BMA S AB BM θ∆=⋅⋅. 因为()sin A B A +=,即sin C A =,即AB =,结合①式,得12BMCBMAS S ∆∆===,可得cos 2θ=.因为()0,θπ∈,所以4πθ=,所以334ABC πθ∠==; (2)在ABC ∆中,由余弦定理可得2222cos b a c ac ABC =+-∠,即))222522a a =++⋅⋅,解得a =故1135sin sin 2242ABC S ac ABC a π∆=∠=⋅⋅=. 【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积的计算,涉及共线向量的应用,考查计算能力,属于中等题.18.随着经济的发展,轿车已成为人们上班代步的一种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.(1)求此人这三年以来每周开车从家到公司的时间之和在[)6.5,7.5(时)内的频率; (2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在[)4.5,6.5(时)内的周数为X ,求X 的分布列以及数学期望.【答案】(1)0.35;(2)7;(3)分布列见解析;数学期望65. 【解析】(1)用1减去频率直方图中位于区间[)3.5,6.5和[]7.5,10.5的矩形的面积之和可得出结果;(2)将各区间的中点值乘以对应的频率,再将所得的积全部相加即可得出所求平均数; (3)由题意可知34,10XB ⎛⎫⎪⎝⎭,利用二项分布可得出随机变量X 的概率分布列,并利用二项分布的均值可计算出随机变量X 的数学期望. 【详解】(1)依题意,此人这三年以来每周开车从家到公司的时间之和在[)6.5,7.5(时)内的频率为10.030.10.20.190.090.040.35------=; (2)所求平均数为40.0350.160.270.3580.1990.09100.047x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=(时); (3)依题意,34,10XB ⎛⎫ ⎪⎝⎭.()47240101010000P X ⎛⎫=== ⎪⎝⎭,()314371029*********P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,()2224371323210105000P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()33437189310102500P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()438141010000P X ⎛⎫=== ⎪⎝⎭. 故X 的分布列为X1234P240110000102925001323500018925008110000故()364105E X =⨯=. 【点睛】本题考查频率分布直方图中频率和平均数的计算,同时也考查了二项分布的概率分布列和数学期望的计算,考查计算能力,属于中等题. 19.如图,五面体ABCDEF 中,2AE EF =,平面DAE ⊥平面ABFE ,平面CBF ⊥平面ABFE .45DAE DEA CFB EAB FBA ∠=∠=∠=∠=∠=︒,AB EF ,点P是线段AB 上靠近A 的三等分点.(Ⅰ)求证:DP 平面CBF ;(Ⅱ)求直线DP 与平面ACF 所成角的正弦值. 【答案】(Ⅰ)证明见解析 (Ⅱ)33819【解析】(Ⅰ)根据题意,分别取AE ,BF 的中点M ,N ,连接DM ,CN ,MP ,MN . 由题可知AD DE =,90ADE ∠=︒.设1AD DE ==,则2AM =由平面DAE ⊥平面ABFE ,得DM ⊥平面ABFE ,同理CN ⊥平面ABFE .,从而//DM CN .,则//DM 平面CBF ;由cos45AM AP =︒,所以90AMP ∠=︒,所以AMP ∆是以AP为斜边的等腰直角三角形,再由45MPA ∠=︒,45FBA ∠=︒,得到//MP FB .则//MP 平面CBF .,再由面面平行的判断定理得到平面//DMP 平面CBF ,从而得证。

天一大联考海南省2018-2019 学年第一学期高三期末考试数学( 理科)试题及答案

天一大联考海南省2018-2019 学年第一学期高三期末考试数学( 理科)试题及答案

天一大联考海南省2018—2019学年第一学期高三期末考试数学(理科)·答案及评分细则一、选择题:本题共12小题,每小题5分,共60分.二、填空题:本题共4小题,每小题5分,共20分.13.⎝⎛⎭⎫-255,55 14.94 15.20 16.6π三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.【命题意图】 考查解三角形.【解析】 (Ⅰ)因为sin B -3cos B =0,所以tan B = 3.在△ABC 中,因为B ∈(0,π),所以B =π3. (2分) 因为cos A =-17<0,所以A ∈⎝⎛⎭⎫π2,π,所以sin A =1-cos 2A =437. (4分) sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =3314. (6分) (Ⅱ)在△ABC 中,由正弦定理a sin A =b sin B ,得b =a sin B sin A , (9分) 所以S △ABC =12ab sin C =12a ·a sin B sin A·sin C =63. (12分) (未判断B ∈(0,π)和A ∈⎝⎛⎭⎫π2,π,扣1分;仅判断一处,也扣1分)18.【命题意图】 考查数据的平均数、方差、中位数以及随机变量的分布列和数学期望.【解析】 (Ⅰ)x -男=94+77+80+81+82+88+84+948=85. (2分,算式和结果各计1分) s 2男=18[(94-85)2+(77-85)2+(80-85)2+(81-85)2+(82-85)2+(88-85)2+(84-85)2+(94-85)2] =35.75. (4分,算式和结果各计1分)将女生数据由小到大排列为76,79,80,83,85,89,90,97,(5分,非必要步骤,没有不扣分)其中位数为83+852=84. (6分) (Ⅱ)记“从女生中抽取1人,其评分不低于90分”为事件A ,(7分)则P (A )=28=14. (8分) 随机变量X 的所有可能取值为0,1,2,3,4,且X ~B ⎝⎛⎭⎫4,14, (9分,非必要步骤,没有不扣分) 所以P (X =k )=C k 4⎝⎛⎭⎫14k ⎝⎛⎭⎫1-144-k ,k =0,1,2,3,4. (10分) 分布列为:(11分) E (X )=4×14=1. (12分) 19.【命题意图】 考查椭圆的定义和直线与圆锥曲线的位置关系.【解析】 (Ⅰ)设P (x ,y ),圆P 的半径为r .由题意,知|PC 1|=r ,|PC 2|=26-r ,(1分) 所以|PC 1|+|PC 2|=26>23,所以圆心P 的轨迹为椭圆. (2分) 设曲线E :x 2a 2+y 2b2=1(a >b >0),所以2a =26,c =3, (4分) 所以曲线E 的方程为x 26+y 23=1. (5分) (Ⅱ)当直线l 的斜率不存在时,不妨设直线AB 的方程为x =2, (6分)则A (2,2),B (2,-2),所以∠AOB =π2,所以OA ⊥OB . (7分) 当直线l 的斜率存在时,不妨设直线AB 的方程为y =kx +m .设A (x 1,y 1),B (x 2,y 2),因为直线与圆相切,所以d =|m |1+k2=2, 所以m 2=2+2k 2. (8分)联立方程组⎩⎪⎨⎪⎧y =kx +m ,x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2-6=0. (9分) 所以Δ=16k 2m 2-4(1+2k 2)(2m 2-6).因为m 2=2+2k 2,所以Δ=8(4k 2+1)>0,x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2. (10分) 所以x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=3m 2-6k 2-61+2k 2=3(2+2k 2)-6k 2-61+2k 2=0. (11分) 所以OA →·OB →=x 1x 2+y 1y 2=0,所以OA ⊥OB . (12分)20.【命题意图】 考查空间线、面垂直关系的证明以及二面角的求法.【解析】 (Ⅰ)如图,连接B 1C ,设BC 1∩B 1C =F ,连接DF .∵四边形BCC 1B 1是正方形, ∴BC 1⊥B 1C 且F 为BC 1的中点. (1分)∵D 是AA 1的中点,∴DB =DC 1,∴BC 1⊥DF . (2分)又∵DF ,B 1C ⊂平面B 1DC ,DF ∩B 1C =F ,∴BC 1⊥平面B 1DC . (3分,条件不全扣1分) ∵DB 1⊂平面B 1DC ,∴BC 1⊥DB 1. (4分)(Ⅱ)方法一:点E 为线段BC 的中点时DE ∥平面BA 1C 1. (5分)连接EF ,A 1F ,易知EF 綊12CC 1,A 1D 綊12CC 1,∴EF 綊A 1D . ∴四边形EF A 1D 为平行四边形. (6分)∴A 1F ∥DE .又∵A 1F ⊂平面BA 1C 1,DE ⊄平面BA 1C 1,∴DE ∥平面BA 1C 1.(7分,条件不全扣1分) 连接C 1E ,依题意可知,AE ⊥EC ,AE ⊥CC 1,CC 1∩EC =C ,∴AE ⊥平面C 1CE . (8分) 又EC 1⊂平面C 1CE ,∴AE ⊥EC 1. (9分)∴∠C 1EC 即为二面角C 1-AE -C 的平面角. (10分)在△C 1EC 中,易求得cos ∠C 1EC =5,∴二面角C 1-AE -C 的余弦值为5. (12分) 方法二:找点E 并证明DE ∥平面BA 1C 1的过程同方法一. (7分)如图所示,以E 为坐标原点,以EB ,AE ,EF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则E (0,0,0),C (-1,0,0),C 1(-1,0,2),A (0,-3,0),所以C 1E →=(1,0,-2),C 1A →=(1,-3,-2). (8分)∵CC 1⊥平面ABC ,∴平面AEC 的一个法向量为CC 1→=(0,0,2). (9分)设平面C 1AE 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·C 1E →=0,n ·C 1A →=0得n =(2,0,1). (10分) ∴|cos 〈n ,CC 1→〉|=|n ·CC 1→||n ||CC 1→|=55, (11分)由题知二面角C 1-AE -C 为锐角,所以二面角C 1-AE -C 的余弦值为55. (12分) (结果正确,未说明是锐角,不扣分)21.【命题意图】 考查极值、最值,并考查分离常量和设而不求的思想.【解析】 (Ⅰ)由题可知f (x )=e x -ax -1的定义域为(-∞,+∞),f ′(x )=e x -a . (1分) 当a ≤0时,f ′(x )>0,所以f (x )在R 上单调递增. (2分)当a >0时,令f ′(x )>0,解得x >ln a ,令f ′(x )<0,解得x <ln a . (3分)所以f (x )在(ln a ,+∞)上单调递增,在(-∞,ln a )上单调递减. (4分)(导数不等式带等号,单调区间在ln a 处取闭,也算对)(Ⅱ)(ⅰ)由(Ⅰ)可知当a =1时,f (x )=e x -x -1在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f (x )min =f (0)=e 0-0-1=0. (5分)所以e x -x -1≥0,所以e x ≥x +1. (6分)(ⅱ)令g (x )=ln(x +1)-(1+ax -e x ),则g ′(x )=1x +1+e x -a . (7分) 由(ⅰ)知e x ≥x +1,又x >0,所以1x +1+e x ≥1x +1+x +1>2. (9分,两次放缩各计1分) 又由已知a ≤2,所以g ′(x )>0. (10分)所以g (x )在(0,+∞)上单调递增,所以g (x )>g (0)=0, (11分)所以ln(x +1)-(1+ax -e x )>0,即ln(x +1)>1+ax -e x . (12分)22.【命题意图】 考查极坐标方程化直角坐标方程,参数方程化普通方程,考查极径的运用.【解析】 (Ⅰ)直线l 与曲线C 1相交. (1分)理由如下:因为曲线C 1的极坐标方程为ρ=4cos θ,所以ρ2=4ρcos θ. (2分) 化为直角坐标方程为x 2+y 2=4x ,即(x -2)2+y 2=4. (未化成标准形式不扣分) 所以曲线C 1是圆心为(2,0),半径r 为2的圆. (3分)直线l 的参数方程是⎩⎪⎨⎪⎧x =1-t ,y =t ,化为普通方程为x +y -1=0. (4分) 圆心C 1到直线l 的距离d =|2+0-1|2=22,可知d <r , 所以直线l 与曲线C 1相交. (5分)另解:同上得到直线l 和曲线C 1普通直角坐标方程, (3分)联立⎩⎪⎨⎪⎧x +y -1=0x 2+y 2=4x ,消去y 得2x 2-6x +1=0, (4分) 因为∆>0,方程有两个互异的实根,故直线l 与曲线C 1相交. (5分)(Ⅱ)设A ,B ,C 三点的极坐标分别为(ρ1,φ),⎝⎛⎭⎫ρ2,φ+π4,⎝⎛⎭⎫ρ3,φ-π4. (6分) 因为A ,B ,C 三点在曲线C 1上,所以ρ1=4cos φ,ρ2=4cos ⎝⎛⎭⎫φ+π4,ρ3=4cos ⎝⎛⎭⎫φ-π4. (7分) 所以2|OA |=2ρ1=42cos φ, (8分)|OB |+|OC |=ρ2+ρ3=4cos ⎝⎛⎭⎫φ+π4+4cos ⎝⎛⎭⎫φ-π4=42cos φ. (9分)故|OB |+|OC |=2|OA |. (10分)23.【命题意图】 考查绝对值不等式的解法、绝对值三角不等式.【解析】 (Ⅰ)当a =1时,f (x )=|x +1|+|x -2|=⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x ≤2,2x -1,x >2.(3分) 由f (x )≤5得⎩⎪⎨⎪⎧x ≤-1,-2x +1≤5或⎩⎪⎨⎪⎧-1<x ≤2,3≤5或⎩⎪⎨⎪⎧x >2,2x -1≤5,(4分) 分别得-2≤x ≤-1或-1<x ≤2或2<x ≤3, (5分)所以f (x )≤5的解集为{x |-2≤x ≤3}. (6分)(作出f (x )的图象进行判断,同样算对)(Ⅱ)f (x )=|x +a 2|+|x -a -1|≥|(x +a 2)-(x -a -1)| (8分)=|a 2+a +1|=⎪⎪⎪⎪⎝⎛⎭⎫a +122+34≥34. (10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天一大联考
2016—2017学年高三年级上学期期末考试
数学(理科)
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.
1.已知集合{}{}0,2,4,6,|233n A B x N ==∈<,则集合A B 的子集个数为
A.8
B. 7
C. 6
D. 4
2.设i 为虚数单位,复数21a i i
++为纯虚数,则实数a 的值为 A. -1 B. 1 C. -2 D. 2
3.已知数列{}n a 的前n 项和21n n S =-,则数列{}2log n a 的前10项和等于
A. 1023
B. 55
C. 45
D. 35
4.三国时代吴国数学家赵爽所注《周髀算经》中给出了股
股定理的绝妙证明。

下面是赵爽的弦图和注文,弦图是一个以勾
股形之弦为边的正方形,其面积称为弦实。

图中包含四个全等的
勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称
为朱实、黄实,利用2⨯勾⨯股+(股-勾)2=4⨯朱实+黄实=弦实,化简得:+=222勾股弦.
设勾股形中勾股比为1:若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为
A. 866
B. 500
C. 300
D. 134
5.已知圆()22
314x y -+=的一条切线y kx =与双曲线()2222:10,0x y C a b a b -=>>有两个交点,则双曲线C 的离心率的取值范围是
A. (
B. ()1,2
C. )
+∞ D.()2,+∞ 6.已知点M 的坐标(),x y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩
,N 为直线22y x =-+上任一点,则MN 的
最小值是
[)4,y ∈+∞,则
7.已知0a >且1a ≠,如图所示的程序框图的输出值
实数a 的取值范围是
A. (]1,2
B. 1,12⎛⎫ ⎪⎝⎭
C. ()1,2
D. [)2,+∞ 8.函数()cos 21x f x x x π
=+的图象大致是
9.如图,已知长方体1111ABCD A B C D -的体积为6,1C BC ∠的正切值为,当1AB AD AA ++的值最小时,长方体1111ABCD A B C D -外接球的表面积为
A. 10π
B. 12π
C. 14π
D. 16π
10.已知函数()()1sin 20,022f x A x A πϕϕ⎛⎫=+-><< ⎪⎝⎭的图象在
y 轴上的截距为1,且关于直线12x π
=对称,若对任意的0,2x π⎡⎤∈⎢⎥⎣⎦,都有()23m m f x -≤,则实数m 的取值范围是 A. 31,2⎡⎤⎢⎥⎣⎦ B. []1,2 C. 3,22⎡⎤⎢⎥⎣⎦
D. ⎣⎦
11.某几何体的三视图如图所示,则该几何体的体积为
A. 8
B. 10
C. 12
D. 14
12.已知定义在R 上的函数()f x 满足()()4f x f x +=,且
(]2,2x ∈-时,()(
)2111,0222,20x x x x x f x x x x ⎧⎛⎫+--<≤⎪ ⎪=⎝
⎭⎨⎪-+-<≤⎩,则函数()()4log g x f x x =-的零点个数是
A. 4
B. 7
C. 8
D.9
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13.已知平面向量()()1,2,2,a b m ==-,且a b a b +=-,则2a b += .
14.已知()3021n x dx =-

,则n
的展开式中2x 的系数为 . 15.已知抛物线()2
1:0C y ax a =>的焦点F 也是椭圆()22
22:104y x C b b +=>的一个焦点,点3,,12M P ⎛⎫ ⎪⎝⎭
分别为曲线12,C C 上的点,则MP MF +的最小值为 . 16.已知数列{}n b 是首项为-34,公差为1的等差数列,数列{}n a 满足()12n n n a a n N *+-=∈,且137a b =,则数列n n b a ⎧⎫⎨⎬⎩⎭
的最大值为 .
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.
17.(本题满分12分)
如图,在圆内接四边形
ABCD
中,2,cos sin .AB AD CD αβ===+
(1)求角β的大小;
(2)求四边形ABCD 周长的取值范围.
18.(本题满分12分)
如图,已知四边形ABCD 和ABEG 均为平行四边形,点E 在
平面ABCD 内的射影恰好为点A ,以BD 为直径的圆经过点
,,A C AG 的中点为,F CD 的中点为P ,且.AD AB AE ==
(1)求证:平面EFP ⊥平面BCE ;
(2)求二面角P EF B --的余弦值.
19.(本题满分12分)
2016年是红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.
然后在各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.
(1)求此活动中各公园幸运之星的人数;
(2)若乙公园中每位幸运之星对每个问题答对的概率均为
2
,求恰好2位幸运之星获得纪念品的概率;
(3)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为X ,求X 的分布列和数学期望().E X
20.(本题满分12分)
已知椭圆()22
22:10y x C a b a b +=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线
交椭圆C 于M,N 两点,2MNF ∆,椭圆C 的离心率为
2
(1)求椭圆C 的标准方程; (2)已知O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于A,B 两个不同的点,若存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.
21.(本题满分12分)
已知函数()ln f x x a x =+与()3b g x x
=-的图象在点()1,1处有相同的切线. (1)若函数()2y x m =+与()y f x =的图象有两个交点,求实数m 的取值范围;
(2)设函数()()()()ln 1,0,x H x f x e x m =--∈,求证:()2
m H x <.
请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

22.(本题满分10分)选修4-4:参数方程与极坐标系
已知极坐标系的极点为直角坐标系xoy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度
单位相同,圆C 的直角坐标方程为22220x y x y ++-=,直线l 的参数方程为1x t y t
=-+⎧⎨=⎩(t 为参
数),射线OM 的极坐标方程为34
πθ=. (1)求圆C 和直线l 的极坐标方程;
(2)已知射线OM 与圆C 的交点为O,P,与直线l 的交点为Q ,求线段PQ 的长.
23.(本题满分10分)选修4-5:不等式选讲
已知函数()3 2.f x x x =++-
(1)若()2,6x R f x a a ∀∈≥-恒成立,求实数a 的取值范围;
(2)求函数()y f x =的图象与直线9y =围成的封闭图形的面积.
欢迎访问“高中试卷网”——http//。

相关文档
最新文档