平方根与立方根复习
人教版七年级下册第六章 平方根、算术平方根和立方根复习 (PDF版 无答案)
(2)125(x-2)3=343
5.计算:
6
6.已知实数a的立方根是4,则 的平方根是
.
7.已知 2a-1的平方根是±3,3a+b-1的算术平方根是4,求50a-17b的立方根.
8.用一块纸板做一个有底无盖的正方体型的粉笔盒,已知粉笔盒的容积为216cm3.求: (1)这个粉笔盒的棱长; (2)这块纸板至少要多大面积?
,求a-b的平方根。
16.若 x 1 (3x y 1)2 0 ,求 5x y2 的值.
17.若 a 8 与(b-27)2互为相反数,求 3 a 3 b 的立方根.
18.已知实数a满足 2013 a a 2014 3 a3 ,求a-20132的值
4.观察分析下列数据,寻找规律:0, , , , ,5…那么第17个数据应是
知识点讲解3:非负性的应用
当a≥0时, a 才有意义; 当a≥0时,a 是一个非负数, , ;
例1.已知
与
是互为相反数,求(a-b)2018的值.
例2.a2的算术平方根一定是( )
A.
B.
C.
例3.实数a,b在数轴上的位置如图所示,则化简
D.
结果是( )
A.
B.
C.
D.1
【学有所获】本题主要考查了数形结合的思想,看图判断a﹣b 0,1﹣a 0,b 0,进而化简,计算。 [学有所获答案]>;<;<。
B.9
C.12
4.的 算术平方根是
; 81 的算术平方根是
.
5.若一块正方形瓷砖的面积为0.64米2,则其边长是
米.
6.已知一个正数的平方根是3x-2和5x+6,则这个数是
.
7.若无理数 2a-9与- a-3为正数m的平方根,则m=
复习初中数学算术平方根与立方根的计算
复习初中数学算术平方根与立方根的计算在初中数学学习中,算术平方根和立方根是重要的概念。
它们在解决实际问题时起着重要作用。
本文将详细介绍算术平方根和立方根的计算方法。
一、算术平方根的计算算术平方根是指一个数的平方等于该数的非负平方根。
下面我们来介绍一种常见的计算算术平方根的方法,即牛顿迭代法。
1. 假设要计算数a的算术平方根,首先先猜测一个近似值x。
2. 接下来,我们使用公式x = (x + a/x)/2来不断迭代计算,直到满足精度要求。
2.1 首先,将猜测的近似值x代入公式中,计算出x1 = (x + a/x)/2。
2.2 然后,将x1代入公式中,计算出x2 = (x1 + a/x1)/2。
2.3 以此类推,直到满足所需的精度。
通过不断迭代,我们可以得到越来越接近真实平方根的近似值。
二、立方根的计算立方根是指一个数的三次方等于该数的非负立方根。
计算立方根的方法有多种,下面我们介绍一种常用的二分法。
1. 对于一个正数a,我们可以将立方根x的范围限定在0到a之间。
2. 首先,我们猜测一个近似值x,并将其平方与a进行比较。
2.1 如果x的立方小于a,则将x的范围缩小到x到a之间。
2.2 如果x的立方大于a,则将x的范围缩小到0到x之间。
3. 通过不断缩小x的范围,我们最终可以得到一个足够接近的近似值。
三、练习题为了帮助大家更好地理解算术平方根和立方根的计算,以下是一些练习题:1. 计算√25的值。
2. 计算∛8的值。
3. 尝试使用不同的计算方法,比较它们的优缺点。
通过解决这些练习题,我们可以加深对算术平方根和立方根的计算方法的理解。
结语通过本文的介绍,我们了解了算术平方根和立方根的计算方法。
算术平方根可以使用牛顿迭代法来逐步逼近真实值,而立方根可以使用二分法来逼近。
这些方法在解决实际问题中有着重要的应用,希望本文对你的数学学习有所帮助。
数的开方、二次根式复习
值范围常转化为不等式(组).
二 二次根式的非负性的应用
1.已知: x 4 + 2x y =0,求 x-y 的值.
解:由题意,得 x-4=0 且 2x+y=0 解得 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 2.已知x,y为实数,且 x 1 +3(y-2)2 =0,则x-y的值为( D )
方法:分母有理化
4.二次根式的运算 a b =___a_b__(a≥0,b≥0);
a b
a =__b__(a≥0,b>0).
二次根式加减时,可以先将二次根式化成_最__简__二__次__根__式__, 再将__被__开__方__数__相__同____的二次根式进行合并.
考点分类
一 确定二次根式中被开方数所含字母的取值范围
∵16﹤17﹤25
∴4﹤ 17 ﹤5
则 - 5﹤ 17 ﹤- 4 所以b = - 4
∴a – b = 5 - ( - 4 ) = 9 a – b的平方根为±3
知识梳理
二 次 根 式
二次根式
三个概念 最简二次根式
两个公式
两个性质 四种运算
同类二次根式
1. ab a ba 0,b 0
4、实数与数轴:
知 识
无限不循环小数叫做无理数。
如:2,3,5,,3 2,3 3 ,2.030030003……等。
要 5.有理数与无理数统 有理数有限小数或无限循环小数
实数
负有理数
无理数负正无无理理数数无限不循环小数
A.3
B.-3
C.1
D.-1
二 二次根式的非负性的应用
4. 若实数 x,y,m 满足等式 3x 5y 3 m +(2x+3y﹣m)2=
《平方根立方根复习》导学案
算数平方根 ,平方根,立方根专题复习学案【学习目标】1、理解数的算术平方根、平方根、立方根的概念,并会用符号表示;2、会求数的算术平方根、平方根、立方根;3、理清算术平方根、平方根、立方根之间的区别与联系,提高解决问题的综合能力;【学习过程】 一、 课前复习要求1、借助课本复习本专题有关内容,2、完成下表,3、理解记忆表中内容,算术平方根平方根 立方根定义 表示方法 a 的取值性质正数负数二、闯关第一关 ——基础练习1.说出下列各数的平方根和算术平方根: 1,41,0,0.04,2.说出下列各数的立方根:161, 6,-0.008,22710, 3.说出下列各式的值 -()22-,(9)2 ±36253027.0,31251,33)2(-, 32)8(--,第二关——综合深化 1、判断对错(1).81的平方根是±3( ); (2).16的算术平方根是4( );(3).38-的立方根是-2( );(4)64的立方根是±2( ); (5).若x 2=(-3)2,则x=-3( );(6)若x 3=27,则x=3( ); (7).算术平方根等于本身的数是0( );(8).平方根和立方根都等于本身的数是1和0;( ) (9).a a =2,33a =a ( ) 2、下列说法正确的是( )A .16的平方根是±2B .a 2的算术平方根是aC .任何数都有平方根D .-a 2一定没有平方根 3、已知x -有意义,则x 一定是()A.正数B. 负数C. 非负数 D . 非正5、若一个数的一个平方根为-3,则另一个平方根为 ,这个数是 。
第三关——创新发展2、一个实数的两个平方根分别是a+3和2a-3,则这个实数是( )3、若2-m +(n+1)2 =0,则m+n 的平方根是( )4、已知x 、y 分别满足关系式16 x 2 -64=0和y 3 -27=0 求x+y5、如果(x -7)2=81 ,那么x 是( )6、如果31+x =-2,则(x+1)3 =( )7、若033=+n m ,则m 与n 的关系是()8、下列各数中,不一定有平方根的是( )(A )x 2+1 (B )|x|+2 (C )1+a (D )|a|-1 9、若a<1,求2)1(-a +33)1(a -的值三、小组讨论交流第三关各题做法,组长给组员分好工,选出代表展示讲解做法。
【庆福数学】平方根与立方根复习
平方根与立方根复习(一) 平方根1、平方根的含义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
即a x =2,x 叫做a 的平方根。
正数a 的平方根用a ±表示,其中a 叫做正平方根,也称为算术平方根,a -叫做a 的负平方根,也称为算术平方根的相反数。
注意点:(1)一个正数有两个平方根,它们互为相反数:记作a ±(根指数2省略)0有一个平方根,为0,记作0=,负数没有平方根。
0=,负数没有算术平方根。
(2)平方与开平方互为逆运算 开平方:求一个数a 的平方根的运算。
2222222223111211214413169141961522516256172891832419361=========()熟记:,,,,,,,,(4a ≥0)a ≥0)表示非负数a 的算术平方根。
二次根式的要求:①根指数为2 ②被开方数可以是数,也可以是单项式、多项式、分式等,但必须是非负数。
(5)二次根式中字母的取值范围:二次根式有意义的条件:被开方数大于或等于0。
二次根式无意义的条件:被开方数小于0,二次根式做分母时: 被开方数大于0.例1:求下列各数的平方根: (1)81 (2)1625(3)214 (4)0.49解:(1)∵()±=9812,∴81的平方根是±9, 即:±=±819(2)∵±⎛⎝ ⎫⎭⎪=4516252,∴1625的平方根是±45, 即:±=±162545 (3)∵2149432942=±⎛⎝ ⎫⎭⎪=,,∴214的平方根是±32,即:±=±=±2149432(4)∵()±=070492..,∴0.49的平方根是±07.,即:±=±04907..例2:下列各数有平方根吗?如果有,求出它的平方根;如果没有,要说明理由。
平方根与立方根
七年级数学下册第六章《实数》一、知识复习(一)、算术平方根1、算术平方根的定义:一个正数x的平方等于a,即_____,那么这个正数x就叫做a的________.,读作“根号a”。
规定0的算术平方根是____,即____2、算术平方根的性质:___________________________________(二)、平方根1、平方根的定义:如果一个数x的平方等于a,即_____,那么这个数x就叫做a的_______(也叫做二次方根)记作:_____2、平方根的性质:(1)、一个正数有_____个平方根,它们是________(2)、0的平方根是_____(3)、负数_____平方根。
3、开平方:求一个数a的________的运算,叫做开平方。
(三)a(a≥0)==aa2—a(a<0)(四)、立方根1、立方根的定义:如果一个数x的_____等于a,即_____,那么这个数x就叫做a的立方根(或a 的三次方根)。
2、立方根的性质:正数的立方根是_____,0的立方根是_____负数的立方根是_____。
3、开立方:求一个数a的________的运算叫做开立方。
二、例题讲解例题1求下列各数的算术平方根(1)、100 (2)、6449(3)、971 (4)、0001.0(5)、0练习:下列各数的算术平方根(1)0.0025 (2)81 (3)23(4)、5例题2、求下列各式的值:(1)4(2)8149(3)2)11(-(4)26练习:求下列各式的值(第六章《平方根与立方根》)第页(共4页)1(第六章《平方根与立方根》)第 页(共4页)2 (1)、1 (2)、259 (3)、25 (4)、2)7(-例题2、求下列各数的平方根: (1)972 (2)25 (3)252⎪⎭⎫ ⎝⎛-(4)、625 (5)、(-2)2练习:求下列各数的平方根 (1)81 (2)1625(3)1.44 (4)214例题3、求下列各数的值:(1)()23π- (2(x ≥1)例题4、求下列各数立方根(1)、271 (2)、-343 (3)、-22(4)、-64练习:求下列各数的立方根8125,-64,271-,-1【知识点记忆】1、要求:熟练记忆 1-20内数字的平方数222222211,24,39,416,525,636,749=======222864,981,10100===,112=121,122=144,132=169,142=196,152=225,162=256,222217289,18324,19361,20400==== 225625= 2、要求:熟练记忆 1-10内数字的立方数33333311,28,327,464,5125,6216====== 33337343,8512,9729,101000====【记忆练习】填空并记住下列各式:(第六章《平方根与立方根》)第 页(共4页)3 _______,_______,_______,_______,_______,_______练习:填空1、36的平方根是 ;16的算术平方根是 ;_____ 64的立方根是2、8的立方根是 ;327-= ;3、2.25的算术平方根是________平方根是_____-27立方根是__________.4、计算:___________,___________,_____±25= ,3-8=5、下列各式中,正确的是( ) (A)2)2(2-=- (B)9)3(2=- (C) 393-=- (D) 39±=± 6、如果x 的平方根是±4,那么x = ,364的平方根是 7、如果x 2=9,则x = ,x 3=-8,则x =8、一个数的算术平方根等于它本身,则这个数应是__________ 一个数的立方根等于它本身,则这个数应是__________9、若10的整数部分为a ,小数部分为b ,则a =________,b =_______三、移位规律(一)算术平方根当被开方数扩大(或缩小)100倍时,其算术平方根相应地扩大(或缩小)10倍即被开方数的小数点每向右或向左移动两位,算术平方根的小数点相应地向右或向左移动一位。
实数复习之平方根与立方根(10张)
( x) x 的结果是 _____ 0 6、已知x>0,化简
3 3
3x
基础训练4:
下列说法正确的是( B )
A. 16的平方根是 4
B. 6表示6的算术平方根的相反数
C.任何数都有平方根
D. a 一定没有平方根
2
平方根的性质
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
立方根的性质 一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。 平方根和立方根的异同点 被开方数 正数 负数 零 平方根 立方根 有两个互为相反数 有一个,是正数 有一个,是负数 无平方根 零 零
填空
1.一个数的平方等于64,则这个数 2 的立方根是
2若 2x 5 4,则(x 5 . 2 ) 256。
2
≥0 时, 2的算术平方根为 。 3当a 9a . 3a
1 4. m-27 + n-8=0,则 m- n =______
3 3
a 5 5.已知 a-3与 3-5b互为相反数,则 =______ b
区别
算术平方根 表示方法
算术平方根、平方根、立方根联系和区 别
平方根
立方根
3
a
≠
0
a
a≥0Βιβλιοθήκη 没有aa 的取值性 质
正数 0 负数
a≥
0 没有
0
a 是任何数
0 负数(一个)
正数(一个) 互为相反数(两个) 正数(一个)
开
方 是本身
0,1
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方 0 0,1,-1
若x2=a(x≥0),那么x叫做a的算术平方根。 记作:x= a
平方根与立方根复习课件
平方根的运算:可以通过乘法和除法来计算平方根。
平方根的性质
非负性:平方根 的结果总是非负 的。
唯一性:对于给 定的数,其平方 根是唯一的。
定义域:平方根 的定义域是实数 集。
值域:平方根的 值域是非负实数 集。
平方根的运算
平方根的定义与性质 平方根的运算规则 平方根与算术平方根的区别 平方根在实际问题中的应用
平方根和立方根 的应用实例
平方根与立方根的定义和性质
回顾解题思路与方法
平方根与立方根的应用举例
添加标题
添加标题
平方根与立方根的求解方法
添加标题
添加标题
常见题型及解题技巧知识解决实际问题?
解题思路&问题建模:首先明确题目要求,然后根据平方根与立方根的定义和性质,建立数学模型,将实际问题转化为数 学问题。
平方根与立方根 复习课件
PPT,a click to unlimited possibilities
汇报人:PPT
添加目录标题 引言
平方根复习
立方根复习
例题解析与练 习
总结与回顾
思考与拓展
添加章节标题
引言
课程背景
平方根与立方根的定义 平方根与立方根的运算规则 平方根与立方根的应用场景 平方根与立方根在数学中的重要性
立方根复习
立方根的定义
立方根的概念:求一个数的立 方等于另一个数的运算
立方根的符号:用“x^1/3” 表示
立方根的性质:正数的立方根 是正数,负数的立方根是负数, 0的立方根是0
立方根的运算:求立方根的方 法有多种,包括直接计算、查 表、利用已知数的立方根等
立方根的性质
中考复习初中数学平方根与立方根复习重点整理
中考复习初中数学平方根与立方根复习重点整理在初中数学的学习中,平方根与立方根是一个非常重要的概念和知识点。
在中考中,这也是一个重要的考察内容,因此我们有必要对平方根与立方根的相关知识进行复习整理。
本文将详细介绍平方根与立方根的定义、性质以及应用题的解题思路,帮助大家更好地复习和应对中考数学考试。
一、平方根的定义与性质1. 平方根的定义平方根是数学中的一个重要概念,指的是某个数的二次方等于这个数。
设 a 是一个非负实数,如果存在一个非负实数 b,使得 b 的平方等于 a,则称 b 是 a 的平方根。
用符号√a 表示 a 的平方根。
2. 平方根的性质(1)非负实数的平方根是唯一的,即一个非负实数的平方根只有一个。
(2)非负实数的平方根与非负实数的大小关系相同,即若 a < b,则√a < √b。
二、立方根的定义与性质1. 立方根的定义立方根是数学中的一个重要概念,指的是某个数的三次方等于这个数。
设 a 是一个实数,如果存在一个实数 b,使得 b 的立方等于 a,则称 b 是 a 的立方根。
用符号³√a 表示 a 的立方根。
2. 立方根的性质(1)实数的立方根不一定是唯一的,一个实数可能有一个或两个复数立方根。
(2)实数的立方根与实数的大小关系相同,即若 a < b,则³√a <³√b。
三、平方根与立方根的性质应用1. 平方根与立方根的运算(1)平方根与立方根的运算可以用指数运算来表示,即√a = a^(1/2),³√a = a^(1/3)。
(2)平方根与立方根的运算可以与其他数学运算结合,例如加法、减法、乘法、除法等。
2. 平方根与立方根的应用题解题思路(1)确定已知条件,明确要求。
(2)根据已知条件和要求,建立方程。
(3)利用平方根和立方根的性质进行方程的转化和求解。
(4)验证解的合理性,得出最终结论。
四、例题练习1. 求下列各数的平方根和立方根:(1)√16(2)³√272. 已知 a^2 + b^2 = 10,且 a > 0,b > 0,求 a 与 b 的平方根的和。
七年级数学下册第6章实数平方根和立方根复习测试题
3 a 七年级下册第 6 章实数( 6.1 平方根和 6.2 立方根复习测试题)第一部分知识点填空并加强背诵一、算术平方根一般地,如果的等于a,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为读作“根号a”,a 叫做.规定:0 的算术平方根是0. 也就是,在等式x 2 =a (x≥0)中,规定x = a 。
理解:x 2 =a (x≥0)<—> xa 是x 的平方x 的平方是a x 是a 的算术平方根 a 的算术平方根是x二、平方根1.平方根的定义:如果的平方等于a,那么这个数x 就叫做a 的.即:如果,那么x 叫做a的.理解:x 2 =a <—> x =a 是x 的平方x 的平方是a x 是a 的平方根 a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。
3.平方与开平方:±3 的平方等于9,9 的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数 a 的正的平方根可用表示,也是 a 的算术平方根;正数 a 的负的平方根可用 -表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。
2.一个数a 的立方根,记作,读作:“三次根号a ”,其中a 叫被开方数,3 叫根指数,不能省略,若省略表示平方。
理解:x3 =a <—>a 是x 的立方x 的立方是a x 是a 的立方根 a 的立方根是x3.一个正数有一个正的立方根;0 有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。
人教版七年级下册第六章实数--平方根与立方根 复习
实数第六章实数 平方根与立方根1. 算术平方根:一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的算术平方根注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.算术平方根的表示:_________________________________________________ 算术平方根的性质:2. 平方根:一般地,如果一个数x 的平方等于a ,那么这个数x 叫做a 的平方根 平方根的表示:______________________________________________________平方根的性质:A 一个正数有正、负两个平方根,它们互为相反数 B 零有一个平方根,它是零本身 C 负数没有平方根开平方:求一个非负数的平方根的运算叫做开平方。
例题:一个数的平方等于9,这个数是几呢?又如一个数的平方等于425,这个数是几呢?若x 2=a (x ≥0),那么x 叫做a 的__________________。
记作:_______________4.立方根的定义:如果x 3=a ,那么x 叫做a 的立方根,记作例如:8的立方根,记作任何数都有立方根:①正数的立方根是________数; ②负数的立方根是________数; ③ 0的立方根是________; 立方和开立方互为________运算. 综上所述,有a (a ≥0)2a =│a │=-a (a<0)两个重要的公式为任何数)为任何数)a a a a a (()a (3333==.x知识点1: 算术平方根,平方根的, 立方根的概念 求一个数的算术平方根,平方根,立方根 1.下列说法正确的有______个.①(−3)2的算术平方根是√3②81的算术平方根是9③a 2的算术平方根是a ④ -1的算术平方根是1 ⑤ 0的算术平方根是02.下列说法正确的有______个. ①√81=±9②0.01算术平方根是0.1 ③49的算术平方根是7 ④2是4的算术平方根 ⑤正数的算术平方根是正数3.下列说法错误的有______个. ①36的平方根是6 ②|−5|的平方根是5③(−4)2的平方根是±4 ④a 的平方根是±√a4.下列说法错误的是( )A 立方根等于它本身的数有-1,0,1B 立方根等于其绝对值的数只有0C 如果−∛a =b,那么a=−b3D 立方根等于平方根的数只有0 5.36的平方根是______;的平方根是_______;的平方根是_______;9的算术平方根是_______;16的算术平方根的平方根是____________.=________________;-________;知识点2. 算术平方根--求字母的值--被开方数的非负性--结果的非负性1.4的算术平方根为2m −2,则3m 的算术平方根等于___2.若y=x -1+1-x +4,则x+y=______.4.21++a 的最小值是________,此时a 的取值是________.知识点3:平方根的性质--求字母的值--解方程 平方根与算术平方根的区别与联系1.若一个正数的两个平方根为2m −6与3m+1,则这个数是______;若a+3与2a −15是x 的平方根,则x=______.2.若某一个数的正的平方根为2m+6,它的平方根为±(m −2),则这个数是_____3.已知13(1−2x)2+6=9.则x=_____(写过程)4.已知25(x+2)2﹣36=0,则x=_____(写过程)5.下列语句错误的有______个. ①36的平方根是6; ②±9的平方根是±3; ③√16=±4;④0.01是0.1的平方根; ⑤42的平方根是4; ⑥81的算术平方根是±96.下列语句正确的有______个.①4的算术平方根是±2②负数一定没有平方根③平方根等于它本身的数有0和1④0.9的算术平方根是0.3⑤任何数都有算术平方根⑥一个正数的平方根仍然是正数知识点4:立方根的性质--求相关式子的值--解方程平方根与立方根的区别与联系立方根与平方根的运算0,1,-1的平方根和立方根4.解方程:(1) (x-1)3=8;(2)8.平方根等于本身的数______立方根等于本身的数______知识点5.平方根,立方根--规律探究根据算术平方根的意义,被开方数的小数点每向左(或向右)移动两位,其结果的小数点也向左(或向右)移动一位如果被开方数的小数点向左(或向右)每移动三位,立方根的小数点就向左(或向右)移动一位.1. 若√3.2104≈1.792,√3210.4≈56.66,则√32104≈______;√32.104≈______.2. 若3√0.3670=0.7160,3√3.670=1.542,则3√367=______,3√−0.003670=______.33 3.8x-=答案卷1.a2.平方根有三种表示形式:±a,a,-a,它们的意义分别是在此处键入公式。
平方根和立方根复习
平方根和立方根复习知识点一:平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作。
(2)一个正数a 的正的平方根,叫做a 的算术平方根。
0的算术平方根是0。
a(a≥0)的算术平方根记作。
巩固练习一:基础题知识点1 算术平方根1.(呼伦贝尔中考)25的算术平方根是( )A .5B .-5C .±5D . 52.(杭州中考)化简:9=( )A .2B .3C .4D .5 3.14的算术平方根是( ) A .12 B .-12 C .116 D .±124.(南充中考)0.49的算术平方根的相反数是( )A .0.7B .-0.7C .±0.7D .05.(-2)2的算术平方根是( ) A .2 B .±2 C .-2 D . 26.(宜昌中考)下列式子没有意义的是( )A .-3B .0C . 2D .(-1)27.下列说法正确的是( )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对8.求下列各数的算术平方根:(1)144; (2)1; (3)1625; (4)0.a a9.求下列各式的值:(1)64;(2)121225; (3)108;(4)(-3)2.知识点2 估计算术平方根10.一个正方形的面积为50平方厘米,则正方形的边长约为() A.5厘米B.6厘米C.7厘米D.8厘米11.(安徽中考)设n为正整数,且n<65<n+1,则n的值为() A.5 B.6 C.7 D.812.(泉州中考)比较大小:用“>”或“<”号填空).中档题16.设a-3是一个数的算术平方根,那么()A.a≥0 B.a>0 C.a>3 D.a≥3 17.(台州中考)下列整数中,与30最接近的是(B)A.4 B.5 C.6 D.7 18.(东营中考)16的算术平方根是()A.±4 B.4 C.±2 D.219.若一个数的算术平方根等于它本身,则这个数是()A.1 B.-1 C.0 D.0或120.下列说法中:①一个数的算术平方根一定是正数;②100的算术平方根是10,记为±100=10;③(-6)2的算术平方根是6;④a2的算术平方根是a.正确的有()A.1个B.2个C.3个D.4个21.(天津中考)已知一个表面积为12 dm2的正方体,则这个正方体的棱长为() A.1 dm B. 2 dm C. 6 dm D.3 dm22.若一个数的算术平方根是11,则这个数是.23.若x-3的算术平方根是3,则x=.24.(青海中考)若数m,n满足(m-1)2+n+2=0,则(m+n)5=.25.计算下列各式:(1)179; (2)0.81-0.04; (3)412-402.26.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与1.5.27.求下列各式中的正数x的值:(1)x2=(-3)2;(2)x2+122=132.28.兴华的书房面积为10.8 m2,她数了一下地面所铺的正方形地砖正好是120块,请问每块地砖的边长是多少?综合题30.国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.巩固练习二:基础题知识点1 平方根1.(黄冈中考)9的平方根是()A.±3 B.±13C.3 D.-32.(绵阳中考)±2是4的()A.平方根B.相反数C.绝对值D.算术平方根3.下面说法中不正确的是()A.6是36的平方根B.-6是36的平方根C.36的平方根是±6 D.36的平方根是64.下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根5.(怀化中考)(-2)2的平方根是()A.2 B.-2 C.±2 D. 2 6.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42;(3)-(a2+1).知识点2 平方根与算术平方根的关系7.下列说法不正确的是()A.21的平方根是±21 B.49的平方根是23C.0.01的算术平方根是0.1 D.-5是25的一个平方根8.(武汉校级月考)下列式子中,计算正确的是()A.- 3.6=-0.6 B.(-13)2=-13C.36=±6 D.-9=-3 9.求下列各数的平方根与算术平方根:(1)(-5)2;(2)0;(3)-2;(4)16.10.求下列各式的值:(1)225; (2)-3649; (3)±144121.11.下列说法正确的是()A.-8是64的平方根,即64=-8B.8是(-8)2的算术平方根,即(-8)2=8C.±5是25的平方根,即±25=5D.±5是25的平方根,即25=±512.(东营中考)81的平方根是()A.±3 B.3C.±9 D.913.(郾城区期中)若x2=16,则5-x的算术平方根是()A.±1 B.±4C.1或9 D.1或314.如果某数的一个平方根是-6,那么这个数的另一个平方根是6,这个数是.15.若x+2=3,求2x+5的平方根.16.已知25x2-144=0,且x是正数,求25x+13的值.17.求下列各式中的x:(1)9x2-25=0;(2)4(2x-1)2=36.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.22.(1)一个非负数的平方根是2a -1和a -5,这个非负数是多少?(2)已知a -1和5-2a 都是m 的平方根,求a 与m 的值.知识点二:立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.a 的立方根记作3a 。
七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】
专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,a≥0.备注:20 ||00a aa a aa a >⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根练习1.(安徽四十二中中铁国际城校区初一期中)计算16的平方根为()A.4±B.2±C.4 D.2±练习2.(·辽宁初二期中)9的平方根是( )A.3B.81C.3±D.81±例2.(2017·阜阳市第九中学初一期中)14的算术平方根是( )A.12±B.12-C.12D.116练习1.(六安市裕安中学初一期中)16的算术平方根是_____.练习2.(·北京初二期中)16的算术平方根是。
例3.(·安徽初一期中)81的平方根是_________;364的算术平方根是_________.练习1.(·安徽初一月考)若2a-1和5-a是一个正数m的两个平方根,则m=_______练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.二. 立方根1.立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3x a=,那么x叫做a的立方根.记作:.2.立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.3.求一个数a的立方根的运算叫开立方,其中a叫做被开方数.备注:①符号中的根指数“3”不能省略;②对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.例1.(·安徽初一期中)64的立方根是()A .4B .±4C .8D .±8练习1.(·淮南初一期中)下列说法中,不正确的是( ) A .8的立方根是2 B .﹣8的立方根是﹣2 C .0的立方根是0D .64的立方根是±4练习2.(·北京市昌平区阳坊中学初二期中)8-的立方根是__________.例2.(合肥市第四十五中学初一期中)已知a +3和2a ﹣15是某正数的两个平方根,b 的立方根是﹣2,c 算术平方根是其本身,求2a +b ﹣3c 的值.练习1.(·淮南初一期中)已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c (1) 求a ,b ,c 的值;(2)求3a b c -+的平方根.练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.例3.(安徽初一期中)求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=0专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,a≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根A试题分析:A、B、C、D都可以根据平方根和算术平方根的定义判断即可.解:A、﹣5是25的平方根,故选项正确;B、25的平方根是±5,故选项错误;C、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误.故选A.练习1的平方根为()A.4±B.2±C.4 D.B,又∵(±2)2=4,∴4的平方根是±2±2,故选B.练习2.(·辽宁初二期中)9的平方根是( )A.3B.81C.3±D.81±C解:9的平方根是3±.故选:C.例2.(2017·阜阳市第九中学初一期中)14的算术平方根是( )A .12± B .12-C .12D .116C本题解析: ∵211()24=, ∴14的算术平方根为12+,故选C.练习1 _____. 2,4的算术平方根是2,2.练习2.(·北京初二期中)16的算术平方根是 。
平方根立方根复习
平方根立方根复习【知识归纳】1.平方根:(1)若x 2=a (a >0),那么a 叫做x 的 , 我们把 称为算术平方根,记为 。
规定,0的算术平方根为 。
(2)一个 的平方根有2个,它们互为 ; 只有1个平方根,它是0本身; 没有平方根。
(3)两个公式:(a )2= ( ); =2a 2.立方根:1)若x 3=a (a >0),那么a 叫做x 的 ,记为 ; 2)一个正数 的立方根有 个,0的个立方根为 ,负数有 个立方根。
3)立方根的性质:(1)()33a = ,(2)33a = .一、填空题1、 判断下列说法是否正确⑴5是25的算术平方根 ( ) ⑵56是2536的一个平方根 ( ) ⑶()24-的平方根是-4 ( ) ⑷ 0的平方根与算术平方根都是0 ( ) 2⑴121____,=⑵ 1.69____,-=⑶49____,100±=⑷()20.3____--= 3、若7x =,则_____x =,x 的平方根是_____ 4、8116的平方根是( ) A. 94± B. 94 C. 32± D. 325、给出下列各数:49, 22,3⎛⎫- ⎪⎝⎭0, 4,- 3,-- ()3,-- ()45--,其中有平方根的数共有( )A. 3个B. 4个C. 5个D. 6个6、若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,试求a b +的平方根。
7、如果一个正数的两个平方根为1a +和27a -,请你求出这个正数 8.16的平方根是 11.非负的平方根叫 平方根 二、选择题9. 9的算术平方根是( )A .-3B .3C .±3D .81 10.下列计算正确的是( )A .4=±2B .2(9)81-==9 C.636=± D.992-=-11.下列说法中正确的是( )A .9的平方根是3B .16的算术平方根是±2 C. 16的算术平方根是4 D. 16的平方根是±212. 64的平方根是( ) A .±8 B .±4 C .±2 D .±2 13. 4的平方的倒数的算术平方根是( )A .4 B .18 C .-14 D .14三计算题14.计算:(1)-9= (2)9= (3)116= (4)±0.25= 15.1681的平方根是_______;9的平方根是_______. 四、能力训练20.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( ) A .x+1 B .x 2+ 1 C .x +1 D .21x +21.若2m-4与3m-1是同一个数的平方根,则m 的值是( ) A .-3 B .1 C .-3或1 D .-122.已知x ,y 是实数,且34x ++(y-3)2=0,则xy 的值是( ) A .4 B .-4 C .94 D .-9427.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0; (3)274x 3-2=0; (4)12(x+3)3=4.1111(1)(1)(2)(2)(1998)(1998)ab a b a b a b +++++++++求的值【巩固练习】:1、16的算术平方根是_______,平方根是_______;2、若x 2=16,则5-x 的算术平方根是 ;3、3664-的平方根是 ,算术平方根是 ;4、若4a +1的平方根是±5,则a 2的算术平方根是 ;5、0)2(12=-+-b a ,则b a +的平方根为 .6.已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长. 平方根立方根的综合应用1、若x 、y 为实数,且20x y y ++-=,则2010()xy的值为2、若22-a 与|b +2|互为相反数,则(a -b )2=__________3、若2x +1+|y -1|=0,则x 2+y 2=__________4、已知x 、y 为实数,且499+---=x x y .求y x +的值.5、已知,,a b c 实数在数轴上的对应点如图所示,化简22()a a b c a b c --+-+-6、已知实数,,a b c 满足2112()022a b b c c -+++-=,求()a b c +的值7、已知51024a a b -+-=+,求,a b 的值8、已知20092010a a a -+-=,求22009490a -+的值9、如果22a a b +=--,且3b a m =+,求m 的值是多少?10已知120a ab -+-=,11、一个三角形的两边长为3,2,则它的第三边长可能是( )A.0.2B.1C.32+ D.512、一个三角形的三边分别是,,a b c ,则2()a b c +-=______________,2()a b c --=________________13、求下列各式中的x(1)(x-2)2-4=0 (2)(x+3)3 +27=0 (3) 271253+x =0 (4) (2x-1)2=25 14、已知x 是10 的整数部分,y 是10 的小数部分,求 110x y --()的平方根。
人教版 6平方根立方根 专题复习
平方根、立方根专题复习算术平方根(1)一般的,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的,记作_________.其中a 叫做______________. 规定,0的算术平方根为 。
(2)只有__________数才有算术平方根,并且有且仅有_______个算术平方根,算术平方根一定是_________数。
(3)算术平方根等于本身的数只有______和_______.(4)被开方数一定是___________数.被开方数越大,相应算术平方根越大。
(5)两个公式:(a )2= ; 2a平方根(1)一般的,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的,记作_________.其中a 叫做______________.(2)只有__________数才有平方根。
的平方根有2个,它们互为 ,其中正的平方根就是相应_____________;______的平方根就是0本身; 没有平方根。
(3)平方根等于本身的数只有______. (4)求一个数的平方根的运算叫做_____________。
__________与___________互为逆运算。
平方表112= 122= 132= 142= 152= 162=172=182=192=252=平方根表23 5知识点一:求平方根和算数平方根 例1、求下列各数的平方根和算术平方根。
(1)100; (2)25121(3)0.25例2、求下列各式的值: (1)4 (2)2516-(3)±16 (4)()27±知识点二:利用平方根的性质巧解方程 例3、求其中正数x 的值:(1)2x =36 (2) 24225x =求其中x 的值:(1)0324)1(2=--x (2) 264(3)90x --=知识点三:平方根的性质的综合运用 例4、若,622=----y x x 求y x的立方根.20132014a a a -+-=1、若21121y x x =-+-+,则x y 的值为2、已知12422,y x x =-+-+求yx的值.3、若 ,求22013a -的值。
中考复习平方根与立方根的计算技巧
中考复习平方根与立方根的计算技巧平方根与立方根在数学中是一种较为常见的运算,对于中考来说,掌握这些计算技巧是非常重要的。
本文将介绍一些简便的计算平方根与立方根的方法,帮助同学们在考试中更加灵活运用。
一、平方根的计算技巧平方根指的是一个数的二次方等于另一个已知数的运算。
下面将介绍两种计算平方根的技巧:1. 直接开方:当被开方数为一个完全平方数时,可以直接开方得到结果。
完全平方数是指一个数的平方是一个整数,例如4、9、16等。
例如,要计算25的平方根,可以直接得出结果为5,因为25是一个完全平方数。
2. 近似开方:当被开方数不是完全平方数时,可以使用近似开方的方法来估算结果。
近似开方就是找到最接近被开方数的两个完全平方数,然后利用比例关系估算结果。
例如,要计算12的平方根,可以先找到最接近12的两个完全平方数,即9和16,然后通过比例关系计算结果。
由于9和16的平方分别是3和4,它们的差距是1,因此可以估算12的平方根为3.x(x为一个小数)。
再根据比例关系计算得出:12/9 ≈ 3.x/3,解方程可得x ≈1.155。
因此,12的平方根约等于3.115(保留三位小数)。
二、立方根的计算技巧立方根指的是一个数的三次方等于另一个已知数的运算。
下面将介绍两种计算立方根的技巧:1. 直接开立方:当被开方数是一个完全立方数时,可以直接开立方得到结果。
完全立方数是指一个数的立方是一个整数,例如8、27、64等。
例如,要计算27的立方根,可以直接得出结果为3,因为27是一个完全立方数。
2. 近似开立方:当被开方数不是完全立方数时,可以使用近似开立方的方法进行估算。
与平方根类似,近似开立方也是根据比例关系来估算结果。
例如,要计算17的立方根,可以先找到最接近17的两个完全立方数,即8和27,然后通过比例关系计算结果。
由于8和27的立方分别是2和3,它们的差距是1,因此可以估算17的立方根为2.x(x为一个小数)。
数学复习题平方根与立方根的计算
数学复习题平方根与立方根的计算计算平方根和立方根是数学中常见且重要的操作。
在数学复习题中,我们经常会遇到需要计算平方根和立方根的情况。
本文将介绍如何准确地计算平方根和立方根,并提供一些例题来加深理解。
1. 平方根的计算方法平方根是给定数的平方等于该数时的正实数解。
计算平方根可以使用以下方法:方法一:开根号a的平方根表示为√a。
可以通过计算一个数的平方根来验证平方根的准确性。
例题一:计算√9解答:√9 = 3,因为3的平方等于9。
方法二:使用指数运算平方根也可以用指数运算来表示。
如果数x的平方根为a,那么对x开平方等价于x的1/2次幂。
例题二:计算√16解答:16的平方根等于16的1/2次幂,即16^(1/2) = 4。
2. 立方根的计算方法立方根是一个数的立方等于该数时的实数解。
计算立方根可以使用以下方法:方法一:开立方a的立方根表示为∛a。
例题三:计算∛27解答:∛27 = 3,因为3的立方等于27。
方法二:使用指数运算立方根也可以用指数运算来表示。
如果数x的立方根为a,那么对x开立方等价于x的1/3次幂。
例题四:计算∛64解答:64的立方根等于64的1/3次幂,即64^(1/3) = 4。
3. 组合运算的计算顺序在复杂的计算中,可能会涉及到多次平方根和立方根的组合运算。
为了保证计算的准确性,需要按照一定的顺序进行计算。
例题五:计算∛(√16)^2解答:首先计算√16 = 4,然后计算4的平方 = 16,最后计算16的立方根 = 2。
因此,∛(√16)^2 = 2。
4. 应用示例接下来,我们将通过一些实际应用问题来应用平方根和立方根的计算。
例题六:假设一个正方形的面积为64平方单位,请计算正方形的边长。
解答:设正方形的边长为a,则正方形的面积为a^2 = 64。
我们需要计算a的值。
根据题目要求,我们需要计算a的平方根。
因此,√(a^2) = √64 = 8。
因此,正方形的边长为8个单位。
例题七:某个物体的体积为27立方单位,请计算这个物体的边长。
平方根和立方根复习导学案
6、若一个数 的平方根等于它本身,数 的算术平方根也等于它本身,试求 的平方根。
7、若 ,求 、 的值。
8、如果一个正数的两个平方根为 和 ,请你求出这个正数?若 ,则 , 的平方根是 .
3.课堂检测(拾级而上,一定可以到达顶峰)
1、填空:(1)121的平方根是,121的算术平方根是;
2、求下列各数的平方根
(1)324(2) (3) (4)
3、求下列各式的值
(1) (2) (3)± (4)
4、已知 有意义,化简∣x-1∣-∣3-x∣
5、解方程
(1) =36(2) - =0
(6)、一个数的立方根不是正数就是负数;()
(7)、–64没有立方根;()
二、精讲点拨(只当观众的人永远领不到金牌)
1、3x-4为25的算术平方根,求x的值.
2、已知9的算术平方根为a,b的绝对值为4,求a-b的值.
3、已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a、b的值.
4、若 与 互为相反数,求xy的算术平方根.
1、(1பைடு நூலகம்若 有意义,求x的取值范围。
(2)若 没有意义,求x的取值范围。
2、判断正误:
(1)、25的立方根是5;()
(2)、互为相反数的两个数,它们的立方根也互为相反数;()
(3)、任何数的立方根只有一个;()
(4)、如果一个数的平方根与其立方根相同,则这个数是1;()
(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;()
(2)0.36的平方根是,0.36的算术平方根是;
(3)的平方根是8和-8,的算术平方根是8;
(4)的平方根是 和 ,的算术平方根是 .
14.2平方根立方根复习
x
1 =____ 2
3.若 ( 9) 2的平方根是x,64的立方根是y, 1或7 则x+y=_________ 4.
8 64 的算术平方根是____
1、对议:提纲一、二题思路与解法; 2、组议:提纲三题的思路和解法; 3、组长负责,订正提纲答案,解决疑难问题。
C层:口头展示提纲上二典例分析1-8题 B层:板书提纲上二典例分析第9、10题并给C 层纠错 A层:板书并讲解提纲上能力提升题
14.1 14.2 复习
平方根
定 义
立方根 如果一个数的立方等于a,那么 这个数就叫a的立方根。 有一个立方根,也是正数
如果一个数的平方等于a,那么 这个数就叫a的平方根。
正 数
有两个平方根,互为相反数
性
0 质
负 数
有一个平方根,是0
有一个立方根,是0
没有平方根
有一个立方根,也是负数
开 方
求一个数的平方根的运算叫开 求一个数的立方根的运算叫开 平方;开平方与平方是互逆运算。 立方;开立方与立方是互逆运算。
a 1
13.如图,在直角三角形ABC中, ∠B=90°,AB=5cm,BC=6cm,点 P从点B开始沿BA以1cm/s的速度向 点A运动。同时,点Q从点B开始沿 BC以2cm/s的速度向点C运动,问: 几秒后△PBQ的面积是9cm²
C
Q
A
P
B
x 2 9 0,16 y 2 1 0 的立方根是-2, 1.已知
表 示
a ,其中a 是被开方数, 2是根指数(省略)
3
a ,其中a 是被开方数,
3是根指数(不能省略)
0 1.平方根等于它本身的数有___ 1.平方根等于它本身的数有______ 0、1 算术平方根等于它本身的数_____ 0、1、-1 立方根等于它本身的数________ 2.若
中考复习如何理解平方根与立方根的关系
中考复习如何理解平方根与立方根的关系平方根和立方根是数学中常见的概念,它们在中考考试中也是经常涉及的知识点。
理解平方根与立方根的关系,对于解答与其相关的题目是非常重要的。
在本文中,我们将探讨平方根与立方根的定义、性质以及它们之间的关系。
一、平方根的定义与性质平方根是一个数的平方等于该数的算术根。
设a是非负实数,如果b是一个实数,满足b的平方等于a,即b²=a,那么b就是a的平方根。
在中考中,我们通常使用符号√来表示平方根。
平方根具有以下性质:1. 非负实数的平方根是一个实数。
2. 负数没有实数的平方根。
3. 非负实数a的平方根有两个,一个是正数,一个是负数,分别用±√a表示。
二、立方根的定义与性质立方根是一个数的三次幂等于该数的算术根。
设a是任意实数,如果b是一个实数,满足b的立方等于a,即b³=a,那么b就是a的立方根。
在中考中,我们通常使用符号³√来表示立方根。
立方根具有以下性质:1. 实数的立方根可以是正数、负数或零。
2. 非零实数a的立方根有两个复数解和一个实数解。
复数解通常以复数的形式表示,实数解以实数形式表示。
三、平方根与立方根的关系平方根和立方根之间存在一定的关系。
以非负实数为例:1. 平方根是立方根的特殊情况:当求一个数的平方根时,可以将其看作求这个数的立方根的特殊情况,即b的²√a等于b的³√a³。
2. 平方根和立方根的运算法则:对于非负实数a和b,有以下关系成立:- a的平方根的平方等于a,即(²√a)²=a;- a的立方根的立方等于a,即(³√a)³=a。
四、中考复习建议在中考复习中,对于平方根与立方根的关系的理解不仅有助于解题,还能够提升数学思维的灵活性和运算能力。
以下是几点中考复习建议:1. 熟悉平方根和立方根的定义与性质,掌握它们的计算方法。
2. 在解题过程中,注意将平方根与立方根进行相互转化,灵活运用它们的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方根的概念:
如果一个数的立方等于a,那么这个 数就叫做a的立方根。 即:若x3=a,则x叫做a的立方根
立方根的表示:3 a (为任意有理数)
ห้องสมุดไป่ตู้
平方根与立方根的比较:
平方根
两个平方根, 正 数 他们互为相反
数
0
0
负数
没有
立方根
一个正的 立方根
0 一个负的 立方根
练习:
一、判断正误,并把错误的改正: ⑴ 0.0009 0.03 。 ⑵ 9是的(-9)2算术平方根。 ⑶ 361 的平方根是±19。 ⑷有理数一定有立方根。 ⑸若某数的立方根是它本身,那么 这个数一定是±1或0。 ⑹一个数的立方根总比这个数的平 方根要小。
16.1平方根与立方根复习
一、什么叫平方根?什么叫算术平 方根?
如果一个数的平方等于a ,那么这 个数就叫做a的平方根。
即:若x2=a,则x叫做a的平方根。
正数a的正的平方根叫做a的算术平 方根;零的算术平方根是零。
二、平方根和算术平方根的表示方法: 平方根: ± a (a≥0)
算术平方根: a (a≥0)
七、已知 x 12 5 y 5x x y z 0
求 x+y+z的平方根。
八、求9a2+12ab+4b2的算术平方根, 其中a<0,b <0。
九、填写下表: a 0.04 4 400 40000
a
观察上表,你从中能发现什么规律?
十、借助计算器计算下列各题:
1 13
2 13 23
3 13 23 33
二、下列各式中,x为何值时有意义?
1 x
2 x2 1
3 1 x x
4 x 3
x4
三、已知 y 3 x x 3 ,
求 x y 的值。
四、求下列各式中的x: (1)3(2x+1)2-147=0 (2)27x3=7 81 +1
五、解关于x的方程。
4 x2 3 4 x2
六、若x2 =(-5)2,求(x-1)3的值。
4 13 23 33 43
根据上面的计算结果,请计算下面一 题:
13 23 33 gggn3