2020年杭州外国语学校八年级(下)期末数学试题(含答案)

合集下载

八年级下册数学杭州数学期末试卷测试卷(word版,含解析)

八年级下册数学杭州数学期末试卷测试卷(word版,含解析)

八年级下册数学杭州数学期末试卷测试卷(word 版,含解析)一、选择题1.函数1y x =-中自变量x 的取值范围是( )A .1x >B .1x <C .1≥xD .1x ≥-2.以下列三段线段的长为三边的三角形中,不能构成直角三角形的是( ) A .6,8,10B .5,12,13C .111,,345D .9,40,413.在ABCD 中,E 、F 分别在BC 、AD 上,若想使四边形AFCE 为平行四边形,须添加一个条件,这个条件可以是( )①AF CE =;②AE CF =;③BAE FCD ∠=∠;④BEA FCE ∠=∠.A .①或②B .②或③C .③或④D .①或③或④4.甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A .甲比乙稳定B .乙比甲稳定C .甲与乙一样稳定D .无法确定5.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AC ⊥BD ,E ,F 分别是AB ,CD 的中点,若AC =BD =2,则EF 的长是( )A .2B 3C 6D 26.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°7.如图,在ABC中,∠C=90°,AC=12,BC=5.P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连接EF,则线段EF的最小值为()A.3013B.4513C.6013D.1328.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地体息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时向t(分)之间的函数关系如图所示,下列说法中正确的是()A.甲步行的速度为8米/分B.乙走完全程用了34分钟C.乙用16分钟追上甲D.乙到达终点时,甲离终点还有360米二、填空题9.3x+x的取值范围是_______.10.菱形的一条对角线长为12cm,另一条对角线长为16cm,则菱形的面积为_____.11.直角三角形的三边长分别为a、b、c,若3a=,4b=,则c=__________.12.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若5AE=,3BF=,则AO的长为______.13.一次函数y =kx +3的图象过点A (1,4),则这个一次函数的解析式_____. 14.如图,在ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE ∥CA ,DF ∥BA ,下列四种说法:①四边形AEDF 是平行四边形;②如果∠BAC =90°,那么四边形AEDF 是菱形;③如果AD 平分∠BAC ,那么四边形AEDF 是菱形;④如果AB =AC ,那么四边形AEDF 是菱形.其中,正确的有_____.(只填写序号)15.如图①,在平面直角坐标系中,等腰ABC 在第一象限,且//AC x 轴.直线y x =从原点O 出发沿x 轴正方向平移.在平移过程中,直线被ABC 截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图②所示,那么ABC 的面积为__________.16.如图,四边形ABCD 是矩形纸片,AD =10,CD =8.在CD 边上取一点E ,将纸片沿AE 翻折,使点D 落在BC 边上的点F 处.则AF =__;CF =__;DE =__.三、解答题17.(1)计算:753273(2)计算:2216(3)8325518.一个25米长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B 外移多少米?19.如图,正方形网格的每个小方格都是边长为1的正方形,每个小正方形的顶点叫格点.某数学探究小组进行了如下探究活动:以格点为顶点分别按下列要求画图形.(1)画一个三角形、使三边长为3,8,5在网格1中完成;(2)画一个平行四边形,使其有一锐角为45°,且面积为6,在网格2中完成; (3)线段AB 的端点都在格点上,将线段AB 平移得到线段CD ,并保证点C 和点D 也在格点上.①平移后使形成的四边形ABDC 为正方形,画出符合条件的所有图形,在网格3中完成; ②平移后使形成的四边形ABDC 为菱形(正方形除外),画出符合条件的所有图形,在网格4中完成.20.如图,在ABC 中,AB AC =,AH BC ⊥于点H ,E 是A 上一点,过点B 作//BF EC ,交EH 的延长线于点F ,连接BE ,CF .(1)求证:四边形BECF 是菱形; (2)若BAC ECF ∠=∠,求ACF ∠的度数. 21.如果记()1xy f x x==+,并且1f 表示当1x 时y 的值,即121111f+;(2f表示当2x y 的值,即2221f+12f 表示当12x =y 的值,即f…(1)计算下列各式的值:=f f+__________.=f f+__________.(2)当n为正整数时,猜想f f+的结果并说明理由;(3)求f ff f f f f+++++⋅⋅⋅++的值. 22.学校准备印制一批纪念册.纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印刷费(y元)与印数(x千册)间的关系见下表:(2)若510x≤<,求出y与x之间的函数解析式;(3)若学校印制这批纪念册的印刷费为71500元则印刷的纪念册有多少册?23.如图.四边形ABCD、BEFG均为正方形.(1)如图1,连接AG、CE,请直接写出.....AG和CE的数量和位置关系(不必证明).(2)将正方形BEFG绕点B顺时针旋转角(),如图2,直线AG、CE相交于点M.①AG和CE是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:②连结MB,求证:MB平分.(3)在(2)的条件下,过点A作交MB的延长线于点N,请直接写出.....线段CM 与BN的数量关系.24.如图,在平面直角坐标系中,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴正半轴于C ,且ABC ∆面积为10.(1)求点C 的坐标及直线BC 的解析式;(2)如图,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标; (3)如图2,若M 为线段BC 的中点,点E 为直线OM 上一动点,在x 轴上是否存在点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.25.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =20.点P 从点B 出发,以每秒23个单位长度的速度沿BC 向终点C 运动,同时点M 从点A 出发,以每秒4个单位的速度沿AB 向终点B 运动,过点P 作PQ ⊥AB 于点Q ,连结PQ ,以PQ 、MQ 为邻边作矩形PQMN ,当点P 运动到终点时,整个运动停止,设矩形PQMN 与Rt △ABC 重叠部分图形的面积为S (S >0),点P 的运动时间为t 秒.(1)①BC 的长为 ;②用含t 的代数式表示线段PQ 的长为 ; (2)当QM 的长度为10时,求t 的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.【参考答案】一、选择题1.C解析:C【分析】根据二次根式的性质,被开方数大于等于零,列不等式即可求解.【详解】解:∵x−1≥0∴x≥1.故选:C【点睛】本题考查了函数自变量的取值范围的求法,一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不为零;当函数表达式是二次根式时,被开方数为非负数.2.C解析:C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【详解】解:A、62+82=102,能构成直角三角形,故此选项不符合题意;B、52+122=132,能构成直角三角形,故此选项不符合题意;C、(14)2+(15)2≠(13)2,不能构成直角三角形,故此选项符合题意;D、92+402=412,能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边,然后验证是否满足a2+b2=c2.3.D解析:D【解析】【分析】由平行四边形的判定定理依次判断即可解答.【详解】解:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∠B=∠D,AD//BC,AD=BC,∴AF //EC ∵AF =EC ,∴四边形AFCE 是平行四边形,故①符合题意; ∵AF //EC ,AE CF =,∴四边形AFCE 可能是平行四边形、也可能是等腰梯形,故②不符合题意; 如果∠BAE =∠FCD ,则△ABE ≌△DFC (ASA ) ∴BE =DF , ∴AD -DF =BC -BE , 即AF =CE , ∵AF //CE ,∴四边形AFCE 是平行四边形,故③符合题意; 如果∠BEA =∠FCE , ∴AE //CF , ∵AF //CE ,∴四边形AFCE 是平行四边形、故④符合题意. 故选D . 【点睛】本题主要考查了平行四边形的性质与判定.灵活运用平行四边形的性质与判定定理是解答本题的关键.4.C解析:C 【解析】 【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系. 【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20, 乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个, ∴甲、乙制作的个数稳定性一样, 故选:C . 【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.5.D解析:D 【分析】分别取,AD BC 的中点为,G H ,连接,,,EG HE HF FG ,利用中点四边形的性质可以推出1111//,//,//,//2222EG BD HF BD HE AC FG AC ,再根据AC BD ⊥,可以推导出四边形EGFH 是正方形即可求解.【详解】解:分别取,AD BC 的中点为,G H ,连接,,,EG HE HF FG ,,E F 分别是,AB CD 的中点,1111//,//,//,//2222EG BD HF BD HE AC FG AC ∴,又,2AC BD AC BD ⊥==,1,HE EG GF HF HF FG ∴====⊥,∴四边形EGFH 是正方形,22EF FG ∴=故选:D . 【点睛】本题考查了中点四边形的性质、正方形的判定及性质,解题的关键是作出适当的辅助线,利用题意证明出四边形EGFH 是正方形.6.A解析:A 【解析】 【分析】先根据菱形的性质得OD =OB ,AB ∥CD ,BD ⊥AC ,则利用DH ⊥AB 得到DH ⊥CD ,∠DHB =90°,所以OH 为Rt △DHB 的斜边DB 上的中线,得到OH =OD =OB ,利用等腰三角形的性质得∠1=∠DHO ,然后利用等角的余角相等即可求出∠DHO 的度数. 【详解】解:∵四边形ABCD 是菱形, ∴OD =OB ,AB ∥CD ,BD ⊥AC , ∵DH ⊥AB ,∴DH ⊥CD ,∠DHB =90°,∴OH 为Rt △DHB 的斜边DB 上的中线, ∴OH =OD =OB , ∴∠1=∠DHO , ∵DH ⊥CD , ∴∠1+∠2=90°, ∵BD ⊥AC ,∴∠2+∠DCO =90°, ∴∠1=∠DCO , ∴∠DHO =∠DCA , ∵四边形ABCD 是菱形, ∴DA =DC ,∴∠CAD =∠DCA =20°, ∴∠DHO =20°, 故选A .【点睛】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.C解析:C 【解析】 【分析】连接PC ,先证四边形ECFP 是矩形,则EF PC =,当CP AB ⊥时,PC 最小,然后利用三角形面积解答即可. 【详解】解:连接PC ,如图:PE AC ⊥,PF BC ⊥,90PEC PFC ∴∠=∠=︒, 90ACB ∠=︒,∴四边形ECFP 是矩形,EF PC ∴=,当PC 最小时,EF 也最小,90ACB ∠=︒,12AC =,5BC =,222251123AB AC BC ∴++,当CP AB ⊥时,PC 最小,此时,125601313AC BCCPAB⨯⨯===,∴线段EF长的最小值为60 13,故选:C.【点睛】本题主要考查的是矩形的判定与性质、勾股定理、垂线段最短以及三角形面积等知识,解题的关键是熟练掌握矩形的判定与性质,求出CP的最小值.8.D解析:D【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲步行的速度为:240÷4=60米/分,故选项A不合题意,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故选项B不合题意,乙追上甲用的时间为:16﹣4=12(分钟),故选项C不合题意,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故选项D符合题意,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二、填空题9.x>-3【解析】【分析】先根据分式分母不为零,再根据二次根式被开方数不为零得出不等式计算即可.【详解】解:有题意可知:30x+≥⎪⎩则x+3>0x>-3故答案为:x>-3【点睛】本题考查分式有意义的条件,二次根式有意义的条件.是一道复合型的题目,要考虑前面是重点.10.96cm2【解析】【分析】根据菱形的面积等于两对角线的积的一半求解即可.【详解】 由已知可得,这个菱形的面积1216962⨯==(2cm ), 故答案为:296cm .【点睛】本题考查了菱形的性质,解答此题的关键是掌握菱形的面积等于两对角线的积的一半.115【解析】【分析】根据斜边分类讨论,然后利用勾股定理分别求出c 的值即可.【详解】解:①若b 是斜边长根据勾股定理可得:c ==②若c 是斜边长根据勾股定理可得:5c综上所述:c =55【点睛】此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键. 12.B解析:【分析】首先根据矩形的性质得出//AD BC ,AD BC =,AB CD =,然后根据平行线的性质及等量代换得出AFE AEF ∠=∠,则5AE AF ==,然后根据折叠的性质得出FC AF =,OA OC =,进而求出BC ,然后利用勾股定理求出AB ,AC ,从而答案可求.【详解】∵四边形ABCD 是矩形,∴//AD BC ,AD BC =,AB CD =,∴EFC AEF ∠=∠,由折叠得,EFC AFE ∠=∠,∴AFE AEF ∠=∠,∴5AE AF ==,由折叠得,FC AF =,OA OC =,∴358BC =+=,在Rt ABF 中,4AB =,在Rt ABC中,AC∴AO OC==故答案为:【点睛】本题主要考查矩形的性质,折叠的性质和勾股定理,掌握折叠和矩形的性质及勾股定理是关键.13.A解析:y=x+3【解析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).14.D解析:①③【分析】根据平行四边形的判定和菱形的判定解答即可.【详解】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,故①正确;∵∠BAC=90°,四边形AEDF是平行四边形,∴四边形AEDF是矩形,故②错误;∵AD平分∠BAC,四边形AEDF是平行四边形,∴四边形AEDF是菱形,故③正确;∵AB=AC,四边形AEDF是平行四边形,不能得出AE=AF,故四边形AEDF不一定是菱形,故④错误;故答案为:①③.【点睛】此题考查菱形的判定,关键是就平行四边形的判定和菱形的判定解答.15.2【分析】过点作于,设经过点时,与的交点为,根据函数图像,找到经过点和经过点的函数值分别求得,由与轴的夹角为45°,根据勾股定理求得,根据等腰三角的性质求得,进而求得三角形的面积.【详解】如解析:2【分析】过点B 作BH AC ⊥于H ,设y x =经过B 点时,与AC 的交点为D ,根据函数图像,找到经过A 点和经过B 点的函数值分别求得,AD DH ,由y x =与x 轴的夹角为45°,根据勾股定理求得BH ,根据等腰三角的性质求得AC ,进而求得三角形的面积.【详解】如图①,过点B 作BH AC ⊥于H由图②可知,当直线y x =平移经过点A 时,1,0==m n ;随着y x =平移,m 的值增大;如图,当y x =经过B 点时,与AC 的交点为D ,如图此时2,2m n ==2BD n =//AC x ,y x =与x 轴的夹角为45°,211,45AD BDH ∴=-=∠=︒ABC ∴为等腰直角三角形,即BH DH =222BD BH DH ∴=+1BH DH ∴==112AH AD DH =+=+= ABC 是等腰三角形BH AC ⊥,12AH CH AC ∴== 2224AC AH ∴==⨯=1141222ABC S AC BH ∴=⨯=⨯⨯=△ 故答案为:2.【点睛】本题考查了一次函数图像的平移,等腰三角形的性质,勾股定理,从函数图像上获取信息,及掌握y x =与x 轴的夹角为45°是解题的关键.16.4 5【分析】先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x解析:4 5【分析】先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x , EC=8−x ,然后在 RtΔECF 中根据勾股定理得到42+(8−x)2=x 2 ,再解方程即可得到DE 的长.【详解】解:根据折叠可得AF =AD =10,∵四边形ABCD 是矩形,∴BC =AD =10,在Rt △ABF 中, AB 2+FB 2=AF 2,∴FB=6.∴FC =10﹣6=4,设DE =x ,则EF =x ,EC =8﹣x ,在Rt △ECF 中,∵CE 2+FC 2=EF 2,∴42+(8﹣x )2=x 2,解得x =5.则DE =5.故答案为:10,4,5.【点睛】本题考查了图形的折叠,矩形的性质和勾股定理,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)2;(2)【分析】(1)先分别化简二次根式,再合并同类二次根式即可得到答案;(2)先计算乘方,同时化简二次根式,将除法化为乘法,计算乘除法,再化简结果.【详解】解:(1)=10-9解析:(1)213【分析】(1)先分别化简二次根式,再合并同类二次根式即可得到答案;(2)先计算乘方,同时化简二次根式,将除法化为乘法,计算乘除法,再化简结果.【详解】解:(1)(2)2=3-3-=16-.13【点睛】此题考查二次根式的加减法计算法则,及混合运算的计算法则,正确掌握二次根式的加减法法则、混合运算的法则、二次根式的化简方法是解题的关键.18.8米.【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB、OB'的长度,进而求出BB'的长度即可.【详解】解:如图,依题意可知AB=25(米),AO=24(米),∠解析:8米.【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB、OB'的长度,进而求出BB'的长度即可.【详解】解:如图,依题意可知AB=25(米),AO=24(米),∠O=90°,∴BO2=AB2﹣AO2=252-242,∴ BO =7(米),移动后,A O '=20(米),222222()25205(1)B O A B A O ''''--===∴ 15B O '= (米),∴ =1578BB B O BO ''-=-=(米).答:梯子底端B 外移8米.【点睛】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求B O '的长度是解题的关键.19.(1)见解析;(2)见解析;(3)①见解析;②见解析【解析】【分析】(1)根据勾股定理画出图形即可;(2)根据平行四边形的性质和面积公式画出图形即可;(3)①根据正方形的性质画出图形即可;解析:(1)见解析;(2)见解析;(3)①见解析;②见解析【解析】【分析】(1)根据勾股定理画出图形即可;(2)根据平行四边形的性质和面积公式画出图形即可;(3)①根据正方形的性质画出图形即可;②根据菱形的性质画出图形即可.【详解】解:(1)根据勾股定理可得如图所示:(2)如图所示:(3)①如图所示:②如图所示:【点睛】本题主要考查勾股定理、正方形的性质、菱形的性质及平移,熟练掌握勾股定理、正方形的性质、菱形的性质及平移是解题的关键.20.(1)见解析;(2)90°【分析】(1)由题意利用全等三角形的判定证得,得出,进而利用菱形的判定定理进行证明即可;(2)由题意利用菱形的性质可得,进而进行角的等量替换得出即的度数.【详解】解析:(1)见解析;(2)90°【分析】(1)由题意利用全等三角形的判定证得BHF CEE ASA △≌△(),得出EH FH =,进而利用菱形的判定定理进行证明即可;(2)由题意利用菱形的性质可得12ECB FCB ECF ∠=∠=∠,进而进行角的等量替换得出90FCB ACH ∠+∠=︒即ACF ∠的度数.【详解】解:(1)证明:∵AB AC =,AH BC ⊥,∴BH HC =,90BHF CHE ∠=∠=︒,∵//BF EC ,∴FBH ECH ∠=∠,∴BHF CEE ASA △≌△(), ∴EH FH =,∴四边形BECF 是平行四边形.又∵EF BC ⊥,∴四边形BECF 是菱形;(2)∵四边形BECF 是菱形, ∴12ECB FCB ECF ∠=∠=∠. ∵AB AC =,AH BC ⊥, ∴12CAH BAC ∠=∠. ∵BAC ECF ∠=∠,∴CAH FCB ∠=∠,∵90CAH ACH ∠+∠=︒,∴90FCB ACH ∠+∠=︒.即90ACF ∠=︒.【点睛】本题考查菱形的判定与性质,熟练掌握全等三角形的判定和性质以及菱形的判定与性质是解题的关键.21.(1)1;1(2)结果为1,证明过程见详解(3)【解析】【分析】(1)根据题目定义的运算方式代数计算即可.(2)根据第(1)题的计算结果总结规律,并加以证明.(3)运用第(2)题的运算规律解析:(1)1;1(2)结果为1,证明过程见详解(3)1992【解析】【分析】(1)根据题目定义的运算方式代数计算即可.(2)根据第(1)题的计算结果总结规律,并加以证明.(3)运用第(2)题的运算规律和加法结合律进行将式子中每一项适当分组,再进行计算.【详解】解:(1)1f f +===;1f f +==. (2)猜想f f +的结果为1.证明:f f+===1=(3)f ff f f f f+++++⋅⋅⋅++f f f ff f f⎡⎤⎡⎤⎡⎤=+++++⋅⋅⋅++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦919=⨯1992=【点睛】本题以定义新运算的形式考查了二次根式的综合计算,遵循新运算的方式,熟练掌握二次根式的计算是解答关键.22.(1);(2);(3)6.5千册【分析】(1)(2)根据印刷费(y元)=彩页印刷费+黑白页印刷费=1000×(彩色单价×4x+黑白单价×6x),即可解答;(3)根据(1)的解析式可得5≤x<1解析:(1)13000y x=;(2)11000y x=;(3)6.5千册【分析】(1)(2)根据印刷费(y元)=彩页印刷费+黑白页印刷费=1000×(彩色单价×4x+黑白单价×6x),即可解答;(3)根据(1)的解析式可得5≤x<10,将y=71500代入(2)求得的解析式即可求解.【详解】解:(1)根据题意得:当15x≤<时,()10004 2.260.713000y x x x=⨯+⨯=,∴13000y x=;(2)由题意得:当510x≤<时,()10004260.511000y x x x=⨯+⨯=,∴11000y x ;(3)当1≤x <5时,y =13000x ≤65000,∵学校印制这批纪念册的印刷费为71500元,∴5≤x <10.此时y =11000x =71500,∴x =6.5,则印刷的纪念册有6.5千册.【点睛】本题考查了一次函数的应用,解决本题的关键是读懂题意,找到所求量的等量关系得出函数关系式.23.(1)AG=EC ,AG ⊥EC ;(2)①满足,理由见解析;②见解析;(3)CM=BN .【分析】(1)由正方形BEFG 与正方形ABCD ,利用正方形的性质得到两对边相等,一对直角相等,利用SAS 得出三解析:(1)AG=EC ,AG ⊥EC ;(2)①满足,理由见解析;②见解析;(3).【分析】(1)由正方形BEFG 与正方形ABCD ,利用正方形的性质得到两对边相等,一对直角相等,利用SAS 得出三角形ABG 与三角形CBE 全等,利用全等三角形的对应边相等,对应角相等得到CE=AG ,∠BCE=∠BAG ,再利用同角的余角相等即可得证;(2)①利用SAS 得出△ABG ≌△CEB 即可解决问题;②过B 作BP ⊥EC ,BH ⊥AM ,由全等三角形的面积相等得到两三角形面积相等,而AG=EC ,可得出BP=BH ,利用到角两边距离相等的点在角的平分线上得到BM 为角平分线;(3)在AN 上截取NQ=NB ,可得出三角形BNQ 为等腰直角三角形,利用等腰直角三角形的性质得到,接下来证明BQ=CM ,即要证明三角形ABQ 与三角形BCM 全等,利用同角的余角相等得到一对角相等,再由三角形ANM 为等腰直角三角形得到NA=NM ,利用等式的性质得到AQ=BM ,利用SAS 可得出全等,根据全等三角形的对应边相等即可得证.【详解】解:(1)AG=EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB=BE ,∠ABG=90°,AB=BC ,∠ABC=90°,在△ABG 和△BEC 中,,∴△ABG≌△BEC(SAS),∴CE=AG,∠BCE=∠BAG,延长CE交AG于点M,∴∠BEC=∠AEM,∴∠ABC=∠AME=90°,∴AG=EC,AG⊥EC;(2)①满足,理由是:如图2中,设AM交BC于O.∵∠EBG=∠ABC=90°,∴∠ABG=∠EBC,在△ABG和△CEB中,,∴△ABG≌△CEB(SAS),∴AG=EC,∠BAG=∠BCE,∵∠BAG+∠AOB=90°,∠AOB=∠COM,∴∠BCE+∠COM=90°,∴∠OMC=90°,∴AG⊥EC.②过B作BP⊥EC,BH⊥AM,∵△ABG≌△CEB,∴S△ABG=S△EBC,AG=EC,∴12EC•BP=12AG•BH,∴BP=BH,∴MB平分∠AME;(3)CM=2BN,理由为:在NA上截取NQ=NB,连接BQ,∴△BNQ为等腰直角三角形,即BQ=2BN,∵∠AMN=45°,∠N=90°,∴△AMN为等腰直角三角形,即AN=MN,∴MN-BN=AN-NQ,即AQ=BM,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN,在△ABQ和△BCM中,,∴△ABQ≌△BCM(SAS),∴CM=BQ,则CM=2BN.【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键.24.(1),;(2)或;(3)存在,或或.【解析】【分析】(1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题.(2)设G (0,n )分两种情形:①当时,如图中,点落在上时,过作直线解析:(1)(3,0)C ,443y x =-+;(2)23(0,)7或(0,1)-;(3)存在,(0,0)或(6,0)-或(6,0).【解析】【分析】(1)利用三角形的面积公式求出点C 坐标,再利用待定系数法即可解决问题. (2)设G (0,n )分两种情形:①当2n >时,如图21-中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出(2,1)Q n n --.②当2n <时,如图22-中,同法可得(2,1)Q n n -+,利用待定系数法即可解决问题.(3)由(0,4)B ,(3,0)C 得3(2M ,2),即得直线OM 为43y x =,设4(,)3E s s ,(,0)D t ,①以BC 、DE 为对角线,此时BC 、DE 中点重合,而BC 中点为03(2+,40)2+,DE 中点为(2s t +,403)2s +,即得0344003s t s +=+⎧⎪⎨+=+⎪⎩,解得(0,0)D ;②以BE 、CD 为对角线,同理可得:(6,0)D -;③以BD 、CE 为对角线,同理(6,0)D .【详解】解:(1)直线24y x =+与x 轴交于点A ,与y 轴交于点B ,(2,0)A ∴-,(0,4)B ,2OA ∴=,4OB =,1102ABC S AC OB ∆=⋅⋅=, 5AC ∴=,3OC ∴=,(3,0)C ∴,设直线BC 的解析式为y kx b =+,则有403bk b =⎧⎨=+⎩, 解得434k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为443y x =-+; (2)FA FB =,(2,0)A -,(0,4)B ,(1,2)F ∴-,设(0,)G n ,①当2n >时,如图21-中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .四边形FGQP 是正方形,90FGQ ∴∠=︒,=FG QG ,90FGM NGQ GQN ∴∠=︒-∠=∠,而90FMG GNQ ∠=∠=︒,()FMG GNQ AAS ∴∆≅∆,1MG NQ ∴==,2FM GN n ==-,(2,1)Q n n ∴--,点Q 在直线443y x =-+上, 41(2)43n n ∴-=--+, 237n ∴=, 23(0,)7G ∴; ②当2n <时,如图22-中,同法可得(2,1)Q n n -+,点Q 在直线443y x =-+上, 41(2)43n n ∴+=--+, 1n ∴=-,(0,1)G ∴-.综上所述,满足条件的点G 坐标为23(0,)7或(0,1)-; (3)存在,理由如下: (0,4)B ,(3,0)C ,M 为线段BC 的中点,3(2M ∴,2), 设直线OM 为y mx =,则322m =, 解得43m =,∴直线OM 为43y x =, 设4(,)3E s s ,(,0)D t ,①以BC 、DE 为对角线,此时BC 、DE 中点重合,而BC 中点为03(2+,40)2+,DE 中点为(2s t +,403)2s +, ∴0344003s t s +=+⎧⎪⎨+=+⎪⎩,解得30s t =⎧⎨=⎩, (0,0)D ∴;②以BE 、CD 为对角线,同理可得: ∴0344003s t s +=+⎧⎪⎨+=+⎪⎩,解得36s t =-⎧⎨=-⎩, (6,0)D ∴-;③以BD 、CE 为对角线,同理可得: ∴0344003t s s +=+⎧⎪⎨+=+⎪⎩,解得36s t =⎧⎨=⎩, (6,0)D ∴;综上所述,D 的坐标为:(0,0)或(6,0)-或(6,0).【点睛】本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题 25.(1)①;②;(2)t 的值为或;(3)S=-t2+20t 或S=;(4)t=2s 或s .【分析】(1)①由勾股定理可求解;②由直角三角形的性质可求解;(2)分两种情况讨论,由QM 的长度为10,列解析:(1)①;(2)t 的值为107或307;(3)S =-2或S =24)t =2s 或103s . 【分析】(1)①由勾股定理可求解;②由直角三角形的性质可求解;(2)分两种情况讨论,由QM 的长度为10,列出方程可求解;(3)分两种情况讨论,由面积公式可求解;(4)分两种情况讨论,由含30°角的直角三角形三边的比值可求解.【详解】解:(1)①∵∠ACB =90°,∠B =30°,AB =20,∴AC =12AB =10, ∴BC=②∵PQ ⊥AB ,∴∠BQP =90°,∵∠B =30°,∴PQ =1PB 2,由题意得:BP ,∴PQ ,;(2)在Rt △PQB 中,BQ t ,当点M 与点Q 相遇,20=AM +BQ =4t+3t ,∴t =207, 当0<t <207时,MQ =AB -AM -BQ , ∴20-4t -3t =10,∴t =107,当207<t =5时,MQ =AM +BQ -AB , ∴4t +3t -20=10, ∴t =307, 综上所述:当QM 的长度为10时,t 的值为107或307;(3)当0<t <207时,S =PQ ·MQ =3t ×(20-7t )=-73t 2+203t ; 当207<t≤5时,如图,∵四边形PQMN 是矩形,∴PN =QM =7t -20,PQ =3t ,∴∠B =30°,∴ME ∶BE ∶BM =1∶2∶3,∵BM =20-4t ,∴ME =2043t -, ∴S =1204(3)(720)23t t t -+⋅-=2738032003633t t -+-; (4)如图,若NQ ⊥AC ,∴NQ ∥BC ,∴∠B =∠MQN =30°,∵MN ∶NQ ∶MQ =1∶2∶3∵MQ =20-7t ,MN =PQ 3t ,∴33t =, ∴t =2,如图,若NQ ⊥BC ,∴NQ ∥AC ,∴∠A =∠BQN =90°-∠B =60°,∴∠PQN=90°-∠BQN =30°,∴PN ∶NQ ∶PQ =1∶2∶3∵PN =MQ =7t -20,PQ 3t , ∴37203t t =-, ∴t =103, 综上所述:当t =2s 或103s 时,过点Q 和点N 的直线垂直于Rt △ABC 的一边. 【点睛】本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键.。

杭州外国语学校八年级(下)期末数学试题(含答案)

杭州外国语学校八年级(下)期末数学试题(含答案)

1 x 1 2
13.
2 5
14.
1 或-1 2
15. 75
1 2 3 4 5 5 4 3 2 1 , , , , , , , , , ,则此种方案是不公平的。 30 30 30 30 30 30 30 30 30 30
40 3
19.解: v
2 23.1(m / s) 3600 83.1(km / h) 75(km / h)
一、 认真选择
(每小题 3 分,共 20 分)
1、 下列运算: (1) 2 3 5 , (2)
2 2 2
5 3 5 2 5, (3) 3 2 3 2 , 2 2
2
(4) 8 15 17 , (5) 9a 25b 3a 5b ,其中正确的一共有 A、2 个 B、3 个 C、4 个


D、以上都不对 ( )
2、在下列下列各组根式中,是同类二次根式的是 A、
3和 18
B、 3 和 2
1 2
1 3
C、 a b 和 a b
5 7
7 5
D、 a 1和 a 1
3、甲、乙两人在相同的条件下各射靶 10 次,他们命中环数的平均数相同,但标准差不同,甲、乙的 标准差分别为 4, 5,则射击成绩比较稳定的是 A、甲 B、乙 ( )
A
E
K
F
B
H
D
G
C
参考答案 一、认真选择 1. A 6. A 2. C 7. A 3. A 8. C 4. D 9. C 5. C 10. C
二、 精心填空 11. 2 2 三、细心计算 16. (1) 6 2 3 2 17.证明略 四、实际出发 18.解:判断是否公平的依据是 2-11 这几个数字出现的概率是否相同,若相同则方案公平,若出现 概率不相同则方案不公平。可以发现 2-11 出现的几率分别为 (2) 8 2 3 12.

杭州市2020年初二下期末监测数学试题含解析

杭州市2020年初二下期末监测数学试题含解析

杭州市2020年初二下期末监测数学试题一、选择题(每题只有一个答案正确)1.在等腰三角形中,,则的周长为( ) A . B . C .或 D .或 2.如图,在ABCD 中,AE CD ⊥于点,E 若65,B ∠=︒则DAE ∠等于( )A .15B .25C .35D .453.下列事件中,是必然事件的是( )A .在同一年出生的13名学生中,至少有2人出生在同一个月B .买一张电影票,座位号是偶数号C .晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来D .在标准大气压下,温度低于0℃时冰融化4.下列根式是最简二次根式的是( ) A . B . C . D .5.某家庭今年上半年1至6月份的月平均用水量5t ,其中1至5月份月用水量(单位:t )统计表如图所示,根据信息,该户今年上半年1至6月份用水量的中位数和众数分别是( )A .4,5B .4.5,6C .5,6D .5.5,6 6.若方程12-- +2- = 3有增根,则a 的值为( ) A .1 B .2 C .3 D .07.下列选择中,是直角三角形的三边长的是( )A .1,2,3B 253C .3,4,6D .4,5,68.在平面直角坐标系中,将正比例函数y kx =(k >0)的图象向上平移一个单位长度,那么平移后的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,△ABC 中,∠A=30°,∠ACB=90°,BC=2,D 是AB 上的动点,将线段CD 绕点C 逆时针旋转90°,得到线段CE ,连接BE ,则BE 的最小值是( )A .3-1B .32C .3D .210.已知菱形ABCD 的对角线AC ,BD 的长分别为6和8,则该菱形面积是( ).A .12;B .24;C .48;D .96.二、填空题11.分解因式:2961x x ++=____. 12.如图,在平面直角坐标系中,点()1A m ,在直线23y x =-+上,点A 关于y 轴的对称点B 恰好落在直线2y kx =+上,则k 的值为_____.13.定义运算“*”为:a *b a b b a +=-,若3*m =-15,则m =______. 14.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.15.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,且AC =24,BD =10,若点E 是BC 边的中点,则OE 的长是_____.16.若双曲线(0)k y k x=≠在第二、四象限,则直线y=kx+2不经过第 _____象限。

2020年浙教版八年级下册期末数学试卷及答案

2020年浙教版八年级下册期末数学试卷及答案

八年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卡中相应方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列各式计算正确的是()A.=±4 B.=a C.﹣=D.()3=32.下列四边形:①平行四边形、②矩形、③菱形、④正方形,对角线一定相等的是()A.①②B.①③C.②④D.①②③④3.下列交通标志中既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.方程x2+x﹣1=0的根是()A.1﹣B.C.﹣1+D.5.已知矩形的面积为6,则下面给出的四个图象中,能大致呈现矩形相邻边长y与x的函数关系的是()A. B. C. D.6.一个多边形的每个内角都是144°,这个多边形是()A.八边形B.十边形C.十二边形 D.十四边形7.关于x的方程ax2+bx+c=2与方程(x+1)(x﹣3)=0的解相同,则a﹣b+c=()A.﹣2 B.0 C.1 D.28.如图,将平行四边形纸片ABCD折叠,使顶点C恰好落在AB边上的点M处,折痕为BN,则关于结论:①MN∥AD;②MNCB是菱形.说法正确的是()A.①②都错B.①对②错C.①错②对D.①②都对9.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C.a, D.,10.若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式△=b2﹣4ac和完全平方式M=(2at+b)2的关系是()A.△=M B.△>MC.△<M D.大小关系不能确定二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.+×=;﹣4=.12.一组数据:1,3,4,4,x,5,5,8,10,其平均数是5,则众数是.13.已知m是方程2x2+4x﹣1=0的根,则m(m+2)的值为.14.下列命题:①三个角对应相等的两个三角形全等;②如果ab=0,那么a+b=0;③同位角相等,两直线平行;④相等的角是对顶角.其中逆命题是真命题的序号是.15.若整数m满足条件=m+1且m<,则m的值为.16.一个Rt△ABC,∠A=90°,∠B=60°,AB=2,将它放在直角坐标系中,使斜边BC在x轴上,直角顶点A在反比例函数y=的图象上,则点B的坐标为.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.解方程:(1)3(x﹣2)2=12(2)2x2﹣x﹣6=0.18.已知关于x的一元二次方程kx2+(2k+1)x+k+1=0(k≠0).(1)求证:无论k取何值,方程总有两个不相等实数根;(2)当k>1时,判断方程两根是否都在﹣2与0之间.19.八(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,对两组学生进行四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)请计算第三次模拟竞赛成绩的优秀率是多少?并将条形统计图与折线统计图补充完整;(2)已求得甲组四次成绩优秀的平均人数为7,甲组四次成绩优秀人数的方差为1.5,请通过计算乙组的相关数据,判断哪一组成绩优秀的人数较稳定?20.如图1是一张等腰直角三角形纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条.(1)分别求出3张长方形纸条的长度;(2)若用这些纸条为一幅正方形美术品镶边(纸条不重叠),如图2,正方形美术品的面积最大不能超过多少cm2.21.在平面直角坐标系xOy中,O是坐标原点;一次函数y=kx+b(k≠0)图象与反比例函数y=的图象交于A(a,2a﹣1)、B(3a,a).(1)求一次函数与反比例函数的表达式;(2)求△ABO的面积.22.如图,矩形ABCD中,BC=2,∠CAB=30°,E,F分别是AB,CD上的点,且BE=DF=2,连结AF、CE.点P是线段AE上的点,过点P作PH∥CE交AC于点H,设AP=x.(1)请判断四边形AECF的形状并证明;(2)用含x的代数式表示AH的长;(3)请连结HE,则当x为何值时AH=HE成立?23.如图1,点O为正方形ABCD的中心.(1)将线段OE绕点O逆时针方向旋转90°,点E的对应点为点F,连结EF,AE,BF,请依题意补全图1(用尺规作图,保留作图痕迹,不要求写作法);(2)根据图1中补全的图形,猜想并证明AE与BF的关系;(3)如图2,点G是OA中点,△EGF是等腰直角三角形,H是EF的中点,∠EGF=90°,AB=8,GE=4,△EGF绕G点逆时针方向旋转α角度,请直接写出旋转过程中BH的最大值.八年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卡中相应方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列各式计算正确的是()A.=±4 B.=a C.﹣=D.()3=3【考点】二次根式的混合运算.【专题】计算题.【分析】根据算术平方根的定义对A进行判断;根据二次根式的性质对B、D进行判断;根据二次根式的加减法对C进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=|a|,所以B选项错误;C、原式=2﹣=,所以C选项错误;D、原式=3,所以D选项正确.故选D.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.下列四边形:①平行四边形、②矩形、③菱形、④正方形,对角线一定相等的是()A.①②B.①③C.②④D.①②③④【考点】正方形的性质;平行四边形的性质;菱形的性质;矩形的性质.【分析】根据平行四边形、矩形、菱形、正方形的性质对各小题分析判断后即可得解.【解答】解:①平行四边形的对角线不一定相等,②矩形的对角线一定相等,③菱形的对角线不一定相等,④正方形的对角线一定相等,所以,对角线一定相等的是②④.故选C.【点评】本题考查了正方形,平行四边形,菱形,矩形的对角线的性质,熟记各性质是解题的关键.3.下列交通标志中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知:A:是轴对称图形,而不是中心对称图形;B、C:两者都不是;D:既是中心对称图形,又是轴对称图形.故选D.【点评】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,折叠后对称轴两旁的部分可重合;中心对称图形是要寻找对称中心,旋转180°后会与原图重合.4.方程x2+x﹣1=0的根是()A.1﹣B.C.﹣1+D.【考点】解一元二次方程-公式法.【分析】观察原方程,可用公式法求解.【解答】解:a=1,b=1,c=﹣1,b2﹣4ac=1+4=5>0,x=;故选D.【点评】本题考查了一元二次方程的解法.正确理解运用一元二次方程的求根公式是解题的关键.5.已知矩形的面积为6,则下面给出的四个图象中,能大致呈现矩形相邻边长y与x的函数关系的是()A. B. C. D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=6,故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y 应大于0;即可得出答案.【解答】解:∵xy=6,∴y=(x>0,y>0).故选:A.【点评】本题主要考查反比例函数的实际应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6.一个多边形的每个内角都是144°,这个多边形是()A.八边形B.十边形C.十二边形 D.十四边形【考点】多边形内角与外角.【分析】先利用多边形的每个外角与相邻的内角互补得到这个多边形的每个外角都是(180°﹣144°)=36°,然后根据n边的外角和为360°即可得到其边数.【解答】解:∵一个多边形的每个内角都是144°,∴这个多边形的每个外角都是(180°﹣144°)=36°,∴这个多边形的边数360°÷36°=10.故选B.【点评】本题考查了多边形的内角和和外角和定理:n边形的内角和为(n﹣2)×180°;n边的外角和为360°.7.关于x的方程ax2+bx+c=2与方程(x+1)(x﹣3)=0的解相同,则a﹣b+c=()A.﹣2 B.0 C.1 D.2【考点】一元二次方程的解.【分析】首先利用因式分解法求出方程(x+1)(x﹣3)=0的解,再把x的值代入方程ax2+bx+c=2即可求出a﹣b+c的值.【解答】解:∵方程(x+1)(x﹣3)=0,∴此方程的解为x1=﹣1,x2=3,∵关于x的方程ax2+bx+c=2与方程(x+1)(x﹣3)=0的解相同,∴把x1=﹣1代入方程得:a﹣b+c=2,故选D.【点评】本题主要考查了一元二次方程的知识,解答本题的关键是求出方程(x+1)(x﹣3)=0的两根,此题难度不大.8.如图,将平行四边形纸片ABCD折叠,使顶点C恰好落在AB边上的点M处,折痕为BN,则关于结论:①MN∥AD;②MNCB是菱形.说法正确的是()A.①②都错B.①对②错C.①错②对D.①②都对【考点】翻折变换(折叠问题).【分析】根据题意,推出∠C=∠A=∠BMN,即可推出结论①,由AM=DA推出四边形MNCB为菱形,因此推出②.【解答】解:∵平行四边形ABCD,∴∠A=∠C=∠BMN,∴MN∥AD,故①正确;∴MN∥BC,∴四边形MNCB是平行四边形,∵CN=MN,∴四边形MNCB为菱形,故②正确;故选D.【点评】本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形MNCB为菱形.9.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C.a, D.,【考点】中位数;算术平均数.【专题】计算题;压轴题.【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.【解答】解:由平均数定义可知:(a1+a2+a3+0+a4+a5)=×5a=a;将这组数据按从小到大排列为0,a5,a4,a3,a2,a1;由于有偶数个数,取最中间两个数的平均数.∴其中位数为.故选D.【点评】本题考查了平均数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.10.若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式△=b2﹣4ac和完全平方式M=(2at+b)2的关系是()A.△=M B.△>MC.△<M D.大小关系不能确定【考点】根的判别式;完全平方式;一元二次方程的解.【分析】把t代入原方程得到at2+bt+c=0两边同乘以4a,移项,再两边同加上b2,就得到了(2at+b)2=b2﹣4ac.【解答】解:t是一元二次方程ax2+bx+c=0(a≠0)的根则有at2+bt+c=04a2t2+4abt+4ac=04a2t2+4abt=﹣4ac4a2t2+b2+4abt=b2﹣4ac(2at)2+4abt+b2=b2﹣4ac(2at+b)2=b2﹣4ac=△故选A【点评】本题主要应用了对方程转化,配方的方法,向已知条件进行转化的思想.二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.+×=5;﹣4=2﹣2.【考点】二次根式的混合运算.【专题】计算题.【分析】先把各二次根式化为最简二次根式,得到+×=+2×2,然后进行二次根式的乘法运算后合并即可;根据二次根式的性质化简﹣4即可.【解答】解:+×=+2×2=+4=5;﹣4=2﹣2.故答案为5,2﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.一组数据:1,3,4,4,x,5,5,8,10,其平均数是5,则众数是5.【考点】众数;算术平均数.【分析】根据平均数为5求出x的值,再由众数的定义可得出答案.【解答】解:由题意得,(1+3+4+4+x+5+5+8+10)=5,解得:x=5,这组数据中5出现的次数最多,则这组数据的众数为5.故答案为:5.【点评】本题考查了众数及平均数的知识,解答本题的关键是掌握众数及中位数的定义.13.已知m是方程2x2+4x﹣1=0的根,则m(m+2)的值为.【考点】一元二次方程的解.【分析】根据m是方程2x2+4x﹣1=0的根,即可得到m2+2m=,于是得到答案.【解答】解:∵m是方程2x2+4x﹣1=0的根,∴m2+2m=,∴m(m+2)=m2+2m=,故答案为.【点评】本题主要考查了一元二次方程的解的知识,解答本题的关键是求出m2+2m=,此题难度不大.14.下列命题:①三个角对应相等的两个三角形全等;②如果ab=0,那么a+b=0;③同位角相等,两直线平行;④相等的角是对顶角.其中逆命题是真命题的序号是③.【考点】命题与定理.【分析】利用全等三角形的判定、实数的性质、平行线的定义及对顶角的定义分别判断后即可确定正确的答案.【解答】解:①三个角对应相等的两个三角形相似但不一定全等,故错误,是假命题;②如果ab=0,那么a+b=0,错误,如a=0,b=1时,是假命题;③同位角相等,两直线平行,正确,是真命题;④相等的角是对顶角,错误,是假命题,故答案为③.【点评】本题考查了命题与定理的知识,解题的关键是能够了解全等三角形的判定、实数的性质、平行线的定义及对顶角的定义,难度不大.15.若整数m满足条件=m+1且m<,则m的值为﹣1,0,1,2.【考点】二次根式的性质与化简;估算无理数的大小.【分析】根据二次根式的性质可得m+1≥0,再根据m<,即可解答.【解答】解:∵=m+1,∴m+1≥0,∴m≥﹣1,∵m<,∴m=﹣1,0,1,2.故答案为:﹣1,0,1,2.【点评】本题考查了二次根式的性质与化简,解决本题的关键是熟记二次根式的性质.16.一个Rt△ABC,∠A=90°,∠B=60°,AB=2,将它放在直角坐标系中,使斜边BC在x轴上,直角顶点A在反比例函数y=的图象上,则点B的坐标为(3,0).【考点】反比例函数图象上点的坐标特征.【分析】设出B点坐标(a,0),借助Rt△ABC中的边角关系,用a表示出A点坐标,将A点坐标再代入反比例函数关系式,即能求出a值,从而得解.【解答】解:过点A做x轴的垂线,交x轴于D点,图形如下,∵Rt△ABC,∠A=90°,∠B=60°,AB=2,∴BD=AB×cos∠B=2×=1,AD=AB×sin∠B=2×=,设点B的坐标为(a,0),则点A坐标为(a﹣1,),又∵直角顶点A在反比例函数y=的图象上,∴有=,解得a=3,∴点B的坐标为(3,0).故答案为:(3,0).【点评】本题考查了反比例函数的图象以及三角函数,解题的关键是设出B点坐标(a,0),借助Rt△ABC中的边角关系,用a表示出A点坐标.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.解方程:(1)3(x﹣2)2=12(2)2x2﹣x﹣6=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)系数化成1,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)3(x﹣2)2=12,(x﹣2)2=4,x﹣2=±2,x1=4,x2=0;(2)2x2﹣x﹣6=0,(2x+3)(x﹣2)=0,2x+3=0,x﹣2=0,x1=﹣,x2=2.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.18.已知关于x的一元二次方程kx2+(2k+1)x+k+1=0(k≠0).(1)求证:无论k取何值,方程总有两个不相等实数根;(2)当k>1时,判断方程两根是否都在﹣2与0之间.【考点】根的判别式.【分析】(1)计算判别式得到△=(2k+1)2﹣4k×(k+1)=1>0,则可根据判别式的意义得到结论;(2)利用因式分解法求出方程的两个根x1=﹣1,x1=﹣k﹣1,根据k>1得出﹣k﹣1<﹣2,进而得到结论.【解答】(1)证明:∵a=k,b=2k+1,c=k+1,∴△=b2﹣4ac=(2k+1)2﹣4k×(k+1)=4k2+4k+1﹣4k2﹣4k=1>0,∴无论k(k≠0)取何值时,方程总有两个不相等的实数根.(2)解:kx2+(2k+1)x+k+1=0,(x+1)(kx+k+1)=0,x1=﹣1,x1=﹣k﹣1,∵k>1,∴﹣k<﹣1,∴﹣k﹣1<﹣2,∴当k>1时,方程的两根不都在﹣2与0之间.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了因式分解法解一元二次方程.19.八(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,对两组学生进行四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)请计算第三次模拟竞赛成绩的优秀率是多少?并将条形统计图与折线统计图补充完整; (2)已求得甲组四次成绩优秀的平均人数为7,甲组四次成绩优秀人数的方差为1.5,请通过计算乙组的相关数据,判断哪一组成绩优秀的人数较稳定? 【考点】折线统计图;条形统计图;方差.【分析】(1)由第一次成绩的优秀人数为5+6=11,优秀率为55%求得总人数,再用第三次成绩的优秀人数除以总人数得到第三次成绩的优秀率,进而将条形统计图补充完整; (2)先根据方差的定义求得乙组的方差,再根据方差越小成绩越稳定,进行判断. 【解答】解:(1)总人数:(5+6)÷55%=20(人), 第三次的优秀率:(8+5)÷20×100%=65%,第四次乙组的优秀人数为:20×85%﹣8=17﹣8=9(人). 补全条形统计图,如图所示:(2)=(6+8+5+9)÷4=7,S 2乙组=×[(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=2.5, S 2甲组<S 2乙组,所以甲组成绩优秀的人数较稳定.【点评】本题考查了条形统计图、折线统计图的意义和方差的概念,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.方差是一组数据中各数据与它们的平均数的差的平方的平均数,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.如图1是一张等腰直角三角形纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条.(1)分别求出3张长方形纸条的长度;(2)若用这些纸条为一幅正方形美术品镶边(纸条不重叠),如图2,正方形美术品的面积最大不能超过多少cm2.【考点】相似三角形的应用;二次函数的应用.【分析】(1)利用相似三角形的性质求出每个纸条的长;(2)将(1)中相关数据相加,易得纸片的宽度,从而计算出正方形的边长,从而计算面积即可.【解答】解:(1)如图1,∵△ABC是等腰直角三角形,AC=BC=40cm,CD是斜边AB上的高,∴AB=40cm,CD是斜边上的中线,∴CD=AB=20cm,于是纸条的宽度为:=5(cm),∵=,∴EF=AB=10cm.同理,GH=20cm,IJ=30cm,∴3张长方形纸条的长度分别为:10cm,20cn,30cm;(2)由(1)知,3张长方形纸条的总长度为60cm.如图2,图画的正方形的边长为:﹣5=10(cm),∴面积为(10)2=200(cm2)答:如图(b)正方形美术作品的面积最大不能超过200cm2.【点评】此题考查了相似三角形的应用,不仅要计算出纸条的长度,还要计算出宽度,要仔细观察图形,寻找隐含条件.21.在平面直角坐标系xOy中,O是坐标原点;一次函数y=kx+b(k≠0)图象与反比例函数y=的图象交于A(a,2a﹣1)、B(3a,a).(1)求一次函数与反比例函数的表达式;(2)求△ABO的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数系数k=xy得出a(2a﹣1)=3a•a,解得a=﹣1,求得A、B的坐标,即可确定出反比例函数解析式;将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)设y=﹣x﹣4与x轴交点为C,对于一次函数解析式,令x=0求出y的值,确定出C坐标,得到OC的长,然后根据S△ABO=S△AOC﹣S△BOC即可求得.【解答】解:(1)∵A(a,2a﹣1)、B(3a,a)在反比例函数图象G上,∴a(2a﹣1)=3a•a,∵m≠0,∴a=﹣1,∴m=3,∴A(﹣1,﹣3)、B(﹣3,﹣1)∴所求反比例函数解析式为:;将A(﹣1,﹣3)、B(﹣3,﹣1)代入y=kx+b(k≠0),∴所求直线解析式为:y=﹣x﹣4;(2)设y=﹣x﹣4与x轴交点为C令y=0,∴C(﹣4,0)∴S△ABO=S△AOC﹣S△BOC===4.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.22.如图,矩形ABCD中,BC=2,∠CAB=30°,E,F分别是AB,CD上的点,且BE=DF=2,连结AF、CE.点P是线段AE上的点,过点P作PH∥CE交AC于点H,设AP=x.(1)请判断四边形AECF的形状并证明;(2)用含x的代数式表示AH的长;(3)请连结HE,则当x为何值时AH=HE成立?【考点】四边形综合题.【分析】(1)根据直角三角形的性质和勾股定理求出CA、AB的长,根据菱形的判定定理证明即可;(2)根据相似三角形的判定定理证明△APH∽△AEC,根据相似三角形的性质得到=,计算求出AH;(3)作HG⊥AB于G,根据锐角三角函数的定义求出AG、HG,根据勾股定理表示出HE,根据题意列出方程,解方程即可.【解答】解:(1)四边形AECF是菱形.∵四边形ABCD为矩形,∴∠B=90°,又BC=2,∠CAB=30°,∴CA=2BC=4,AB=6,∵BE=2,∴AE=AB﹣BE=4,CE==4,∵CF∥AE,CF=AE=2,∴四边形AECF是平行四边形,又EA=EC=4,∴四边形AECF是菱形;(2)∵PH∥CE,∴△APH∽△AEC,∴=,即=,解得,AH=x;(3)作HG⊥AB于G,∵AH=x,∠CAB=30°,∴HG=x,AG=x,∴GE=AE﹣AG=4﹣x,由勾股定理得,HE===,当AH=HE时,x=,解得,x=,则当x=时,AH=HE成立.【点评】本题考查的是矩形的性质、菱形的判定、相似三角形的判定和性质以及等腰三角形的判定,灵活运用相关的性质和定理、根据题意正确作出辅助线是解题的关键,注意方程思想在解题中的应用.23.如图1,点O为正方形ABCD的中心.(1)将线段OE绕点O逆时针方向旋转90°,点E的对应点为点F,连结EF,AE,BF,请依题意补全图1(用尺规作图,保留作图痕迹,不要求写作法);(2)根据图1中补全的图形,猜想并证明AE与BF的关系;(3)如图2,点G是OA中点,△EGF是等腰直角三角形,H是EF的中点,∠EGF=90°,AB=8,GE=4,△EGF绕G点逆时针方向旋转α角度,请直接写出旋转过程中BH的最大值.【考点】几何变换综合题.【分析】(1)根据题意画出图形即可;(2)延长EA交OF于点H,交BF于点G,利用正方形的性质和旋转的性质证明△EOA≌△FOB,得到AE=BF.根据等边对等角得到∠OEA=∠OFB,由∠OEA+∠OHA=90°,所以∠OFB+∠FHG=90°,进而得到AE⊥BF.(3)如图3,当B,G,H三点在一条直线上时,BH的值最大,根据正方形的性质得到AG=OG= AO=2,根据勾股定理得到BG==2,根据等腰直角三角形的性质得到GH=2,于是得到结论.【解答】解:(1)如图1所示:(2)如图2,延长EA交OF于点H,交BF于点G,∵O为正方形ABCD的中心∴OA=OB,∠AOB=90°,∵OE绕点O逆时针旋转90角得到OF,∴OE=OF∴∠AOB=∠EOF=90°,∴∠EOA=∠FOB,在△EOA和△FOB中,,∴△EOA≌△FOB,∴AE=BF.∴∠OEA=∠OFB,∵∠OEA+∠OHA=90°,∴∠OFB+∠FHG=90°,∴AE⊥BF;(3)如图3,当B,G,H三点在一条直线上时,BH的值最大,∵四边形ABCD是正方形,AB=8,∴AO=BO=4,∵点G是OA中点,∴AG=OG=AO=2,∴BG==2,∵△EGF是等腰直角三角形,H是EF的中点,∴GH=2,∴BH=BG+GH=2+2,∴BH的最大值是2+2.【点评】本题考查了旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是正确画出图形,作出辅助线,利用旋转的性质、全等三角形的性质与判定、等腰三角形的性质解决问题.。

2020-2021学年浙江省杭州市西湖区仁和外国语学校八年级(下)期末数学模拟练习试卷(附答案详解)

2020-2021学年浙江省杭州市西湖区仁和外国语学校八年级(下)期末数学模拟练习试卷(附答案详解)

2020-2021学年浙江省杭州市西湖区仁和外国语学校八年级(下)期末数学模拟练习试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中是中心对称图形而不是轴对称图形的是()A. 等腰梯形B. 菱形C. 正方形D. 平行四边形2.下列根式是最简二次根式的是()A. √18aB. √2sC. √0.5D. √133.甲乙两组数据的频数直方图如下,其中方差较大的一组是()A. 甲B. 乙C. 一样大D. 不能确定4.已知▱ABCD中,∠B+∠D=200°,则∠A的度数为()A. 100°B. 160°C. 80°D. 60°5.用反证法证明“在△ABC中,若∠A>∠B>∠C,则∠A>60°”时,应先假设()A. ∠A=60°B. ∠A<60°C. ∠A≠60°D. ∠A≤60°6.如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A. DE=DFABB. EF=12C. S△ABD=S△ACDD. AD平分∠BAC7.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为40m,若将短边增长到长边相等(长边不变),使扩大后的绿地的形状是正方形,且面积比原来增加500m2.设原来绿地的长边为x(m),则可列方程为()A. x2−40x=500B. x2+40x=500C. (x−40x)2=500D. x2−1600=500(k<0)的图象上有两点A(x1,y1),(x2,y2).若x1<x2,则y1−8.已知反比例函数y=kxy2的值()A. 一定是正数B. 一定是负数C. 可能是零D. 可能是正数,也可能是负数9.已知关于x的一元一次方程3x−6=0与一元二次方程x2+bx+c=0有一个公共解,若关于x的一元二次方程x2+bx+c−(3x−6)=0有两个相等的实数解,则b+c的值为()A. −2B. −3C. 2D. 310.某数学小组在研究了函数y1=x与y2=4性质的基础上,进一步探究函数y=y1+xy2的性质,经过讨论得到以下几个结论:①函数y=y1+y2的图象与直线y=3没有交点;②函数y=y1+y2的图象与直线y=a只有一个交点,则a=±4;③点(a,b)在函数y=y1+y2的图象上,则点(−a,−b)也在函数y=y1+y2的图象上.以上结论正确的是()A. ①②B. ①②③C. ②③D. ①③二、填空题(本大题共6小题,共24.0分)11.使√3x−1有意义的x的取值范围是______ .12.一个多边形的每个外角都是45°,则这个多边形的边数为______.13.如图,在矩形ABCD中,E是边BC上一点,且AE=AD=5,若AB=3,则CE的长是______.14.某校运动会入场式的得分是由各班入场时,评委从服装统一,动作整齐和口号响亮这三项分别给分,最后按3:3:4的比例计算所得.若801班在服装、动作、口号方面的评分分别是90分,92分,86分,则该班的入场式的得分是______分.15.若2n(n≠0)是关于x的方程x2−2mx+2n=0的根,则m−n的值为______.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=______.三、计算题(本大题共1小题,共6.0分)17.(1)计算:(−√5)2−√16+√(−2)2;(2)解方程:x2+4x+1=−2.四、解答题(本大题共6小题,共60.0分)18.小李和小张参加市田径比赛的校内选拔赛,近期的8次测试成绩(分)如表.测试次数12345678小李1010111016141617小张1113131214131513(1)根据上表中提供的数据填写下表:平均分(分)众数(分)方差(分 2)小李______ 108.25小张13______ ______(2)若从两人中选择发挥较为稳定的一人参加市中学生运动会,你认为选谁去合适?请结合数据分析.19.如图,在平面直角坐标系中矩形OABC的长和宽分别为4和2,反比例函数y=k的x 图象过矩形对角线的交点D.(1)求k的值;(2)求△OAD的面积.20.疫情期间,某企业每日需向疫情严重的地区捐赠20万只口罩.该企业原口罩日产量为40万只,经政府出资两次加大设备投入后,日产量提升为90万只.每日用于销售的口罩当日全部售出,且每只口罩的成本和销售单价始终不变,该企业原来每日亏损4万元,加大设备投入后,每日盈利11万元.(1)求两次口罩日产量的平均增长率;(2)求每只口罩的成本和单价.21.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN//BD,过点B作BN//AC,CN与BN交于点N,试判断△BNC的形状,并证明你的结论.(k≠0)的图象相交.22.已知一次函数y1=x−a+2的图象与反比例函数y2=kx(1)判断y2是否经过点(k,1).(2)若y1的图象过点(k,1),且2a+k=5.①求y2的函数表达式.②当x>0时,比较y1,y2的大小.23.如图,已知菱形ABCD的边长为2,∠A=120°,点E、F、G、H分别在边AB,BC,CD,DA上,且AE=BF=CG=DH.(1)求证:四边形EFGH是平行四边形;(2)判断直线EC是否经过某一定点,并说明理由;(3)若四边形EFGH的面积为3√3,求AE的长.2答案和解析1.【答案】D【解析】解:A 、是轴对称图形,不是中心对称图形,故选项错误; B 、是轴对称图形,也是中心对称图形,故选项错误; C 、是轴对称图形,也是中心对称图形,故选项错误; D 、是中心对称图形,不是轴对称图形,故选项正确. 故选:D .根据正多边形的性质和轴对称图形与中心对称图形的定义解答. 本题主要考查了中心对称图形与轴对称图形的定义,理解定义是关键.2.【答案】B【解析】解:A 、√18a =√9×2a =3√2a ,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;B 、√2s 是最简二次根式,符合题意;C 、√0.5=√12=√22,被开方数含分母,不是最简二次根式,不符合题意;D 、√13=√33,被开方数含分母,不是最简二次根式,不符合题意;故选:B .根据最简二次根式的概念判断即可.本题考查的是最简二次根式的判断,掌握被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式是解题的关键.3.【答案】A【解析】解:通过看图表,甲的数据波动比乙的大,所以甲的方差大. 故选A .根据它们数据波动的大小判断.一般地设n 个数据,x 1,x 2,…x n 的平均数x .=1n (x 1+x 2+x 3…+x n ),则方差S 2=1n [(x 1−x .)2+(x 2−x .)2+⋯+(x n −x .)2]它反映了一组数据的波动大小,方差越大,波动性越大,方差越小,波动性越小.4.【答案】C【解析】解:∵在▱ABCD中,∠B+∠D=200°,∴∠A+∠B=180°,∠B=∠D=100°,∴∠A=180°−100°=80°.故选C.根据平行四边形的对角相等、邻角互补即可得出∠A的度数.本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.5.【答案】D【解析】解:反证法证明“在△ABC中,若∠A>∠B>∠C,则∠A>60°”时,应先假设∠A≤60°,故选:D.根据反证法的步骤中,第一步是假设结论不成立,反面成立解答即可.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.6.【答案】C【解析】解:A、∵点D、E、F分别为△ABC各边中点,∴DE=12AC,DF=12AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=12BD⋅ℎ,S△ACD=12CD⋅ℎ,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.根据三角形中位线定理逐项分析即可.本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.7.【答案】A【解析】解:设原来绿地的长边为x(m),根据题意得x2−40x=500,故选:A.设原来绿地的长边为x(m),根据“扩大后的绿地面积比原来增加500m2”建立方程即可.本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.8.【答案】D【解析】解:∵函数值的大小不定,若x1、x2同号,则y1−y2<0;若x1、x2异号,则y1−y2>0.故选:D.由于自变量所在象限不定,那么相应函数值的大小也不定.本题主要考查反比例函数图象上点的坐标特征,注意反比例函数的图象的增减性只指在同一象限内.9.【答案】B【解析】解:解方程3x−6=0得x=2,∵关于x的一元一次方程3x−6=0与一元二次方程x2+bx+c=0有一个公共解,∴x=2为方程x2+bx+c=0的解,∴4+2b+c=0,∵关于x的一元二次方程x2+bx+c−(3x−6)=0有两个相等的实数解,∴△=(b−3)2−4(c+6)=0,把c=−2b−4代入得(b−3)2−4(−2b−4+6)=0,解得b1=b2=−1,当b=−1时,c=2−4=−2,∴b+c=−1−2=−3.故选:B.先解方程3x−6=0得x=2,再把x=2代入方程x2+bx+c=0得4+2b+c=0,接着根据判别式的意义得到△=(b−3)2−4(c+6)=0,然后通过解方程组求出b、c,从而得到b+c的值.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【答案】B【解析】解:①由题意得,y=x+4x,当y=3时,即:3=x+4x,也就是x2−3x+4=0,∵△=9−16<0,∴此方程无实数根,故,y=x+4x与y=3无交点,因此①正确,②由①得,当y=a时,即:a=x+4x,也就是x2−ax+4=0,当△=a2−16=0时,函数y=y1+y2的图象与直线y=a只有一个交点,此时,a=±4,因此②正确,③将点(a,b)代入函数关系式中,得出b=a+4a,将x=−a代入函数关系式中,得出−a−4 a =−(a+4a)=−b,则点(−a,−b)也在函数y=y1+y2的图象上.因此③正确,故选:B.①根据题意得出y与x的函数关系式,当y=3时,解得x,若方程无解,说明两个函数图象无交点,②当y=a时,得出一个一元二次方程,两个函数的图象只有一个交点,说明方程有一个解,或由两个相同的实数根,让根的判别式为0即可,③将点(a,b)代入函数关系式中,得出b=a+a,再将x=−a代入函数关系式中,得出4结论,和−b判断,即可得出结论.考查一次函数的图象和性质,反比例函数的图象和性质,以及一元二次方程根的判别式等知识,当两个函数的关系式组成方程组有两个解时,说明两个函数的图象有两个交点,方程组有一个解,或两个相等的实数根,即两个函数的图象有一个交点,当方程组无实数解时,两个函数的图象无交点.11.【答案】x≥13【解析】解:由条件得:3x−1≥0,,解得:x≥13.故答案为:x≥13根据二次根式有意义的条件:被开方数大于或等于0,可以求出x的范围.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,否则二次根式无意义.12.【答案】8【解析】解:多边形的外角的个数是360÷45=8,所以多边形的边数是8.故答案为:8.利用任何多边形的外角和是360°,用360°除以一个外角度数即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.13.【答案】1【解析】解:∵四边形ABCD是矩形,∴∠B=90°,BC=AD=5,∵AE=AD=5,AB=3,∴BE=√AE2−AB2=√52−32=4,∴CE=BC−BE=5−4=1.故答案为:1.根据矩形的性质可得∠B=90°,BC=AD=5,根据勾股定理求出BE的长,进而可得CE的长.本题考查矩形的性质,勾股定理,解决本题的关键是根据勾股定理求出BE的长.14.【答案】89=89(分).【解析】解:该班的入场式的得分是90×3+92×3+86×43+3+4故答案为:89.根据加权平均数的计算公式进行计算即可得出答案.本题主要考查加权平均数,解题的关键是熟练掌握若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+⋯+x n w n)÷(w1+w2+w3+⋯+w n)叫做这n个数的加权平均数.15.【答案】12【解析】解:∵2n(n≠0)是关于x的方程x2−2mx+2n=0的根,∴4n2−4mn+2n=0,∴4n−4m+2=0,∴m−n=1.2故答案是:1.2根据一元二次方程的解的定义,把x=2n代入方程得到x2−2mx+2n=0,然后把等式两边除以n即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【答案】8【解析】解:如图,设BE与FC的交点为H,过点A作AM//FC,交BE与点O,∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ABC+∠DCB+180°,∵BE平分∠ABC,CF平分∠BCD,∴∠ABE=∠EBC,∠BCF=∠DCF,∴∠CBE+∠BCF=90°,∴∠BHC=90°,∵AM//CF,∴∠AOE=∠BHC=90°,∵AD//BC,∴∠AEB=∠EBC=∠ABE,∴AB=AE=5,又∵∠AOE=90°,∴BO=OE=3,∴AO=√AE2−EO2=√25−9=4,在△ABO和△MBO中,{∠ABO=∠CBOBO=BO∠AOB=∠MOB=90°,∴△ABO≌△MBO(ASA),∴AO=OM=4,∴AM=8,∵AD//BC,AM//CF,∴四边形AMCF是平行四边形,∴CF=AM=8,故答案为:8.过点A作AM//FC,交BE与点O,由平行线的性质和角平分线的性质可证∠BHC=90°,由平行线的性质可求∠AOE=∠BHC=90°,由平行线的性质和角平分线的性质可证AE=AB=5,由勾股定理可求AO的长,由“ASA”可证△ABO≌△MBO,可得AO= OM=4,通过证明四边形AMCF是平行四边形,可得CF=AM=8.本题考查了平行四边形的性质,等腰三角形的判定和性质,添加恰当辅助线构造平行四边形是解题的关键.17.【答案】解:(1)(−√5)2−√16+√(−2)2=5−4+2=1+2=3;(2)x2+4x+1=−2,x2+4x+3=0,(x+1)(x+3)=0,解得x1=−1,x2=−3.【解析】(1)先化简二次根式,再相加即可求解;(2)先变形为x2+4x+3=0,再根据因式分解法解方程即可求解.本题考查了二次根式的混合运算,解一元二次方程−因式分解法,关键是熟练掌握各自的计算方法.18.【答案】13 13 1.25【解析】解:(1)小李的平均数=(10+10+11+10+16+14+16+17)÷8=13(分),小张的成绩中出现次数最多的为13,即众数为13分,根据方差公式得:小张的成绩的方差=[(11−13)2+(13−13)2+(13−13)2+(12−13)2+(14−13)2+(13−13)2+(15−13)2+(13−13)2]÷8=1.25;(2)∵小张的成绩的方差小于小李的成绩的方差,∴小张发挥较为稳定.∴选小张参加市中学生运动会合适.(1)平均数可以根据平均数的公式计算得到,众数为出现的次数最多的数,利用方差计算公式计算方差;(2)根据方差的意义可判断谁去合适.本题是考查众数及方差,理解方差的意义是解决本题的关键.方差的定义:一般地设n[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2],个数据,x1,x2,…x n的平均数为x−,则方差S2=1n它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.【答案】解:(1)∵矩形OABC的长为4,宽为2,∴D(2,1),∵点D在反比例函数图象上,∴k=2×1=2,(2)∵点D(2,1),OA=2,×2×2=2.∴S△OAD=12【解析】(1)由长和宽分别为4和2求出点D的坐标,得到k的值;(2)由三角形的面积公式求△OAD的面积.本题考查了反比例函数的比例系数k的几何意义、矩形的对角线互相平分、三角形的面积.突破点是由矩形的长和宽求出点D的坐标.20.【答案】解:(1)设两次口罩日产量的平均增长率为x,依题意得:40(1+x)2=90,解得:x1=0.5=50%,x2=−2.5(不合题意,舍去).答:两次口罩日产量的平均增长率为50%.(2)设每只口罩的成本为m元,单价为n元,依题意得:{40m −(40−20)n =4(90−20)n −90m =11, 解得:{m =0.5n =0.8. 答:每只口罩的成本为0.5元,单价为0.8元.【解析】(1)设两次口罩日产量的平均增长率为x ,利用经过两次加大设备投入后的日产量=原日产量×(1+增长率)2,即可得出关于x 的一元二次方程,解之取其正值即可得出两次口罩日产量的平均增长率为50%;(2)设每只口罩的成本为m 元,单价为n 元,根据“该企业原来每日亏损4万元,加大设备投入后,每日盈利11万元”,即可得出关于m ,n 的二元一次方程组,解之即可得出每只口罩的成本和单价.本题考查了一元二次方程的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出二元一次方程组.21.【答案】(1)证明:如图,在△ABC 和△DCB 中,∵{AB =DC AC =DB BC =CB,∴△ABC≌△DCB(SSS);(2)解:△BNC 是等腰三角形.证明如下:∵CN//BD ,BN//AC ,∴四边形BMCN 是平行四边形,由(1)知,∠MBC =∠MCB ,∴BM =CM(等角对等边),∴四边形BMCN 是菱形,∴BN =CN .【解析】(1)由SSS 可证△ABC≌△DCB ;(2)△BNC 是等腰三角形,可先证明四边形BMCN 是平行四边形,由(1)知,∠MBC =∠MCB ,可得BM =CM ,于是就有四边形BMCN 是菱形,则BN =CN .本题考查了全等三角形的判定与性质,难度一般,对于此类题目要注意掌握三角形全等及菱形判定定理.22.【答案】解:(1)点(k,1)满足反比例函数y2=kx(k≠0)的关系式,因此y2经过点(k,1).(2)①把(k,1)代入一次函数y1=x−a+2得,k−a+2=1,又∵2a+k=5,解得:a=2,k=1,∴y2的函数表达式为y2=1x.②由函数的图象可知:当0<x<1时,y1<y2,当x>2时,y1>y2.【解析】(1)把点(k,1)的坐标代入反比例函数的关系式,若满足,点在图象上,否则不在函数的图象上,(2)①把(k,1)代入一次函数的关系式,得到一个方程,再与2a+k=5联立方程组求出a、k的值,确定函数关系式,②根据图象交点坐标以及函数的增减性进行判断,当自变量在不同取值范围时,两个函数的值的大小不同,考查一次函数、反比例函数图象上点的坐标特征,把点的坐标代入是常用的方法,也是最基本的方法.23.【答案】(1)证明:∵四边形ABCD是菱形,∴∠A=∠C=120°,AB=BC=CD=AD=2,∵AE=BF=CG=DH,∴BE=CF=DG=AH,在△AEH和△CGF中,{AE=CG ∠A=∠C AH=CF,∴△AEH≌△CGF(SAS),∴EH=GF,同理:△BEF≌△DGH(SAS),∴EF=GH,∴四边形EFGH是平行四边形;(2)解:直线EG 经过菱形ABCD 对角线的交点;理由如下:连接EG 、AC 交于点O ,如图1所示:∵四边形ABCD 是菱形,∴AB//CD ,∴∠EAO =∠GCO ,在△AOE 和△COG 中,{∠EAO =∠GCO ∠AOE =∠COG AE =CG,∴△AOE≌△COG(AAS),∴OA =OC ,又∵四边形ABCD 是菱形,对角线互相平分,∴O 为BD 的中点,∴直线EG 经过菱形ABCD 对角线的交点;(3)解:设AE =BF =CG =DH =x ,则AH =BE =2−x ,过E 作MN 作AD 于N ,交BC 于M ,如图2所示:∵∠A =120°,AD//BC ,∴∠B =∠EAN =180°−120°=60°,∴∠BEM =∠AEN =30°,∴BM =12BE =12(2−x),AN =12AE =12x , ∴EM =√3BM =√32(2−x),EN =√3AN =√32x , ∴MN =EM +EN =√3,由(1)得:△AEH≌△CGF ,△BEF≌△DGH ,∴四边形EFGH 的面积=菱形ABCD 的面积−2△AEH 的面积−2△BEF 的面积=2×√3−2×12×(2−x)×√32x −2×12x ×√32(2−x)=3√32, 整理得:2x 2−4x +1=0,解得:x =2±√22, 即AE 的长为2+√22或2−√22.【解析】(1)证明△AEH≌△CGF(SAS),得出EH=GF,同理△BEF≌△DGH(SAS),得出EF=GH,即可得出结论;(2)连接EG、AC交于点O,证明△AOE≌△COG(AAS),得出OA=OC,证出O为BD 的中点,即可得出结论;(3)设AE=BF=CG=DH=x,则AH=BE=2−x,过E作MN作AD于N,交BC于M,由直角三角形的性质得出BM=12BE=12(2−x),AN=12AE=12x,得出EM=√3BM=√32(2−x),EN=√3AN=√32x,求出MN=EM+EN=√3,由(1)得出△AEH≌△CGF,△BEF≌△DGH,则四边形EFGH的面积=菱形ABCD的面积−2△AEH的面积−2△BEF的面积,得出方程,解方程即可.本题属于四边形的综合题,考查了菱形的性质、全等三角形的判定与性质、平行四边形的判定、直角三角形的性质等知识;熟练掌握菱形的性质,证明三角形全等是解题的关键.。

2020年浙教版八年级下册期末数学试卷及答案

2020年浙教版八年级下册期末数学试卷及答案

八年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卡中相应方框内涂黑•注意可以用多种不同的方法来选取正确答案.1 •下列各式计算正确的是()A • . ∣'. = ±4B . . ∙ =a C. ..宀=.'.D .(林E)3=32.下列四边形:① 平行四边形、② 矩形、③ 菱形、④ 正方形,对角线一定相等的是()A .①②B .①③C.②④ D .①②③④3.下列交通标志中既是中心对称图形,又是轴对称图形的是()4.方程x2+x -仁O的根是()A . 1 -.仃B . : C. - 1+ -匚D . ' N5.已知矩形的面积为6,则下面给出的四个图象中,能大致呈现矩形相邻边长y与X的函数关系的6.一个多边形的每个内角都是144 °这个多边形是()A .八边形B .十边形C.十二边形D .十四边形27.关于X的方程ax +bx+c=2与方程(x+1)(X- 3)=O的解相同,贝U a- b+c=()A . - 2B . 0C . 1D . 28.如图,将平行四边形纸片ABCD折叠,使顶点C恰好落在AB边上的点M处,折痕为BN ,则关于结论:①MN // AD ;②MNCB是菱形.说法正确的是()a 4, a 5的平均数和中位数是(2的关系是A . △ =MB . △ > MC . △< MD .大小关系不能确定、认真填一填(本题有 6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内 容,尽量完整地填写答案.11. - I+. × ■:= ____________12. 一组数据:1 , 3, 4, 4, X , 5, 5, 8, 10,其平均数是5,则众数是 ___________________ 13 .已知m 是方程2X 2+4X -仁0的根,贝U m ( m+2)的值为 _______________ . 14.下列命题:① 三个角对应相等的两个三角形全等; ② 如果ab=0 ,那么a+b=0 ; ③ 同位角相等,两直线平行; ④ 相等的角是对顶角.其中逆命题是真命题的序号是 ______________ .15. 若整数m 满足条件寸(πτH ) 2 =m+1且m <说,贝U m 的值为 __________________16. 一个Rt △ ABC , ∠ A=90 ° ∠ B=60 ° AB=2 ,将它放在直角坐标系中,使斜边 BC 在X 轴上,2√3直角顶点A 在反比例函数 y的图象上,则点 B 的坐标为 _______________ .A .①②都错B .①对②错C .①错②对D .①②都对9 .已知5个正数a ι, a 2, a 3, a 4, a 5的平均数是a ,且a ι>a 2>a 3>a 4>a 5,则数据:a ι, a 2, a 3, 0,A . a,a3B . a ,a,10•若t 是€2元二次方程 ax +bx+c=0 --D .D .- 2 6(a ≠))的根,则判别式 △ =b 2 - 4ac 和完全平方式 M= (2at+b )三、全面答一答(本题有 7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉 得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17•解方程:(1) 3 (X - 2) 2=12 (2) 2X 2- X -6=0 •218 .已知关于X 的一元二次方程 kx + (2k+1) x+k+仁O (k ≠))(1) 求证:无论k 取何值,方程总有两个不相等实数根; (2)当k > 1时,判断方程两根是否都在- 2与O 之间.19. 八( 3)班为了组队参加学校举行的 五水共治”知识竞赛,在班里选取了若干名学生,分成人数 相同的甲、乙两组,对两组学生进行四次 五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制 成如下统计图.根据统计图,解答下列问题:(1) 请计算第三次模拟竞赛成绩的优秀率是多少?并将条形统计图与折线统计图补充完整; (2)已求得甲组四次成绩优秀的平均人数为 7,甲组四次成绩优秀人数的方差为1.5,请通过计算乙组的相关数据,判断哪一组成绩优秀的人数较稳定?20.如图1是一张等腰直角三角形纸, AC=BC=40cm ,将斜边上的高CD 四等分,然后裁出 3张宽度相等的长方形纸条.(1) 分别求出3张长方形纸条的长度; (2)若用这些纸条为一幅正方形美术蔘赛学生“五水共治"模拟賁纂成绩优秀的人数条形统计图琴赛学生"五水共治歸模拟竞赛成端优秀率折线统计厨牛忧秀人数■甲组■乙组10 -----------------------------第一次第二次SS 三次弟四次次魏 IOO OC So O o 60⅛ 404C序一次第二次 第三次 龍四次 次數品镶边(纸条不重叠),如图 2 ,正方形美术品的面积最大不能超过多少cm2.21. 在平面直角坐标系 Xoy 中,0是坐标原点;一次函数 y=詈 6H°)的图象交于 A ( a , 2a -1)、B (3a , a ) (1)求一次函数与反比例函数的表达式;22•如图,矩形 ABCD 中,BC=2 . ∖ ∠ CAB=30 ° E , F 分别是 AB , CD 上的点,且 BE=DF=2 , AF 、CE .点P 是线段AE 上的点,过点P 作PH //CE 交AC 于点H ,设AP=X . (1)将线段OE 绕点0逆时针方向旋转 90°点E 的对应点为点F ,连结EF , AE , BF ,请依题意 补全图1 (用尺规作图,保留作图痕迹,不要求写作法); (2)根据图1中补全的图形,猜想并证明 AE 与BF 的关系;(3) 如图2,点G 是OA 中点,△ EGF 是等腰直角三角形, H 是EF 的中点,∠ EGF=90 ° AB=8 ,GE=4 , △ EGF 绕G 点逆时针方向旋转 α角度,请直接写出旋转过程中 BH 的最大值.y=kx+b (k ≠)图象与反比例函数(1) 请判断四边形AECF 的形状并证明; 连结用含X 的代数式表示 AH 的长;(2) 成立?八年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卡中相应方框内涂黑•注意可以用多种不同的方法来选取正确答案.1 •下列各式计算正确的是()A • . I. = ±4B • . =a C. .:—「=.• D .(杯写)3=3【考点】二次根式的混合运算.【专题】计算题.【分析】根据算术平方根的定义对A进行判断;根据二次根式的性质对B、D进行判断;根据二次根式的加减法对C进行判断.【解答】解:A、原式=4 ,所以A选项错误;B、原式=∣a∣,所以B选项错误;C、原式=2√^ -√2√2,所以C选项错误;D、原式=3 ,所以D选项正确.故选D .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式•在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.下列四边形:①平行四边形、② 矩形、③菱形、④正方形,对角线一定相等的是()A .①②B .①③ C.②④ D •①②③④【考点】正方形的性质;平行四边形的性质;菱形的性质;矩形的性质.【分析】根据平行四边形、矩形、菱形、正方形的性质对各小题分析判断后即可得解.【解答】解:①平行四边形的对角线不一定相等,②矩形的对角线一定相等,③菱形的对角线不一定相等,④正方形的对角线一定相等,所以,对角线一定相等的是②④故选C.【点评】本题考查了正方形,平行四边形,菱形,矩形的对角线的性质,熟记各性质是解题的关键•3.下列交通标志中既是中心对称图形,又是轴对称图形的是()【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知:A :是轴对称图形,而不是中心对称图形;B、C :两者都不是;D :既是中心对称图形,又是轴对称图形.故选D .【点评】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,折叠后对称轴两旁的部分可重合;中心对称图形是要寻找对称中心,旋转180°后会与原图重合.4 .方程χ2+x -仁O的根是()A. 1- . 口B.C.-1+J D .L-I【考点】解一元二次方程-公式法.【分析】观察原方程,可用公式法求解.【解答】解:a=1, b=1, C= - 1,b2- 4ac=1+4=5 >0,7±√⅞X= 2 ;故选D .【点评】本题考查了一元二次方程的解法.正确理解运用一元二次方程的求根公式是解题的关键.5 •已知矩形的面积为6 ,则下面给出的四个图象中,能大致呈现矩形相邻边长【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=6 ,故y 与X 之间的函数图象为反比例函数,且根据 应大于O ;即可得出答案. 【解答】解:T χy=6 ,y > 0)故选:A •【点评】本题主要考查反比例函数的实际应用,解答该类问题的关键是确定两个变量之间的函数关 系,然后利用实际意义确定其所在的象限.6•一个多边形的每个内角都是 144 °这个多边形是( )A •八边形B •十边形C •十二边形D •十四边形【考点】多边形内角与外角.【分析】先利用多边形的每个外角与相邻的内角互补得到这个多边形的每个外角都是(180°- 144°=36 °然后根据n 边的外角和为360°即可得到其边数.【解答】 解:T 一个多边形的每个内角都是 144 ° 这个多边形的每个外角都是(180O- 144° =36 ° •••这个多边形的边数 360 °÷6 °10 • 故选B •【点评】 本题考查了多边形的内角和和外角和定理: n 边形的内角和为(n -2) X180° n 边的外角和为360 °27.关于X 的方程ax +bx+c=2与方程(x+1) ( X - 3) =0的解相同,贝U a - b+c=( )A • - 2B • 0C . 1D • 2y 与X 的函数关系的x 、y 实际意义X 、y【考点】一元二次方程的解.【分析】首先利用因式分解法求出方程(X+1 )(X- 3)=O的解,再把X的值代入方程ax2+bx+c=2 即可求出a- b+c的值.【解答】解:•••方程(x+1)(X- 3)=0,•••此方程的解为X i= - 1 , X2=3,•••关于X的方程ax2+bx+c=2与方程(X+1 )(X - 3)=0的解相同,•把X i= - 1代入方程得:a - b+c=2,故选D.【点评】本题主要考查了一元二次方程的知识,解答本题的关键是求出方程(x+1)(X - 3)=0的两根,此题难度不大.8 •如图,将平行四边形纸片ABCD折叠,使顶点C恰好落在AB边上的点M处,折痕为BN ,则关于结论:①MN // AD ;②MNCB是菱形•说法正确的是()A.①②都错B.①对②错C.①错②对D .①②都对【考点】翻折变换(折叠问题).【分析】根据题意,推出∠ C= ∠ A= ∠ BMN ,即可推出结论①,由AM=DA推出四边形MNCB为菱形,因此推出②.【解答】解:I平行四边形ABCD ,•∠ A= ∠ C= ∠ BMN ,•MN // AD ,故①正确;•MN // BC ,•四边形MNCB是平行四边形,∙∙∙ CN=MN ,•四边形MNCB为菱形,故② 正确;故选D .【点评】本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形MNCB为菱形.9.已知5个正数a ι, a 2, a 3, a 4, a 5的平均数是 a ,且纳>a 2>a 3>a 4>a 5,则数据:a 〔,a 2,也,0, a 4, a 5的平均数和中位数是( )A . a , a 3B . a ,2C .5 6a,a 3÷∩4 2D . 5 6a,2【考点】中位数;算术平均数.【专题】 计算题;压轴题.【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.1 Ii C 【解答】 解:由平均数定义可知: *( a 1+a 2+a 3+O+a 4+a 5) W ×a^a ;6660, a 5, a 4, a 3, a 2, a i ;由于有偶数个数,取最中间两个数的平均数.故选D .【点评】本题考查了平均数和中位数的定义•平均数是指在一组数据中所有数据之和再除以数据的 个数;一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该 组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为 奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术 平均数即为这组数据的中位数.10 .若t 是一元二次方程 ax 2+bx+c=0 (a ≠))的根,则判别式 △ =b 2 -4ac 和完全平方式 M= (2at+b )2的关系是()A . △ =MB . △> MC . △< MD •大小关系不能确定【考点】根的判别式;完全平方式;一元二次方程的解.【分析】把t 代入原方程得到at 2+bt+c=0两边同乘以4a ,移项,再两边同加上b 2,就得到了( 2at+b ) 2=b 2-4ac .【解答】解:t 是一兀二次方程ax 2+bx+c=0 (a ≠))的根 则有 at 2+bt+c=02 24a 2t 2+4abt+4ac=02 24a t +4abt= — 4ac 4a 2t 2+b 2+4abt=b 2— 4ac将这组数据按从小到大排列为 •••其中位(2at ) 2+4abt+b 2=b 2- 4ac (2at+b ) 2=b 2- 4ac= △ 故选A【点评】 本题主要应用了对方程转化,配方的方法,向已知条件进行转化的思想.、认真填一填(本题有 6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内 容,尽量完整地填写答案.11 •一 ・+ .".工=_^. :_;!-【考点】 二次根式的混合运算• 【专题】计算题.【解答】解:」+ K= 一 ;+2 . -: >2 , , 1+4 | ,=5_√T τ2∏-仔-如•故答案为5 :, 2 - 2 ■-:•【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除 运算,然后合并同类二次根式•在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式 的性质,选择恰当的解题途径,往往能事半功倍.12. —组数据:1,3, 4, 4,X ,5,5,8,10,其平均数是5,则众数是5【考点】众数;算术平均数.【分析】根据平均数为5求出X 的值,再由众数的定义可得出答案.1【解答】 解:由题意得,二(1+3+4+4+x+5+5+8+10 ) =5,解得:x=5,这组数据中5出现的次数最多,则这组数据的众数为 5.故答案为:5.【点评】 本题考查了众数及平均数的知识,解答本题的关键是掌握众数及中位数的定义.【分析】先把各二次根式化为最简二次根式,得到 式的乘法运算后合并即可;根据二次根式的性质化简1+ 「.+2 U-;,然后进行二次根13 .已知m是方程2χ2+4x -仁O的根,贝U m ( m+2)的值为 -【考点】一兀二次方程的解.【分析】根据m是方程2x2+4x -仁0的根,即可得到m2+2m=二,于是得到答案.■i—■【解答】解:■/ m是方程2x 2+4x -仁0的根,2∙∙∙ m2+2m弋,21∙∙∙ m (m+2) =m +2m=;,故答案为*.大.14.下列命题:①三个角对应相等的两个三角形全等;②如果ab=O ,那么a+b=O;③同位角相等,两直线平行;④相等的角是对顶角.其中逆命题是真命题的序号是③.【考点】命题与定理.【分析】利用全等三角形的判定、实数的性质、平行线的定义及对顶角的定义分别判断后即可确定正确的答案.【解答】解:①三个角对应相等的两个三角形相似但不一定全等,故错误,是假命题;②如果ab=O ,那么a+b=O,错误,如a=0, b=1时,是假命题;③同位角相等,两直线平行,正确,是真命题;④相等的角是对顶角,错误,是假命题,故答案为③.【点评】本题考查了命题与定理的知识,解题的关键是能够了解全等三角形的判定、实数的性质、平行线的定义及对顶角的定义,难度不大.15.若整数m满足条件寸E■[ ) 2 =m+1且mv灵,贝U m的值为 -1, 0, 1, 2 【考点】二次根式的性质与化简;估算无理数的大小.丨3I【点评】本题主要考查了一元二次方程的解的知识,解答本题的关键是求出m2+2m=f;,此题难度不【分析】根据二次根式的性质可得 m+1 ≥,再根据mv 十,即可解答. 【解答】解- =m+1 ,.∙. m+1 ≥, .∙. m≥- 1,3「m v?,.m= - 1, 0, 1, 2. 故答案为:-1 , 0, 1, 2.【点评】 本题考查了二次根式的性质与化简,解决本题的关键是熟记二次根式的性质.16. 一个 Rt △ ABC , ∠ A=90 °° ∠ B=60 °° AB=2 ,将它放在直角坐标系中,使斜边 BC 在X 轴上,直角顶点A 在反比例函数y=1」的图象上,贝惊 B 的坐标为 (3, 0).【考点】 反比例函数图象上点的坐标特征.【分析】设出B 点坐标(a , 0),借助Rt △ ABC 中的边角关系,用 a 表示出A 点坐标,将A 点坐∙∙∙ BD=AB XCos ∠ B=2 ×=1 , AD=AB ×5in ∠ B=2£设点B 的坐标为(a, 0),则点A 坐标为(a - 1, .;),Ξ√l又•••直角顶点A 在反比例函数y= • 的图象上,有一 —,解得 a=3, •••点B 的坐标为(3, 0).标再代入反比例函数关系式,即能求出a 值,从而得解.图形如下,故答案为:(3, 0).【点评】本题考查了反比例函数的图象以及三角函数,解题的关键是设出B点坐标(a, 0),借助Rt△ ABC中的边角关系,用a表示出A点坐标.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.解方程:(1) 3 (X - 2) 2=12(2)2X2- X-6=0 .【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)系数化成1,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1) 3 (X-2) 2=12,(X-2) 2=4,X - 2=昱,X1=4,X2=0;(2) 2X2- X-6=0,(2X+3)( X - 2) =0,2X+3=0,X - 2=0,3X1= - ~,X2=2 .【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.218 .已知关于X的一元二次方程kx2+ (2k+1) x+k+仁0 (k≠)).(1)求证:无论k取何值,方程总有两个不相等实数根;(2)当k> 1时,判断方程两根是否都在- 2与0之间.【考点】根的判别式.【分析】(1)计算判别式得到△ = (2k+1 ) 2— 4k×( k+1 ) =1>0,则可根据判别式的意义得到结论;(2)利用因式分解法求出方程的两个根xι=- 1, χι= - k- 1,根据k> 1得出-k- 1v- 2,进而得到结论.【解答】(1)证明:τ a=k, b=2k+1 , c=k+1 ,.∙. △ =b2- 4ac= (2k+1) 2- 4k× ( k+1) =4k2+4k+1 - 4k2- 4k=1 >0,.∙.无论k (k≠))取何值时,方程总有两个不相等的实数根.(2)解:kx2+ (2k+1 ) x+k+1=0 ,(x+1) ( kx+k+1 ) =0,x1= —1, x1= —k- 1,••• k> 1,.—k V- 1,.-k - 1 V- 2,.当k> 1时,方程的两根不都在-2与O之间.【点评】本题考查了一元二次方程ax2+bx+c=0 ( a≠0)的根的判别式△ =b2- 4ac:当厶> O ,方程有两个不相等的实数根;当△ =0,方程有两个相等的实数根;当△< O,方程没有实数根.也考查了因式分解法解一元二次方程.19.八( 3)班为了组队参加学校举行的五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,对两组学生进行四次五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.獲再学生“五水共治"模拟竟真成绩优秀的人数条形统计图參赛学生"五水共治歸模拟竞赛成绩优秀率折线统计厨(1)请计算第三次模拟竞赛成绩的优秀率是多少?并将条形统计图与折线统计图补充完整;(2)已求得甲组四次成绩优秀的平均人数为7,甲组四次成绩优秀人数的方差为 1.5,请通过计算乙组的相关数据,判断哪一组成绩优秀的人数较稳定?【考点】折线统计图;条形统计图;方差.【分析】(1)由第一次成绩的优秀人数为5+6=11 ,优秀率为55%求得总人数,再用第三次成绩的优秀人数除以总人数得到第三次成绩的优秀率,进而将条形统计图补充完整;(2)先根据方差的定义求得乙组的方差,再根据方差越小成绩越稳定,进行判断.【解答】解:(1)总人数:(5+6) ÷55%=20 (人),第三次的优秀率:(8+5) ÷20×I00%=65% ,第四次乙组的优秀人数为:20×85% - 8=17 - 8=9 (人).补全条形统计图,如图所示:參寒学生疔五水共泊秤棋拟竞萎成绩优秀的人数条形统计團根据统计图,解答下列问题:20.如图1是一张等腰直角三角形纸,AC=BC=40cm ,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条•(1)分别求出3张长方形纸条的长度;(2)若用这些纸条为一幅正方形美术品镶边(纸条不重叠),如图2,正方形美术品的面积最大不能超过多少cm2.C图1【考点】相似三角形的应用;二次函数的应用.【分析】(1)利用相似三角形的性质求出每个纸条的长;(2)将(1)中相关数据相加,易得纸片的宽度,从而计算出正方形的边长,从而计算面积即可.【解答】解:(1)如图1, •••△ ABC是等腰直角三角形,AC=BC=40cm , CD是斜边AB上的高,∙∙∙ AB=40 一km, CD是斜边上的中线,∙∙∙ CD=丄AB=20 _ [cm,于是纸条的宽度为: 1 :=5.「(Cm),EF 1AB= 4,∙EF节AB=10 . ■:Cm .同理,GH=20 ■■:Cm,口=30卜寸Q cm,∙3张长方形纸条的长度分别为:10 一'em , 20 一■:Cn, 30 一. ■:Cm;(2)由(1)知,3张长方形纸条的总长度为60. ■:cm.如图2,图画的正方形的边长为:土一-5. -=10. -:(Cm),∙面积为(10 . :':)2=200 (cm2)答:如图(b)正方形美术作品的面积最大不能超过200cm2.图1【点评】此题考查了相似三角形的应用,不仅要计算出纸条的长度,还要计算出宽度,要仔细观察 图形,寻找隐含条件.21. 在平面直角坐标系 Xoy 中,0是坐标原点;一次函数 y=詈 6≠0) 的图象交于 A ( a , 2a - 1)、B (3a , a ) (1)求一次函数与反比例函数的表达式;(2)求厶ABO 的面积.y/V-------------------- ⅛"5^O\【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数系数 k=xy 得出a (2a - 1) =3a?a ,解得a=- 1,求得A 、B 的坐标,即可确定出反比例函数解析式;将 A 与B 坐标代入一次函数解析式中求出 k 与b 的值,即可确定出一次函数解析式;(2)设y= - X - 4与X 轴交点为C ,对于一次函数解析式,令 x=0求出y 的值,确定出 C 坐标,得 到OC 的长,然后根据 S ^ABO =S AAOC - S ^ BOC 即可求得.【解答】解:(1) ∙∙∙ A (a , 2a - 1 )、B (3a, a )在反比例函数y=f (τnHθ)图象G 上, ••• a (2a - 1) =3a?a , ∙∙∙ m≠), • ∙ a= — 1, • m=3,• A (- 1, - 3)、B(- 3,- 1)y=kx+b (k ≠)图象与反比例函数J 2•••所求反比例函数解析式为:尸弓;将A (- 1,- 3)、B (- 3,- 1)代入y=kx+b ( k 用),•所求直线解析式为:y= - X - 4;(2)设y= - X - 4与X轴交点为C令y=o,•C(- 4, 0)• S A ABO=S AAOC - V BoC=Urr -「r I = -■=4.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式, 坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.22•如图,矩形ABCD 中,BC=^I, ∠ CAB=30 ° E, F分别是AB , CD 上的点,且BE=DF=2 , 连结AF、CE .点P是线段AE上的点,过点P作PH // CE交AC于点H ,设AP=X .(1)请判断四边形AECF的形状并证明;(2)用含X的代数式表示AH的长;(3)请连结HE,则当X为何值时AH=HE成立?D F rA P £ B【考点】四边形综合题.【分析】(1)根据直角三角形的性质和勾股定理求出CA、AB的长,根据菱形的判定定理证明即可;(2)根据相似三角形的判定定理证明△ APH S △ AEC ,根据相似三角形的性质得到出AH ;(3)作HG丄AB于G,根据锐角三角函数的定义求出AG、HG ,根据勾股定理表示出HE ,根据题意列出方程,解方程即可.【解答】解:(1)四边形AECF是菱形.•••四边形ABCD为矩形,• ∠ B=90 ° 又BC=^I, ∠ CAB=30 °精品资料∙∙∙ CA=2BC=4t 讣 AB=6 , ∙∙∙ BE=2 ,∙ AE=AB - BE=4 , CE= ,「孑-;「-=4 ,∙∙∙ CF // AE , CF=AE=2 ,∙四边形AECF 是平行四边形,又 EA=EC=4 , ∙四边形AECF 是菱形;(2) I PH // CE,∙ △ APHAEC ,∙ AH AP Bn AH X U=J ,即二 解得,AH= . ;x ;(3)作HG 丄AB 于G , ∙.∙ AH= 一 -;x , ∠ CAB=30 °∙ HG= X, AG=上X ,2 2 ,3∙ GE=AE - AG=4 -— X ,【点评】本题考查的是矩形的性质、菱形的判定、相似三角形的判定和性质以及等腰三角形的判定, 灵活运用相关的性质和定理、根据题意正确作出辅助线是解题的关键,注意方程思想在解题中的应 用.23•如图1,点O 为正方形ABCD 的中心.解得,X=由勾股定理当AH=HE 时, ='厂:.■ ■ ^3,(1) 将线段OE 绕点0逆时针方向旋转 90°点E 的对应点为点F ,连结EF , AE , BF ,请依题意 补全图1 (用尺规作图,保留作图痕迹,不要求写作法);(2) 根据图1中补全的图形,猜想并证明 AE 与BF 的关系; (3) 如图2,点G 是OA 中点,△ EGF 是等腰直角三角形,H 是EF 的中点,∠ EGF=90 ° AB=8,【分析】(1)根据题意画出图形即可;(2) 延长EA 交OF 于点H ,交BF 于点G ,禾U 用正方形的性质和旋转的性质证明 △ EOA ◎△ FOB , 得到AE=BF .根据等边对等角得到 ∠ OEA= ∠ OFB ,由∠ OEA+ ∠ OHA=90 °所以∠ OFB+ ∠ FHG=90 ° 进而得到AE 丄BF .(3) 如图3,当B , G , H 三点在一条直线上时,BH 的值最大,根据正方形的性质得到AG=OG=-I A0=2 .爲根据勾股定理得到 BG=Irl 「 =2.「,根据等腰直角三角形的性质得到GH=^ ■:,于是得到结论.【解答】解:(1)如图1所示:SlCBH 的最大值.∙∙∙ OE 绕点O 逆时针旋转90角得到OF ,∙ OE=OF∙ ∠ AOB= ∠ EOF=90 ° ∙ ∠ EOA= ∠ FOB ,rOE=O? 在厶EOA 和厶FOB 中,彳ZEOA=ZFOBIOA=OB∙ △ EOA ◎△ FOB , ∙ AE=BF . ∙ ∠ OEA= ∠ OFB ,∙∙∙ ∠ OEA+ ∠ OHA=90 °∙ ∠ OFB+ ∠ FHG=90 ° ∙ AE 丄BF ;(3)如图3,当B , G , H 三点在一条直线上时, BH 的值最大,交BF 于点G ,∙∙∙ OA=OB , ∠AOB=90 °•••四边形ABCD 是正方形,AB=8 ,∙∙∙ Ao=Bo=4 .':,•••点G 是OA 中点,∙ BG^^^fCIG^=^iO , ••• △ EGF 是等腰直角三角形,H 是EF 的中点,∙∙∙GH=2 . ■:,∙ BH=BG+GH=2 一 ∣+2 .爲 ∙ BH 的最大值是2 一 ∣+2.1【点评】本题考查了旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键 是正确画出图形,作出辅助线,利用旋转的性质、全等三角形的性质与判定、等腰三角形的性质解 决问题•(2) I = (6+8+5+9) ÷4=7,S 2乙组*× (6 - 7) 2+ ( 8- 7) 2+ (5- 7) 2+ (9 - 7) 2]=2.5 , S2甲组VS2乙组,所以甲组成绩优秀的人数较稳定.【点评】 本题考查了条形统计图、折线统计图的意义和方差的概念,读懂统计图,从不同的统计图 中得到必要的信息是解决问题的关键•条形统计图能清楚地表示出每个项目的数据,折线统计图表 示的是事物的变化情况•方差是一组数据中各数据与它们的平均数的差的平方的平均数,它反映了 一组数据的波动大小,方差越大,波动性越大,反之也成立.∙ AG=OG=。

2020年浙教版八年级数学第二学期期末测试卷及答案(2)

2020年浙教版八年级数学第二学期期末测试卷及答案(2)

B.18
C.19
3 分,共 30 分)
D.20
S1, S2,则 S1+S2
11、 ( 1) 2 _____,( 3)2 ______, ( 4) 2 _______
12、如图,在四边形 ABCD 中, AB⊥ BC,∠ A=∠ C=100°,则∠ D 的度数是 ___________
图6
第 12 题图
精品资料
八年级数学第二学期期末试卷
选择题(每小题 3 分,共 30 分)
1、一元二次方程 x 2 4 0 的根为 ( )
A. x 2 B . x 2 C . x1 2 , x2 2
D .x 4
2
2、若双曲线 y 过两点 x
1,y1 , 3,y2 ,则 y1 与 y2 的大小关系为(
).
A. y1 > y2 B. y1 < y2 C. y1 = y2
第 24 题图
25( 12 分) M ( 1, a)是一次函数 y=3x+2 与反比例函数 y
的图象向下平移 4 个单位得到的解析式为 y=k?x+b
k
图象的公共点,将一次函数
x
y=3x+2
k (1) 求 y=k?x+b 和 y
x
k
(2) 若 A1( x1 , x2 ), A2 (x 2 , y 2), A3 ( x3, y 3) 为双曲线 y
y y
C
B
A
B
O
A
x
O
第 16 题
17、 如图,点 A、 B 分别在双曲线
C
第 17 题图
2
y
y
x和
x
6 x 上,四边形
第 20 题图 ABCO 为平行四边形,则

2019-2020学年浙江省杭州外国语学校八年级(上)期末数学试卷

2019-2020学年浙江省杭州外国语学校八年级(上)期末数学试卷

2019-2020学年浙江省杭州外国语学校八年级(上)期末数学试卷2019-2020学年浙江省杭州外国语学校八年级(上)期末数学试卷一、选择题(每题3分,共30分)1. 下列运算正确的是()A.2√2×3√3=6√2B.√2+√3=√5C.√8÷√2=2D.3√2?√2=32. 若关于x的一元二次方程ax2+bx?3=0(a≠0)的解是x=?1,则?5+2a?2b的值是()A.1B.0C.2D.33. 如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,?√3),则点C的坐标为()A.(?1,?√3)B.(?√3,?1)C.(√3,?1)D.(?√3,??1)4. 如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE?//?AB,交AC于点E,则下列结论不正确的是()A.BD=CDB.∠CAD=∠BADC.AE=EDD.DE=DB5. 对于函数y=?2x+5,下列说法正确的是()A.图象经过一、二、四象限B.图象一定经过(2,??1)C.图象与直线y=2x+3平行D.y随x的增大而增大6. 一次函数y=kx+b(k≠0)的图象经过点B(?6,?0),且与正比例函数y=13x的图象交于点A(m,??3),若kx?13x>?b,则()A.x>?3B.x>0C.x>?6D.x>?97. 一艘轮船和一艘快艇沿相同路线从甲港岀发匀速行驶至乙港,行驶路程随时间变化的图象如图,则下列结论错误的是()A.轮船比快艇先出发2小时B.轮船的速度为20千米时C.快艇到达乙港用了6小时D.快艇的速度为40千米时8. 已知关于x的方程mx2+2x?1=0有实数根,则m的取值范围是()A.m≤1B.m≥?1C.m≥?1且m≠0D.m≤1且m≠09. 已知点A的坐标为(a+1,?3?a),下列说法正确的是()A.若点A在一三象限角平分线上,则a=1B.若点A在y轴上,则a=3C.若点A到x轴的距离是3,则a=±6D.若点A在第四象限,则a的值可以为?210.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2AE;其中正确的有( )A.2个B.1个C.4个D.3个二、填空题(每题5分,满分30分,将答案填在答题纸上)已知x =√3+1,y =√3?1,则x 2?y 2=________.当k =________时,关于x 的方程kx 24x +3=0,有两个相等的实数根.若直线y =kx ?3经过点(1,??2)和点(0,?b),则k ?b 的值是________.已知点(?4,?y 1),(2,?y 2)都在直线y =ax +2(a <0)上,则y 1,y 2的大小关系为________.已知A 、B 两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A 地到B 地匀速前行,甲、乙行进的路程s 与x (小时)的函数图象如图所示.(1)乙比甲晚出发________小时;(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,x 的取值范围是________.如图,在平面直角坐标系中,点A(0,?2),B(?4,?0),C(2,?0),∠DAE +∠BAC =180°,且AD =2√2,AE =2√5,连接DE ,点F 是DE 的中点,连接AF ,则AF =________,S △ADE =________.三、解答题(共52分)解方程或求值:(1)3x 2?√3x ?12=0(2)√2+3√35?6√5+26已知函数y =kx ,其中x >0,且满足√xy?y√xy?x +3=0.(1)求k ;(2)求√xy?3yx+2xy+y的值.已知关于x 的方程x 2?6x +p 2?2p +5=0的一个根是2,求方程的另一根和p 值.已知a ,b 为有理数,m ,n 分别表示5?√7的整数部分和小数部分,且amn +bn 2=1.(1)求m ,n 的值;(2)求2a +4b 的值.关于x 的一元二次方程kx 2+2(k ?2)x +k =0有两个不相等的实数根.(1)求k 的取值范围.(2)是否存在实数k,使方程的两个实数根互为相反数?若存在,求出k的值;若不存在,说明理由.为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:(1)若某用户3月份用气量为60m3,交费多少元?(2)调价后每月支付燃气费用y(单位:元)与每月用气量x (单位:m3)的关系如图所示,求y与x的解析式及a的值.已知直线L1:y=(k?1)x+k+1和直线L2:y=kx+k+2,(1)不论k为何值,直线L1,L2恒交于一定点P,求P点坐标;(2)当k=2,3,4,…,2020时,设直线L1,L2与x轴围成的三角形的面积分别为S2,S3,S4,…,S2020,求S2+S3+S4+...+S2020.(3)设直线l2交x轴为A点,交y轴为B点,原点为O,△AOB 的面积为S.求:①当S=3,4,5时直线L2的条数各是多少;②当S=4且k>0时L2的函数解析式.参考答案与试题解析2019-2020学年浙江省杭州外国语学校八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.【答案】此题暂无答案【考点】二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】一元二表方病的解此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】全根三烛形做给质与判定正方来的性稳坐标正测形性质【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】等腰三验库的性质平行体的省质直使三碳形望边扩的中线【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】两直正键行问题两直正区直问题一次水体的性质两直线相来非垂筒问题【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】一次验我与一萄一次人等式【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】函表的透象【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】根体判展式一元二较方程熔定义【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】线段垂直来分线慢性质角平较线的停质全等三来形的稳质【解析】此题暂无解析【解答】此题暂无解答二、填空题(每题5分,满分30分,将答案填在答题纸上)【答案】此题暂无答案【考点】二次根水明化简求值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】根体判展式一元二较方程熔定义【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次常数图按上点入适标特点【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次常数图按上点入适标特点【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】坐标正测形性质全根三烛形做给质与判定【解析】此题暂无解析【解答】此题暂无解答三、解答题(共52分)【答案】此题暂无答案【考点】解一较燥次延程抗因式分解法二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次根明的织合运算正比例因数的归质【解析】此题暂无解析此题暂无解答【答案】此题暂无答案【考点】解一较燥次延程抗因式分解法根与三程的关系【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】列代明式织值估算无于数的深小【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】根体判展式根与三程的关系相反数一元二较方程熔定义【解析】此题暂无解析【解答】此题暂无解答此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】两直正键行问题相交线规律型:因字斯变化类两直正区直问题规律型:点的坐较规律型:三形的要化类两直线相来非垂筒问题一次都数资象与纳数鱼关系待定正数键求一程植数解析式【解析】此题暂无解析【解答】此题暂无解答。

杭州市2020年八年级第二学期期末监测数学试题含解析

杭州市2020年八年级第二学期期末监测数学试题含解析

杭州市2020年八年级第二学期期末监测数学试题一、选择题(每题只有一个答案正确) 1.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .52.关于一组数据:1,5,6,3,5,下列说法错误的是( )A .平均数是4B .众数是5C .中位数是6D .方差是3.23.如图,是二次函数2y ax bx c =++图象的一部分,下列结论中:①0abc >;②0a b c -+<;③210ax bx c +++=有两个相等..的实数根;④4a 2a b -<<-.其中正确结论的序号为( )A .①②B .①③C .②③D .①④4.如果0a b <<,下列不等式中错误的是( )A .0ab >B .1a b <C .0a b +<D .0a b -<5.如果一个多边形的内角和是外角和的3倍,那么这个多边形是( )A .四边形B .六边形C .八边形D .十边形6.下列各图象能表示y 是x 的一次函数的是( )A .B .C.D.7.下列说法:()1矩形的对角线互相垂直且平分;()2菱形的四边相等;()3一组对边平行,另一组对边相等的四边形是平行四边形;()4正方形的对角线相等,并且互相垂直平分.其中正确的个数是()A.1个B.2个C.3个D.4个8.下列说法正确的是()A.若两个向量相等则起点相同,终点相同B.零向量只有大小,没有方向C.如果四边形ABCD是平行四边形,那么AB=DCD.在平行四边形ABCD中,AB﹣AD=BD9.如图,在△ABC中,AB=8,BC=12,AC=10,点D、E分别是BC、CA的中点,则△DEC的周长为()A.15 B.18 C.20 D.2210.一个事件的概率不可能是()A.1 B.0 C.12D.32二、填空题11.若二次根式2x-有意义,则x的取值范围为__________.12.一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.13.数据1,4,5,6,4,5,4的众数是______.14.如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为___.15.若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是_____.16.当k取_____时,100x2﹣kxy+4y2是一个完全平方式.17.试写出经过点(1A,2)的一个一次函数表达式:________.三、解答题 18.如图1,正方形ABCD 的边长为4,对角线AC 、BD 交于点M .(1)直接写出AM= ;(2)P 是射线AM 上的一点,Q 是AP 的中点,设PQ=x .①AP= ,AQ= ;②以PQ 为对角线作正方形,设所作正方形与△ABD 公共部分的面积为S ,用含x 的代数式表示S ,并写出相应的x 的取值范围.(直接写出,不需要写过程)19.(6分)近年来,共享汽车的出现给人们的出行带来了便利,一辆A 型共享汽车的先期成本为8万元,如图是其运营收入1w (元)与运营支出2w (元)关于运营时间x (月)的函数图象.其中()()210000101500500010x x w x x ⎧≤≤⎪=⎨->⎪⎩,一辆B 型共享汽车的盈利B y (元)关于运营时间x (月)的函数解析式为275095000B y x =-(1)根据以上信息填空:1w 与x 的函数关系式为_________________;(2)经测试,当60120x ≤<,共享汽车在这个范围内运营相对安全及效益较好,求当60120x ≤≤,一辆A 型共享汽车的盈利A y (元)关于运营时间x (月)的函数关系式;(注:一辆共享汽车的盈利=运营收入-运营支出-先期成本)(3)某运营公司有A 型,B 型两种共享汽车,请分析一辆A 型和一辆B 型汽车哪个盈利高;20.(6分)某厂制作甲、乙两种环保包装盒.已知同样用6m 的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.21.(6分)如图,平面直角坐标系中,点A(−63 ,0),点B(0,18),∠BAO=60°,射线AC 平分∠BAO 交y 轴正半轴于点C .(1)求点C 的坐标;(2)点N 从点A 以每秒2个单位的速度沿线段AC 向终点C 运动,过点N 作x 轴的垂线,分别交线段AB 于点M,交线段AO 于点P,设线段MP 的长度为d,点P 的运动时间为t,请求出d 与t 的函数关系式(直接写出自变量t 的取值范围);(3)在(2)的条件下,将△ABO 沿y 轴翻折,点A 落在x 轴正半轴上的点E ,线段BE 交射线AC 于点D ,点Q 为线段OB 上的动点,当△AMN 与△OQD 全等时,求出t 值并直接写出此时点Q 的坐标.22.(8分)在平面直角坐标系中,的位置如图所示.点A ,B ,C 的坐标分别为,,,根据下面要求完成解答.(1)作关于点C 成中心对称的; (2)将向右平移4个单位,作出平移后的; (3)在x 轴上求作一点P ,使的值最小,直接写出点P 的坐标.23.(8分)如图,一次函数()0y kx b k =+≠的图象与正比例函数2y x =-的图象交于A 点,与x 轴交于B 点,且点A 的纵坐标为4,6OB =.(1)求一次函数的解析式;(2)将正比例函数2y x=-的图象向下平移3个单位与直线AB交于C点,求点C的坐标.24.(10分)(1)因式分解:2a3﹣8a2+8a;(2)解不等式组3(2)42113x xxx--⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来.25.(10分)如图1,已知AB⊥CD,C是AB上一动点,AB=CD(1)在图1中,将BD绕点B逆时针方向旋转90°到BE,若连接DE,则△DBE为等腰直角三角形;若连接AE,试判断AE与BC的数量和位置关系并证明;(2)如图2,F是CD延长线上一点,且DF=BC,直线AF,BD相交于点G,∠AGB的度数是一个固定值吗?若是,请求出它的度数;若不是,请说明理由.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:02b a-<, ∴0ab >, 由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.2.C【解析】【分析】【详解】解:A .这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B .5出现了2次,出现的次数最多,则众数是3,故本选项正确;C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D.这组数据的方差是:15[(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;故选C.考点:方差;算术平均数;中位数;众数.3.D【解析】【分析】根据二次函数的性质求解即可.【详解】①∵抛物线开口向上,且与y轴交点为(0,-1) ∴a>0,c<0∵对称轴b-2a>0∴b<0∴abc0>∴①正确;②对称轴为x=t,1<t<2,抛物线与x轴的交点为x1,x2. 其中x1为(m,0), x2.为(n,0)由图可知2<m<3,可知n>-1,则当x=-1时,y>0,则a b c0-+>则②错误;③由图可知c=-1△=b2—4a(c+1)=b2,且b≠0∴③错误④由图可知,对称轴x=b -2a且1<b-2a<2∴4a b2a-<<-故④正确;故选D.【点睛】本题考查的是二次函数,熟练掌握二次函数的图像是解题的关键. 4.B【解析】【分析】根据a<b<0,可得ab>0,a+b<0,ba>0,a-b<0,从而得出答案.【详解】A、ab>0,故本选项不符合题意;B、ab>1,故本选项符合题意;C、a+b<0,故本选项不符合题意;D、a-b<0,故本选项不符合题意.故选:B.【点睛】本题考查了不等式的性质,是基础知识比较简单.5.C【解析】设这个多边形是n边形,根据题意得:(n–2)•110°=3×360°,解得:n=1.故选C.6.B【解析】【分析】一次函数的图象是直线.【详解】解:表示y是x的一次函数的图象是一条直线,观察选项,只有B选项符合题意.故选:B.【点睛】本题考查了函数的定义,一次函数和正比例函数的图象都是直线.7.B【解析】【分析】根据矩形的性质可得(1)错误;根据菱形的性质可得(2)正确;根据平行四边形的判定可得(3)错误;根据正方形的性质可得(4)正确;【详解】(1)矩形的对角线相等且互相平分,故(1)错误;(2)菱形的四边相等,故(2)正确;(3)等腰梯形的一组对边平行,另一组对边相等,故(3)错误;(4)正方形的对角线相等,并且互相垂直平分,故(4)正确.故选:B.【点睛】此题考查的知识点是特殊的四边形,解题关键是掌握正方形、菱形、矩形的特点.8.C【解析】【分析】根据平面向量的性质即可判断.【详解】A、错误.两个向量相等还可以平行的;B、错误.向量是有方向的;C、正确.平行四边形的对边平行且相等;D、错误.应该是,AB+AD=BD;故选:C.【点睛】本题考查平面向量、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.A【解析】【分析】根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.【详解】解:∵点D、E分别是BC、CA的中点,∴DE=AB=4,CE=AC=5,DC=BC=6,∴△DEC的周长=DE+EC+CD=15,故选:A.【点睛】考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.10.D【解析】【分析】根据概率的意义解答即可.【详解】 解:∵32>1,且任何事件的概率不能大于1小于0, ∴一个事件的概率不可能是32, 故选:D .【点睛】此题考查了概率的意义,必然事件发生的概率为1,即P (必然事件)=1;不可能事件发生的概率为0,即P (不可能事件)=0;如果A 为不确定事件,那么0<P (A )<1.二、填空题11.x≤1【解析】【分析】【详解】∴1-x≥0,∴x≤1.故答案为:x≤1.12.3.1【解析】【分析】根据众数的定义先求出x 的值,然后再根据方差的公式进行计算即可得.【详解】解:已知一组数据1,x ,4,6,7的众数是6,说明x=6,则平均数=(1+6+4+6+7)÷5=15÷5=5,则这组数据的方差=()()()()()22222125654565755⎡⎤⨯-+-+-+-+-⎣⎦=3.1, 故答案为3.1.【点睛】本题考查了众数、方差等,熟练掌握众数的定义、方差的计算公式是解题的关键.13.4【解析】【分析】根据众数概念分析即可解答.【详解】数据中出现次数最多的数为众数,故该组数据的众数为4故答案为:4【点睛】本题为考查众数的基础题,难度低,熟练掌握众数概念是解答本题的关键.14【解析】【分析】根据平行四边形的性质及两点之间线段最短进行作答.【详解】由题知,四边形ABCD是平行四边形,所以BH=DH.要求HD+HE最小,即BH+HE最小,所以,连接B、E,得到最小值HD+HE=BE.过B点作BG CE交于点G,再结合题意,得到GE=3,BG=1,由勾股定理得,BE.所以,HD+HE.【点睛】本题考查了平行四边形的性质及两点之间线段最短,熟练掌握平行四边形的性质及两点之间线段最短是本题解题关键.15.1【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】解:∵1,1,3,x,0,3,1的众数是3,∴x=3,先对这组数据按从小到大的顺序重新排序0,1,1,1,3,3,3,位于最中间的数是1,∴这组数的中位数是1.故答案为:1;【点睛】本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.16.±40【解析】【分析】利用完全平方公式判断即可确定出k的值.【详解】解:∵100x 2-kxy+4y 2是一个完全平方式,∴k=±40,故答案为:±40【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.17.y=x+1【解析】【分析】根据一次函数解析式,可设y=kx+1,把点代入可求出k 的值;【详解】因为函数的图象过点(1,2),所以可设这个一次函数的解析式y=kx+1,把(1,2)代入得:2=k+1,解得k=1,故解析式为y=x+1【点睛】此题考查一次函数解析式,解题的关键是设出解析式;三、解答题18.(1)(2)①2x ,x ;②S 2x =-+(0<x ≤.【解析】【分析】(1)根据勾股定理可得AC=AM 的长;(2)由中点定义可得AP=2PQ ,AQ=PQ ,然后由正方形与△ABD 公共部分可得是以QM 为高的等腰直角三角形,据此即可解答.【详解】解:(1)∵正方形ABCD 的边长为4,∴对角线AC ==又∴AM 12AC ==.故答案为:.(2)①Q 是AP 的中点,设PQ=x ,∴AP=2PQ=2x ,AQ=x .故答案为:2x ;x .②如图:∵以PQ 为对角线作正方形,∴∠GQM=∠FQM=45°∵正方形ABCD 对角线AC 、BD 交于点M ,∴∠FMQ=∠GMQ=90°,∴△FMQ 和△GMQ 均为等腰直角三角形,∴FM=QM=MG .∵QM=AM ﹣2x , ∴S 12=FG •QM ()12222x x =⋅, ∴S 222x x =-+, ∵依题意得:020x x ⎧⎪⎨⎪⎩>>, ∴0<x ≤2,综上所述:S 222x x =-+(0<x ≤2),【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.解答本题要充分利用等腰直角三角形性质解答.19. (1)14000w x =;(2)A y 250075000x =-;(3)见解析.【解析】【分析】(1)设w1=kx,将(10,40000)代入即可得到k 的值;(2)根据盈利=运营收入-运营支出-先期成本得出关系式;(3)分三种情况分析讨论.【详解】(1) 设w 1=kx,将(10,40000)代入可得:40000=10k,解得k=4000,所以14000w x =;(2)∵60120x ≤≤,∴()40001500500080000A y x x =---250075000x =-,(3)若A B y y >,则250075000275095000x x ->-,解得80x <;若A B y y =,则250075000275095000x x -=-,解得80x =;若B A y y >,则275095000250075000x x ->-,解得80x >,∴当6080a ≤<时,一辆A 型汽车盈利高;当80a =时,一辆A 型和一辆B 型车,盈利一样高;当80120a <≤时,一辆B 型汽车盈利高;【点睛】考查了一次函数的应用和一元一次不等式的应用,解题关键是理解题意得出数量关系,第(3)问要分情况进行讨论.20.甲盒用1.6米材料;制作每个乙盒用1.5米材料;l=1.1n+1511,1711.【解析】【分析】首先设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n 的取值范围,然后根据l 与n 的关系列出函数解析式,根据一次函数的增减性求出最小值.【详解】解:(1)设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料由题可得:()662120%x x-=+ 解得x=1.5(米) 经检验x=1.5是原方程的解,所以制作甲盒用1.6米答:制作每个甲盒用1.6米材料;制作每个乙盒用1.5米材料(2)由题2(3000)3000n n n ≥-⎧⎨≤⎩ ∴20003000n ≤≤0.60.5(3000)0.11500l n n n =+-=+∵0.10k =>,∴l 随n 增大而增大,∴当2000n =时, 1700l =最小考点:分式方程的应用,一次函数的性质.21.(1)(0,6);(2 )d=3t(0<t⩽6);S=4t-32(t>8);(3) t=3,此时Q(0,6);t=33,此时Q(0,18)【解析】【分析】(1)首先证明∠BAO=60°,在Rt△ACO中,求出OC的长即可解决问题;(2)理由待定系数法求出直线AB的解析式,再求出点P的坐标即可解决问题;(3)由(1)可知,∠NAM=∠NMA=30°,推出△AMN是等腰三角形,由当△AMN与△OQD全等,∠DOC=30°,①当∠QDO=30°时,△AMN与△OQD全等,此时点Q2与C重合,当AN=OC时,△ANM≌△OQ2C,②当∠OQ1D=30°,△AMN与△OQD全等,此时点Q1与B重合,OD=AN=63,分别求出t的值即可;【详解】(1)在Rt△AOB中,∵OA=63,OB=18,∴tan∠BAO=OBOA=3,∴∠BAO=60°,∵AC平分∠BAO,∴∠CAO=12∠BAO=30°,∴OC=OA⋅tan30°=63⋅3=6,∴C(0,6).(2)如图1中,设直线AB的解析式为y=kx+b,则有18630bk b=-+=⎧⎪⎨⎪⎩,∴318kb⎧==⎪⎨⎪⎩,∴直线AB的解析式为3x+18,∵AN=2t,∴AM=3t,∴OM=63−3t,∴M(3t−63,0),∴点P的纵坐标为y=3(3t−63)+18=3t,∴P(3t−63,3t),∴d=3t(0<t⩽6).(3)如图2中,由(1)可知,∠NAM=∠NMA=30°,∴△AMN是等腰三角形,∵当△AMN与△OQD全等,∠DOC=30°,∴①当∠QDO=30°时,△AMN与△OQD全等,此时点Q2与C重合,当AN=OC时,△ANM≌△OQ2C,∴2t=6,t=3,此时Q(0,6).D=30°,△AMN与△OQD全等,此时点Q1与B重合,OD=AN=63,②当∠OQ1∴2t=63,∴t=33,此时Q(0,18).【点睛】此题考查几何变换综合题,解题关键在于作辅助线22.(1)见解析;(2)见解析;(3)点P的坐标是【解析】【分析】(1)根据关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用点平移的坐标变换规律写出点A 、B 、C 的对应点A 2、B 2、C 2的坐标,然后描点即可得到△A 2B 2C 2;(3)过点作关于x 轴的对称点,连接,则的最小值为的长度,求出长度即可. 【详解】解:(1),(2)如图:(3)过点作关于x 轴的对称点,连接 ∴当的值最小时,, 此时,点P 的坐标是:. 【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.23.(1)132y x =-+;(2)()4,5C - 【解析】【分析】(1)由A 点纵坐标为4,代入正比例函数解析式,求得A 点坐标,由OB=6,求得B 点坐标,然后利用待定系数法求一次函数解析式;(2)由平移性质求得平移后解析式为23y x =--,然后与132y x =-+联立方程组求两直线的交点坐标即可.【详解】解:(1)∵点A 在反比例函数2y x =-的图象上,且点A 的纵坐标为4,∴42x =-.解得:2x =-∴()2,4A -∵6OB =,∴()6,0B∵()2,4A -、()6,0B 在y kx b =+的图象上∴2460k b k b -+=⎧⎨+=⎩解得:123k b ⎧=-⎪⎨⎪=⎩ ∴一次函数的解析式为:132y x =-+ (2)∵2y x =-向下平移3个单位的直线为:23y x =--∴23132y x y x =--⎧⎪⎨=-+⎪⎩解得:45x y =-⎧⎨=⎩ ∴()4,5C -【点睛】本题考查一次函数的性质,掌握待定系数法,利用数形结合思想解题是关键.24.(1)22(2)a a -;(2)1≤x <4,见解析【解析】【分析】(1)直接提取公因式2a ,进而利用完全平方公式分解因式得出答案;(2)分别解不等式进而得出不等式组的解集,在数轴上表示即可.【详解】解:(1)原式=222(44)2(2)-+=-a a a a a ,故答案为:22(2)a a -;(2)由题意知,解不等式:3(2)4-≥-x x ,得:x≥1,解不等式:2113x x +>-,去分母得:2133x x +-, 移项得:4x--,解得:x <4, ∴不等式组的解集为:1≤x <4,故答案为:1≤x <4,在数轴上表示解集如下所示:.【点睛】本题考查了因式分解、一元一次不等式组的解法,熟练掌握因式分解的方法及一元一次不等式的解法是解决本题的关键.25.(1)AE =BC ,AE ⊥BC ,证明见解析;(2)∠AGB 的度数是固定值,度数为45°.【解析】【分析】(1)结论:AE=BC,AE⊥BC.根据角的和差关系可得∠ABE=∠BDC,利用SAS证明△ABE≌△BDC,再利用全等三角形的性质得出AE=BC,∠BAE=∠BCD=90°,即可解决问题;(2)如图,作AE⊥AB于A,使AE=BC,连结DE,BE.利用SAS可证明△ABE≌△BDC,再利用全等三角形的性质得出BE=BD,∠EBD=90°,可得出∠EDB=∠AGB=45°.即可得答案.【详解】(1)结论:AE=BC,AE⊥BC.理由如下:∵AB⊥CD,将BD绕点B逆时针方向旋转90°到BE,∴∠BCD=∠EBD=90°,∴∠ABE+∠DBC=90°,∠DBC+∠BDC=90°,∴∠ABE=∠BDC,在△ABE和△CDB中,BE BDABE BDC AB CD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDB(SAS),∴AE=BC,∠BAE=∠BCD=90°,∴AE⊥BC,∴AE与BC的数量和位置关系是AE=BC,AE⊥BC.(2)∠AGB的度数是固定值,∠AGB=45°.理由如下:如图,作AE⊥AB于A,使AE=BC,连结DE,BE.∵AE⊥AB,∠BCD=90°,∴∠BAE=∠BCD=90°,在Rt△BAE和Rt△DCB中,AE BCBAE=BCD AB CD=⎧⎪∠∠⎨⎪=⎩,∴△BAE≌△DCB(SAS),∴BE=BD,∠ABE=∠BDC,∵∠BDC+∠DBC=90°,∴∠ABE+∠DBC=90°,∴∠EBD=90°,∴△BED是等腰直角三角形,∴∠EDB=45°∵∠BAE=∠ACD=90°,∴AE∥DF,∵AE=BC,BC=DF,∴AE=DF,∴四边形AFDE是平行四边形,∴AF∥DE∴∠AGB=∠EDB=45°.∴∠AGB的度数是固定值,∠AGB=45°.【点睛】本题考查全等三角形的判定与性质、平行四边形的判定与性质及等腰三角形的性质,正确作出辅助线并熟练掌握全等三角形及平行四边形的判定定理是解题关键.。

浙江省杭州市八年级数学下册期末考试数学试卷(解析版)

浙江省杭州市八年级数学下册期末考试数学试卷(解析版)
10. 如图,菱形ABCD中, 是锐角,E为边AD上一点, 沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:
若 ,则 ;
若点F是CD的中点,则
下列判断正确的是
A. , 都对B. , 都错C. 对, 错D. 错, 对
【答案】A
【解析】解: 四边形ABCD是菱形,
, ,


八年级数学下册期末考试数学试卷
一、选择题(本大题共10小题,共30.0分)
1.在下列图案中,既是轴对称图形,又是中心对称图形的是
A. B. C. D.
【答案】C
【解析】解:A、不是轴对称图形,是中心对称图形,不合题意;
B、是轴对称图形,不是中心对称图形,不合题意;
C、是轴对称图形,也是中心对称图形,符合题意;
D、不是轴对称图形,是中心对称图形,不合题意.
故选:C.
根据轴对称图形与中心对称图形的概念进行判断即可.
本题考查的是中心对称图形与轴对称图形的概念 轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2.二次根式 中字母a的取值范围是
A. B. C. D.
证明: ;
当 时,试判断四边形ACEF的形状并说明理由.
【答案】 证明: 点D,E分别是边BC,AB上的中点,
, ,

, ,
四边形ACEF是平行四边形,

解:当 时,四边形ACEF是菱形;理由如下:
, ,
, ,
是等边三角形,

又 四边形ACEF是平行四边形,
四边形ACEF是菱形.
【解析】 由三角形中位线定理得出 , ,求出 , ,得出四边形ACEF是平行四边形,即可得出 ;

浙江省杭州市 八年级(下)期末数学试卷含答案解析

浙江省杭州市 八年级(下)期末数学试卷含答案解析

浙江省杭州市八年级(下)期末数学试卷一、选择1.下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个2.用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=6 3.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.254.小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB 的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.平行四边形5.已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<06.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:①m+n=q+p;②m+p=n+q;③若m=n,则E点一定是AC与BD的交点;④若m=n,则E点一定在BD上.其中正确结论的序号是()A.①③B.②④C.①②③D.②③④7.如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数(x>0)的图象上.若点B的坐标为(﹣4,﹣4),则k的值为()A.2 B.6 C.2或3 D.﹣1或68.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.9.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形10.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC 的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.命题:“三角形中至多有两个角大于60度”,用反证法第一步需要假设.12.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则秒时,直线QP将四边形ABCD截出一个平行四边形.13.如图所示,点D、E分别是AB、AC的中点,点F、G分别为BD、CE的中点,若FG=6,则DE+BC=,BC=.14.已知=5,则=.15.已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是.16.如图,已知双曲线y1=﹣与两直线y2=﹣x,y3=﹣8x,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为.三、解答题.17.计算:.18.如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线,将剩下图形的面积平分.(保留作图痕迹)19.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表.平均数中位数方差命中10环的次数甲7 0乙 1甲、乙射击成绩折线图.(1)请补全上述图表(请直接在表中填空和补全折线图),并写出甲和乙的平均数和方差的计算过程和结果.(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.20.阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.21.如图,直角坐标系中,四边形ABCO是菱形,对角线OB在x轴正半轴上,点A的坐标为(4,4),点D为AB的中点.动点M从点O出发沿x轴向点B运动,运动的速度为每秒1个单位,试解答下列问题:(1)则菱形ABCO的周长为,菱形ABCO的周长为,(2)当t=4时,求MA+MD的值;(3)当t取什么值时,使MA+MD的值最小?并求出他的最小值.22.一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x 个月的利润和相等;(3)求使用回收净化设备后两年的利润总和.23.如图,在矩形ABCD中,∠ADC的平分线交BC于点E、交AB的延长线于点F,G是EF的中点,连接AG、CG.(1)求证:BE=BF;(2)请判断△AGC的形状,并说明理由.24.如图1,已知直线y=2x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x >0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择1.下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个【考点】最简二次根式.【分析】根据最简二次根式的定义分别判断解答即可.【解答】解:中是最简二次根式的有,,故答案为:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方得出即可.【解答】解:∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,∴(x﹣1)2=3.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.25【考点】根与系数的关系.【分析】根据题意,a、b可看作方程x2﹣6x+4=0的两根,则根据根与系数的关系得到a+b=6,ab=4,然后把原式变形得到原式=再利用整体代入的方法计算即可.【解答】解:∵a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,∴a,b可看作方程x2﹣6x+4=0的两根,∴a+b=6,ab=4,∴原式=(a+b)2﹣2ab=62﹣2×4=28,故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.4.小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB 的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.平行四边形【考点】作图—基本作图;菱形的判定.【分析】根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形【解答】解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选:B.【点评】此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.5.已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】根据反比例函数的增减性再结合反比例函数图象上点的坐标特征解答即可.【解答】解:∵k>0,函数图象在一三象限;若x1<0<x2.说明A在第三象限,B在第一象限.第一象限的y值总比第三象限的点的y值大,∴y1<0<y2.故选A.【点评】在反比函数中,已知两点的横坐标,比较纵坐标的大小,首先应区分两点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.6.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:①m+n=q+p;②m+p=n+q;③若m=n,则E点一定是AC与BD的交点;④若m=n,则E点一定在BD上.其中正确结论的序号是()A.①③B.②④C.①②③D.②③④【考点】矩形的性质.【分析】过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,由矩形的性质容易证出①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE 于Q,延长BE交CD于F,先证AP=CQ,再证明△ABP≌△CFQ,得出AB=CF,F与D 重合,得出③不正确,④正确,即可得出结论.【解答】解:过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,如图1所示:则m=ABEM,n=BCEH,p=CDEN,q=ADEG,∵四边形ABCD是矩形,∴AB=CD=GH,BC=AD=MN,∴m+p=ABMN=ABBC,n+q=(BCGH=BCAB,∴m+p=n+q;∴①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE于Q,延长BE交CD于F,如图2所示:则∠APB=∠CQF=90°,∵m=BEAP,n=BECQ,∵m=n,∴AP=CQ,∵AB∥CD,∴∠1=∠2,在△ABP和△CFQ中,,∴△ABP≌△CFQ(AAS),∴AB=CF,∴F与D重合,∴E一定在BD上;∴③不正确,④正确.故选:B.【点评】本题考查了矩形的性质、三角形面积的计算、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.7.如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原点,点D 在反比例函数(x >0)的图象上.若点B 的坐标为(﹣4,﹣4),则k 的值为( )A .2B .6C .2或3D .﹣1或6 【考点】反比例函数综合题.【专题】计算题.【分析】根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S 四边形DEOH =S 四边形FBGO ,根据反比例函数比例系数的几何意义即可求出k 2﹣5k+10=16,再解出k 的值即可.【解答】解:如图:∵四边形ABCD 、FAEO 、OEDH 、GOHC 为矩形, 又∵AO 为四边形FAEO 的对角线,OC 为四边形OGCH 的对角线, ∴S △AEO =S △AFO ,S △OHC =S △OGC ,S △DAC =S △BCA , ∴S △DAC ﹣S △AEO ﹣S △OHC =S △BAC ﹣S △AFO ﹣S △OGC , ∴S 四边形FBGO =S 四边形DEOH =(﹣4)×(﹣4)=16,∴xy=k 2﹣5k+10=16, 解得k=﹣1或k=6. 故选:D .【点评】本题考查了反比例函数k 的几何意义、矩形的性质、一元二次方程的解法,关键是判断出S 四边形DEOH =S 四边形FBGO .8.如图,在正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为( )A .B .C .D .【考点】正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的长.【解答】解:延长AE 交DF 于G ,如图: ∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=,故选D.【点评】此题考查正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.9.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形【考点】平行四边形的判定;全等三角形的判定与性质;等腰三角形的性质;矩形的判定;梯形;命题与定理.【分析】已知条件应分析一组对边相等,一组对角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.【解答】解:∵△ABC是等腰三角形,∴AB=AC,∠B=∠C,在△ADE与△DAC中,∵,∴△ADE≌△DAC,∴∠E=∠C,∴∠B=∠E,AB=DE,但是四边形ABDE不是平行四边形,故一组对边相等,一组对角相等的四边形是平行四边形说法错误;故选:C.【点评】此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组对边相等,一组对角相等的四边不是平行四边形是解题关键.10.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC 的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】等腰梯形的性质.【分析】根据已知利用等腰梯形的性质对各个结论进行分析从而得出最后的答案.【解答】解:根据四边形ABCD是等腰梯形,可得出的条件有:AC=BD,∠OAB=∠OBA=∠ODC=∠OCD(可通过全等三角形ABD和BAC得出),OA=OB,OC=OD,∠ACB=∠ADB=90°(三角形ACB和BDA全等).①要证BD∥EF就要得出∠ADB=∠EFD,而∠ADB=90°,∠EFD=90°,因此∠ADB=∠EFD,此结论成立;②由于BD∥EF,∠AEF=∠AOD,而∠AOD=∠OAB+∠OBA=2∠OAB,因此∠AEF=2∠OAB,此结论成立.③在直角三角形ABE中,∠OAB=∠OBA,∠OAB+∠OEB=∠OBA+∠OBE=90°,因此可得出∠OEB=∠OBE,因此OA=OB=OE,那么O就是直角三角形ABE斜边AE的中点,由于OD∥EF,因此OD就是三角形AEF的中位线,那么D就是AF的中点,因此此结论也成立.④由③可知EF=2OD=2OC,而OA=OE=OC+CE.那么AC=OA+OC=OC+OC+CE=2OC+CE=EF+CE,因此此结论也成立.故选D.【点评】本题主要考查了等腰梯形的性质.根据等腰梯形的性质得出的角和边相等是解题的基础.二、填空题11.命题:“三角形中至多有两个角大于60度”,用反证法第一步需要假设三个内角都不大于60度.【考点】反证法.【分析】利用反证法证明的步骤,进而得出答案.【解答】解:用反证法证明命题“三角形中至多有两个角大于60度”,应先假设三个内角都不大于60度.故答案为:三个内角都不大于60度.【点评】此题主要考查了反证法,正确掌握反证法的第一步是解题关键.12.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则2或3秒时,直线QP将四边形ABCD截出一个平行四边形.【考点】平行四边形的判定;梯形.【专题】动点型.【分析】设x秒时,直线QP将四边形ABCD截出一个平行四边形;则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;分两种情况:①当AP=DQ时,得出方程,解方程即可;②当BP=CQ时,得出方程,解方程即可.【解答】解:设x秒时,直线QP将四边形ABCD截出一个平行四边形;则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;∵CD∥AB,∴分两种情况:①当AP=DQ时,x=6﹣2x,解得:x=2;②当BP=CQ时,9﹣x=2x,解得:x=3;综上所述:当2秒或3秒时,直线QP将四边形ABCD截出一个平行四边形;故答案为:2或3.【点评】本题考查了梯形的性质、平行四边形的判定、解方程等知识;熟练掌握梯形的性质和平行四边形的判定方法是解决问题的关键.13.如图所示,点D、E分别是AB、AC的中点,点F、G分别为BD、CE的中点,若FG=6,则DE+BC=12,BC=8.【考点】三角形中位线定理.【专题】计算题.【分析】根据中位线定理得:DE=BC,根据梯形中位线定理得FG=(DE+BC),由FG=6求得DE+BC的值即可.【解答】解:∵点F、G分别为BD、CE的中点,∴FG=(DE+BC),∵FG=6,∴DE+BC=2FG=2×6=12;∵D、E分别是AB、AC的中点,∴DE=BC,∴DE+BC=BC+BC=BC=12,∴BC=8.故答案为:12;8.【点评】本题考查了梯形的中位线与三角形的中位线的性质,是一道不错的几何综合题.14.已知=5,则=﹣4或﹣1.【考点】二次根式的化简求值.【分析】利用完全平方公式得出=6,即可求出=2,=3或=3,=2.分别代入求解即可.【解答】解:∵ =5,∴()2=25,解得=6,∴解得=2,=3或=3, =2.∴=﹣4或﹣1,故答案为:﹣4或﹣1.【点评】本题主要考查了二次根式的化简求值,解题的关键是求出与的值.15.已知:如图,平面直角坐标系xOy 中,正方形ABCD 的边长为4,它的顶点A 在x 轴的正半轴上运动(点A ,D 都不与原点重合),顶点B ,C 都在第一象限,且对角线AC ,BD 相交于点P ,连接OP .设点P 到y 轴的距离为d ,则在点A ,D 运动的过程中,d 的取值范围是 2<d ≤2.【考点】正方形的性质;坐标与图形性质;全等三角形的判定与性质.【分析】根据垂线段最短,A 、O 重合时,点P 到y 轴的距离最小,为正方形ABCD 边长的一半,OA=OD 时点P 到y 轴的距离最大,为PD 的长度,即可得解.【解答】解:当A 、O 重合时,点P 到y 轴的距离最小,d=×4=2,当OA=OD 时,点P 到y 轴的距离最大,d=PD=2,∵点A ,D 都不与原点重合,∴2<d ≤2,故答案为2<d ≤2.【点评】本题考查了正方形的性质,坐标与图形的性质,全等三角形的判定与性质,角平分线的判定,(2)作辅助线构造出全等三角形是解题的关键,(2)根据垂线段最短判断出最小与最大值的情况是解题的关键.16.如图,已知双曲线y 1=﹣与两直线y 2=﹣x ,y 3=﹣8x ,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为 2.【考点】反比例函数与一次函数的交点问题.【分析】y 始终取三个函数的最小值,y 最大值即求三个函数的公共部分的最大值.【解答】解:联立y 1、y 2可得,解得或,∴A (﹣2,),B (2,),联立y 1、y 3可得,解得或,∴C (﹣,2),D (,﹣2), ∵无论x 取何值,y 总取y 1,y 2,y 3中的最小值, ∴y 的最大值为A 、B 、C 、D 四点中的纵坐标的最大值,∴y 的最大值为C 点的纵坐标,∴y的最大值为2,故答案为:2.【点评】本题主要考查一次函数与反比例函数的交点问题,确定出y的最大值为三个函数公共部分的最大值是解题的关键.三、解答题.17.计算:.【考点】二次根式的混合运算.【分析】根据二次根式的性质,先化简,再进一步按照运算顺序计算合并即可.【解答】解:原式=3﹣+2(﹣)=3﹣+6﹣4=5﹣.【点评】此题考查二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.18.如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线,将剩下图形的面积平分.(保留作图痕迹)【考点】作图—应用与设计作图.【分析】先找到矩形和平行四边形的中心,然后过中心作直线即可.【解答】解:如图所示:【点评】本题考查了作图﹣应用与设计作图,用到的知识点有中心对称及矩形、平行四边形的性质,有一定难度,注意掌握中心与中心对称点之间的关系.19.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表.平均数中位数方差命中10环的次数甲7 740乙77.5 5.4 1甲、乙射击成绩折线图.(1)请补全上述图表(请直接在表中填空和补全折线图),并写出甲和乙的平均数和方差的计算过程和结果.(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.【考点】折线统计图;算术平均数;中位数;方差.【专题】图表型.【分析】(1)分别利用中位数以及方差和平均数求法得出即可;(2)利用方差的意义,分析得出答案即可.【解答】解:(1)甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7 7 4 0乙7 7.5 5.4 1甲、乙射击成绩折线图,根据折线统计图得:乙的射击成绩为:2,4,6,8,7,7,8,9,9,10,则平均数为=7(环),方差为:[(2﹣7)2+(4﹣7)2+(6﹣7)2+(8﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(9﹣7)2+(9﹣7)2+(10﹣7)2]=5.4;甲的射击成绩为9,6,7,6,2,7,7,?,8,9,平均数为7(环),则甲第八环成绩为70﹣(9+6+7+6+2+7+7+8+9)=9(环),所以甲的10次成绩为:9,6,7,6,2,7,7,9,8,9.方差为:[(9﹣7)2+(6﹣7)2+(7﹣7)2+(6﹣7)2+(2﹣7)2+(7﹣7)2+(7﹣7)2+(9﹣7)2+(8﹣7)2+(9﹣7)2]=4.…(8分)(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出.【点评】此题主要考查了中位数以及方差和平均数求法,正确记忆相关定义是解题关键.20.阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.【考点】一元二次方程的应用.【专题】压轴题.【分析】根据材料内容,可将原函数转换为(y﹣3)x2+(2y﹣1)x+y﹣2=0,继而根据△≥0,可得出y的最小值.【解答】解:将原函数转化成x的一元二次方程,得(y﹣3)x2+(2y﹣1)x+y﹣2=0,∵x为实数,∴△=(2y﹣1)2﹣4(y﹣3)(y﹣2)=16y﹣23≥0,∴y≥,因此y的最小值为.【点评】本题考查了一元二次方程的应用,这样的信息题,一定要熟读材料,套用材料的解题模式进行解答.21.如图,直角坐标系中,四边形ABCO是菱形,对角线OB在x轴正半轴上,点A的坐标为(4,4),点D为AB的中点.动点M从点O出发沿x轴向点B运动,运动的速度为每秒1个单位,试解答下列问题:(1)则菱形ABCO的周长为32,菱形ABCO的周长为32,(2)当t=4时,求MA+MD的值;(3)当t取什么值时,使MA+MD的值最小?并求出他的最小值.【考点】四边形综合题.【分析】(1)根据坐标与图形的关系求出OF,AF的长,根据勾股定理求出菱形的边长,根据菱形的性质求出周长;(2)根据直角三角形的斜边的中线是斜边的一半求出MD的值,计算得到MA+MD的值;(3)作点D关于x轴的对称点D′,连接AD′交x轴于点M,作出MA+MD的值最小时的点M,根据菱形的性质和坐标与图形的关系求出AD′的长,得到答案.【解答】解:(1)∵点A的坐标为(4,4),∴OF=4,AF=4,由勾股定理得,OA==8,∴菱形ABCO的周长为32;(2)当t=4时,点M与对角线的交点F重合,则MA=4,在Rt△AMB中,AB=8,点D为AB的中点,∴MD=AB=4,∴MA+MD=4+4;(3)作点D关于x轴的对称点D′,连接AD′交x轴于点M,则此时MA+MD的值最小,由题意和菱形的性质可知,点D的坐标为(6,2),则D′的坐标为(6,﹣2),设直线AD′的解析式为:y=kx+b,,解得,,则直线AD′的解析式为:y=﹣3x+16,﹣3x+16=0,x=,点M的坐标为(,0),即OM=,则当t=时,MA+MD的值最小,作D′E⊥AC于E,由菱形的性质可知,D′为BC的中点,∴D′E=2,EF=2,则AE=6,在Rt△AED′中,AE=6,D′E=2,AD′==4,则MA+MD的最小值为4.【点评】本题考查的是菱形的性质、勾股定理和轴对称﹣最短路径问题以及待定系数法求一次函数解析式,灵活应用待定系数法求函数解析式、掌握直角三角形的斜边的中线是斜边的一半,作出对称点得到最短路径是解题的关键.22.一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x 个月的利润和相等;(3)求使用回收净化设备后两年的利润总和.【考点】一元二次方程的应用.【专题】销售问题;压轴题.【分析】(1)因为使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,所以y=xw=x(10x+90);要求前几个月的利润和=700万元,可令y=700,利用方程即可解决问题;(2)因为原来每月利润为120万元,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等,所以有y=120x,解之即可求出答案;(3)因为使用回收净化设备后第一、二年的利润=12×(10×12+90),求出它们的和即可.【解答】解:(1)y=xw=x(10x+90)=10x2+90x,10x2+90x=700,解得:x1=5或x2=﹣14(不合题意,舍去),答:前5个月的利润和等于700万元;(2)10x2+90x=120x,解得:x1=3,x2=0(不合题意,舍去),答:当x为3时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;(3)第一年全年的利润是:12(10×12+90)=2520(万元),前11个月的总利润是:11(10×11+90)=2200(万元),∴第12月的利润是2520﹣2200=320(万元),第二年的利润总和是12×320=3840(万元),2520+3840=6360(万元).答:使用回收净化设备后两年的利润总和是6360万元.【点评】本题需正确理解题意,找出数量关系,列出函数关系式进一步求解.23.如图,在矩形ABCD中,∠ADC的平分线交BC于点E、交AB的延长线于点F,G是EF的中点,连接AG、CG.(1)求证:BE=BF;(2)请判断△AGC的形状,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形;矩形的性质.【分析】(1)由矩形的性质结合角平分线的定义可证得∠ADF=∠BEF=∠CDF=∠F,可证明BE=BF;(2)连接BG,可证明△AGF≌△CGB,可证得AG=CG,进一步可证明∠AGC=90°,可判定△AGC为等腰直角三角形.【解答】(1)证明:∵四边形ABCD为矩形,∴AB∥CD,AD∥BC,∴∠F=∠CDF,∠ADF=∠BEF,∵DF平分∠ADC,∴∠CDF=∠ADF,∴∠F=∠BEF,∴BE=BF;(2)解:△AGC为等腰直角三角形,理由如下:如图,连接BG,由(1)可知BE=BF,且∠FBE=90°,∴∠F=45°,∴AF=AD=BC,∵G为EF中点,∴BG=FG,∠EBG=45°,在△AGF和△CGB中,,∴△AGF≌△CGB(SAS),∴AG=CG,∠AGF=∠BGC,∴∠BGF+∠AGB=∠AGB+∠AGC,∴∠AGC=∠BGF=90°,∴△AGC为等腰直角三角形.【点评】本题主要考查全等三角形的判定和性质和矩形的性质,在(1)中充分利用矩形的对边分别平行是解题的关键,在(2)构造三角形全等是解题的关键.24.如图1,已知直线y=2x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x >0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.【考点】反比例函数综合题;解分式方程;待定系数法求反比例函数解析式;反比例函数与一次函数的交点问题;平行四边形的性质;相似三角形的判定与性质.【专题】综合题.【分析】(1)先求出点P的坐标,再从条件OP=2OQ出发,构造相似三角形,求出点Q的坐标,就可求出k的值.(2)设点A的坐标为(a,b),易得b=,结合条件可用a的代数式表示点B、点C的坐标,进而表示出线段AB、AC的长,就可算出△BAC的面积是一个定值.(3)以点A、B、C、D为顶点的四边形为平行四边形可分成两类:①AC为平行四边形的一边,②AC为平行四边形的对角线;然后利用平行四边形的性质建立关于a的方程,即可求出a的值,从而求出点A的坐标.【解答】解:(1)过点Q作QE⊥x轴,垂足为E,过点P作PF⊥x轴,垂足为F,如图1,联立,解得:或.∵x>0,∴点P的坐标为(2,4).∴OF=2,PF=4.。

2021-2022学年浙江省杭州外国语学校八年级(下)期末数学试卷及答案解析

2021-2022学年浙江省杭州外国语学校八年级(下)期末数学试卷及答案解析

2021-2022学年浙江省杭州外国语学校八年级(下)期末数学试卷一、选择题(本大题共10小题。

每小题3分,满分30分。

)1.(3分)没有哪一门学科能像数学这样,利用如此多的符号图形展现一系列完备且完美的世界.下面是由4个数学式子绘制成的完美曲线,其中是中心对称图形的是()A.笛卡尔心形线B.三叶玫瑰形曲线C.蝴蝶形曲线D.太极曲线2.(3分)如图,平行四边形ABCD的对角线相交于点O,请你再添一个条件,使得平行四边形ABCD是矩形,则下列条件符合的是()A.BD平分∠ABC B.OB=OA C.AC⊥BD D.AB=AD 3.(3分)用反证法证明“若a>b>0,则a2>b2”,应假设()A.a2<b2B.a2=b2C.a2≤b2D.a2≥b24.(3分)将一个圆形纸片连续对折三次之后,沿虚线裁剪展开后得到的多边形的内角和为()A.180°B.540°C.720°D.1080°5.(3分)若关于x的一元二次方程x2﹣2x﹣m=0有实数根,则实数m的取值范围是()A.m≤I B.m≥1C.m≥﹣1D.m≤﹣16.(3分)下列函数图象不可能由函数y=3x2+2的图象通过平移、轴对称变换得到的函数是()A.y=3(x+1)2+3B.y=3x2﹣1C.y=﹣3x2﹣2D.y=x2+27.(3分)如图,平行四边形ABCD中,E,F分别在边AD,BC上,DE=BF=3,EF⊥AD,若EF=8,AE=9,AB的长为()A.10B.C.9D.68.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+b2﹣4ac与反比例函数y=﹣在同一坐标系内的图象大致为()A.B.C.D.9.(3分)如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k>0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S△OCE=8,则OC的长为()A.8B.4C.D.10.(3分)抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是()A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n 二、填空题(本大题共8小题。

2020年杭州外语学校初二(下)期末考试数学试题卷

2020年杭州外语学校初二(下)期末考试数学试题卷

杭州外国语学校2005-2初二(下)期末考试数学试卷命题人:刘 伟 审题人:顾彩梅(本试卷总分100分、考试时间90分钟)试卷说明:1、本试卷分试题卷和答题卷两部分,其中试题卷4页,答题卷4页,共4页; 2、本试卷共23小题,满分100分;3、请用蓝色(或黑色)钢笔(或圆珠笔)答题,除作图外不准用铅笔做答;4、答案一律填写在答题卷上,密封线内不要答题,考试结束后只上交答题卷.一、 认真选择 (每小题3分,共20分)1、 下列运算,(1=(2=(3)3+=(417=,(535a b =+,其中正确的一共有 ( ) A 、2个 B 、3个 C 、4个 D 、以上都不对2、在下列下列各组根式中,是同类二次根式的是 ( )A 、 183和BCD 、11-+a a 和3、甲、乙两人在相同的条件下各射靶10次,他们命中环数的平均数相同,但标准差不同,甲、乙的标准差分别为4, 5,则射击成绩比较稳定的是 ( ) A 、甲 B 、乙 C 、甲和乙一样稳定 D 、以上都不对4、(1)ky k x y x=--=函数及在同一坐标系中的图象大致是 ( )5、如图所示,拦水坝的横断面为等腰梯形ABCD ,已知:DC=3米,CE=2米,CB 的坡度为1:3,则等腰梯形ABCD 的周长是(单位:米) ( )A 、12+B 、8C 、14+D 、6+(第5题图) (第6题图) (第8题图) 6、如图平行四边形ABCD 中,EF ∥AC ,交DA 以及DC 延长线于点E 、F ,交AB 与BC 于 H 、G ,则图中与△AEH 相似三角形(不包括全等)共有 ( )A 、 4个B 、5个C 、6个D 、7个7、已知一次函数1221,(1)y x y a x a a a+=++=的图像平行,则一次函数y ax a =+的图像不经过的象限是: ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限8、如图,在不等边△ABC 中,AB >AC ,AC ≠BC ,过AC 上一点D 作一条直线,使截得的三角形与原三角形相似,这样的直线可作 ( ) A 、2条 B 、3条 C 、4条 D 、5条9、已知数据1、2、3、3、4、5,则下列关于这组数据的说法错误的是: ( )A 、平均数、中位数和众数都是3;B 、极差为4;C 、方差为10;D 、标准差是31510、现有边长AB =10,BC =5的矩形纸片ABCD ,对角线BD 。

浙江省杭州外国语校2020-2021学年八年级数学第二学期期末学业质量监测模拟试题含解析

浙江省杭州外国语校2020-2021学年八年级数学第二学期期末学业质量监测模拟试题含解析

浙江省杭州外国语校2020-2021学年八年级数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.如图,菱形ABCD的对角线AC、BD的长分别是3cm、4cm,AE⊥BC于点E,则AE的长是()A.65cm B.125cm C.245cm D.23cm2.下面二次根式中,是最简二次根式的是()A.24B.0.5C.24a D.3a3.如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则△BED与△DFC的周长的和为()A.34 B.32 C.22 D.204.如图,在平行四边形ABCD中,BE=2,AD=8,DE平分∠ADC,则平行四边形的周长为()A.14 B.24 C.20 D.285.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A .8B .12C .16D .326.如图,在长方形ABCD 中,6DC cm =,在DC 上存在一点E ,沿直线AE 把ADE ∆折叠,使点D 恰好落在BC 边上的点F 处,若ABF ∆的面积为224cm ,那么折叠的ADE ∆的面积为( )2cmA .30B .20C .403D .503 7.已知A ,B 两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A 地前往B 地,同时乙骑摩托车从B 地前往A 地,设两人之间的距离为s (千米),甲行驶的时间为t (小时),若s 与t 的函数关系如图所示,则下列说法错误的是( )A .经过2小时两人相遇B .若乙行驶的路程是甲的2倍,则t =3C .当乙到达终点时,甲离终点还有60千米D .若两人相距90千米,则t =0.5或t =4.58.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .9.在平面直角坐标系中,一次函数与的图像互相平行,如果这两个函数的部分自变量和对应的函数值如下表所示:那么的值是( )A .B .C .D .10.如果2x +有意义,那么实数x 的取值范围是( ) A .x ≥0 B .x ≠2 C .x ≥2 D .x ≥-2二、填空题(每小题3分,共24分)11.计算:(﹣4ab 2)2÷(2a 2b )0=_____.12.命题“如果a 2=b 2,那么a =b .”的否命题是__________.13.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,且OA=OC ,OB=OD ,要使四边形ABCD 为矩形,则需要添加的条件是_______(只填一个即可).14.如图,矩形OABC 中,D 为对角线AC ,OB 的交点,直线AC 的解析式为y 2x 4=+,点P 是y 轴上一动点,当PBD 的周长最小时,线段OP 的长为______.15.如图,平行四边形ABCD 中,AB=2cm ,BC=12cm ,点P 在边BC 上,由点B 向点C 运动,速度为每秒2cm ,点Q 在边AD 上,由点D 向点A 运动,速度为每秒1cm ,连接PQ ,设运动时间为t 秒.当t =______时,四边形ABPQ 为平行四边形;16.如图,矩形纸片ABCD 中,已知4=AD ,3AB =,点E 在BC 边上,沿AE 折叠纸片,使点B 落在点'B 处,连结'CB ,当'CEB ∆为直角三角形时,BE 的长为______.17.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.18.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.三、解答题(共66分)19.(10分)解方程:(1)解分式方程:13.2x x=-(2)解一元二次方程x2+8x﹣9=1.20.(6分)学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如表所示.时间段(h/周) 小明抽样人数小华抽样人数0~1 6 221~2 10 102~3 16 63~4 8 2(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?_____.估计该校全体八年级学生平均每周上网时间为_____h;(2)在具有代表性的样本中,中位数所在的时间段是_____h/周;(3)专家建议每周上网2h以上(含2h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?21.(6分)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练,在0<x<15的时间内,速度较快的人是(填“甲”或“乙”);(2)求乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式;(3)当x=15时,两人相距多少米?(4)在15<x<20的时间段内,求两人速度之差.22.(8分)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).23.(8分)2019年3月25日是全国中小学生安全教育日,某中学为加强学生的安全意识,组织了全校800名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图解题.(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n=(2)补全频数分布直方图.(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?24.(8分)如图,小巷左右两侧是竖直的墙,一架梯子AB斜靠在左墙时,梯子底端到左墙角的距离AC为0.7米,顶端到地面距离BC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端到地面距离'B D为2米,求小巷的宽度CD.25.(10分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE,若BC=10cm,AB=8cm,求EF的长.△26.(10分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上.①以原点O 为对称中心,画出与ABC △关于原点O 对称的111A B C △.②将ABC △绕点O 沿逆时针方向旋转90︒得到222A B C △,画出222A B C △,并求出2AA 的长.参考答案一、选择题(每小题3分,共30分)1、B【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC ×AE ,可得出AE 的长度.【详解】解:∵四边形ABCD 是菱形,∴CO =12AC =32cm ,BO =12BD =2cm ,AO ⊥BO , ∴BC 2252OB OC +=cm , ∴S 菱形ABCD =122AC BD ⨯=×3×4=6cm 2, ∵S 菱形ABCD =BC ×AE , ∴BC ×AE =6,∴AE=6125BC=cm.故选:B.【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.2、C【解析】【分析】根据最简二次根式的概念进行判断即可.【详解】ABCD故选C.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3、B【解析】【分析】首先根据两组对边互相平行的四边形是平行四边形判定出四边形AEDF是平行四边形,进而得到DF=AE,然后证明DE=BE,即可得到DE+DF=AB,从而得解.【详解】解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DF=AE,又∵DE∥AC,∴∠C=∠EDB,又∵AB=AC,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴DF+DE=AE+BE,∴△BED与△DFC的周长的和=△ABC的周长=10+10+12=32,故选:B.【点睛】本题主要考查了平行四边形的判定与性质,等腰三角形的判定,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.4、D【解析】【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【详解】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,AB=CD,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵AD=8,BE=2,∴CE=BC﹣BE=8﹣2=6,∴CD=AB=6,∴▱ABCD的周长=6+6+8+8=1.故选D.【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.5、C【解析】【分析】 如图,根据菱形的性质可得12AO CO AC ==, 12DC BO BD ==,AC BD ⊥,再根据菱形的面积为28,可得228OD AO ⋅=①,由边长结合勾股定理可得2236OD OA +=②,由①②两式利用完全平方公式的变形可求得2()64OD AO +=,进行求得2()16OD AO +=,即可求得答案.【详解】如图所示:四边形ABCD 是菱形,12AO CO AC ∴==, 12DC BO BD ==,AC BD ⊥, 面积为28,∴ 12282AC BD OD AO ⋅=⋅=① 菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++⋅=+=, 8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16,故选C .【点睛】本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.6、D【解析】【分析】由三角形面积公式可求BF 的长,由勾股定理可求AF 的长,即可求CF 的长,由勾股定理可求DE 的长,即可求△ADE 的面积.【详解】解:∵四边形ABCD 是矩形∴AB=CD=6cm ,BC=AD , ∵2412ABF S AB BF =⨯=, 即:12624BF ⨯=⨯∴BF=8(cm )在Rt △ABF 中,10AF ==(cm )∵ADE ∆折叠后与AFE ∆重合,∴AD=AF=10cm ,DE=EF ,∴BC=10cm ,∴FC=BC-BF=10-8=2(cm ),在Rt △EFC 中,222EF EC CF =+,∴()22262DE DE =-+,解之得:103DE =, ∴101031150223ADE S AD DE =⨯⨯=⨯⨯=(cm 2), 故选:D .【点睛】本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.7、B【解析】【分析】由图象得到经过2小时两人相遇,A 选项正确,由于乙的速度是802千米小时=40千米/时,乙的速度是甲的速度的2倍可知B 选项错误,计算出乙到达终点时,甲走的路程,可得C 选项正确,当0<t≤2时,得到t=0.5,当3<t≤6时,得到t=4.5,于是得到若两人相距90千米,则t=0.5或t=4.5,故D 正确.【详解】由图象知:经过2小时两人相遇,A 选项正确;甲的速度是20千米/小时,则乙的速度是802千米小时=40千米/时,乙的速度是甲的速度的2倍,所以在乙到达终点之前,乙行驶的路程都是甲的二倍,B选项错误;乙到达终点时所需时间为12040=3(小时),3小时甲行驶3×20=60(千米),离终点还有120-60=60(千米),故C选项正确,当0<t≤2时,S=-60t+120,当S=90时,即-60t+120=90,解得:t=0.5,当3<t≤6时,S=20t,当S=90时,即20t=90,解得:t=4.5,∴若两人相距90千米,则t=0.5或t=4.5,故D正确.故选B.【点睛】此题考查一次函数的应用,解题关键在于看懂函数图象,从函数图像得出解题所需的必要条件.8、A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!9、A【解析】【分析】由一次函数y2=k2x+b2与y2=k2x+b2的图象互相平行,得出k2=k2,设k2=k2=a,将(m,-2)、(0,0)代入y2=ax+b2,得到am=-2;将(m,2)、(0,n)、(2,7)代入y2=ax+b2,解方程组即可求出m的值.【详解】解:∵一次函数y2=k2x+b2与y2=k2x+b2的图象互相平行,∴k2=k2,设k2=k2=a,则y2=ax+b2,y2=ax+b2.将(m,-2)、(0,0)代入y2=ax+b2,得am=-2①;将(m,2)、(0,n)、(2,7)代入y2=ax+b2,得am+n=2②,2a+n=7③,①代入②,得n=3,把n=3代入③,得a=2,把a =2代入①,得m =-2.故选:A .【点睛】本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.即若直线y 2=k 2x +b 2与直线y 2=k 2x +b 2平行,那么k 2=k 2.也考查了一次函数图象上点的坐标特征.难度适中.10、D【解析】【分析】根据二次根式有意义的条件即可求出x 的取值范围.【详解】由题意可知:x+2≥0,∴x≥-2故选D .【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件.二、填空题(每小题3分,共24分)11、16a 2b 1【解析】【分析】直接利用整式的除法运算法则以及积的乘方运算法则计算得出答案.【详解】解:(-1ab 2)2÷(2a 2b )0=16a 2b 1÷1=16a 2b 1,故答案为:16a 2b 1.【点睛】本题主要考查了整式的乘除运算和零指数幂,正确掌握相关运算法则是解题关键.12、如果22a b ,那么a b【解析】【分析】根据否命题的定义,写出否命题即可.【详解】如果22a b ≠,那么a b故答案为:如果22a b ≠,那么a b . 【点睛】本题考查了否命题的问题,掌握否命题的定义以及性质是解题的关键.13、∠DAB=90°.【解析】【分析】根据对角线互相平分线的四边形为平行四边形可得四边形ABCD 是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.【详解】解:可以添加条件∠DAB=90°,∵AO=CO ,BO=DO ,∴四边形ABCD 是平行四边形,∵∠DAB=90°,∴四边形ABCD 是矩形,故答案为∠DAB=90°.【点睛】此题主要考查了矩形的判定,关键是掌握矩形的判定定理.14、83【解析】【分析】根据题意可以得到点A 、B 、C 的坐标和点D 的坐标,然后最短路径问题可以求得点P 的坐标,从而可以求得OP 的长.【详解】解:作点D 关于y 轴的对称点D',连接BD'交y 轴于点P ,则点P 即为所求,直线AC 的解析式为y 2x 4=+,当x 0=时,y 4=,当y 0=时,x 2=-,∴点A 的坐标为()2,0-,点C 的坐标为()0,4,∴点D 的坐标为()1,2-,点B 的坐标为()2,4-,∴点D'的坐标为()1,2,设过点B 和点D'的直线解析式为y kx b =+,242k b k b -+=⎧⎨+=⎩, 解得,2k 38b 3⎧=-⎪⎪⎨⎪=⎪⎩, ∴过点B 和点D'的直线解析式为28y x 33=-+, 当x 0=时,8y 3=, 即点P 的坐标为80,3⎛⎫ ⎪⎝⎭, 8OP 3∴=. 故答案为83. 【点睛】本题考查一次函数的性质、矩形的性质、最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15、4【解析】【分析】因为在平行四边形ABCD 中,AQ ∥BP ,只要再证明AQ=BP 即可,即点P 所走的路程等于Q 点在边AD 上未走的路程.【详解】由已知可得:BP =2t ,DQ =t ,∴AQ=12−t.∵四边形ABPQ为平行四边形,∴12−t=2t,∴t=4,∴t=4秒时,四边形ABPQ为平行四边形.【点睛】本题考查了平行四边形的性质,解题的关键是找到等量关系AQ=BP.16、3或3 2【解析】【分析】分两种情况:①当∠EFC=90°,先判断出点F在对角线AC上,利用勾股定理求出AC,设BE=x,表示出CE,根据翻折变换的性质得到AF=AB,EF=BE,再根据Rt△CEF利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF 是正方形,根据正方形的性质即可求解.【详解】分两种情况:①当∠EFC=90°,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,5==设BE=x,则CE=BC-BE=4-x,由翻折的性质得AF=AB=3,EF=BE=x,∴CF=AC-AF=5-3=2在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4-x)2,解得x=32;②当∠CEF=90°,如图2由翻折的性质可知∠AEB=∠AEF=45°,∴四边形ABEF是正方形,∴BE=AB=3,故BE 的长为3或32【点睛】此题主要考查矩形的折叠问题,解题的关键是根据图形进行分类讨论.17、13【解析】试题解析:1060%1625%2015%13.⨯+⨯+⨯=故答案为13.点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.18、1【解析】【详解】∵AM =AC ,BN =BC ,∴AB 是△ABC 的中位线,∴AB =12MN =1m , 故答案为1.三、解答题(共66分)19、 (1)x=3; (2)1或-9.【解析】(1)按照解分式方程的一般步骤进行解答即可;(2)根据本题特点,用“因式分解法”进行解答即可.详解: (1)解分式方程:13.2x x=- 去分母得:36x x =-,移项得:36x x -=-,合并同类项得:26x -=-,系数化为1得:3x =,检验:当3x =时,(2)30x x -=≠,∴原方程的解是:3x =;(2)解一元二次方程x 2+8x ﹣9=1,原方程可化为:(9)(1)0x x +-=,∴90x +=或10x -=,解得:1291x x =-=,.点睛:(1)解答第1小题的关键是:①熟知解分式方程的基本思路是:去分母,化分式方程为整式方程;②知道解分式方程,当求得未知数的值后,需检验所得结果是否是原方程的根,再作结论;(2)解第2小题的关键是能够通过因式分解把原方程化为:(9)(1)0x x +-=的形式.20、小华1.20~1【解析】试题分析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性,所以估计该校全体八年级学生平均每周上网时间为1.2小时;(2)根据中位数的概念找出第20和第21名同学所在的上网时间段即可;(3)先求出随机调查的40名学生中应当减少上网时间的学生的频率,再乘以320求出学生人数即可.试题解析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性.故答案为小华;1.2.(2)由图表可知第20和第21名同学所在的上网时间段为:0∼1h /周,所以中位数为:0∼1h /周.故答案为0∼1.(3)随机调查的40名学生中应当减少上网时间的学生的频率为:620.240+=, 故该校全体八年级学生中应当减少上网时间的人数为:320×0.2=64(人). 答:该校全体八年级学生中应当减少上网时间的人数为64人.21、(1)5000;甲;(2)2005000(015){4008000(1520)x x y x x -+<<=-+≤≤;(3)750米;(4)150米/分. 【解析】【分析】(1)根据x=0时,y=5000可知,他们在进行5000米的长跑训练,在0<x <15的时间内,y y 甲乙,所以甲跑的快;(2)分段求解析式,在0<x <15的时间内,由点(0,5000),(15,2000)来求解析式;在15≤x ≤20的时间内,由点(15,2000),(20,0)来求解析式;(3)根据题意求得甲的速度为250米/分,然后计算甲距离终点的路程,再计算他们的距离;(4)在15<x <20的时间段内,求得乙的速度,然后计算他们的速度差.【详解】(1)根据图象信息可知,他们在进行5000米的长跑训练,在0<x<15的时间段内,直线y 甲的倾斜程度大于直线y 乙的倾斜程度,所以甲的速度较快;(2)①在0<x <15内,设y=kx+b ,把(0,5000),(15,2000)代入解析式,解得k=-200,b=5000,所以y=-200x+5000;②在15≤x ≤20内,设y k x b ''=+,把(15,2000),(20,0)代入解析式,解得400k '=-,8000b '=,所以y=-400x+8000,所以乙距终点的路程y (米)与跑步时间x (分)之间的函数关系式为:2005000(015){4008000(1520)x x y x x -+<<=-+≤≤; (3)甲的速度为5000÷20=250(米/分),250×15=3750米,距终点5000-3750=1250米, 此时乙距终点2000米,所以他们的距离为2000-1250=750米;(4)在15<x <20的时间段内,乙的速度为2000÷5=400米/分,甲的速度为250米/分,所以他们的速度差为400-250=150米/分.考点:函数图象;求一次函数解析式.22、教学楼A 与办公楼B 之间的距离大约为94.6米.【解析】【分析】由已知可得△ABP 中∠A=60°∠B=45°且PC=60m ,要求AB 的长,可以先求出AC 和BC 的长就可转化为运用三角函数解直角三角形.【详解】由题意可知∠ACP=∠BCP= 90°,∠APC=30°,∠BPC=45°在Rt △BPC 中,∵∠BCP=90°,∠BPC =45°,∴60BC PC ==在Rt △ACP 中,∵∠ACP=90°,∠APC =30°, ∴•303060203AC PC tan tan =︒=︒⨯= ∴60203AB AC BC =+=+≈60+20×1.732 =94.64≈94.6(米)答:教学楼A 与办公楼B 之间的距离大约为94.6米.【点睛】本题考查了解直角三角形的应用--方向角问题.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23、(1)200 m=70 n=0.12 ;(2)见解析 ;(3)224 .【解析】【分析】(1)用第一个分数段的频数除以它的频率可得到调查的总人数,然后用总人数乘以0.35得到m 的值,用24除以总人数可得到n 的值;(2)利用80-90的频数为70可补全频数分布直方图;(3)估计样本估计总体,用800乘以前面两分数段的频率之和可估计出该校安全意识不强的学生数.【详解】解:(1)16÷0.08=200, m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)800×(0.08+0.2)=224,所以该校安全意识不强的学生约有224人.【点睛】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.24、小巷的宽度CD为2.2米.【解析】【分析】先根据勾股定理求出AB的长,同理可得出AD的长,进而可得出结论.【详解】解:在Rt△ACB中,∵∠ACB=90°,BC=2.4米,AC=0.7米,∴AB2=0.72+2.42=6.1,在Rt△AB′D中,∵∠ADB′=90°,B′D=2米,∴AD2+22=6.1,∴AD2=2.1.∵AD>0,∴AD=1.5米.∴CD=AC+AD=0.7+1.5=2.2米.答:小巷的宽度CD为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.25、EF=5 cm.【解析】【分析】根据折叠的性质得到AF=AD ,DE=EF ,根据勾股定理计算即可.【详解】解:由折叠的性质可知,AF =AD =BC =10 cm ,在Rt △ABF 中,BF =22AF AB -=22108-=6(cm),∴FC =BC ﹣BF =10﹣6=4(cm)设EF =x cm ,则DE =EF =x ,CE =8﹣x ,在Rt △CEF 中,EF 2=CE 2+FC 2,即x 2=(8﹣x)2+42,解得x =5,即EF =5cm .【点睛】本题考查的是翻转变换的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.26、①见解析;②234AA =【解析】试题分析:(1)根据对称点平分对应点连线可找到各点的对应点,从而顺次连接即可得出△A 1B 1C 1;(2)根据图形旋转的性质画出△A 2B 2C 2,并求得2AA 的长.试题解析:①②∴222A B C 即为所求设点()1,0为D 点,∵Rt ODA ,90ODA ∠=︒, ∴222OD DA OA +=,217OA =. ∵0OA >,∴OA = ∵旋转,∴290AOA ∠=︒,12OA OA = ∵2Rt AOA ,290AOA ∠=︒,∴22222OA OA AA +=,2234AA =. ∵20AA >,∴2AA。

【推荐】杭州市度八年级数学下册期末试卷(有答案)

【推荐】杭州市度八年级数学下册期末试卷(有答案)

2019-2020学年度八年级下学期期末数学试卷一、仔细选一选(本题有10 个小题,每小题3 分,共30 分)1.已知二次根式,则a的取值范围是()A.B.C.D.2.下列图形是中心对称图形的个数有()A.1 个B.2 个C.3 个D.4个3.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数B.中位数C.众数D.方差4.矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角5.用下列哪种方法解方程3x2=16x最合适()A.开平方法B.配方法C.因式分解法D.公式法6.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变7.已知(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,则y1,y2,y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y28.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都小于45°C.有一个内角大于等于45°D.每一个内角都大于等于45°9.直线与x轴,y轴分别交于A,B两点,把△AOB绕着A点旋转180°得到△AO′B′,则点B′的坐标为()A.(4,2)B.(4,﹣2)C.(,2)D.(,﹣2)10.如图,以▱ABCD 的四条边为边,分别向外作正方形,连结EF,GH,IJ,KL.如果▱ABCD 的面积为8,则图中阴影部分四个三角形的面积和为()A.8 B.12 C.16 D.20二、认真填一填(本题有6小题,每小题4 分,共24分)11.在、、、、中,是最简二次根式的是.12.已知多边形的内角和等于外角和的三倍,则内角和为;边数为.13.已知=0是关于x的一元二次方程,则k为.14.如图,四边形ABCD是菱形,对角线AC=8,BD=6,E,F分别是AB,AD 的中点,连接EO 并延长交CD于G点,连接FO并延长交CB于H点,△OEF与△OGH组成的图形称为蝶形,则蝶形的周长为.15.如图,将边长为6的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分为菱形时,则AA′为.16.如图,一个正方形内两个相邻正方形的面积分别为4和2,它们都有两个顶点在大正方形的边上且组成的图形为轴对称图形,则图中阴影部分的面积为.三、全面答一答(本题有7个小题,共66分.要求写出文字说明、证明过程或推演步骤)17.计算:(1).18.如图,AC是▱ABCD的一条对角线,BE⊥AC,DF⊥AC,垂足分别为E,F.(1)求证:△ADF≌△CBE;求证:四边形DFBE是平行四边形.19.如图,将表面积为550cm2的包装盒剪开,铺平,纸样如图所示,包装盒的高为15cm,请求出包装盒底面的长与宽.(3)20.某初中要调查学校学生(总数1000人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全上述统计图(直接填在图中);试确定这个样本的中位数和众数;(3)请估计该学校1000名学生双休日课外阅读时间不少于4小时的人数.21.已知方程:x2﹣2x﹣8=0,解决一下问题:(1)不解方程判断此方程的根的情况;请按要求分别解这个方程:①配方法;②因式分解法.(3)这些方法都是将解转化为解;(4)尝试解方程:x3+2x2+x=0.22.在矩形ABCD 中,AB=3,BC=4,E,F是对角线ACS行的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为t秒,当其中一个动点到达后就停止运动.(1)若G,H分别是AB,DC中点,求证:四边形EGFH 始终是平行四边形.在(1)条件下,当t 为何值时,四边形EGFH 为矩形.(3)若G,H分别是折线A﹣B﹣C,C﹣D﹣A上的动点,与E,F相同的速度同时出发,当t为何值时,四边形EGFH 为菱形.23.如图1,正方形ABCD的边长为4,以AB所在的直线为x轴,以AD所在的直线为y轴建立平面直角坐标系.反比例函数的图象与CD交于E点,与CB交于F点.(1)求证:AE=AF;若△AEF 的面积为6,求反比例函数的解析式;(3)在的条件下,将△AEF以每秒1个单位的速度沿x轴的正方向平移,如图2,设它与正方形ABCD的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<4).八年级下学期期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.已知二次根式,则a的取值范围是()A.B.C.D.【考点】二次根式有意义的条件.【分析】直接利用二次根式的性质得出a的取值范围.【解答】解:∵二次根式有意义,∴2a﹣1≥0,解得:a≥,则a的取值范围是:a≥.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.2.下列图形是中心对称图形的个数有()A.1 个B.2 个C.3 个D.4个【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析.【解答】解:第一、四个图形是中心对称图形,第二、三个图形不是中心对称图形,故选:B.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为方差.故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.【解答】解:A、对角线互相平分是菱形矩形都具有的性质,故A选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B 选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C 选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D 选项错误;故选:C.【点评】本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.5.用下列哪种方法解方程3x2=16x最合适()A.开平方法B.配方法C.因式分解法D.公式法【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】观察方程特点确定出适当的解法即可.【解答】解:方程3x2=16x最合适因式分解法.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.6.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变【考点】反比例函数系数k的几何意义.【专题】探究型.【分析】根据三角形ABC 的面积是点C 的横坐标与纵坐标的乘积除以2,和点C在函数y=(x>0)的图象上,可以解答本题.【解答】解:∵等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y= (x>0)的图象上运动,且AC=BC,设点C的坐标为(x,),∴(k为常数).即△ABC的面积不变.故选A.【点评】本题考查反比例函数系数k的几何意义,解题的关键是将反比例的系数k与三角形的面积联系在一起.7.已知(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,则y1,y2,y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣a2<0,∴此函数图象的两个分支分别位于二四象限,并且在每一象限内,y随x的增大而增大.∵(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,∴(﹣3,y1),(﹣15,y2)在第二象限,点在第四象限,∴y3<y2<y1.故选A.【点评】本题考查的是反比例函数函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都小于45°C.有一个内角大于等于45°D.每一个内角都大于等于45°【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【解答】解:用反证法证明“钝角三角形中必有一个内角小于45°”时,应先假设这个三角形中每一个内角都不小于或等于45°,即每一个内角都大于45°.故选:D.【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.直线与x轴,y轴分别交于A,B两点,把△AOB绕着A点旋转180°得到△AO′B′,则点B′的坐标为()A.(4,2)B.(4,﹣2)C.(,2)D.(,﹣2)【考点】坐标与图形变化-旋转;一次函数图象上点的坐标特征.【专题】计算题.【分析】先根据一次函数图象上点的坐标特征求出A点和B点坐标,则可得到OA=2,OB=2,再根据旋转的性质得到AO′=AO=2,O′B′=OB=2,∠AO′B′=∠AOB=90°,然后根据第二象限点的坐标特征写出点B′的坐标.【解答】解:当y=0时,﹣x+2=0,解得x=2 ,则A,所以OA=2 ,当x=0 时,=2,则B(0,2),所以OB=2,因为△AOB 绕着A 点旋转180°得到△AO′B′,所以AO′=AO=2,O′B′=OB=2,∠AO′B′=∠AOB=90°,所以点B′的坐标为(4,﹣2).故选D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了一次函数图象上点的坐标特征.10.如图,以▱ABCD 的四条边为边,分别向外作正方形,连结EF,GH,IJ,KL.如果▱ABCD 的面积为8,则图中阴影部分四个三角形的面积和为()A.8 B.12 C.16 D.20【考点】全等三角形的判定与性质;平行四边形的性质;正方形的性质.【分析】过D作DN⊥AB于N,过E作EM⊥FA交FA延长线于M,连接AC,BD,求出∠EAM=∠BAD,根据锐角三角形函数定义求出EM=DN,求出△AEF和△ABD面积相等,同理求出理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,代入S=S△AEF+S△BGH+S△CIJ+S△DLK得出S=2S平行四边形ABCD,代入求出即可.【解答】解:过D作DN⊥AB于N,过E作EM⊥FA交FA延长线于M,连接AC,BD,∵四边形ABGF和四边形ADLE是正方形,∴AE=AD,AF=AB,∠FAB=∠EAD=90°,∴∠EAF+∠BAD=360°﹣90°﹣90°=180°,∵∠EAF+∠EAM=180°,∴∠EAM=∠DAN,∴sin∠EAM=,sin∠DAN=,∵AE=AD,∴EM=DN,∵S△AEF=AF×EM,S△ADB=AB×DN,∴S△AEF=S△ABD,同理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,∴阴影部分的面积S=S△AEF+S△BGH+S△CIJ+S△DLK=2S=2×8=16.故选C平行四边形ABCD【点评】本题考查了平行四边形的性质,锐角三角函数的定义,三角形的面积等知识点的应用,关键是根据S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,进行计算解答即可.二、认真填一填(本题有6小题,每小题4 分,共24分)11.在、、、、中,是最简二次根式的是.【考点】最简二次根式.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;被开方数中不含能开得尽方的因数或因式,分析得出答案.【解答】解:在、、、、中,只有是最简二次根式.故答案为:.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.12.已知多边形的内角和等于外角和的三倍,则内角和为1080°;边数为8 .【考点】多边形内角与外角.【分析】首先设边数为n,由题意得等量关系:内角和=360°×3,根据等量关系列出方程,可解出n的值,然后再利用内角和公式计算内角和.【解答】解:设边数为n,由题意得:180(n﹣2)=360×3,解得:n=8,内角和为:180°×(8﹣2)=1080°,故答案为:1080°;8.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和定理:(n﹣2)•180°(n≥3)且n 为整数),多边形的外角和等于360 度.13.已知=0 是关于x 的一元二次方程,则k 为﹣2 .【考点】一元二次方程的定义.【分析】根据一元二次方程:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数,可得答案.【解答】解:由=0是关于x的一元二次方程,得k2﹣2=2,且1﹣k≥0,解得k=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.14.如图,四边形ABCD是菱形,对角线AC=8,BD=6,E,F分别是AB,AD 的中点,连接EO 并延长交CD于G点,连接FO并延长交CB于H点,△OEF与△OGH组成的图形称为蝶形,则蝶形的周长为16 .【考点】菱形的性质.【分析】利用菱形的性质结合三角形中位线的性质得出GE=BC,HF=AB,进而得出答案.【解答】解:∵四边形ABCD是菱形,对角线AC=8,BD=6,∴BO=DO=3,CO=AO=4,BD⊥AC,∴BC=CD=AD=AB=5,∵E,F分别是AB,AD的中点,∴EF=BD=3,∵E是AB 的中点,O是AC的中点,∴EO∥BC,∴GO∥BC,则EG=BC=5,同理可得:HF=5,HG=3,故蝶形的周长为:5+5+3+3=16.故答案为:16.【点评】此题主要考查了菱形的性质以及三角形中位线的性质,根据题意得出EG=BC=5是解题关键.15.如图,将边长为6 的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分为菱形时,则AA′为12﹣6.【考点】菱形的性质;正方形的性质;平移的性质.【分析】利用菱形的性质结合正方形的性质得出A′D=DF,AA′=A′E,进而利用勾股定理得出答案.【解答】解:如图所示:∵四边形A′ECF是菱形,∴A′E=EC=FC=A′F,∵边长为6的正方形ABCD沿其对角线AC 剪开,再把△ABC沿着AD方向平移,∴∠A=∠ACD=45°,∴AD=DC,则A′D=DF,AA′=A′E,∴设A′E=x,则A′D=DF=6﹣x,A′F=x,故在Rt△A′DF中,x2=(6﹣x)2+(6﹣x)2,解得:x1=12﹣6 ,x2=12+6>6(不合题意舍去),故AA′为:12﹣6 .故答案为:12﹣6 .【点评】此题主要考查了菱形的性质和正方形的性质、勾股定理等知识,得出A′D=DF,AA′=A′E是解题关键.16.如图,一个正方形内两个相邻正方形的面积分别为4和2,它们都有两个顶点在大正方形的边上且组成的图形为轴对称图形,则图中阴影部分的面积为+ .【考点】正方形的性质;轴对称图形.【分析】连接AC;由正方形的性质和已知条件得出EF= ,GH=2,∠EAF=∠GCH=90°,由轴对称图形的性质得出AE=AF,CG=CH,得出AM=EF= ,CN=GH=1,求出AC的长,得出正方形ABCD的面积,由大正方形的面积减去两个小正方形的面积即可得出图中阴影部分的面积.【解答】解:如图所示:连接AC;∵正方形ABCD内两个相邻正方形的面积分别为4和2,∴EF=,GH=2,∠EAF=∠GCH=90°,根据题意得:AE=AF,CG=CH,∴AM= EF=,CN= GH=1,∴AC= ++2+1= +3,∴正方形ABCD的面积=AC2=(+3)2= +,∴图中阴影部分的面积=+ ﹣4﹣2=+ ;故答案为:+.【点评】本题考查了正方形的性质、轴对称图形的性质、等腰直角三角形的性质、正方形面积的计算方法;熟练掌握正方形的性质,通过作辅助线求出对角线AC是解决问题的关键.三、全面答一答(本题有7个小题,共66分.要求写出文字说明、证明过程或推演步骤)17.计算:(1).(3)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)分母有理化即可;根据二次根式的性质化简即可;(3)先提(+),然后合并后利用平方差公式计算.【解答】解:(1)原式=;原式=×2 =3 ;(3)原式=(+ )(3﹣2﹣2+)=(+)(﹣)=()2﹣()2=3﹣2=1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.如图,AC是▱ABCD的一条对角线,BE⊥AC,DF⊥AC,垂足分别为E,F.(1)求证:△ADF≌△CBE;求证:四边形DFBE是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出内错角相等∠DAF=∠BCE,证出∠AFD=∠CEB=90°,由AAS 证明△ADF≌△CBE 即可;由(1)得:△ADF≌△CBE,由全等三角形的性质得出DF=BE,再由BE∥DF,即可得出四边形DFBE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE,∵BE⊥AC,DF⊥AC,∴BE∥DF,∠AFD=∠CEB=90°,在△ADF 和△CBE中,,∴:△ADF≌△CBE(AAS);解:如图所示:由(1)得:△ADF≌△CBE,∴DF=BE,∵BE∥DF,∴四边形DFBE是平行四边形.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.19.如图,将表面积为550cm2的包装盒剪开,铺平,纸样如图所示,包装盒的高为15cm,请求出包装盒底面的长与宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设包装盒底面的长为xcm,则包装盒底面的宽为=15﹣x(cm),求得包装盒的表面积,利用表面积为550cm2列出方程解答即可.【解答】解:设包装盒底面的长为xcm,则包装盒底面的宽为=15﹣x(cm),由题意得2×[(15﹣x)×15+15x+(15﹣x)×x=550整理得:x2﹣15x+50=0,解得:x1=10,x2=5则10﹣x=5或10.答:包装盒底面的长为10cm,则包装盒底面的宽5cm.【点评】此题考查一元二次方程的实际运用,解题的关键是熟记长方体的表面积公式.20.某初中要调查学校学生(总数1000人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全上述统计图(直接填在图中);试确定这个样本的中位数和众数;(3)请估计该学校1000名学生双休日课外阅读时间不少于4小时的人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,进而补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【解答】解:(1)总人数:6÷12%=50(人),阅读3小时以上人数:50﹣4﹣6﹣8﹣14﹣6=12(人),阅读3小时以上人数的百分比为12÷50=24%,阅读0小时以上人数的百分比为4÷50=8%.图如下:中位数是3小时,众数是4 小时;(3)1000×=1000×40%=400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点评】此题主要考查了频数分布直方图、扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.已知方程:x2﹣2x﹣8=0,解决一下问题:(1)不解方程判断此方程的根的情况;请按要求分别解这个方程:①配方法;②因式分解法.(3)这些方法都是将解一元二次方程转化为解一元一次方程;(4)尝试解方程:x3+2x2+x=0.【考点】根的判别式;解一元二次方程-配方法;解一元二次方程-因式分解法.【分析】(1)由a=1,b=﹣2,c=﹣8,可得△=b2﹣4ac=36>0,即可判定此方程的根的情况;①直接利用配方法解一元二次方程;②利用十字相等法解一元二次方程;(3)利用消元法,将解一元二次方程转化为解一元一次方程;(4)利用因式分解法求解即可求得答案.【解答】解:(1)∵a=1,b=﹣2,c=﹣8,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣8)=36>0,∴此方程有两个不相等的实数根;①配方法:∵x2﹣2x﹣8=0,∴x2﹣2x=8,∴x2﹣2x+1=8+1,∴(x﹣1)2=9,∴x﹣1=±3,解得:x1=4,x2=﹣2;②因式分解法:∵x2﹣2x﹣8=0,∴(x﹣4)(x+2)=0,解得:x1=4,x2=﹣2;(3)答案为:一元二次方程;一元一次方程;(4)∵x3+2x2+x=0,∴x(x2+2x+1)=0,∴x(x+1)2=0,∴x=0,x+1=0,解得:x1=0,x2=x3=﹣1.【点评】此题考查了一元二次方程的解法以及根的判别式.注意△>0⇔方程有两个不相等的实数根.22.在矩形ABCD 中,AB=3,BC=4,E,F是对角线ACS行的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为t秒,当其中一个动点到达后就停止运动.(1)若G,H分别是AB,DC中点,求证:四边形EGFH 始终是平行四边形.在(1)条件下,当t 为何值时,四边形EGFH 为矩形.(3)若G,H分别是折线A﹣B﹣C,C﹣D﹣A上的动点,与E,F相同的速度同时出发,当t为何值时,四边形EGFH 为菱形.【考点】四边形综合题.【分析】(1)由矩形的性质得出AB=CD,AB∥CD,AD∥BC,∠B=90°,由勾股定理求出AC=5,由SAS证明△AFG≌△CEH,得出GF=HE,同理得出GE=HF,即可得出结论;先证明四边形BCHG是平行四边形,得出GH=BC=4,当对角线EF=GH=4时,平行四边形EGFH是矩形,分两种情况:①AE=CF=t,得出EF=5﹣2t=4,解方程即可;②AE=CF=t,得出EF=5﹣2 (5﹣t)=4,解方程即可;(3)连接AG、CH,由菱形的性质得出GH⊥EF,OG=OH,OE=OF,得出OA=OC,AG=AH,证出四边形AGCH是菱形,得出AG=CG,设AG=CG=x,则BG=4﹣x,由勾股定理得出方程,解方程求出BG,得出AB+BG=,即可得出t的值.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴AC==5,∠GAF=∠HCE,∵G,H分别是AB,DC中点,∴AG=BG,CH=DH,∴AG=CH,∵AE=CF,∴AF=CE,在△AFG 和△CEH中,,∴△AFG≌△CEH(SAS),∴GF=HE,同理:GE=HF,∴四边形EGFH是平行四边形.解:由(1)得:BG=CH,BG∥CH,∴四边形BCHG是平行四边形,∴GH=BC=4,当EF=GH=4时,平行四边形EGFH是矩形,分两种情况:①AE=CF=t,EF=5﹣2t=4,解得:t=0.5;②AE=CF=t,EF=5﹣2(5﹣t)=4,解得:t=4.5;综上所述:当t为0.5s或4.5s时,四边形EGFH为矩形.(3)解:连接AG、CH,如图所示:∵四边形EGFH为菱形,∴GH⊥EF,OG=OH,OE=OF,∴OA=OC,AG=AH,∴四边形AGCH是菱形,∴AG=CG,设AG=CG=x,则BG=4﹣x,由勾股定理得:AB2+BG2=AG2,即32+(4﹣x)2=x2,解得:x=,∴BG=4﹣=,∴AB+BG=3+=,即t 为s时,四边形EGFH 为菱形.【点评】本题是四边形综合题目,考查了矩形的性质、全等三角形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线证明四边形是菱形,运用勾股定理得出方程才能得出结果.23.如图1,正方形ABCD的边长为4,以AB所在的直线为x轴,以AD所在的直线为y轴建立平面直角坐标系.反比例函数的图象与CD交于E点,与CB交于F点.(1)求证:AE=AF;若△AEF 的面积为6,求反比例函数的解析式;(3)在的条件下,将△AEF以每秒1个单位的速度沿x轴的正方向平移,如图2,设它与正方形ABCD的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<4).【考点】反比例函数综合题.【分析】(1)根据反比例函数图象上点的坐标特点可得出DE=BF,故可得出结论;设DE=BF=a,则CE=4﹣a,CF=4﹣a,再由S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△ECF即可得出a的值,进而可得出反比例函数的解析式;(3)根据中EF两点的坐标用t表示出AB,BG,CE=CK的长,再由S=S 正方形ABCD﹣S△梯形AA′ED ﹣S△ABG﹣S△ECK即可得出结论.【解答】(1)证明:∵点E、F均在反比例函数y=(k>0)的图象上,∴AD•DE=AB•BF.∵AD=AB,∴DE=BF.在△ADE 与△ABF中,,∴△ADE≌△ABF,∴AE=AF;解:设DE=BF=a,则CE=4﹣a,CF=4﹣a,∵△AEF 的面积为6,∴S△AEF=S﹣S△ADE﹣S△ABF﹣S△ECF正方形ABCD=4×4﹣×4a﹣×4a﹣(4﹣a)(4﹣a)=16﹣4a﹣(4﹣a)(4﹣a)=6,解得a=2,∴EF=2×4=8,∴反比例函数的解析式为y=;(3)解:∵由知E,F(4,2),∴AB=4﹣t,BG=AB=2﹣t,CE=CK=2﹣t,∴S=S﹣S△梯形AA′ED﹣S△ABG﹣S△ECK正方形ABCD=4×4﹣××4﹣(4﹣t)•﹣=16﹣4﹣4t﹣t2﹣4+2t﹣2﹣t2+2t=﹣t2+6.【点评】本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点、正方形的性质及梯形的面积公式等知识,在解答此题时要注意整体思想的运用。

2020年浙江省杭州市八年级第二学期期末学业水平测试数学试题含解析

2020年浙江省杭州市八年级第二学期期末学业水平测试数学试题含解析

2020年浙江省杭州市八年级第二学期期末学业水平测试数学试题一、选择题(每题只有一个答案正确) 1.化简的结果是( )A .9B .-3C .D .32.如图所示,在矩形纸片中,,,折叠纸片使边与对角线重合,点落在点处,折痕为,则的长为( )A .B .C .D .3.如图,在梯形ABCD 中,AD//BC ,E 为BC 上一点,DE//AB ,AD 的长为2,BC 的长为4,则CE 的长为( ).A .1B .2C .3D .44.一组数据共50个,分为6组,第1—4组的频数分别是5,7,8,10,第5组的频率是0.20,则第6组的频数是( ) A .10B .11C .12D .155.如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD 8=,BD 12=,AC 6=,则OBC 的周长为()A .13B .17C .20D .266.平行四边形所具有的性质是( ) A .对角线相等 B .邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等7.直线y=kx+b不经过第三象限,则k、b应满足()A.k>0,b<0 B.k<0,b>0 C.k<0 b<0 D.k<0,b≥08.如图,在四边形ABCD中,动点P从点A开始沿A B C D→→→的路径匀速前进到D为止,在这个过程中,APD∆的面积S随时间t的变化关系用图象表示正确的是()A .B .C .D .9.下列函数(1)y=πx;(2)y=2x-1;(3)1 yx=;(4)y=x2-1中,是一次函数的有()A.4个B.3个C.2个D.1个10.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( )A.平行四边形B.对角线相等的四边形C.矩形D.对角线互相垂直的四边二、填空题11.已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.12.不等式组132,220xxx+⎧-≥⎪⎨⎪-<⎩的解集是________;13.如图,正方形OMNP的定点与正方形ABCD的对角线交点O重合,正方形ABCD和正方形OMNP 的边长都是2cm,则图中重叠部分的面积是__________2cm.14.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.15.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.16.某一次函数的图象经过点(1,2-),且函数y 的值随自变量x 的增大而减小,请写出一个满足上述条件的函数关系式:______________.17.如图,在ABC ∆中,AD 是BC 边上的中线,F 是AD 上一点,且:1:4AF FD =连结CF ,并延长交AB 于点E ,则:AE EB =_________.三、解答题18.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表: 本数(本) 人数(人数) 百分比 5 a 0.2 6 18 0.36 7 14 b 8 8 0.16 合计c1根据以上提供的信息,解答下列问题:(1)a =_____,b =_____,c =______; (2)补全上面的条形统计图;(3)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的有多少名? 19.(6分)如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F,(1)求证:OE=OF ;(2)若CE=12,CF=5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由. 20.(6分)分解因式:()()22ax y b y x -+-.21.(6分)某学校抽查了某班级某月10天的用电量,数据如下表: 用电量/度 8 9 10 13 14 15 天数112312(1)这10天用电量的众数是______度,中位数是______度; (2)求这个班级平均每天的用电量;(3)该校共有20个班级,该月共计30天,试估计该校该月总的用电量.22.(8分)为积极响应“弘扬传统文化”的号召,万州区某中学举行了一次中学生诗词大赛活动.小何同学对他所在八年级一班参加诗词大赛活动同学的成绩进行了整理,成绩分别100分、90分、80分、70分,并绘制出如下的统计图.请根据以上提供的信息,解答下列问题:(1)该校八年级(1)班参加诗词大赛成绩的众数为______分;并补全条形统计图.(2)求该校八年级(1)班参加诗词大赛同学成绩的平均数;(3)结合平时成绩、期中成绩和班级预选成绩(如下表),年级拟从该班小何和小王的两位同学中选一名学生参加区级决赛,按1:3:6的比例计算两位同学的最终得分,请你根据计算结果确定选谁参加区级决赛.学生姓名平时成绩期中成绩预选成绩小何80 90 100 小王90 100 9023.(8分)已知点P(1,m)、Q(n,1)在反比例函数y=5x的图象上,直线y=kx+b经过点P、Q,且与x轴、y轴的交点分别为A、B两点.(1)求k、b的值;(2)O为坐标原点,C在直线y=kx+b上且AB=AC,点D在坐标平面上,顺次联结点O、B、C、D的四边形OBCD满足:BC∥OD,BO=CD,求满足条件的D点坐标.24.(10分)解不等式组32(1)2913532x xxx--≤+⎧⎪⎨-->⎪⎩,并在数轴上表示出它的解集.25.(10分)某班进行了一次数学測验,将成绩绘制成频数分布表和频数直方图的一部分如下: 成绩频数(人数)频率5060x≤<50.16070x≤<100.27080x≤<200.48090x≤<a0.290100x≤<5b(1)在频数分布表中,a的值为________,b的值为________;(2)将频数直方图补充完整;(3)成绩在80分以上(含80)的学生人数占全班总人数的百分比是多少?参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据算术平方根的性质,可得答案.【详解】解:,故D正确,故选:D.【点睛】本题考查了算术平方根的计算,熟练掌握算术平方根的性质是解题关键.2.D【解析】【分析】由题得BD==5,根据折叠的性质得出△ADG≌△A′DG,继而得A′G=AG,A′D=AD,A′B=BD-A′G,再Rt△A′BG根据勾股定理构建等式求解即可.【详解】解:由题得BD==5,根据折叠的性质得出:△ADG≌△A′DG,∴A′G=AG,A′D=AD=3,A′B=BD-A′G=5-3=2,BG=4-A′G在Rt△A′BG中,BG2=A′G2+A′B2可得:,解得A′G=,则AG=,故选:D.【点睛】本题主要考查折叠的性质,由已知能够注意到△ADG≌△A′DG是解决的关键.3.B 【解析】 【分析】先证明四边形ABED 为平行四边形,再利用平行四边形的性质进行计算即可. 【详解】∵//AD BC ,//DE AB , ∴四边形ABED 为平行四边形, ∴AD=BE=1, 又∵BC=4,∴CE=BC -BE=4-1=1. 故选:B . 【点睛】本题考查平行四边形的判定与性质,需熟记判定定理及性质. 4.A 【解析】首先根据频数=总数×频率,求得第五组频数;再根据各组的频数和等于总数,求得第六组的频数:根据题意,得 第五组频数是50×0.2=1,故第六组的频数是50-5-7-8-1-1=1. 故选A . 5.B 【解析】 【分析】由平行四边形的性质得出OA OC 3==,OB OD 6==,BC AD 8==,即可求出OBC 的周长. 【详解】四边形ABCD 是平行四边形,OA OC 3∴==,OB OD 6==,BC AD 8==, OBC ∴的周长OB OC AD 36817=++=++=.故选:B . 【点睛】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分. 6.D【解析】 【分析】根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案. 【详解】平行四边形的对角相等,对角线互相平分,对边平行且相等. 故选D . 【点睛】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键. 7.D . 【解析】试题解析:∵直线y=kx+b 不经过第三象限,∴y=kx+b 的图象经过第一、二、四象限或第二,四象限, ∵直线必经过二、四象限, ∴k <1.当图象过一、二四象限,直线与y 轴正半轴相交时:b >1. 当图象过原点时:b=1, ∴b≥1, 故选D .考点:一次函数图象与系数的关系. 8.C 【解析】 【分析】根据点P 的运动过程可知:APD ∆的底边为AD ,而且AD 始终不变,点P 到直线AD 的距离为APD ∆的高,根据高的变化即可判断S 与t 的函数图象. 【详解】解:设点P 到直线AD 的距离为h ,APD ∴∆的面积为:1·2S AD h =, 当P 在线段AB 运动时, 此时h 不断增大,S 也不端增大 当P 在线段BC 上运动时, 此时h 不变,S 也不变, 当P 在线段CD 上运动时,此时h不断减小,S不断减少,又因为匀速行驶且CD AB>,所以在线段CD上运动的时间大于在线段AB上运动的时间故选C.【点睛】本题考查函数图象,解题的关键是根据点P到直线AD的距离来判断s与t的关系,本题属于基础题型.9.C【解析】一次函数解析式形如y kx=+b,据此可知(1)y=πx,(2)y=2x-1是一次函数,共有2个,故选C10.B【解析】试题分析:根据三角形中位线的性质及菱形的性质,可证四边形的对角线相等.解:如图所示,∵四边形EFGH是菱形,∴EH=FG=EF=HG=12BD=12AC,故AC=BD.即原四边形的对角线相等.故选B.点睛:本题主要考查中点四边形.画出图形,并利用三角形中位线与菱形的性质是解题的关键.二、填空题11.-1.【解析】【分析】先利用提公因式法因式分解,然后利用整体代入法求值即可.【详解】解:∵ab2+a2b=ab(a+b),而a+b=5,ab=-6,∴ab2+a2b=-6×5=-1.故答案为:-1.【点睛】此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键. 12.1≤x<2 【解析】 【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集. 【详解】132220x x x +⎧-≥⎪⎨⎪-<⎩①②, 解①得 x ≥1, 解②得 x<2, ∴1≤x<2. 故答案为:1≤x<2. 【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 13.1 【解析】 【分析】根据题意可得重叠部分的面积和AOD ∆面积相等,求出AOD ∆面积即可. 【详解】 解:如图,四边形ABCD 和OMNP 是正方形45,,90,90DAO ODC OA OD AOD POM ︒︒︒∴∠=∠==∠=∠=又,AOE AOD EOD DOF POM EOD ∠=∠-∠∠=∠-∠AOE DOF ∴∠=∠()AOE DOF ASA ∴∆≅∆AOE DOF S S ∴=211=2144DOF DOE AOE DOE AOD ABCD S S S S S S S ∆∆∆∆∆∴+=+===⨯=正方形重叠部分 故答案为:1【点睛】 本题考查了正方形的性质,将重叠部分的面积进行转化是解题的关键.14.八【解析】360°÷(180°-135°)=815.5【解析】解:如图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB=1.∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.∵点C′在直线y=4x ﹣6上,∴4x ﹣6=4,解得 x=3.即OA′=3,∴CC′=3﹣1=4,∴S ▱BCC′B′=4×4=5 (cm 4).即线段BC 扫过的面积为5cm 4.故答案为5.16.y=-x-1(答案不唯一).【解析】【分析】根据y 随着x 的增大而减小推断出k <1的关系,再利用过点(1,-2)来确定函数的解析式.【详解】解:设一次函数解析式为y=kx+b,∵一次函数y 随着x 的增大而减小,∴k <1.又∵直线过点(1,-2),∴解析式可以为:y=-x-1等.故答案为:y=-x-1(答案不唯一).【点睛】此题主要考查了一次函数的性质,得出k 的符号进而求出是解题关键.本题是开放题,答案不唯一。

杭州市名校2020年八年级第二学期期末综合测试数学试题含解析

杭州市名校2020年八年级第二学期期末综合测试数学试题含解析

杭州市名校2020年八年级第二学期期末综合测试数学试题一、选择题(每题只有一个答案正确) 1.矩形ABCD 中,已知AB =5,AD =12,则AC 长为( )A .9B .13C .17D .20 2.如图所示,在矩形纸片中,,,折叠纸片使边与对角线重合,点落在点处,折痕为,则的长为( )A .B .C .D .3.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±4.计算的2(4)-的结果是( )A .4-B .4±C .4D .165. “学习强国”的英语“Learningpower ”中,字母“n ”出现的频率是( )A .1B .12C .213D .26.函数 y =ax ﹣a 的大致图象是( )A .B .C .D .7.如图, 矩形ABCD 的对角线AC ,BD 交于点O ,4AC cm =,120AOD ∠=︒,则BC 的长为( )A .43cmB .4cmC .23cmD .2cm8.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =-B .405012x x =-C .405012x x =+D .405012x x=+ 9.下列一次函数中,y 随x 增大而减小的是( )A .3y x =B .32y x =-C .32y x x =+D .32y x =--10.在平面直角坐标系中,线段AB 两端点的坐标分别为A(1,0),B(3,2).将线段AB 平移后,A 、B 的对应点的坐标可以是( )A .(1,−1),(−1,−3)B .(1,1),(3,3)C .(−1,3),(3,1)D .(3,2),(1,4)二、填空题11.如图,在ABCD 中,连结BD .且BD CD =,过点A 作AM BD ⊥于点M ,过点D 作DN AB ⊥于点N ,且52DN =,在DB 的延长线上取一点P ,满足ABD MAP PAB ∠=∠+∠,则AP =_______.12.如图,在口ABCD 中,E 为边BC 上一点,以AE 为边作矩形AEFG .若∠BAE =40°,∠CEF =15°,则∠D 的大小为_____度.13.如图,在边长为2cm 的菱形ABCD 中,60B ∠=︒,E 是BC 边的中点,P 是对角线BD 上的动点,连接EP ,CP ,则EP CP +的最小值______.14.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_____.15.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”) 16.关于x 的方程21111x m x x -=+++无解,则m 的值为________. 17.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的不等式组3435x x x a >-⎧⎨->⎩有解的概率为____________;三、解答题18.已知:如图,在矩形中,、的平分线、分别交、于点,,求证:.19.(6分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?20.(6分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h (m )与摆动时间t (s )之间的关系如图2所示.(1)根据函数的定义,请判断变量h 是否为关于t 的函数?(2)结合图象回答:①当t=0.7s 时,h 的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?21.(6分)已知等腰三角形的周长为12cm , 底边长()y cm 是腰长()x cm 的函数.()1写出这个函数关系式;()2求自变量x 的取值范围; ()3画出这个函数的图象.22.(8分)阅读材料:解分式不等式<1解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为: ①或②解①得:无解,解②得:﹣2<x <1所以原不等式的解集是﹣2<x <1请仿照上述方法解下列分式不等式:(1)>1;(2)<1.23.(8分)某智能手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A 款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%. 已知A ,B 两款手机的进货和销售价格如下表:A 款手机B 款手机 进货价格(元)1100 1400 销售价格(元) 今年的销售价格 2000 (1)今年A 款手机每部售价多少元?(2)该店计划新进一批A 款手机和B 款手机共90部,且B 款手机的进货数量不超过A 款手机数量的两倍,应如何进货才能使这批手机获利最多? 24.(10分)解不等式组:(1)()0.20.313232x x x x ≤+⎧⎪⎨->+⎪⎩; (2)123255x -<-≤. 25.(10分)先化简,再求值:1-2a b a b +-÷222244a b a ab b --+其中a =2020,b =2019.参考答案一、选择题(每题只有一个答案正确)1.B由勾股定理可求出BD长,由矩形的性质可得AC=BD=1.【详解】如图,矩形ABCD中,∠BAD=90°,AB=5,AD=12,∴2222=+=+=1,∴AC=BD=1.512BD AB AD故选B.【点睛】本题考查了矩形的性质,勾股定理,求出DB的长是解答本题的关键.2.D【解析】【分析】由题得BD==5,根据折叠的性质得出△ADG≌△A′DG,继而得A′G=AG,A′D=AD,A′B=BD-A′G,再Rt△A′BG根据勾股定理构建等式求解即可.【详解】解:由题得BD==5,根据折叠的性质得出:△ADG≌△A′DG,∴A′G=AG,A′D=AD=3,A′B=BD-A′G=5-3=2,BG=4-A′G在Rt△A′BG中,BG2=A′G2+A′B2可得:,解得A′G=,则AG=,故选:D.【点睛】本题主要考查折叠的性质,由已知能够注意到△ADG≌△A′DG是解决的关键.3.D【解析】k=±⨯=±.由于可以利用公式法分解因式,所以它是一个完全平方式22±+,所以236a ab b2故选D.4.C根据算术平方根和平方根进行计算即可【详解】=4故选:C【点睛】此题考查算术平方根和平方根,掌握运算法则是解题关键5.C【解析】【分析】直接利用频率的定义分析得出答案.【详解】∵“学习强国”的英语“Learningpower”中,一共有13个字母,n有2个,∴字母“n”出现的频率是:2 13故选:C.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.6.C【解析】【分析】将y=ax-a化为y= a(x-1),可知图像过点(1,0),进行判断可得答案.【详解】解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A 、B、D中的图象都不过点(1,0), 所以C项图象正确. 故本题正确答案为C.【点睛】本题主要考查一次函数的图象和一次函数的性质.7.C【解析】【分析】利用矩形对角线的性质得到OA=OB.结合∠AOD=120°知道∠AOB=60°,则△AOB是等边三角形;最后在直角△ABC中,利用勾股定理来求BC的长度即可.【详解】解: 如图,矩形ABCD 的对角线AC ,BD 交于点O ,4AC cm =,122OA OB AC cm ∴===. 又120AOD ∠=︒,60AOB ∴∠=︒,AOB ∴∆是等边三角形,2AB OA OB cm ∴===.∴在直角ABC ∆中,90ABC ∠=︒,2AB cm =,4AC m =,22224223BC AC AB cm ∴=-=-=.故选:C .【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA 、OB 的长,题目比较典型,是一道比较好的题目.8.B【解析】试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时,由题意得,405012x x=-. 故选B .9.D【解析】∵A ,B ,C 中,自变量的系数大于0,∴y 随x 增大而增大;∵D 中,自变量的系数小于0,∴y 随x 增大而减小;故选D.10.B【解析】【分析】根据平移中,对应点的对应坐标的差相等分别判断即可得解【详解】根据题意可得:将线段AB 平移后,A ,B 的对应点的坐标与原A. B 点的坐标差必须相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭州外国语学校初二(下)期末考试数学试卷
命题人:刘 伟 审题人:顾彩梅 (本试卷总分100分、考试时间90分钟)
试卷说明:1、本试卷分试题卷和答题卷两部分,其中试题卷4页,答题卷4页,共4页;
2、本试卷共23小题,满分100分;
3、请用蓝色(或黑色)钢笔(或圆珠笔)答题,除作图外不准用铅笔做答;
4、答案一律填写在答题卷上,密封线内不要答题,考试结束后只上交答题卷.
一、 认真选择 (每小题3分,共20分)
1、 下列运算:(1=(2=(3)3=
(417=,(535a b =+,其中正确的一共有 ( ) A 、2个 B 、3个 C 、4个 D 、以上都不对 2、在下列下列各组根式中,是同类二次根式的是 ( )
A 、
183和 B C D 、11-+a a 和 3、甲、乙两人在相同的条件下各射靶10次,他们命中环数的平均数相同,但标准差不同,甲、乙的
标准差分别为4, 5,则射击成绩比较稳定的是 ( ) A 、甲 B 、乙 C 、甲和乙一样稳定 D 、以上都不对 4、(1)k
y k x y x
=--=函数及在同一坐标系中的图象大致是
( )
5、如图所示,拦水坝的横断面为等腰梯形ABCD ,已知:DC=3米,CE=2米,CB 的坡度为1:3,则等腰梯形ABCD 的周长是(单位:米) ( )
A 、12+
B 、8
C 、14+
D 、6+
(第5题图) (第6题图) (第8题图)
6、如图平行四边形ABCD 中,EF ∥AC ,交DA 以及DC 延长线于点E 、F ,交AB 与BC 于
H 、G ,则图中与△AEH 相似三角形(不包括全等)共有 ( ) A 、 4个 B 、5个 C 、6个 D 、7个 7、已知一次函数1221
,(1)y x y a x a a a
+
=++=的图像平行,则一次函数y ax a =+的图像不经过的象限是: ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限
8、如图,在不等边△ABC 中,AB >AC ,AC ≠BC ,过AC 上一点D 作一条直线,使截得的三角形与
原三角形相似,这样的直线可作 ( ) A 、2条 B 、3条 C 、4条 D 、5条
9、已知数据1、2、3、3、4、5,则下列关于这组数据的说法错误的是: ( )
A 、平均数、中位数和众数都是3;
B 、极差为4;
C 、方差为10;
D 、标准差是
3
15 10、现有边长AB =10,BC =5的矩形纸片ABCD ,对角线BD 。

在AB 上取一点G ,以DG 为折痕,使DA
落在DB 上,则AG 的长是: ( )
A 、
52 B 、102+ C 、5
2
D 、102-
二、精心填空(每小题3分,共15分) 11、计算:
1
212
222--
-+=____________ .
12、函数
y =
x 的取值范围是_________________. 13、在锐角△ABC 中,如果有tanA =2,则3sin 4cos cos 2sin A A
A A
-=+________________.
14、如果
k a
c b
c b a b a c =+=+=+,那么k 的值为___________________.
15、在△ABC 中,若2
2
5
cos cot cot 036
A B A B +--+=,则∠C =________. 三、细心计算(16题每小题4分,17题6分) 16、化简与计算:
(1) (2))60cos 230cot 3)(45cot 60sin 2(︒-︒︒+︒
17、在△ABC 中,∠B 、∠C 均为锐角,其对边分别为b 、c,求证:B b sin =C
c
sin
四、实际出发(18题5分,19题6分,共11分)
18、杭外初二共11个班组织活动,要从中选取2个班作为裁判。

其中二(1)班是值日班必须作裁判,
另外从二(2)班至二(11)班中选出一个班。

二(3)班有同学建议用如下方法:从装有编号为1,2,3,4,5的五个白球的A 袋中摸出一个球;再从装有编号为1,2,3,4,5,6的六个红球的B 袋中再摸出一个(球除颜色外都一样),摸出的两球数字和是多少,就选几班,你认为公平吗?请说明理由。

19、如图,已知测速站P 到公路l 的距离PO 为40米,一辆汽车在公路l 上行驶,测得此车从A 点行驶到B 点所用时间为2秒,并测得∠APO=︒=∠︒30,60BPO ,计算此车从A 到B 的平均速度为每秒多少米?(结果保留三个有效数字)?并说明此车是否超过了每小时75千米的限度?
五、好好理解(第20题5分,第21题7分,第22题8分,第23题10分)
20、如图:在正方形网格上有△ABC ,△DEF ,它们相似吗?如果相似,说明理由并求出它们的相似
比。

21、如图,直线1
2
y x b =-
+与两坐标轴分别相交于点A 、B ,作OD ⊥AB 于D 。

(1) 写出A 、B 两点的坐标(用含b 的代数式表示),并求tan ∠OAB 的值; (2) 如果AD
,求b 的值。

x
E
22、如图,在等腰Rt △ABC 中,∠A =90°,D 为斜边的中点。

在DB 上任取一点P ,过P 作两腰的垂线段PF 、PE 。

连接EF 。

求证:222EF DF =
23、如图△ABC 是一锐角三角形余料,边BC=16cm ,高AD=24cm ,要加工成矩形零件,使矩形的一边
在BC 上,其余两个顶点E 、F 分别在AB 、AC 上。

求:(1)AK 为何值时,矩形EFGH 是正方形?
(2)若设y S x AK EFGH ==,,试写出y 与x 的函数解析式。

(3)x 为何值时,EFGH S 达到最大值。

参考答案
一、认真选择
1. A
2. C
3. A
4. D
5. C
6. A
7. A
8. C
9. C 10. C 二、 精心填空
K H G
F
E
D
C
B A
11
.2 12.112x <≤ 13.25 14.1
2
或-1 15.75︒ 三、细心计算
16.(1)
(2)
8+17.证明略 四、实际出发
18.解:判断是否公平的依据是2-11这几个数字出现的概率是否相同,若相同则方案公平,若出现
概率不相同则方案不公平。

可以发现2-11出现的几率分别为
1234554321
,,,,,,,,,30303030303030303030,则此种方案是不公平的。

19
.解:23.1(/)
23.1(/)360083.1(/)75(/)
v m s m s km h km h =
≈⨯=>所以汽车超速。

五、好好理解
20.解:假设正方形网格的每个小正方形的边长是“1”,
则ABC
DEF
三边分别为4,。

AC AB BC
DF DE EF ==
,三边对应成比例,ABC
DEF

1
2AC k DF =
==
21. (1) A(0,b) B(2b,0) b>0 tan 2OB
OAB AO
∠== (2)
AB =
=
AO OD
AB OB
=
b ∴=
5b ∴= 22.证明略
23.(1) 当72
5
AK =时,矩形EFGH 为正方形; (2) 2
2160243
y x x x =-
+<<;
(3) 当12x =时,EFGH S 有最大值96。

相关文档
最新文档