信息安全原理与技术(第2版)复习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信息安全原理与技术》习题参考答案
郭亚军,宋建华,莉,董慧慧
清华大学
第1章
1.1 主动攻击和被动攻击是区别是什么?
答:被动攻击时系统的操作和状态不会改变,因此被动攻击主要威胁信息的性。主动攻击则意在篡改或者伪造信息、也可以是改变系统的状态和操作,因此主动攻击主要威胁信息的完整性、可用性和真实性。
1.2 列出一些主动攻击和被动攻击的例子。
答:常见的主动攻击:重放、拒绝服务、篡改、伪装等等。
常见的被动攻击:消息容的泄漏、流量分析等等。
1.3 列出并简单定义安全机制的种类。
答:安全机制是阻止安全攻击及恢复系统的机制,常见的安全机制包括:加密机制:加密是提供数据保护最常用的方法,加密能够提供数据的性,并能对其他安全机制起作用或对它们进行补充。
数字签名机制:数字签名主要用来解决通信双方发生否认、伪造、篡改和冒充等问题。
访问控制机制:访问控制机制是按照事先制定的规则确定主体对客体的访问是否合法,防止未经授权的用户非法访问系统资源。
数据完整性机制:用于保证数据单元完整性的各种机制。
认证交换机制:以交换信息的方式来确认对方身份的机制。
流量填充机制:指在数据流中填充一些额外数据,用于防止流量分析的机制。
路由控制机制:发送信息者可以选择特殊安全的线路发送信息。
公证机制:在两个或多个实体间进行通信时,数据的完整性、来源、时间和目的地等容都由公证机制来保证。
1.4 安全服务模型主要由几个部分组成,它们之间存在什么关系。
答:安全服务是加强数据处理系统和信息传输的安全性的一种服务,是指信息系统为其应用提供的某些功能或者辅助业务。安全服务模型主要由三个部分组成:支撑服务,预防服务和恢复相关的服务。
支撑服务是其他服务的基础,预防服务能够阻止安全漏洞的发生,检测与恢复服务主要是关于安全漏洞的检测,以及采取行动恢复或者降低这些安全漏洞产生的影响。
1.5 说明安全目标、安全要求、安全服务以及安全机制之间的关系。
答:见图1.4,全部安全需求的实现才能达到安全目标,安全需求和安全服务是多对多的关系,不同的安全服务的联合能够实现不同的安全需求,一个安全服务可能是多个安全需求的组成要素。同样,安全机制和安全服务也是多对多的关系,不同的安全机制联合能够完成不同的安全服务,一个安全机制也可能是多个安全服务的构成要素。
1.6 说明在网络安全模型中可信的第三方所起的作用。
答:要保证网络上信息的安全传输,常常依赖可信的第三方,如第三方负责将秘密信息分配给通信双方,或者当通信的双方就关于信息传输的真实性发生争执时,由第三方来仲裁。
第2章
2.1、列出小于30的素数。
2、3、5、7、11、13、17、19、23、29
2.2、若a 是大于1的整数, 则a 的大于1的最小因子一定是素数。
证明 若a 是素数, 显然a 的大于1的最小因子就是素数a; 若a 是合数, 则显然除1和a
外还有其它的因数,令b 是这些正因数中最小者, 可以证明b 不是合数而是素数, 若其不然, b 必有大于1且不等于b 的因数c, 于是由c|b 和b|c 可知c|a, 即c 是a 的因数,又有1 2.3、如果n|(a-b), 证明a ≡b mod n 证明:由n|(a-b)可知存在正整数k,使得a=kn+b,其中b 是1到n-1之间的正整数,所以有 a mod n=b, b mod n=b,可知a,b 同余,即a ≡b mod n 2.4、证明下面等式 (1) (a +b ) mod m = ((a mod m ) + (b mod m )) mod m mod ,mod ,,.,,()mod ()mod ()mod [(mod )(mod )]mod ,a b a b a b a b a m r b m r a jm r j Z b km r k Z a b m jm r km r m r r m a m b m m ===+∈=+∈+=+++=+=+证明:假设则得同样,假定于是有得证。 (2) (a -b ) mod m = ((a mod m ) - (b mod m )) mod m mod ,mod ,,.,,()mod ()mod ()mod [(mod )(mod )]mod ,a b a b a b a b a m r b m r a jm r j Z b km r k Z a b m jm r km r m r r m a m b m m ===+∈=+∈-=+--=-=-证明:假设则得同样,假定于是有得证。 (3) (a ×b ) mod m = ((a mod m ) × (b mod m )) mod m 2mod ,mod ,,.,,()mod ()()mod ()mod ()mod [(mod )(mod )]mod ,a b a b a b a b b a a b a m r b m r a jm r j Z b km r k Z a b m jm r km r m r r r jm r km kjm m r r m a m b m m ===+∈=+∈⨯=++= +++=⨯=⨯证明:假设则得同样,假定于是有得证。 (4) (a ×(b +c ) ) mod m = ((a ×b ) mod m ) + ((a ×c ) mod m )) mod m ()()13(())mod (()())mod ((()mod )(()mod ))mod .a b c m a b a c m a b m a c m m ⨯+=⨯+⨯=⨯+⨯证明:由和可知,得证。 2.5、证明560 -1是56的倍数。