最新第七章 生物质热解技术
生物质热解技术
生物质压缩成型技术1 压缩成型原理生物质主要有纤维素、半纤维素和木质素组成。
木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。
木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。
在冷却以后强度增加,成为成型燃料。
压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。
对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。
当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。
这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。
2 压缩成型生产工艺压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。
生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料主要操作步骤如下:(1)干燥生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料的含水率降低至8%-10%。
如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。
(2)粉碎木屑及稻壳等原料的粒度较小,经筛选后可直接使用。
而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。
(3)调湿加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。
(4)成型生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。
生物质热解技术
生物质热解技术按温度,升温速率,固定停留时间(反应时间)和颗粒大小等实验条件可将热解分为炭化(慢热解),快速热解和气化。
由于液体产物的诸多优点和随之而来的人们对其研究兴趣的日益高涨,对液体产物收率相对较高的快速热解技术的研究和应用越来越受到人们的重视。
快速热解过程在几秒或更短的时间内完成。
所以,化学反应,传热传质以及相变现象都起重要作用。
关键问题是使生物质颗粒只在极短的时间内处于较低温度(此种低温利于生成焦炭),然后一直处于热解过程最优温度。
要达到此目的的一种方法是使用小生物质颗粒(应用于流化床反应器),另一种方法是通过热源直接与生物质颗粒表面接触达到快速传热(这一方法应用于生物质烧蚀热解技术中)。
由众多实验研究得知,较低的加热温度和较长气体停留时间会有利于炭的生成,高温和较长停留时间会增加生物质转化为气体的量,中温和短停留时间对液体产物增加最有利。
秸秆发电商品化前景分析解决浪费性生物质能资源的唯一出路在于商品化。
生物质能秸秆发电技术,不仅为农村提供更多电力,更有意义的是将使生物质能资源的商品化成为可能,一方面农民可通过出售秸秆获得更多的收入;另一方面过去农村使用直接燃烧秸秆的方式进行炊事,要为秸秆的收集、运输、储存以及在直接燃烧时花费大量的时间和劳力。
如果能使用秸秆发电,农村使用更多的商品能源,农民将获得更多的时间从事生产性劳动,以尽早脱贫致富。
因此,将秸秆发电进行能源方式转化,是一件利国利民的好事。
1 生物质能秸秆发电的工艺流程农作物秸秆在很久以前就开始作为燃料,直至1973年第一次石油危机时丹麦开始研究利用秸秆作为发电燃料。
在这个领域丹麦BWE公司是世界领先者,第一家秸秆燃烧发电厂于1998年投入运行(Haslev,5Mw)。
此后,BWE公司在西欧设计并建造了大量的生物发电厂,其中最大的发电厂是英国的Elyan发电厂,装机容量为38Mw。
1.1 秸秆的处理、输送和燃烧发电厂内建设两个独立的秸秆仓库。
生物质热裂解技术
生物质热裂解技术概述摘要:生物质在慢速热裂解的情形下以得到炭为目的的炭化是一种有几千年历史的工艺,由于化工和能源等领域中新型反应工艺的不断开发,人们发现通过改变热裂解过程的温度、加热速率及停留时间等因素,可分别有效地最大化气体和液体产物产量,并且对所得产物进行相应的改性及优化后可用作其他多种用途。
本文简单介绍了生物质热裂解技术发展,对生物质热裂解技术的裂解机理、影响因素,以及生物质热裂解过程及产物组成因素进行概述。
关键词:生物质;热裂解;温度;升温速率前言:生物质通常是木材、竹材、灌木、野草、秸秆等植物纤维来源的天然有机材料(也包括甲壳素等动物来源的天然有机材料)的统称,其主要化学成分是纤维素、半纤维素和木质素,此外尚含有少量品种繁多的其它有机和无机物质。
通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,是一种对环境友好的可以替代化石能源的可再生的能源,可以有效减少有害气体及烟尘排放量和温室气体增加量,维系全球平衡,提高环境质量;较之其他新能源(如太阳能、风能、地热能及潮汐能等)生物质能源的开发转化技术较容易实现,既可利用生物质能的热能效应又可将简单的热效应充分转化为化学能、电能等高品位能源。
生物质热裂解是指生物质在没有氧化剂(空气、氧气、水蒸汽等)存在或只提供有限氧的条件下,加热到500℃,通过热化学反应将物质大分子物质分解成较小分子的燃料物质的热化学转化技术方法,是目前国内外非常关注的新能源生产技术。
1 生物质热裂解技术简介及工艺类型生物质热裂解是指生物质在完全缺氧或有限氧提供条件下利用热能切断生物质大分子中碳氢化合物的化学键,使之转化为小分子物质的热降解,这种热解过程最终生成液体生物油、可燃气体和固体生物质炭三种,产物的比例根据不同的热裂解工艺和反应条件而发生变化。
生物热裂解的燃料能源转化率可达95.5%,最大限度地将生物质能量转化为能源产品,是生物质能利用技术的主要方法之一,且越来越得到重视,这是因为:○1热解技术对于原料的种类没有严格要求,城市固体废弃物(MSW),农业、林业废物都能气化。
生物质快速热解技术
生物质快速热解技术摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。
本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。
生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。
主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。
据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。
但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。
不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。
1生物质转化利用方法1.1生物法或称为微生物法生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。
1.2化学处理法生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。
1.3热化学转化法1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。
近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。
生物质热解气化原理与技术-绪论
生物质热解气化原理与技术第一章绪论生物质能是绿色植物通过光合作用转换和储存下来的太阳能,是重要的可再生能源,也是人类最早主动利用的能源,在人类文明史中起到了重要的作用。
至今,生物质能仍然是世界上消费量位居第四的一次能源,在我国农村和发展中国家得到广泛应用。
传统生物质能利用方式主要是家用炉灶中的直接燃烧,是自然经济生活方式的延续。
现代生物质能技术包括热化学转换和生物化学转换两大类。
其中热化学转换技术与化石燃料技术有很强大的兼容性,在许多方面可以替代化石燃料,实现可持续发展和低碳排放,为人们所重视。
生物质热解气化是热化学转换的重要技术方向,经过科学家和工程师们的长期努力,已经发展成为一个丰富多彩的技术门类,出现了形式多样的装置和工程实例,生产出热力、电力、液体燃料、气体燃料等品位较高的二次能源,还有许多新型技术在开发之中。
生物质热解气化技术的发展一切有生命的或者曾经有生命的物质都是生物质,这是一个包罗万象的总概念,但是只有那些可以作为燃料的固体生物质才被用作热化学过程。
固体生物燃料主要包括:(1)木本原料,即树木和各种采伐、加工残余物;(2)草本原料,即草类、秸秆和各种加工残余物;(3)果壳类原料,如板栗壳、棕榈壳、花生壳等;(4)混杂燃料。
[1]生物质热解气化是通过热化学过程转变固体生物质的品质和形态,使其应用起来更加方便、高效和清洁的技术。
基本技术形式形形色色的生物质热解气化技术都是从热解和气化两个基本技术形式派生出来的,反应过程中不供应足够的氧气,以获得含有化学能的可燃烧产物为目的。
1.生物质热解生物质热解是在热作用下生物质中有机物质发生的分解反应。
在高温下,构成生物质的大分子碳氢化合物化学键断开,裂解成为较小分子的挥发物质,从固体中释放出来。
热解开始温度为200~250℃,随着温度升高,更多的挥发物质释放出来,而挥发物质质也被进一步裂解,最后残留下由碳和灰分组成的固体物质。
挥发物质中含有常温下不可凝结的简单气体,如H2、CO、CO2、CH4等,也含有常温下凝结为液体的物质,如水、酸、碳氢化合物和含氧化合物等。
生物质热解制气反应技术研究
生物质热解制气反应技术研究随着人们对可再生能源的需求越来越大,生物质能作为一种重要的再生能源形式也越来越受到关注。
生物质利用的方式有很多种,其中之一就是将生物质通过热解反应转化为气体,从而得到可用于发电等方面的燃气。
本文将从生物质热解制气反应技术的原理、方法、存在的问题以及未来发展方向等方面进行探讨。
一、生物质热解制气反应技术的原理生物质是指一切来自于生物的原始物质,包括各种植物、动物和微生物等。
在生物质热解制气反应中,生物质通过在高温和缺氧条件下的加热分解,产生一种混合气体,主要成分是CO、H2和CH4等可燃气体。
这些可燃气体可以直接用于发电或者作为替代化石燃料使用。
生物质热解制气反应的原理主要包括以下几个方面:1. 生物质的物理和化学变化:随着温度的升高,生物质中的大分子物质会被分解为小分子物质,同时会释放出水和气体。
2. 生物质热解反应的基本原理:在缺氧条件下,将生物质加热到一定的温度,生物质中的主要组成部分会发生热解反应,产生可燃气体。
3. 反应机理:生物质中的主要可热解组分是纤维素、半纤维素和木质素等,其热解反应机理主要包括裂解、异构化和缩合等过程。
二、生物质热解制气反应技术的方法1. 固定床热解技术:该技术是将生物质放置于密闭的反应室中,通过加热来进行热解反应。
热解产生的气体在反应过程中会不断冲刷或者从反应室中流出,然后被分离和收集。
2. 旋转炉热解技术:该技术是将生物质放置在旋转的反应室中,通过加热和旋转来增加生物质与反应介质之间的接触面积,从而提高产气速率。
3. 流化床热解技术:该技术是将生物质通过气流向上喷射到一定高度的反应器中,使其进入流化状态,然后通过高温和缺氧条件下的热解反应来生产可燃气体。
三、存在的问题虽然生物质热解制气反应技术具有很多优点,如可再生、环保、资源广泛等,但是在实践应用中仍然存在一些问题:1. 生物质类型和含量的影响:不同种类和质量的生物质对热解反应的影响有很大的差异,因此需要对生物质的类型和含量进行精准的控制。
生物质 热解
生物质热解
生物质热解是一种热化学转化技术方法,它指的是在没有氧化剂存在或只提供有限氧的条件下,将生物质加热到超过500℃,通过热化学反应将生物质大分子物质(如木质素、纤维素和半纤维素)分解成较小分子的燃料物质(如固态炭、可燃气、生物油)。
生物质热解技术能够以较低的成本、连续化生产工艺,将常规方法难以处理的低能量密度的生物质转化为高能量密度的气、液、固产物,减少了生物质的体积,便于储存和运输。
同时,还能从生物油中提取高附加值的化学品。
生物质热解气化技术以其规模适度、启动灵活、原料收集半径小等优点,可与大型直燃发电优势互补,建设形成10 MW以下规模的生物质气化发电项目,完成生物质发电的规模与空间布局。
总的来说,生物质热解是一种有效的生物质能源利用技术,它不仅可以提高能源的利用效率,还可以帮助减少环境污染。
生物质热解技术及应用研究
生物质热解技术及应用研究发布时间:2021-07-13T06:29:51.861Z 来源:《中国科技人才》2021年第11期作者:蔡正达1 王文红2 马洁宏2 陈达跃2[导读] 生物质是指一切直接或间接通过光合作用而产生的有机体,将这些有机体应用现金技术进行处理转换,就可使其成为有用的能源资源。
由于我国当前的生物质转换技术还不是十分先进,在加之对生物质资源的宣传推广不够充分,导致大量生物质资源被浪费。
西双版纳电研新能源科技开发有限公司2 西双版纳傣族自治州 666100摘要:我国有着十分丰富的生物质资源,如果能将其合理、充分利用将促进我国能源危机缓解,经济发展增速。
但经调查发现,当前社会中对生物质资源的利用率并不高。
为进一步促进生物质资源在社会中的应用,本文基于调查法、文献法等对生物质热解技术的原理、发展以及具体应用进行分析论述,以供参考。
关键词:生物质热解;热解原理;催化剂;技术应用生物质是指一切直接或间接通过光合作用而产生的有机体,将这些有机体应用现金技术进行处理转换,就可使其成为有用的能源资源。
由于我国当前的生物质转换技术还不是十分先进,在加之对生物质资源的宣传推广不够充分,导致大量生物质资源被浪费。
对生物质资源的忽视不仅加剧了能源危机,而且也使生态环境污染程度加重,让社会的可持续发展受到影响。
立足这一背景,下面就生物质热解技术及其应用做具体分析。
1生物质热解技术1.1技术原理所谓生物质热解技术,指的是在隔绝空气或少量供给空气的条件箱,将生物质进行热化学转换处理,使其成为液体、木炭以及气体等低分子物质,让生物质能被应用于各项生产活动【1】。
研究与实践证明,生物质热解技术具有操作简便、转换成本低且能实现连续化生产等优点,在科学合理运用生物质热解技术的情况下,低能量密度的生物质将被转化为高能量密度的固体、气体或液体产物,从而减少了生物质的体积,降低了运输以及使用难度。
图1生物质热解工艺流程1.2技术类别根据热解条件,可将生物质热解分为快速热解、常规热解以及慢速热解这几种类型。
生物质热解气化技术
生物质热解气化技术
电子科技大学硕士学位论文
生物质热解气化技术
摘要
随着经济的发展,人类对于能源的需求量也在不断的增加,而传统的化石燃料由于质量逐渐减少和污染排放量的增多,使得我国必须寻求替代能源。
生物质是一种可以取代传统化石燃料的清洁替代能源,其中还存在着大量未开发利用的可再生能源。
然而,由于生物质是复杂的有机物质,催化转化技术难以进行,受转化效率限制。
因此,将生物质在高温热解气化反应中转化为燃料气和其他催化剂的气相活
性物质,是高效减少生物质污染物浓度的有效手段,是当前生物质转化技术研究的热点,也是未来生物质能源开发利用的重点。
本文的研究重点为热解气化技术在生物质转化中的研究进展及可能的应用,主要包括四个方面:生物质热解气化机理研究,催化剂包衣材料研究,多元组分生物质转化及反应机理研究以及生物质热解气化技术的应
用研究,并对今后的研究方向进行了总结和展望。
- 1 -。
生物质热解
生物质热解通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。
目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。
生物质热解是指生物质在没有氧化剂(空气、氧气、水蒸气等)存在或只提供有限氧的条件下,加热到逾500?,通过热化学反应将生物质大分子物质(木质素、纤维素和半纤维素)分解成较小分子的燃料物质(固态炭、可燃气、生物油)的热化学转化技术方法。
生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,物尽其用,而热解也是燃烧和气化必不可少的初始阶段。
1 热解技术原理1.1 热解原理从化学反应的角度对其进行分析,生物质在热解过程中发生了复杂的热化学反应,包括分子键断裂、异构化和小分子聚合等反应。
木材、林业废弃物和农作物废弃物等的主要成分是纤维素、半纤维素和木质素。
热重分析结果表明,纤维素在52?时开始热解,随着温度的升高,热解反应速度加快,到350,370?时,分解为低分子产物,其热解过程为:(C6H10O5)n?nC6H10O5C6H10O5?H2O+2CH3-CO-CHOCH3-CO-CHO+H2?CH3-CO-CH2OHCH3-CO-CH2OH+H2?CH3-CHOH-CH2+H2O半纤维素结构上带有支链,是木材中最不稳定的组分,在225,325?分解,比纤维素更易热分解,其热解机理与纤维素相似。
从物质迁移、能量传递的角度对其进行分析,在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。
热解过程由外至内逐层进行,生物质颗粒被加热的成分迅速裂解成木炭和挥发分。
其中,挥发分由可冷凝气体和不可冷凝气体组成,可冷凝气体经过快速冷凝可以得到生物油。
一次裂解反应生成生物质炭、一次生物油和不可冷凝气体。
生物质热解
生物质热解分慢速热解和快速热解。
快速热解为生物质在常压中等温度(约500℃),较高的升温速率103一104℃/s,蒸汽停留时间1s以内,据文献报道液体生物油的产率最高可达85%,并仅有少量可燃的不凝性气体和炭产生。
生物质快速热解技术始于20世纪70年代,是一种新型的生物质能源转化技术。
它在隔绝空气或少量空气的条件下,采用中等反应温度,很短的蒸汽停留时间,对生物质进行快速的热解过程,再经过骤冷和浓缩,最后得到深棕色的生物油。
众所周知,目前生物质气化法是大规模集中处理生物质的主要方式,但也存在气体热值低,不易存贮、输送,小规模设备发电成本高以及上电网困难等问题;而固体燃料直接燃烧存在燃烧不完全,热利用率低,使用场合受限制等缺点。
鉴于上述情形,生物质快速热解技术作为一项资源高效利用的新技术逐渐受到重视,已成为国内外众多学者研究的热点课题。
因为生物油易于储存和运输,热值约为传统燃料油的一半以上,又可以作为合成化学品的原料,同时产生的少量气、固体产物可以在生产中回收利用。
2.1国外快速热解现状国际能源署(IEA)组织了加拿大、芬兰、意大利、瑞典、英国及美国的10余个研究小组进行了10余年的研究工作,重点对这一过程发展的潜力、技术、经济可行性以及参与国之间的技术交流进行了协调,并在所发表的报告中得出了十分乐观的结论。
欧美从20世纪70年代第一次进行生物质快速热解实验以来,已经形成比较完备的技术设备和工业化系统,表1较详细列出了欧美地区快速热解技术正常运行的反应器。
其中加拿大的Dyna Motive Energy Systems是目前利用生物质快速热解技术实行商业化生产规模最大的企业,其处理量为1500kg/h,生产以树皮、白木树、刨花、甘蔗渣为原料,在隔绝氧气450~500℃条件下,采用鼓泡循环流化床反应器,生物油的产率为60%一75%,炭15%一20%,不凝性气体10%~20%以上均为质量产率。
生物油和炭可以作为商业产品出售,而不凝性气体则为循环气体燃烧使用,整个过程无废弃物产生,从而达到原料100%的利用率。
生物质的热解及其产物分析
生物质的热解及其产物分析生物质是指自然界中的有机物,主要包括植物、动物、微生物等,其化学成分主要是碳、氢、氧等元素。
生物质的热解是指在高温条件下将生物质转化为气体、液体和固体产物的化学反应。
本文将从生物质热解的基础原理、热解过程中产生的产物以及产物分析等方面进行介绍和探讨。
一、生物质热解的基础原理生物质是由大分子有机物组成的,包括纤维素、半纤维素、木质素等,这些有机物的植物组织中含有氧化还原物质,受到高温的作用后,产生碳化、脱氢等反应,从而分解和转化为气态、液态、固态产物。
其中气态产物包括甲烷、氢气、一氧化碳等;液态产物包括木质素油、醋酸等;固态产物包括焦炭、灰分等。
在生物质热解过程中,温度是影响产物生成和化学反应的关键因素。
通常,热解温度越高,生物质分解的产物就会更多,但同时也会导致一部分产物的裂解和氧化反应。
在反应温度为100-250℃时,会产生一些挥发性物质,如水、醇、醛、酮等;而在250-600℃的温度范围内,主要产生气态产物、液态产物和焦炭等固态产物。
二、生物质热解过程中产生的产物1.气态产物气态产物主要包括甲烷、一氧化碳、氢气、二氧化碳、水蒸气等,具有一定的燃烧价值。
其中,甲烷是生物质热解的主要产物之一,它具有较高的热值和较低的污染度。
2.液态产物液态产物主要包括木质素油、醋酸、酚类化合物等。
其中,木质素油又称生物柴油,是一种可替代传统石油柴油的绿色能源,具有高能值、低排放等优点。
3.固态产物固态产物主要包括焦炭、灰分等。
其中,焦炭是典型的固态产物之一,它具有高能量密度和良好的物理、化学性质,可以应用于冶金、电力等行业中。
三、生物质热解产物的分析生物质热解产物的分析是对热解过程的监控和评估的重要基础,它可以帮助我们了解反应过程中的物质和能量转化,提高反应效率和资源利用率。
常用的分析方法包括质谱、气相色谱、液相色谱等。
质谱是生物质热解产物分析的一种常用方法,它可以对气态产物及其组成进行快速检测和定量。
生物质催化热解技术研究
生物质催化热解技术研究Introduction在全球环境问题和化石能源储备问题的双重压力下,开发新的替代能源和可持续资源已成为世界各国共同的挑战。
生物质热能利用是可持续发展的能源利用方式之一,可以潜在地提供大量的清洁能源。
生物质催化热解技术是逐渐受到人们关注的一项技术。
本文将从生物质热解技术的具体过程、技术的应用和发展前景三方面入手,对生物质催化热解技术进行探讨。
生物质催化热解技术的过程生物质热解是指将生物质在一定温度下处理后,使生物质分子中的化学键断裂、分解成小分子气体和液体,进而进行化学反应和合成的热解过程。
在生物质热解的过程中,存在许多产物,其中液体产物是生物质能够被广泛利用的主要产物。
常见的液体产物为木质素油、纤维素油和半纤维素油。
由于生物质本身的特殊性质,生物质热解产物的性质和组成也受到影响,这也成为了生物质热解技术开发的一个挑战。
生物质催化热解技术的优势相对于传统的生物质热解技术,催化热解技术有许多优势。
首先,催化剂能够提高生物质热解过程的效率和产物的质量,同时还能减少生产过程中的排放物,即该技术具有很好的环保性。
其次,催化剂具有促进生物质在热解过程中的裂解,促进化学反应生成产物等作用,提升了生物质热解的效率和品质。
此外,催化剂的强力化学作用还能够避免催化剂的再利用过程对环境造成影响,使得催化热解技术具有很好的寿命。
生物质催化热解技术的应用目前,生物质催化热解技术被广泛地应用于能源领域、化学领域和环保领域等多个领域。
在能源领域,生物质热解产生的液体燃料可以用于发电和供热等能源利用方式;在化学领域,生物质热解产生的液体产物可以继续转化为化学原料,如生物基燃料和生物基化学品;在环保领域中,生物质热解技术能够减少环境污染和碳排放,形成环保产业链。
生物质催化热解技术的发展前景生物质热解技术具有广泛的应用前景,但是其实际开发和应用仍面临一系列问题和挑战。
解决这些问题,发展生物质催化热解技术,有望成为未来能源利用和环境保护的重要途径。
生物质热解技术41页PPT
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
需氧
氧需求
热
解 放热
能量
与 焚
二氧化碳、水
产物
烧 就地利用
利用
比
较 二次污染大
污染
无氧或缺氧 吸热 气、油、炭黑 贮存或远距离运输 二次污染较小
研究报道表明,热解烟气量是焚烧的1/2,NO是焚 烧的1/2,HCl是__焚_____烧____的______1__/__2____5__,______灰____尘______是_____焚__烧的1/2。
由于燃烧需提供氧气,因而就会产生 CO2、H2O等惰性气体混在热解可燃气 中,稀释了可燃气,结果降低了热解产 气的热值。
直接加热法的设备简单,可采用高温 , 其处理量和产气率也较高,但所产 气的热值不高,
作为单一燃料直接利用还不行,而且 采用高温热解,在NOx产生的控制上,
还需认真考虑。
____________________________ ______________________
间接供热(外热式热解)
外热法式热解是将垃圾置于密闭的 容器中,在绝热的条件下,热量由反 应容器的外面通过器壁进行传递,垃 圾被间接加热而发生分解。因不伴随 燃烧反应,可得到15000-25000kJ/ m3的高热值燃料气。
运行稳定,易控制,但垃圾破碎和液化所 需动力大,构造复杂。
____________________________ ______________________
如纤维素热解化学式为: 3C66HH81O0O为5→焦8油H。2O+C6H8O+3CO2+CH4+H2+8C ,其中C
____________________________ ______________________
7.2 热解工艺
热解是一种古老的工业化生产技术,该技术最早应用于煤 的干馏,所得到的焦炭产品主要作为冶炼钢铁的燃料。 热解(pyrolysis)在工业上也称为干馏 热解技术主要是针对城市垃圾、污泥、废塑料、废橡胶、 废树脂等工业和农业废弃物,还有石油、煤等具有一定能 量的有机固体废弃物。
____________________________ ______________________
生物质能概述
1、定义 生物质是直接或间接通过光合作用而形成的各种有机体,包括
所有的动植物和微生物。 生物质能是太阳能以化学能形式储存在生物质中的能量形式,
以生物质为载体的能量。 生物质能直接或间接地来源于绿色植物的光合作用,可转化为
高温热解:T>1000℃,供热方式几 乎都是直接加热
按热解温度
中温热解: T=600~700℃,主要用 在比较单一的废物的热解,如废轮 胎、废塑料热解油化
低温热解: T< 600℃。农业、林业和 农业产品加工后的废物用来生产低硫
低灰的炭,生产出的炭视其原料和加
工的深度不同,可作不同等级的活性
炭和水煤气原料。
3 热解的过程及产物
固体废物热解过程是一个复杂的化学反应过程。包括大分 子的键断裂,异构化和小分子的聚合等反应,最后生成各 种较小的分子。
有机固体废物 气体(H2 、CH4 、CO、CO2 ) + 有机液体(有机酸、芳烃、焦油)+ 固体(炭黑、灰)
有机物+ 绝 热 热 或 缺气 氧 体+液体+固
② 由于是缺氧分解,排气量少,有利于减轻对大气环境的二 次污染;
③ 废物中的硫、重金属的有害成分大部分被固定在炭黑中; ④ 由于保持还原条件,Cr3+不会转化为Cr6+; ⑤ NOx的产生量少。
____________________________ ______________________
焚烧 生物质、塑料类、橡胶等 热解
____________________________ ______________________Fra bibliotek供热方 式
➢直接加热 、间接加热
五
热解温 度不同
➢高温热解、中温热解、低温热解
热
解
热解炉 结构
➢固定床、移动床、流化床和旋转炉
工
艺 分
产物物 理形态
➢气化方式、液化方式、炭化方式
类 热解、
燃烧位 置
第七章 生物质热解技术
____________________________ ______________________
7.1 热解原理
1 热解定义
热解,是将有机物在无氧或缺氧状态下加热,使之 成为气态、液态或固态可燃物质的化学分解过程。
有机物
加热 无氧或缺氧
G+L+S
气态产物:氢、甲烷、一氧化碳;
现代生物质能 可以大规模应用的生物质能,包括现代林业生产的废弃物、甘 蔗渣和城市固体废物等。
____________________________ ______________________
3、生物质能特点
总量大,地球上每年生物质能总量约1400-1800亿 吨(干重),相当于目前每年总能耗的10倍。
液态产物:CH3OH、CH3COCH3、C2H5COOH、 CH3CHO及焦油、溶剂油等;
固态产物:焦炭、碳黑。 ____________________________ ______________________
2 热解特点
① 可以将固体废物中的有机物转化为以燃料气、燃料油和炭 黑为主的贮存性能源;
➢单塔式和双塔式
是否生 成炉渣
➢造渣型和非造渣型
____________________________ ______________________
直接供热(内热式热解) 内热式热解也称为部分燃
烧热分解,反应器中的可燃 性垃圾或部分热解产物燃烧, 以燃烧热使垃圾发生热分解。 通常得到4000-8000 kJ/m3的 低品位燃料气。
低污染,通过碳、氢、氧循环利用太阳能的过程,理 论上不产生温室气体,低含量的N,S化合物,可以 大量减少SOx等有毒气体排放,被称为“绿色石油”
。我国可利用的生物质资源量: 1.农作物秸秆年产量约7亿吨 2.林业及木材加工废弃物年产量约9亿吨 3.畜禽养殖和工业有机废水年产沼气资源量约800 亿立方米 4.城市生活垃圾年产生量约1.2亿吨
常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种 可再生能源。
____________________________ ______________________
2、生物质能的分类
传统生物质能 在发展中国家小规模应用的生物质能,主要包括农村生活用能 (薪柴、秸秆、稻草、稻壳及其它农业生产的废弃物和畜禽粪便 等);