冲压发动机在中国的发展[院士报告]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冲压发动机在中国的发展
刘兴洲
摘要
文章简要地回顾了冲压发动机在中国的发展。在60年代就着手发展了液体燃料冲压发动机。某几种液体燃料冲压发动机和固体火箭冲压发动机均获得成功。在研究整体式液体燃料冲压发动机方面获得重要进展。高超音速组合吸气式发动机的概念研究和可行性研究正在进行。超音速燃烧的研究正在开展。
在60年代就着手发展了液体燃料冲压发动机。某几种液体燃料冲压发动机和固体火箭冲压发动机均获得成功。在研究整体式液体燃料冲压发动机方面获得重要进展。高超音速组合吸气式发动机的概念研究和可行性研究正在进行。超音速燃烧的研究正在开展。
众所周知,在超音速领域中,冲压发动机的热效率优于其它可能的吸气式发动机。冲压发动机比冲高,结构简单,它获得了广泛的应用。在我国,钱学森和梁守磐教授倡议和领导了冲压发动机的发展工作。在60年代就积极着手发展了液体燃料冲压发动机。现在有几种液体燃料冲压发动机和固体火箭冲压发动机已经研制成功,某些发动机已用于低空超音速反舰导弹上。在研究整体式液体燃料冲压发动机方面已获得重要进展。高超音速吸气式组合发动机的概念研究和可行性研究正在进行,目的是找出吸气式组合推进系统的最佳类型。超音速燃烧的研究工作正在开展。液体燃料冲压发动机曾研制了不同类型的高空、低空弹用冲压发动机。
在研制中,一个重要的问题是进气道。发展了几种类型的进气道,诸如带有单锥的外压式进气道、多激波进气道、侧面进气道、等熵进气道等。另一个重要问题是燃烧室。研究了不同类型的燃油喷嘴、喷油杆、V型槽稳定器、预燃室,以及气膜冷却方法。在上述研究工作的基础上,冲压发动机Ⅱ型获得成功的发展,该发动机在超音速和低空工作,性能如下:飞行速度Ma=2.0;起动速度Ma=1.5~1.8;高度H=0.1~0.5km;发动机直径D=440mm;相对进口面积A1=0.40;相对喉道面积Ah=0.80;相对出口面积A4=0.95。冲压发动机Ⅱ型结构示于图1(图略),该型发动机设计特点如下:使用带有中心锥的外压式进气道使用的进气道中心锥半角为25°。在结尾正冲波后,燃烧室进口马赫数约为0.2。亚音段当量扩张角为7°36’。进一步的研究表明,经过优化设计,可将当量扩张角提高到9°36’,总压恢复系数仍保持不变,这样可以显著缩短燃烧室长度。经验表明,在进气道设计中,要避免结尾正激波和中心锥支板的相互干扰,否则将诱发燃烧振荡。
使用带有旋流器的预燃室
预燃室流量大致为发动机总流量的1%。在起动中预燃室的混合比接近化学恰当比,在起动后,混合比显著下降,在预燃室设计中要考虑混合比的变化。使用双喷嘴环和V型槽稳定器发动机使用双喷嘴用环,喷嘴环上均匀装有离心式喷嘴。燃油浓度的分布对发动机的工作有显著影响,燃油在燃烧室中均匀分布,有利于提高燃烧效率;适当提高燃烧室中心浓度,有利于发动机起动。燃烧室中装有两个环形V型槽火焰稳定器。火焰稳定器在燃烧室中的布置直接影响发动机的工作。火焰稳定器安置不当,点火延迟时间拉长,甚至发动机不能起动。通过工业电视,可以清楚地看到,在起动过程中火焰稳定器之间的火焰传递。
使用气膜冷却
燃烧室火焰筒用气膜冷却,采用三段火焰筒,以提高气膜冷却效果。在火焰筒上开有小孔,以减少发动机振动。冲压发动机在地面上进行了充分的试验。主要设备有冲压发动机高空直连式试车台、冲压发动机自由射流试车台、涡轮泵试验台、离心泵试验台、进气道试验风洞等。高空直连式试车台(见图2)主要是模拟冲压发动机燃烧室进口气流参数,考查燃烧室和尾喷管工作性能。在高空直连式试车台上进行了冲压发动机本体性能试验、起动试验、结构考核试验、长时间工作试验、发动机和涡轮泵、调节器的联合工作试验、模拟飞行弹道的冲压发动机联合工作试验等。这一高空直连式试车台模拟高度可达30km,模拟飞
行马赫数可达到4,具有先进的测试设备。冲压发动机自由射流试车台(图3)向冲压发动机提供超音速自由射流进气条件,模拟发动机空中工作的来流速度、环境压力和温度,通过自由射流试验可以确定发动机典型工作状态的性能。在实际飞行中,飞行器常以某种攻角飞行。自由射流试验台设有攻角机构,模拟有攻角的飞行状态,确定攻角对发动机性能的影响。在自由射流试车台上进行了冲压发动机流量系数标定试验、临界推力和喘振边界试验和发动机鉴定试验。冲压发动机Ⅱ型的飞行试验获得成功。结果表明,发动机的飞行性能与地面试验的结果是一致的。图4示出某一在飞行中的装有冲压发动机的反舰导弹。固体火箭冲压发动机我国发展的固体火箭冲压发动机示于图5(图略)。
进气道
4个进气道对称环绕安置在燃气发生器周围。在飞行中进气道以超额定状态工作。富燃推进剂发动机使用丁羟富燃料推进剂,配方中含有高氯酸氨、铝、镁等成分。
燃气发生器
固体燃料在燃气发生器中燃烧后产生富燃气,从12个喷嘴中排出,然后富燃气与来流空气在后燃室中进行混合。
后燃室固体火箭冲压发动机使用双功能后燃室。在发动机开始工作时,后燃室中装有固体平台推进剂,作为火箭的加速器使用。加速器工作后使火箭具备进行工况转换的速度。完成转换后,后燃室被用作富燃气与空气燃烧的燃烧室,亦即以冲压发动机的方式工作。工况转换在后燃室中设有压力继电器,当后燃室中压力降到预定值时,压力继电器工作,起爆加速器喷管释放机构的爆炸螺拴,随之加速器喷管、燃气发生器喷嘴盖和进气道罩均脱落,后燃室转换为冲压状态工作。在地面完成了固体火箭发动机的试验,并成功地进行了飞行试验。试验结果表明,比冲已达到6500m/s。整体式液体燃料冲压发动机本文简要介绍突扩燃烧室和燃烧室气流可视化的研究工作。
突扩燃烧室的发展
进行了液体燃料侧面突扩燃烧室的研究,试验中使用直接加热器加热,试验条件为总压P=0.75MPa,总温T=373~473K。在发展突扩燃烧室的初始阶段,曾采用方案R(图6(图略)),突扩比为A/A=1.53。当喷管面积比为A/A=0.55,燃烧室可以顺利起动。但当A/A=0.75时,在热试中燃烧室发生强烈的振动。分析后发现,在进气道出口形成了局部超音速流,因此引起了燃烧的不稳定,甚至于有时燃烧室不能起动。为了改善燃烧室的起动性能,在方案R的基础上,提出了方案M(图7(图略)),增加了第二股进气管道,装于燃烧室两测,并与原进气道相连接,结构参数如下:A/A=0.61;A/A=0.24;A/A=0.75;L/d=4.热试结果表明:
a.在方案M中,燃烧室头部突扩比保持不变,但降低了燃烧室的气流速度,因此易于在大喷管面积比条件下起动。
b.有了第二股进气流的注入,消除了燃烧振荡,并获得了较高的燃烧效率。
c.在第二股进气流中添加燃料,扩大了火焰稳定极限的范围(α=0.77~2.20)。突扩燃烧室的流动显示
在水洞中进行了旁侧突扩燃烧室模型的流场研究。为了显示方便和避免流动畸变,设计了方形透明突扩燃烧室的模型(图8(图略))。考虑到燃烧室的对称性,模型设计为燃烧室的半部,仅带有一侧进气道,第二股进气管道设计为可拆卸部分。a.不带第二股进气管道的旁侧突扩燃烧室模型的流场图形燃烧室流动的总图形包含两个基本区:停留在燃烧室底部区的受限涡。两个螺旋涡串以相反方向旋转,被称作螺旋涡对,由于侧面突扩台阶的影响,从进气道出口沿两边向下游移动。随着射流的移动,两螺旋涡串逐渐互相碰撞,