小波与小波变换
一看就懂的小波变换ppt
8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:
小波变换课件
消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)
小波包变换和小波变换
小波包变换和小波变换小波包变换和小波变换是一种信号分析和处理的方法,它们可以将信号分解成不同尺度和频率的成分,并可以分析和处理这些成分。
下面将对小波包变换和小波变换进行解释。
1. 小波包变换:小波包变换是在小波变换的基础上发展而来的一种方法。
小波包变换将信号分解成多个子带,并对每个子带进行进一步的分解。
相比于小波变换,小波包变换提供了更高的频率分辨率和更细的频率划分。
小波包变换的核心思想是使用不同的小波基函数对信号进行分解。
通过选择不同的小波基函数,可以获得不同尺度和频率的信号成分。
小波包变换可以通过反复迭代的方式,不断将信号分解成更细的频率带,进一步提高频率分辨率。
在每一级分解中,信号被分解成低频和高频两部分,低频部分可以继续进行进一步的分解。
小波包变换的优势在于能够提供更详细的频域信息,可以更好地分析信号的特征和结构。
它在信号处理、图像处理等领域有着广泛的应用,例如信号去噪、特征提取等。
2. 小波变换:小波变换是一种将信号分解成不同频率成分的方法。
通过小波变换,我们可以将信号从时域转换到频域,同时可以分析信号的时间和频率特性。
小波变换的基本思想是使用小波基函数对信号进行分解。
小波基函数是一种具有局部性质的函数,它能够在时域和频域中同时提供较好的分辨率。
通过选择不同的小波基函数,可以获得不同频率范围内的信号成分。
小波变换通过对信号进行连续的分解和重构,可以分析信号的频域特性。
小波变换有多种变体,其中最常用的是离散小波变换(DWT)。
离散小波变换将信号分解成多个尺度和频率的子带,通过这些子带可以分析信号的不同频率成分。
离散小波变换具有高效性和局部性,可以在信号处理中广泛应用,例如信号去噪、压缩等。
总结:小波包变换是在小波变换的基础上发展的一种方法,它能够提供更高的频率分辨率和更细的频率划分。
小波包变换通过选择不同的小波基函数,将信号分解成多个子带,并对每个子带进行进一步的分解。
相比之下,小波变换是将信号分解成不同频率成分的方法,通过选择不同的小波基函数,可以获得不同频率范围内的信号成分。
小波分解和小波变换
小波分解和小波变换
小波分解和小波变换是一种信号处理技术,它们可以将信号分解成不同频率的小波,从而更好地理解和处理信号。
小波分解和小波变换在信号处理、图像处理、音频处理等领域都有广泛的应用。
小波分解是将信号分解成不同频率的小波,这些小波具有不同的频率和振幅,可以更好地描述信号的特征。
小波分解可以通过小波变换来实现,小波变换是一种将信号转换成小波系数的方法。
小波变换可以将信号分解成不同频率的小波,从而更好地理解和处理信号。
小波分解和小波变换的优点在于它们可以将信号分解成不同频率的小波,从而更好地描述信号的特征。
小波分解和小波变换可以用于信号去噪、信号压缩、图像处理、音频处理等领域。
在信号去噪方面,小波分解和小波变换可以将信号分解成不同频率的小波,从而更好地去除噪声。
在信号压缩方面,小波分解和小波变换可以将信号分解成不同频率的小波,从而更好地压缩信号。
在图像处理方面,小波分解和小波变换可以将图像分解成不同频率的小波,从而更好地处理图像。
在音频处理方面,小波分解和小波变换可以将音频分解成不同频率的小波,从而更好地处理音频。
小波分解和小波变换是一种非常有用的信号处理技术,它们可以将信号分解成不同频率的小波,从而更好地理解和处理信号。
小波分解和小波变换在信号处理、图像处理、音频处理等领域都有广泛的
应用,是一种非常重要的信号处理技术。
小波变换课件
小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。
小波变换ppt课件
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
小波变换的基本概念和原理
小波变换的基本概念和原理小波变换是一种数学工具,用于分析信号的频谱特性和时域特征。
它在信号处理、图像处理、数据压缩等领域有着广泛的应用。
本文将介绍小波变换的基本概念和原理。
一、什么是小波变换?小波变换是一种将信号分解为不同频率的成分的数学工具。
它类似于傅里叶变换,但不同之处在于小波变换不仅能提供频域信息,还能提供时域信息。
小波变换使用一组称为小波基函数的函数族,通过对信号进行连续或离散的变换,将信号分解为不同尺度和频率的成分。
二、小波基函数小波基函数是小波变换的基础。
它是一个用于描述信号特征的函数,具有局部性和可调节的频率特性。
常用的小波基函数有Morlet小波、Haar小波、Daubechies 小波等。
这些小波基函数具有不同的性质和应用场景,选择适当的小波基函数可以更好地适应信号的特征。
三、小波分解小波分解是将信号分解为不同尺度和频率的过程。
通过对信号进行连续或离散的小波变换,可以得到小波系数和小波尺度。
小波系数表示信号在不同尺度和频率下的能量分布,而小波尺度表示不同尺度下的信号特征。
小波分解可以将信号的局部特征和全局特征分离开来,为信号分析提供更多的信息。
四、小波重构小波重构是将信号从小波域恢复到时域的过程。
通过对小波系数进行逆变换,可以得到原始信号的近似重构。
小波重构可以根据需要选择保留部分小波系数,从而实现信号的压缩和去噪。
五、小波变换的应用小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。
在信号处理中,小波变换可以用于信号去噪、特征提取、模式识别等任务。
在图像处理中,小波变换可以用于图像压缩、边缘检测、纹理分析等任务。
在数据压缩中,小波变换可以将信号的冗余信息去除,实现高效的数据压缩和存储。
六、小波变换的优势和局限性小波变换相比于傅里叶变换具有一些优势。
首先,小波变换可以提供更多的时域信息,对于非平稳信号和瞬态信号具有更好的分析能力。
其次,小波变换可以实现信号的局部分析,对于局部特征的提取和分析更为有效。
《小波分析》PPT课件
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
小波分析知识点总结
小波分析知识点总结小波分析的基本思想是利用小波函数对信号进行分解,得到不同尺度和频率的成分,然后对这些成分进行分析。
小波函数通常具有局部化特性,能够反映信号的局部特征,在时域和频域上都具有一定的分辨率,因此可以更准确地描述信号的时频特性。
小波分析主要包括小波变换、小波系数的选择、小波包分析、小波域滤波等内容。
下面将从这些方面对小波分析进行介绍。
1. 小波变换小波变换是小波分析的核心内容,它将信号分解成不同尺度和频率的成分。
小波变换包括连续小波变换和离散小波变换两种形式。
连续小波变换将信号分解成不同尺度和频率的成分,并且可以实现任意精细程度的分解。
但是由于小波函数是连续的,计算复杂度较高,因此应用较为有限。
离散小波变换是将连续小波变换进行离散化处理,从而降低计算复杂度。
离散小波变换可以通过小波分解和小波重构过程来实现信号的分解和重构,具有较好的实用性和计算效率。
小波变换具有多重分辨率分析的特点,可以在不同尺度和频率上对信号进行分析,具有较好的时频局部化特性。
2. 小波系数的选择小波系数对信号的分解和重构效果具有重要影响。
通常情况下,小波系数是由小波函数的形状和尺度决定的,不同的小波函数对信号的分解和重构效果有一定的影响。
常用的小波函数包括哈尔小波、Daubechies小波、Meyer小波、Gabor小波等。
这些小波函数具有不同的形状和尺度特性,可以适用于不同类型的信号。
在选择小波系数时,需要考虑信号的特点和分析的目的,选择合适的小波函数和尺度参数,以实现更好的分解效果。
3. 小波包分析小波包分析是小波变换的一种扩展形式,它能够对信号进行更为细致的分解。
小波包分析将信号进行逐层分解,得到更为丰富的频率成分,能够更准确地描述信号的时频特性。
小波包分析通常采用二叉树结构进行信号分解,在每层分解中都能够获得更为细致的频率分量。
小波包分析可以实现任意精细程度的频率分解,能够更充分地利用小波函数的局部化特性,对信号进行更为全面的时频分析。
哈尔小波变换和小波变换 去噪点
哈尔小波变换和小波变换去噪点标题:哈尔小波变换和小波变换去噪点哈尔小波变换(Haar Wavelet Transform)和小波变换(Wavelet Transform)是两种常用的信号处理方法,可以用于去除图像或信号中的噪点。
本文将介绍这两种方法的原理和应用。
首先,我们来了解一下哈尔小波变换。
哈尔小波变换是一种基于小波变换的快速算法,其原理是将信号分解成多个小波函数的线性组合。
通过对信号的分解和重构,可以有效地去除信号中的噪点。
哈尔小波变换的优点是计算速度快,适用于实时信号处理。
相比之下,小波变换具有更广泛的应用领域。
小波变换是一种多尺度分析方法,可以将信号分解成不同频率的子信号,并且可以根据需要选择不同的小波函数。
小波变换在图像处理、音频处理、视频压缩等领域都有广泛的应用。
在去噪方面,小波变换可以通过去除高频小波系数来减少信号中的噪点。
在实际应用中,我们可以将哈尔小波变换和小波变换结合起来,以更好地去除信号中的噪点。
首先,使用小波变换将信号进行分解,然后对得到的小波系数进行阈值处理,将较小的系数置零,从而去除噪点。
最后,使用小波反变换将处理后的小波系数重构成去噪后的信号。
需要注意的是,在进行哈尔小波变换和小波变换去噪点时,我们要选择合适的小波函数和阈值。
不同的小波函数适用于不同类型的信号,而阈值的选择也会影响去噪效果。
因此,在实际应用中,我们需要根据具体情况进行参数的调整。
总之,哈尔小波变换和小波变换是两种常用的信号处理方法,可以用于去除图像或信号中的噪点。
通过合理选择小波函数和阈值,我们可以获得较好的去噪效果。
在实际应用中,我们可以根据具体需求选择适合的方法,并进行参数的调整,以达到最佳的去噪效果。
小波分解和小波变换
小波分解和小波变换小波分解和小波变换是一种信号解析的数学方法,可以将信号分解成多个不同的频率和幅度的成分,从而更好地了解信号的特性。
小波分解和小波变换的应用广泛,在信号处理、图像处理、数据分析和物理学等领域中都有重要的应用。
一、小波分解小波分解是指将信号分解成一组不同频率和幅度的分量,其中小波函数被用来作为分解的基函数。
这些小波函数可以有不同的特性,例如有限长度和平滑度等。
通常情况下,小波函数是由一个母小波函数递归生成得到的。
小波分解的基本步骤如下:1.选择一个小波基函数,并确定其尺度和位移参数。
2.将这个小波函数与信号进行卷积。
3.将卷积结果分为两部分,一部分是高频成分,另一部分是低频成分。
4.重复以上步骤,递归地对低频成分进行分解,直到无法再进行分解。
小波分解的结果是一个小波系数数组,其中每个小波系数表示了对应频率和振幅的成分的大小。
二、小波变换小波变换是指将信号在小波基函数下的分解。
它将信号分解成不同的频率和振幅成分的过程,可以用于信号去噪、数据压缩和特征提取等应用。
4.对低频成分进行下采样,得到一个新的序列。
三、小波分析的优点相对于傅里叶变换和小波变换,小波分析有一些明显的优点:1.小波分析可以适应各种信号类型,包括非平稳信号和非线性信号。
2.小波分析可以分析信号中的时空分布,而傅里叶变换只能分析信号中的频率分布。
3.小波分析可以将信号分解成有限的、宽带的频率组件,而傅里叶变换需要使用无限多的单色波组成信号。
4.小波分析可以快速地处理并行信号,因为它可以进行高效的多尺度分解。
小波分析在许多领域中都有广泛的应用,例如信号处理、图像处理、音频处理、数据压缩和特征提取等。
以下是一些常见的应用:1.信号去噪:小波分析可以有效地去除信号中的噪声和干扰。
2.数据压缩:小波分析可以将信号分解成有限的频率组件,从而能够进行高效的数据压缩。
3.图像处理:小波分析可以使用不同的小波基函数对图像进行分解,从而能够进行图像去噪、特征提取和边缘检测等处理。
小波变换课件 第6章 连续小波变换
第6章 连续小波变换6.1 小波及连续小波变换● 定义6.1 设函数12()()()t L R L R ψ∈ ,并且ˆ(0)0ψ=,既()0t dtψ+∞-∞=⎰,则称为一个基本小波或母小波。
对母小波()t ψ做伸缩平移得,()a b t b t a ψ-⎛⎫=⎪⎝⎭(6-1) 称为,()a b t ψ小波函数,简称小波。
其中0a ≠,b 、t 均为连续变量:1) a 为尺度因子,b 为平移因子。
变量a 反映了函数的宽度,b 反映了小波在t 轴上的平移位置,小波函数,()a b t ψ是基本小波函数()t ψ先b 做移位再由a 做伸缩,,a b 不断变化产生的一组函数,又称作小波基函数,或小波基。
2) 母小波的能量集中在原点,小波函数,()a b t ψ的能量集中在b 点。
3)一般,尺度因子0a >,作用是使小波()t ψ做伸缩,a 越大,()t aψ越宽,既小波的持续时间随aa 变化时保持小波,()ab t ψ的能量相等,既2,()a b t ψ2()t ψ=(保范性质)。
● 定义 6.2 设12()()()t L R L R ψ∈ ,且满足条件2ˆ()c d ψψωωω+∞-∞=<∞⎰(6-2) 则称()t ψ为允许小波,上式为允许条件。
由c ψ<+∞知,ˆ(0)0ψ=,既()0t dt ψ+∞-∞=⎰,因此允许小波一定是基本小波;反之,若()t ψ满足1()(1)(0)t c t εψε--≤+>,且ˆ(0)0ψ=,其中c 是一个常数,则式(6-2)成立。
这表明允许条件与()0t dt ψ+∞-∞=⎰几乎是等价的。
从小波的定义知,小波要求由振荡性,既包含着某些频率特征,还要求具有一定的局部性,既它在一定的区间上恒等于零或很快收敛到零。
● 设()t ψ是一个基本小波,,()b a t ψ是连续小波函数,对于()f t 2()L R ∈,其连续小波变换定义为(,)f WT ab ()*t b f t dt a ψ+∞-∞-⎛⎫=⎪⎝⎭,,a b f ψ= (6-3)其中,0a ≠,b 、t 均为连续变量,*()t ψ表示()t ψ的共轭。
小波变换与小波包变换的比较与适用场景分析
小波变换与小波包变换的比较与适用场景分析引言:小波变换和小波包变换是信号处理中常用的两种变换方法,它们在不同的领域和场景中有着各自的优势和适用性。
本文将对小波变换和小波包变换进行比较与分析,探讨它们的特点、应用场景以及在实际问题中的应用。
一、小波变换的特点与应用小波变换是一种时频分析方法,可以将信号分解成不同频率的成分,并且可以在时间和频率上提供更好的局部化信息。
小波变换的主要特点包括:1. 局部性:小波变换能够在时间和频率上提供更好的局部化信息,对于非平稳信号的分析具有优势。
2. 多分辨率:小波变换可以通过选择不同的小波基函数来实现多分辨率分析,从而对信号的不同频率成分进行更细致的分析。
3. 时频分析:小波变换可以提供信号在时间和频率上的精确信息,对于瞬态信号的分析有较好的效果。
小波变换在实际应用中有着广泛的应用场景,例如:1. 信号处理:小波变换可以用于信号去噪、边缘检测、特征提取等方面,对于非平稳信号的处理效果较好。
2. 图像处理:小波变换可以用于图像压缩、图像增强、图像分割等方面,对于局部特征的提取和分析有较好的效果。
3. 生物医学工程:小波变换可以用于心电信号分析、脑电信号分析等方面,对于瞬态信号和非平稳信号的分析有较好的效果。
二、小波包变换的特点与应用小波包变换是在小波变换的基础上进行的改进,它能够提供更丰富的频率信息和更灵活的分析方式。
小波包变换的主要特点包括:1. 频率分解:小波包变换可以将信号进行更细致的频率分解,对于频率信息的提取和分析有较好的效果。
2. 灵活性:小波包变换可以通过选择不同的小波包基函数和分解层数来实现不同精度的分析,具有更高的灵活性和可调节性。
3. 能量集中:小波包变换可以将信号的能量集中在少数的小波包系数上,对于信号的重要信息提取有较好的效果。
小波包变换在实际应用中也有着广泛的应用场景,例如:1. 语音信号处理:小波包变换可以用于语音信号的分析和识别,对于频率特征的提取和分类有较好的效果。
小波与小波变换
第3章小波与小波变换(征求意见稿)清华大学计算机科学与技术系智能技术与系统国家重点实验室林福宗,2001-9-25小波是近十几年才发展起来并迅速应用到图像处理和语音分析等众多领域的一种数学工具,是继110多年前的傅立叶(Joseph Fourier)分析之后的一个重大突破,无论是对古老的自然学科还是对新兴的高新技术应用学科都产生了强烈冲击。
小波理论是应用数学的一个新领域。
要深入理解小波理论需要用到比较多的数学知识。
本章企图从工程应用角度出发,用比较直观的方法来介绍小波变换和它的应用,为读者深入研究小波理论和应用提供一些背景材料。
3.1 小波介绍3.1.1 小波简史傅立叶理论指出,一个信号可表示成一系列正弦和余弦函数之和,叫做傅立叶展开式。
用傅立叶表示一个信号时,只有频率分辨率而没有时间分辨率,这就意味我们可以确定信号中包含的所有频率,但不能确定具有这些频率的信号出现在什么时候。
为了继承傅立叶分析的优点,同时又克服它的缺点,人们一直在寻找新的方法。
20世纪初,哈尔(Alfred Haar)对在函数空间中寻找一个与傅立叶类似的基非常感兴趣。
1909年他发现了小波,并被命名为哈尔小波(Haar wavelets),他最早发现和使用了小波。
20世纪70年代,当时在法国石油公司工作的年轻的地球物理学家Jean Morlet提出了小波变换WT(wavelet transform)的概念。
进入20世纪80年代,法国的科学家Y.Meyer和他的同事开始为此开发系统的小波分析方法。
Meyer于1986年创造性地构造出具有一定衰减性的光滑函数,他用缩放(dilations)与平移(translations)均为j2(j≥0的整数)的倍数构造了2L(R)空间的规范正交基,使小波得到真正的发展。
小波变换的主要算法则是由法国的科学家Stephane Mallat在1988年提出[1]。
他在构造正交小波基时提出了多分辨率的概念,从空间上形象地说明了小波的多分辨率的特性,提出了正交小波的构造方法和快速算法,叫做Mallat算法[1]。
小波与小波变换
第3章小波与小波变换(征求意见稿)清华大学计算机科学与技术系智能技术与系统国家重点实验室林福宗,2001-9-25小波是近十几年才发展起来并迅速应用到图像处理和语音分析等众多领域的一种数学工具,是继110多年前的傅立叶(Joseph Fourier)分析之后的一个重大突破,无论是对古老的自然学科还是对新兴的高新技术应用学科都产生了强烈冲击。
小波理论是应用数学的一个新领域。
要深入理解小波理论需要用到比较多的数学知识。
本章企图从工程应用角度出发,用比较直观的方法来介绍小波变换和它的应用,为读者深入研究小波理论和应用提供一些背景材料。
3.1 小波介绍3.1.1 小波简史傅立叶理论指出,一个信号可表示成一系列正弦和余弦函数之和,叫做傅立叶展开式。
用傅立叶表示一个信号时,只有频率分辨率而没有时间分辨率,这就意味我们可以确定信号中包含的所有频率,但不能确定具有这些频率的信号出现在什么时候。
为了继承傅立叶分析的优点,同时又克服它的缺点,人们一直在寻找新的方法。
20世纪初,哈尔(Alfred Haar)对在函数空间中寻找一个与傅立叶类似的基非常感兴趣。
1909年他发现了小波,并被命名为哈尔小波(Haar wavelets),他最早发现和使用了小波。
20世纪70年代,当时在法国石油公司工作的年轻的地球物理学家Jean Morlet提出了小波变换WT(wavelet transform)的概念。
进入20世纪80年代,法国的科学家Y.Meyer和他的同事开始为此开发系统的小波分析方法。
Meyer于1986年创造性地构造出具有一定衰减性的光滑函数,他用缩放(dilations)与平移(translations)均为j2(j≥0的整数)的倍数构造了2L(R)空间的规范正交基,使小波得到真正的发展。
小波变换的主要算法则是由法国的科学家Stephane Mallat在1988年提出[1]。
他在构造正交小波基时提出了多分辨率的概念,从空间上形象地说明了小波的多分辨率的特性,提出了正交小波的构造方法和快速算法,叫做Mallat算法[1]。
一级小波变换 三级小波变化
一级小波变换三级小波变化小波变换(Wavelet Transform)是一种信号分析方法,它将信号分解成不同频率的小波子信号,以便更好地理解和处理信号。
小波变换具有时频局部化的特点,可以更好地处理非平稳信号和突变信号,因此在信号处理、图像处理、数据压缩等领域得到了广泛应用。
一级小波变换是指对原始信号进行一次小波分解,将信号分解为近似系数和细节系数。
近似系数表示信号的低频成分,细节系数表示信号的高频成分。
通过对近似系数进行进一步的小波分解,可以实现多级小波变换。
三级小波变化则是将一级小波变换的近似系数再进行两次小波分解,将信号进一步细分为近似系数和细节系数。
这种多级小波变换可以更加精细地分析信号的频率特征,提取信号的细节信息。
在实际应用中,一级小波变换和三级小波变化具有不同的应用场景和特点。
一级小波变换适用于初步分析信号的频率特征,可以快速提取信号的低频和高频成分。
近似系数可以用于信号的平滑和趋势分析,细节系数可以用于检测信号的瞬时变化和突变点。
一级小波变换还可以用于信号降噪和滤波,通过滤除高频细节信息实现信号的去噪处理。
三级小波变化在一级小波变换的基础上进一步提取信号的细节信息,可以更加准确地分析信号的频率特征。
通过多级小波变换,可以得到不同频率分量的细节系数,进一步分析信号的频谱分布和能量分布。
三级小波变化还可以用于信号的特征提取和模式识别,通过分析细节系数的变化趋势和能量分布,可以提取信号的特征信息,实现信号的分类和识别。
除了信号处理领域,小波变换还广泛应用于图像处理、数据压缩等领域。
在图像处理中,小波变换可以用于图像的边缘检测、纹理分析、图像增强等。
在数据压缩中,小波变换可以通过对信号的频域信息进行压缩,实现对信号的有效编码和解码。
总结起来,一级小波变换和三级小波变化是小波变换的两个重要应用。
一级小波变换适用于初步分析信号的频率特征和信号降噪,而三级小波变化则可以更加准确地提取信号的细节信息和进行信号的特征提取和模式识别。
小波分析
Absorbance
0.04 0.03 0.02 0.01 0.00 -0.01
2
滤波
D(5)
C(5)
D(4)
C(4)
D(3)
C(3)
D(2)
C(2)
D(1)
C(1)
4
6
8
10
Retention Time / min
12 2 4 6 8 10 12 2 4 6 8 10 12
将信号中的不同频率成分按照频率高低进行分离! 噪声属于高频部分,背景、基线属于低频部分 17
(translation parameter) ,也称为时间平移因子
t 叫作小波基,或小波母函数。 9
2. 小波变换
❖ 连续小波变换 a,b R, a 0
Wf a,b
f t, a,b t f *~a b
1 a
f
t
a,b tdt
❖ 实际应用中,一般实现时,连续小波必须加以离散化 ,所以常使用离散化小波变换。
小波分析
➢ 小波分析概况 ➢ 小波及小波变换 ➢ 一维小波分析 ➢ 多分辨率分析 ➢ 二维小波分析
❖ 一、小波分析概况
❖ “小波分析”是利用多种 “小波基函数” 对 “ 原始信号” 进行分解,分析原始信号各种变化的 特性,进一步用于趋势分析,数据压缩、噪声去除 、特征选择等。
❖ 地理学的许多现象均可视为数据信号,进行小波分 析,如气候和水文数据的时间序列,人文地理方面 的经济数值波动,遥感方面的光谱分析、遥感数据 的图像压缩,GIS方面的数据多尺度分析。
k 1
k 1
N
N
或: C j1 n h jn k *C jk g jn k * D jk
Matlab中的小波分析与小波变换方法
Matlab中的小波分析与小波变换方法引言在数字信号处理领域中,小波分析和小波变换方法是一种重要的技术,被广泛应用于图像处理、语音识别、生物医学工程等领域。
Matlab作为一种强大的数值计算和数据分析工具,提供了丰富的小波函数和工具箱,使得小波分析和小波变换方法可以轻松地在Matlab环境中实现。
本文将介绍Matlab中的小波分析与小波变换方法,并探讨其在实际应用中的一些技巧和注意事项。
1. 小波分析基础小波分析是一种时频分析方法,可以将信号分解成不同频率、不同时间尺度的小波基函数。
在Matlab中,可以利用小波函数如Mexh、Mexh3、Morl等来生成小波基函数,并通过调整参数来控制其频率和时间尺度。
小波分析的核心思想是将信号分解成一组尺度和位置不同的小波基函数,然后对每个小波基函数进行相关运算,从而得到信号在不同频率和时间尺度上的分量。
2. 小波变换方法Matlab提供了多种小波变换方法,包括连续小波变换(CWT)、离散小波变换(DWT)和小波包变换(WPT)。
连续小波变换是将信号与连续小波基函数进行卷积,从而得到信号在不同频率和时间尺度上的系数。
离散小波变换是将信号分解为不同尺度的近似系数和细节系数,通过迭代的方式对信号进行多尺度分解。
小波包变换是对信号进行一种更细致的分解,可以提取更多频率信息。
3. Matlab中的小波工具箱Matlab提供了丰富的小波工具箱,包括Wavelet Toolbox和Wavelet Multiresolution Analysis Toolbox等。
这些工具箱提供了小波函数、小波变换方法以及相关的工具函数,方便用户进行小波分析和小波变换的实现。
用户可以根据自己的需求选择适合的小波函数和变换方法,并借助工具箱中的函数进行信号处理和结果展示。
4. 实际应用中的技巧和注意事项在实际应用中,小波分析和小波变换方法的选择非常重要。
用户需要根据信号的特点和需求选择适合的小波函数和变换方法。
小波变换及分析原理知识
- 252 -小波分析原理1.1 小波变换及小波函数的多样性小波是函数空间2()L R 中满足下述条件的一个函数或者信号()x ψ:2ˆ().R C d ψψωωω+=<∞⎰式中,*{0}R R =-表示非零实数全体,ˆ()ψω是()x ψ的傅里叶变换,()x ψ成为小波母函数。
对于实数对(,)a b ,参数a 为非零实数,函数(,)()x b a b x a ψ-⎛⎫=⎪⎝⎭称为由小波母函数()x ψ生成的依赖于参数对(,)a b 的连续小波函数,简称小波。
其中:a 称为伸缩因子;b 称为平移因子。
对信号()f x 的连续小波变换则定义为,(,)()(),()f a b Rx b W a b f x dx f x x a ψψ-⎛⎫==〈〉 ⎪⎝⎭其逆变换(回复信号或重构信号)为*1()(,)fR R x b f x W a b dadb C a ψψ⨯-⎛⎫=⎪⎝⎭⎰⎰ 信号()f x 的离散小波变换定义为2(2,2)2()(2)j j j j f W k f x x k dx ψ+∞---∞=-⎰其逆变换(恢复信号或重构信号)为(2,2)()(2,2)()j j j j fk j k f t C Wk x ψ+∞+∞=-∞=-∞=∑∑其中,C 是一个与信号无关的常数。
显然小波函数具有多样性。
在MA TLAB 小波工具箱中提供了多种小波幻术,包括Harr 小波,Daubecheies (dbN )小波系,Symlets (symN )小波系,ReverseBior (rbio )小波系,Meyer (meyer )小波,Dmeyer (dmey )小波,Morlet(morl)小波,Complex Gaussian(cgau)小波系,Complex morlet(cmor)小波系,Lemarie (lem )小波系等。
实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波函数。
- 253 -1.2 小波的多尺度分解与重构1988年Mallat 在构造正交小波基时提出多尺度的概念,给出了离散正交二进小波变换的金字塔算法,其小波分析树形结构如图1所示,即任何函数2()()f x L R ∈都可以根据分辨率为2N-的()f x 的低频部分(近似部分)和分辨率为2(1)j j N -≤≤下()f x 的高频部分(细节部分)完全重构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章小波图像编码由于小波变换技术在20世纪90年代初期已经比较成熟,因此从那时起就开始出现各种新颖的小波图像编码方法。
这些编码方法包括EZW, 在EZW算法基础上改进的SPIHT和EBCOT等。
由于EZW算法的开拓给后来者带来很大的启发,它是一种有效而且计算简单的图像压缩技术,因此本章将重点介绍。
9.1 从子带编码到小波编码9.1.1 子带编码子带编码(subband coding,SBC)的基本概念是把信号的频率分成几个子带,然后对每个子带分别进行编码,并根据每个子带的重要性分配不同的位数来表示数据。
在20世纪70年代,子带编码开始用在语音编码上。
由于子带编码可根据子带的重要性分别进行编码等优点,20世纪80年代中期开始在图像编码中使用。
1986年Woods, J. W.等科学家曾经使用一维正交镜像滤波器组(quadrature mirror filterbanks,QMF)把信号的频带分解成4个相等的子带,如图9-01所示。
图9-01(a)表示分解方法,图9-01(b)表示其相应的频谱。
图中的符号表示频带降低1/2,HH表示频率最高的子带,LL表示频率最低的子带。
这个过程可以重复,直到符合应用要求为止。
这样的滤波器组称为分解滤波器树(decomposition filter trees)。
图9-01 Lena图的子带编码(1984年)9.1.2 多分辨率分析S.Mallat于1988年在构造正交小波基时提出了多分辨率分析(multiresolution analysis)的概念,从空间上形象地说明了小波的多分辨率的特性,提出了正交小波的构造方法和快速算法,叫做Mallat算法。
根据Mallat和Meyer等科学家的理论,使用一级小波分解方法得到的图像如图9-02所示。
图9-02 Lena的两种分辨率分析图像(1986年)如果在一级分解之后继续进行分析,这种分解过程叫做多分辨率分析,实际上就是多级小波分解的概念。
使用多级小波分解可以得到更多的分辨率不同的图像,这些图像叫做多分辨率图像(multiresolution images)。
图9-03表示Lena的多分辨率图像。
其中,粗糙图像1的分辨率是原始图像的1/4,粗糙图像2的分辨率是粗糙图像1的1/4。
图9-03 Lena的多分辨率分析图像(1986年)9.1.3 滤波器组与多分辨率为了压缩语音数据,在1976年Croisier, Esteban和Galand介绍了一种可逆滤波器组(invertible filter bank),使用滤波和子采样(subsampling)的方法用来把离散信号()f n分解成大小相等的两种信号,并且使用叫做共轭镜像滤波器(conjugate mirror filters)的一种特殊滤波器来取消信号的混叠(aliasing),这样可从子采样的信号中重构原始信号()f n。
这个发现使人们花费了10多年的努力来开发一套完整的滤波器组理论。
正交小波的多分辨率理论(multiresolution theory)已经证明,任何共轭镜像滤波器都可以用来刻画一种小波()t,它能够生成2L(R)实数空间中的正交基,而且快速离散小波变换可以使用串联这些共轭镜像滤波器来实现。
连续小波理论和离散滤波器组之间的等效性揭示了数字信号处理和谐波分析之间关系,这就使人们一直在致力于解决它们之间的关系问题。
9.1.4 从子带编码到小波编码在过去的年代里,人们做了许多的努力来改进滤波器组的设计和子带编码技术。
在小波编码技术(wavelet coding,WC)的旗号下,人们提出了许多与子带编码技术非常类似和密切相关的方法。
小波编码技术中的一个重要的问题是如何构造正交的小波基函数系列。
正交的小波基函数系列可以在连续的时间域中构造,但如何在离散的时间域中构造是一个现实问题。
在众多的研究者中,Inrid Daubechies在离散的时间域中构造小波基函数方面做出了杰出的贡献。
她于1988年[1]最先揭示了小波变换和滤波器组之间的内在关系:离散时间滤波器(discrete-time filters)或者正交镜象滤波器(quadrature mirror filter,QMF)可以被叠代,并在某一种匀称(regularity,可粗略理解为函数的平滑性)条件下可获得连续小波。
这是一个非常实际和极其有用的发现,这就意味着可使用有限冲击响应(finite impulse response,FIR)的离散时间滤波器来执行小波分解,使用相同的滤波器可重构小波分解之后的信号。
由此可见,早期开发的子带编码实际上是一种小波变换。
在Daubechies揭示小波变换和滤波器组之间的关系之前,在图像编码中小波技术并不流行。
从20世纪90年代开始,Cohen, Daubechies和Feauveau,简称为CDF,系统地开发了构造紧支持双正交小波(compactly supported biorthogonal wavelets)的方法[2],以及其他学者提出的各种算法,使小波技术在图像编码中得到广泛的应用。
在构造小波和开发小波变换算法中,比利时成长的年轻学者Wim Sweldens在1994年的博士论文中首先提出了―The Lifting Scheme‖[3][4],简称Lifting/lifting(提升法)。
该方法的基本思想是首先把信号分成偶数号样本和奇数号样本,根据信号本身的相关性,奇数样本使用偶数样本进行预测,由预测丢失的信号叫做信号的细节信息,然后调整偶数样本以保存原始信号的粗糙信息和细节信息。
该方法保留了小波分析的特性(时间频率局部化和快速计算),通过放弃小波的平移和缩放,并且放弃用傅立叶分析来构造小波,从而解决了非无限信号或者非周期信号的小波和小波变换问题,也使计算速度得到很大的提高,因此被称为第二代小波(second generation wavelets),现在也成为制定JPEG2000标准中小波部分的基础。
9.1.5 小波分解图像方法使用小波变换把图像分解成各种子带的方法有很多种。
例如,均匀分解(uniform decomposition),非均匀分解(non-uniform decomposition),八带分解(octave-band decomposition)和小波包分解(wavelet-packet decomposition),根据不同类型的图像选择不同小波的自适应小波分解(adaptive wavelet decomposition)等。
其中,八带分解是使用最广泛的一种分解方法。
这种分解方法属于非均匀频带分割方法,它把低频部分分解成比较窄的频带,而对每一级分解的高频部分不再进一步分解。
图9-04表示Lena图像的数据分解。
图9-04 Lena图像的数据分解9.2 失真的度量方法在电子工程中,信号噪声比(SNR)一直是最流行的误差度量指标,在大多数情况下可提供很有价值的信息,在数学上也比较容易计算。
信号噪声比虽然也用在图像编码中,但由于它的数值与图像编码系统中高压缩比的关系不容易体现,因此提出了其他的几种度量方法,包括平均主观评分(mean opinion score,MOS)。
9.3 EZW编码9.3.1 介绍在1992年,Lewis,A. S.和Knowles, G.首先介绍了一种树形数据结构来表示小波变换的系数[6]。
在1993年,Shapiro, J. M.把这种树形数据结构叫做―零树(zerotree)‖,并且开发了一个效率很高的算法用于熵编码,他的这种算法叫做嵌入(式)零树小波(embedded zerotree wavelet,EZW)算法[7]。
EZW主要用于与小波变换有关的二维信号的编码,但不局限于二维信号。
嵌入(式)零树小波中的―小波‖是指该算法以离散小波变换为基础,以大的小波变换系数比小的小波变换系数更重要,以及高频子带中的小系数可以被抛弃的事实为背景。
―零树‖是指小波变换系数之间的一种数据结构,因为离散小波变换是一种多分辨率的分解方法,每一级分解都会产生表示图像比较粗糙(低频图像)和比较精细(高频图像)的小波系数,在同一方向和相同空间位置上的所有小波系数之间的关系可用一棵树的形式表示,如果树根和它的子孙的小波系数的绝对值小于某个给定的阈值T(threshold),那么这棵树就叫做零树。
―嵌入‖是渐进编码技术(progressive encoding)的另一种说法,其含义是指一幅图像可以分解成一幅低分辨率图像和分辨率由低到高的表示图像细节的许多子图像,图像合成的过程与分解的过程相反,使用子图像生成许多分辨率不同的图像。
EZW编码指的是,按照用户对图像分辨率的要求,编码器可以进行多次编码,每进行一次编码,阈值降低1/2,水平和垂直方向上的图像分辨率各提高1倍。
编码从最低分辨率图像开始扫描,每当遇到幅度大于阈值的正系数就用符号P表示,幅度的绝对值大于阈值的负系数用符号N表示,树根节点上的系数幅度小于阈值而树枝中有大于阈值的非零树用符号Z表示,零树用符号T表示。
小波图像编码(wavelet image coding)的一般结构如图9-05所示,它主要由小波变换(wavelet transform)、量化(quantization)和熵编码(entropy encoding)等3个模块组成。
小波变换不损失数据,但它是EZW算法具有渐进特性的基础;量化模块对数据会产生损失,数据损失的程度取决于量化阈值的大小,EZW算法指的就是这个模块的9.3.2 算法EZW算法是多分辨率图像的一种编码方法。
对整幅图像编码一次,生成一种分辨率图像,编码一次叫做一遍扫描。
每一遍扫描大致包含三个步骤:设置阈值、每个小波系数与阈值进行比较、量化系数和重新排序。
在扫描过程中需要维护两种表,一种是小波系数的符号表,另一种是量化表。
1. 零树回顾二维小波变换的计算过程,不难想象各级子图像中的系数是相关的。
在说明零树的概念之前,需要对小波变换得到的系数、名称和符号加以说明。
现以3级分解的离散小波变换为例,图9-06表示Lena图像使用三级滤波器组做小波变换输出的子图像(sub image)。
需要注意的是,分解之后的图像的名称在文献上有很多种,除了子图像之外,有的叫做子带图像(sub-band image),有的把子图像进一步区分为高频子图像和低频子图像,或者粗糙图像和精细图像等名称。
这些名称从不同的角度反映图像的特性,在不同的场合下使用可以收到异曲同工的效果。
图9-06中的数字1, 2和3表示分解的级数编号,LL3表示第3级的低频子图像,在这个例子中,它是分辨率最低的子图像。
HL3表示第3级分解在水平方向上的子图像,LH3表示第3级分解在垂直方向上的子图像,HH3表示第3级分解在对角线方向上的子图像,其他的组合符号依此类推。