实验1 流动过程综合实验
化工流动过程综合实验
化工流动过程综合实验化工流动过程是指化学反应在流动介质中进行的一种反应方式。
它具有反应速度快、传质效果好等特点,能够实现高效的物质转化和分离纯化。
为了进一步探究化工流动过程的特点和应用,本文将介绍一种化工流动过程综合实验。
实验目的:1.了解化工流动过程的基本原理和特点;2.通过实验观察,掌握流动反应器的操作过程和条件;3.学习利用流动反应器进行物质转化和分离纯化的方法。
实验原理:本实验以酯化反应为例进行流动反应实验。
酯化反应是一种常见的化学反应,常用于香料、合成材料、染料等的制备。
实验中选择一种合适的催化剂,通过流动反应器将醇和酸废液进行反应,得到相应的酯化产物。
实验步骤:1.制备反应液:称取一定量的酸废液和醇溶液,按照一定的摩尔比混合。
添加适量的催化剂,摇匀,待用。
2.调整流动反应器:先将反应器内部清洗干净,然后调整流量计和压力计,使其保持稳定的流量和压力。
3.实验操作:将制备好的反应液缓慢加入反应器中,同时开始计时。
4.收取产物:根据反应液的组成和总的流量,通过收集样品的方式,定期取出产物进行分析。
5.观察和记录:在整个实验过程中,观察反应的进行状态,记录反应时间、温度、压力等关键参数。
实验结果:通过实验观察和分析,可以得到酯化反应的转化率、选择性、产物纯度等关键数据,判断反应条件的优化和反应过程的改进。
实验注意事项:1.实验操作时要严格遵守安全操作规程,避免触及腐蚀性物质。
2.在实验过程中保持仪器和反应条件的稳定性,确保实验数据的准确性。
3.合理利用实验时间,做好实验记录和资料整理工作。
实验总结:通过本次实验,我对化工流动过程的基本原理和特点有了更深入的理解。
流动反应器作为一种高效的反应装置,在化学反应和分离纯化过程中具有重要的应用价值。
通过实验操作和数据分析,我们可以研究流动反应过程的优化、探究反应机理等问题。
希望通过今后的学习和实践,能更好地应用化工流动过程于实际生产中,为化学工程领域的发展做出贡献。
实验一 流体力学综合实验实验报告
实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳2.测定直管摩擦系数λ与e R 关系曲线及局部阻力系数ζ 3、 了解离心泵的构造,熟悉其操作与调节方法 4、 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力与局部阻力两种。
直管阻力就是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1)局部阻力主要就是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2)管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m; d ——直管内径,m;u ——管内平均流速,1s m -⋅;g ——重力加速度,9、812s m -⋅p ∆——直管阻力引起的压强降,Pa;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ与Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。
离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。
实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。
离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5)式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅; 2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头与流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7)式中:e N ——泵的有效功率,K w;N ——电机的输入功率,由功率表测出,K w ;Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。
整理化工原理实验之对流传热实验
整理人 尼克化工原理实验之对流传热实验化工原理实验指导书化工原理教研室2014年编制目录实验一流动过程综合实验 (4)实验二过滤实验 (11)实验三传热实验(水-水蒸汽、空气-水蒸汽给热系数测定和传热综合实验) (15)传热实验一水-水蒸汽给热系数测定 (15)传热实验二空气-水蒸汽给热系数测定 (20)传热实验三传热综合(空气和水蒸汽)实验 (23)实验四吸收与解吸综合实验 (29)实验五精馏实验 (34)实验六萃取实验(填料萃取塔、振动筛板萃取塔) (39)萃取实验一填料萃取塔 (39)萃取实验二振动筛板萃取塔 (44)实验七干燥实验(洞道干燥、流化床干燥) (48)干燥实验一洞道干燥 (48)干燥实验二流化床干燥 (52)附件:《化工原理实验》教学大纲????????????实验一流动过程综合实验1 实验目的(1)掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
(2)识别组成管路的各种管件、阀门的结构、使用方法和性能。
(3)学习压差计、流量计的使用方法。
(4)学习光滑直管和粗糙直管的摩擦系数λ与雷诺准数Re的测量方法,并验证流体处于不同流动类型时的λ与Re二者间的关系。
(5)测定流体流经管件、阀门时的局部阻力系数ξ。
(6)分别测定文丘里流量计流量标定曲线(流量-压差关系)及流量系数和雷诺数之间的关系曲线(C-Re关系)。
(7)了解离心泵的结构、操作方法,掌握离心泵特性曲线测定方法,掌握离心泵管路特性曲线的测定方法,加深对离心泵性能的理解。
2 基本原理2.1 直管摩擦系数λ与雷诺数Re的测定对于不可压缩流体在水平等直径直管内作定态流动,根据伯努利方程有:(1.1)(1.1)式中:h f—压头损失,J/kg;L—两测压点间直管长度,m;d—直管内径,m;λ—摩擦阻力系数;u—流体流速,m/s;ΔP f—直管阻力引起的压降,N/m2;ρ—流体密度,kg/m3。
将(1.1)式经适当变形,可以得到摩擦系数的表达式,即:(1.2)雷诺准数定义式如下:(1.3)(1.2)式中:µ—流体粘度,Pa.s。
流动流体综合实验报告(3篇)
第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。
2. 学习使用流体力学实验设备,如流量计、压差计等。
3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。
4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。
二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。
直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。
局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。
直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。
局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。
三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。
2. 流量计:涡轮流量计。
3. 压差计:U型管压差计。
4. 温度计:水银温度计。
5. 计时器:秒表。
6. 量筒:500mL。
7. 仪器架:实验台。
四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。
2. 连接流量计和压差计,确保仪器正常运行。
3. 在实验台上设置实验管道,调整管道长度和管件布置。
4. 开启实验台水源,调整流量计,使流体稳定流动。
5. 使用压差计测量直管和管件处的压力差,记录数据。
6. 使用温度计测量流体温度,记录数据。
7. 计算直管摩擦阻力损失和局部阻力损失。
8. 重复步骤4-7,改变流量和管件布置,进行多组实验。
五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。
2. 记录不同流量下的压力差、流体温度等数据。
3. 计算直管摩擦阻力损失和局部阻力损失。
4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。
六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。
综合流体力学实验报告
实验一:综合流体力学实验一、实验目的1、掌握测定流体流经直管、管件和阀门时阻力损失的实验方法;2、测定直管摩擦系数λ与雷诺准数Re,验证在一般湍流区λ与Re的关系;3、测定流体流经阀门时的局部阻力系数ξ;4、学会流量计的使用方法;5、辨识组成管路的各种管件、阀门,并了解其作用。
二、实验原理1.直管阻力摩擦系数λ与雷诺数Re的测定原理流体流经直管时,流体阻力、流体本身的黏性以及管路的粗糙程度是产生能量损失的主要原因。
当流体在水平等径直管中稳定流动时,阻力损失为:流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在的关系为:上式相连可得:,也可为雷诺数计算公式,也可为2、流体经过截止阀门的局部阻力系数ξ的测定原理局部阻力损失测量法有:当量长度法和局部阻力系数法,本实验采取局部阻力系数法------流体通过某一管件或者阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数。
,可化为λ--- 直管阻力摩擦系数;d --- 直管内径,m;---压力降,Pa;---流体流经直管的机械能损失;P --- 流体密度,kg/m3;l --- 直管长度,m;u --- 流体在管内流动的平均速度,m/s;μ--- 流体粘度,kg/(m*s);三、实验设备及流程1、实验设备由水槽、离心泵、不同管径、材质的水管、阀门、管件、涡轮流量计和U形流量计等所组成。
实验管路部分有两段并联长直管,自上而下分别为用于粗糙管直管阻力系数和光滑管直管阻力系数。
同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力系数。
水的流量使用涡流流量计测量,管路直管阻力和局部阻力采用差压传感器测量。
2、实验流程流体由水槽流经离心泵进入排出管路,首先经过一个流量调节阀门,然后经过转子流量计,最后遇到三根平行的管路,最上方的管路是一根粗糙管,主要用于测定粗糙管的摩擦阻力系数λ与雷诺数Re之间的关系;第二根管是一根光滑管,主要用于测定光滑管的摩擦阻力系数λ与雷诺数Re之间的关系,由于光滑管是透明的,也可用它进行雷诺实验的演示;第三根管是中间安装了一个截止阀,主要用于测定流体流经阀门的局部阻力系数ξ;且这几根管路每根管路的入口处都有一个管路阀门,当测量某一跟管路时,需要将这一根管路的管路阀门打开,其余管路阀门关闭。
光滑管
实验名称_ 光滑管阻力测定实验___ 班级______姓名________学号________同实验者___________ 实验时间________年_______月______日成绩________指导老师_______________一、实验目的及任务1、学习直管摩擦阻力fP∆,直管摩擦系数λ的测定方法。
2、测定实验管路内流体流动的阻力和直管摩擦系数λ。
二、实验装置图-1流动过程综合实验流程示意图1-水箱;2-水泵;3-入口真空表;4-出口压力表;5、16-缓冲罐顶阀;6、14-测局部阻力近端阀;7、15-测局部阻力远端阀;8、17-粗糙管测压阀;9、21-光滑管测压阀;10-局部阻力阀;11-压差传感器左阀;12-压力传感器;13-压差传感器右阀;18 、24-阀门;20-粗糙管阀;22-小转子流量计;23-大转子流量计;25-水箱放水阀;26-倒U型管放空阀;27- 倒U型管;28、30-倒U型管排水阀;29、31-倒U型管平衡阀三、实验原理直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,dfελ=,对一定的相对粗糙度而言,(Re)f=λ。
流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:ρρffPPPh∆=-=21(1)又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)22udlh f Pfλρ==∆(2)整理(1)(2)两式得 22u P l d f∆⋅⋅=ρλ (3) μρ⋅⋅=u d Re (4)式中: -d 管径,m ; -∆f P 直管阻力引起的压强降,Pa ;-l 管长,m ; -u 流速,m / s ;-ρ流体的密度,kg / m 3; -μ流体的粘度,N·s / m 2。
在实验装置中,直管段管长l 和管径d 都已固定。
若水温一定,则水的密度ρ和粘度μ也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。
流体流动综合试验
1.1 实验流程与装置
图 1-1 流体流动综合实验装置流程图
图 1-2 流体流动综合实验装置实物照片
1
1.2 实验设备结构参数
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
表 1-1 水蒸气-水体系传热实验装置主要部件及仪表型号
TT2/103、TT2/104
强化套管换热器蒸汽进、出口温度
6
25
TT2/105、TT2/106、
TT2/107
26
TT2/108、TT2/109、
TT2/110
27
TT2/111、TT2/112
28
TT2/113、TT2/114
29
TT2/115、TT2/116、
TT2/117
30
TT2/118、TT2/119、
材质
管径(mm)
测试段长度(mm)
不锈钢管
Φ32×3
2.0
不锈钢管
Φ32×3
不锈钢管
Φ32×3
不锈钢
Φ12×2
不锈钢管
Φ48×3
不锈钢管
Φ45×3
1.3 注意事项 开启、关闭管道上的各阀门时,一定要缓慢开关,切忌用力过猛过大,防止
测量仪表因突然受压、减压而受损(如玻璃管断裂,阀门滑丝等)。
3
2.1 实验流程与装置
粗糙管水进口阀
V106
局部阻力测试管水进口阀
V107
Hale Waihona Puke 闸阀V108离心泵性能测试管水进口阀
V109
尾阀
V110、V111
水出口总阀
实验1流动过程综合实验
实验1 流动过程综合实验一、实验目的⒈学习和了解流体流动过程中的主要管件、阀门、流量计和离心泵的结构和用途,初步建立化工工程化概念;⒉学会根据实验内容画简单流程示意图;⒊学习管道摩擦系数的测定方法,掌握直管摩擦系数 与雷诺数Re和相对粗糙度ε/d之间的变化规律;⒋熟悉离心泵的操作方法,掌握离心泵特性曲线和管路特性曲线的测定方法;5.学习节流式流量计的标定方法,掌握流量系数C随雷诺数Re的变化规律。
二、实验任务下列任务除必选项外,至少选一项任选类实验任务(1) 测定流体流经光滑直管时的摩擦系数λ与雷诺数Re的关系曲线。
(必选)要求:将λ与Re在层流、过渡流和湍流三个流型区的关系标在同一张双对数坐标纸上。
(2) 测定离心泵在一定转速(频率 50HZ)下的特性曲线。
(必选)(3) 非标节流式流量计标定。
(任选)要求:用双对数和单对数坐标分别标绘压差△P与流量Q、孔流系数C与雷诺数Re的关系曲线。
(4) 测定流体流经粗糙管时的摩擦系数λ与雷诺数Re的关系,以及最大流量下阀门全开、半开时局部阻力系数ζ。
(任选)(5) 采用变频器调节,测定在改变的转速下离心泵的特性曲线。
(任选)(6) 测定流量调节阀开度在一半以上的管路特性曲线。
(任选)三、实验预习要求1. 预习流体流动阻力、离心泵和流量测量等相关知识,结合实验任务和附录提示列出对应的理论依据;2. 初步拟定针对单一实验任务的实验流程示意图;3. 明确测试对象,绘制原始数据记录表;4. 了解实验装置的使用及注意事项(见附录3);5. 拟定实验操作步骤。
四、实验报告要求:表1-1实验报告内容和提示五、思考题⒈ 本实验用水为工作介质做出的Re -λ曲线,对其它流体能否使用?为什么?⒉ 本实验是测定等直径水平直管的流动阻力,若将水平管改为流体自下而上流动的垂直管,从测量两取压点间△P f 是否与水平管相同?为什么?⒊ 为什么采用差压变送器和倒置U 形管并联起来测量直管段的压差?何时用倒置U 形管?何时用差压变送器?操作时要注意什么?4. 试分析实验数据,看一看,随着泵出口流量调节阀开度的增大,泵入口真空表读数是减少还是增加,泵出口压强表读数是减少还是增加。
试验一基本流动现象观察试验
实验一:基本流动现象观察试验
1、实验目的
1.观察流体在流经收缩与扩张管道后的流动现象。
2.观察流体流经圆柱体后的尾流流动现象。
3.观察流体流经二元翼型后的绕流和尾迹。
2、实验装置
1 2 3 4
图1:基本流动现象实验装置
3、实验方法与步骤
1.实验前制定实验步骤。
2.打开流动演示仪电源开关,使得管内水流循环流动。
3.调节管内水流压力,使管内产生均匀的水流气泡。
4.观察水流流过物体后的绕流和尾迹变化。
5.实验后关闭电源开关。
6.整理仪器,老师签字后离开实验室。
4、实验现象观察
1.流体在流过收缩管道后,流体会加速流动;在流经扩张管道后,流体会
减速,同时在侧壁上的流体会离开物面,发生分离。
图2:扩张管道流动 图3:收缩管道流动
2.流体在流经圆柱体后,在圆柱体后面逆压区,由于粘性作用产生附面层
分离,从而交替产生的离体旋涡顺气流而下形成两排交错出现的涡列,这就是有名的卡门涡街。
图2圆柱绕流特性
3.流体流经钝体与二元翼型后的绕流现象。
V
图3 翼型绕流特性
1.观察流体流过钝体后的尾迹与图2中卡门涡街现象的异同,分析原因。
2.观察流体从翼型前缘流过二元翼型与从后缘流过二元翼型时流体的流
动现象,分析原因。
5. 实验分析与讨论
1.流体分离对物体的气动特性存在那些不利的影响?
2.卡门涡街的危害,影响卡门涡街形成的因素有那些?
3.流动分离对翼型的气动特性有那些影响,如何改善?
4.画出各演示仪内流动的流线图,标明流动分离区。
实验一 流体力学综合实验实验报告
实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳 2.测定直管摩擦系数λ和e R 关系曲线及局部阻力系数ζ 3. 了解离心泵的构造,熟悉其操作和调节方法 4. 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力和局部阻力两种。
直管阻力是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1) 局部阻力主要是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2) 管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m ; d ——直管内径,m ;u ——管内平均流速,1s m -⋅;g ——重力加速度,9.812s m -⋅p ∆——直管阻力引起的压强降,Pa ;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ和Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。
离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。
实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。
离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5) 式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅;2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7) 式中:e N ——泵的有效功率,K w ;N ——电机的输入功率,由功率表测出,K w ; Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。
化工原理流体流动实验
流体流动综合实验(离心泵与管路特性曲线测定、流量性能测定)一、实验目的及任务1、熟悉离心泵的操作方法。
2、熟悉离心泵的结构与操作方法。
3、测定流量调节阀某一开度下管路特性曲线。
二、实验装置图-1 流动过程综合实验流程示意图1-水箱;2-水泵;3-入口真空表;4-出口压力表;5、16-缓冲罐顶阀;6、14-测局部阻力近端阀;7、15-测局部阻力远端阀;8、17-粗糙管测压阀;9、21-光滑管测压阀;10-局部阻力阀;11-压差传感器左阀;12-压力传感器;13-压差传感器右阀;18 、24-阀门;20-粗糙管阀;22-小转子流量计;23-大转子流量计;25-水箱放水阀;26-倒U型管放空阀;27- 倒U型管;28、30-倒U型管排水阀;29、31-倒U型管平衡阀三、实验原理离心泵特性曲线测定离心泵是最常见的液体输送设备。
在一定的型号和转速下,离心泵的扬程H、轴功率N及效率η均随流量Q而改变。
通常通过实验测出H—Q、N—Q及η—Q 关系,并用曲线表示之,称为特性曲线。
特性曲线是确定泵的适宜操作条件和选用泵的重要依据。
泵特性曲线的具体测定方法如下:(1) H 的测定:在泵的吸入口和排出5之间列柏努利方程出入入出出入入入-+++=+++f H gu g P Z H g u g P Z 2222ρρ (1) ()出入入出入出入出-+-+-+-=f H gu u g P P Z Z H 222ρ (2) 上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。
于是上式变为:()gu u g P P Z Z H 222入出入出入出-+-+-=ρ (3) 将测得的()入出Z Z -和入出PP -值以及计算所得的出入u u ,代入上式,即可求得H 。
(2) N 测定:功率表测得的功率为电动机的输入功率。
由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。
化工原理实验-——液体流动,、离心泵
实验一流动过程综合实验实验1-1 流体阻力测定实验一、实验装置⒈实验装置流程图如图1-2所示。
⒉流量测量:在图1-2中由转子流量计22、23测量。
⒊直管段压强降的测量:差压变送器和倒置U形管直接测取压差值。
图一、流体综合实验装置流程示意图1:水箱:2:水泵;3:入口真空表;4:出口压力表;5,16:缓冲罐:6,14测局部阻力近端阀;7,15:测局部阻力远端阀;8,17:粗糙管测压阀;9,21:光滑管测压阀;10:局部阻力阀;11:文丘里流量计;12:压力传感器;13:涡流流量计;18:阀门;19光滑管阀;20:粗糙管阀;22:小流量计;23:大流量计;24阀门25:水箱放水阀;26:倒U型管放空阀;27: 倒U型管;28,30:倒U型管排水阀;29,31: 倒U型管平衡阀;32:功率表;33:变频调速器设备主要参数二、实验内容⒈测定实验管路内流体流动的阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 之间的关系曲线。
⒊在本实验压差测量范围内,测量阀门的局部阻力系数。
三、实验原理⒈直管摩擦系数λ与雷诺数Re 的测定h f = ρfP ∆=22u d l λ (1-1)λ=22u P l d f∆⋅⋅ρ (1-2) Re =μρ⋅⋅u d (1-3)式中:-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,Pa ·s 。
⒉局部阻力系数ζ的测定 22'u P h ff ζρ=∆=' (1-4)2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ (1-5)式中:-ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。
图1-1 局部阻力测量取压口布置图局部阻力引起的压强降'f P ∆ 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a'和b-b ',见图1-1,使ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式:P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f(1-6)在b~b '之间列柏努利方程式:P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联立式(1-6)和(1-7),则:'f P ∆=2(P b -P b ')-(P a -P a ')为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
化工流动过程综合实验
化工流动过程综合实验
化工流动过程是指化学反应、物料输送等在管道内进行的过程,通常包括物质输送、混合、反应等步骤。
其中,流动的动态特性对工艺操作和产品品质的影响极大,因此需要采用综合实验的方法进行研究和分析。
本次实验旨在通过分析流动过程的压力、温度、流速、混合等指标,了解不同操作条件下流动过程的特性,并探究影响流动过程的因素。
具体实验流程如下:
一、实验仪器及试剂
1. 实验仪器:管道流动实验装置、数字式压力表、热电偶温度计、测速仪、分析秤等。
2. 试剂:水、甲醇、乙醇等。
二、实验步骤
1. 实验前准备:将实验装置组合好,并用水清洗干净,放置约15min进行预热,将测量仪器校准好。
2. 流动特性的探究:在实验装置中流入一定量的水,根据压力表及流速计的读数,记录流动过程的流速、压力等数据。
同时,探究不同条件下的流速、流量、压力、温度等特性。
3. 混合过程的模拟:在进口处加入一定量的甲醇或乙醇,记录反应前后的压力、温度、流速及混合程度等数据并进行对比分析。
4. 实验结果处理:根据实验数据制表、绘图,分析数据特性,进而进行实验结果的处理和分析。
三、注意事项
1. 实验操作时,应注意装置的安全性和操作技巧。
2. 测量时应精确记录数据,并进行数据分析与归纳总结。
3. 完成实验后应及时清洗试剂和装置,做好实验室卫生与环保工作。
四、实验预期结果
通过本次实验,可以了解不同条件下流动过程的特征,并理解影响流动过程的因素,掌握综合化工实验的基本方法和步骤。
同时,也可以为实际工业生产过程中的相关问题提供一定的理论依据和实践指导,为工业发展提供技术支持。
流体流动综合实验报告
流体流动综合实验报告【前言】流体力学是现代力学的一个重要分支,是探究流体运动行为的学科。
在实际生产和科学研究中,流体力学起着重要的作用,有着广泛的应用。
在本次流体流动综合实验中,我们主要学习了流量计的基本原理、流量计的使用方法和实验过程中常见的误差与注意事项。
本文将对本次实验进行详细的介绍和总结,希望对学生们在课堂上学习到的知识有所帮助。
【实验原理】1. 流量计的基本原理流量计用于测量流体的流量,是流量测量中最常用的仪器。
常见的流量计有体积型流量计和质量型流量计两种。
(1)体积型流量计:通过测量流体通过管道的体积来计算流量,如浮子流量计、涡流流量计等。
(2)质量型流量计:通过测量流体通过管道的质量来计算流量,如质量流量计、热式流量计等。
2. 流量计的使用方法(1)系统准备:检查流量计,安装流量计,接线。
(2)初始清除流量计中残留的气体和液体。
(3)开机预热:开机10-15分钟,使流量计的各部件达到稳定状态。
(4)开始实验:将流体加入实验装置,并记录流量计读数。
(5)结束实验:关闭流量计、实验装置的进口和出口阀门。
【实验内容】本次实验主要内容涉及以下四个实验:1. 使用涡街流量计测流量2. 使用燃气涡轮流量计测流量3. 使用热式流量计测流量4. 使用激光多普勒流量计测流量【实验结果】经过实验,我们得到了以下的实验结果:(1)涡街流量计:流量范围为0.1L/min-2L/min,实验误差约为4.3%。
(2)燃气涡轮流量计:流量范围为0.15L/min-1.5L/min,实验误差约为2.1%。
(3)热式流量计:流量范围为0.4L/min-2.0L/min,实验误差约为1.4%。
(4)激光多普勒流量计:流量范围为0.01L/min-1L/min,实验误差约为1.8%。
【误差分析】(1)实验误差的来源主要有观察误差、读数误差、环境误差等。
(2)在实验中应该进行多次重复测量,统计平均值来减小误差。
(3)除此之外,还要注意实验过程中的环境温度、压力等因素的影响,并尽量减小其影响。
实验一流体力学综合实验实验报告
实验一流体力学综合实验实验报告一、实验目的本实验的目的是通过对流动物体的测量,探究流体的运动规律,深入了解流体力学的相关概念。
同时,本实验也可以提高学生的实验能力,加深理论知识的理解和应用。
二、实验原理1. 基本概念流体是指能够流动的物质,包括液体和气体。
流体运动过程中,流速和压强是两个重要的物理量。
流体的流动受到斯托克斯定律的影响,该定律表明,在粘性流体中,流体的阻力与流过它的物体的速度成正比,与物体的表面积和流体的黏度成反比。
2. 流动物体的测量研究流动物体的运动规律,需要对流量、流速、压强等进行测量。
其中,流量的测量一般采用体积法、重量法、压降法等方法。
流速的测量可以采用中心角法、浮标法、液面法等方法。
压强的测量一般采用静压法和动压法。
3. 流体力学的应用流体力学在现代工程领域中有广泛的应用,如水力发电、空气动力学、航空航天工程等。
在这些领域内,流体力学的理论和实验技术都发挥着重要作用,有助于提高工程效率和安全性。
三、实验内容1. 流量计测量利用流量计对水流的流量进行测量。
流量计是一种可以对流体流量进行直接读数的设备,可以通过它来确定液体或气体的流量大小。
在本实验中,流量计采用的是内切式流量计,该流量计适用于流量较小时的情况。
四、实验结果通过测量流量计的读数,我们得到了水流的平均流量值为0.026 L/s。
3. 压力计测量结果五、实验分析在本实验中采用的是旋转翼流量计,该流量计适用于流量较大、粘度较小的情况。
通过测量流速计读数可以得到水流的流速值,该值可以帮助我们进一步分析水流的运动规律。
化工流动过程综合实验-8页word资料
化工流动过程综合实验讲义天津大学化工基础实验中心2019.02一、实验目的:1.学习直管摩擦阻力f P ∆、直管摩擦系数λ的测定方法。
2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及变化规律。
3.掌握局部摩擦阻力f P ∆,局部阻力系数ζ的测定方法。
4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。
5.熟悉离心泵的操作方法。
6.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。
二、实验内容:1.测定实验管路内流体流动的阻力和直管摩擦系数λ。
2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。
3.测定管路部件局部摩擦阻力f P ∆和局部阻力系数ζ。
4.熟悉离心泵的结构与操作方法。
5.测定某型号离心泵在一定转速下的特性曲线。
6.测定流量调节阀某一开度下管路特性曲线。
三、实验原理:1.直管摩擦系数λ与雷诺数Re 的测定:直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。
流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:ρρff P P P h ∆=-=21 (1)又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)22u d l h fP f λρ==∆ (2) 整理(1)(2)两式得 22uP l d f ∆⋅⋅=ρλ (3) μρ⋅⋅=u d Re (4)式中: -d 管径,m ; -∆f P 直管阻力引起的压强降,Pa ;-l 管长,m ; -u 流速,m / s ;-ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。
在实验装置中,直管段管长l 和管径d 都已固定。
若水温一定,则水的密度ρ和粘度μ也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降f P ∆与流速u (或流量q v )之间的关系。
流体力学综合实验
实验一 流体力学综合实验一、实验目的1. 测定水在管道内流动时的直管阻力损失,作出与Re的关系曲线;2. 测定水在管道内流动时的局部阻力损失,测量和计算不同开度下截止阀的局部阻力系数或当量长度l e;3. 测定一定转速下,离心泵的特性曲线;4. 观察水在直管内的流动类型。
二、实验原理1. 摩擦阻力系数~Re流体在管道内流动时,由于内摩擦力的存在,必然有能量损耗,此损耗能量为直管阻力损失。
在流经阀门、管件时,由于流道方向或大小的改变,造成流体的剧烈湍动,造成的能量损失称为局部阻力损失。
根据柏努利方程,对等直径的1、2两截面间的直管阻力损失为:图2-1 直管阻力测量原理示意图(1)由因次分析法得(2)(3)(4)式中:h f 直管阻力损失 (J/kg);摩擦阻力系数;l 、d 、直管的长度、管内径和绝对粗糙度 (m);p流体流经直管的压降 (Pa);、分别是流体的密度 (kg/m3) 和粘度 (Pas);u流体在管内的平均流速 (m/s)。
由公式(2)可以看出,流体流动时的摩擦阻力损失与管道的长度成正比,与管道的直径成反比。
流体的平均速度越高,阻力损失越大。
利用公式(2)计算直管阻力损失时,需要知道不同雷诺数下摩擦阻力系数的值。
穆迪图给出了~Re的关系曲线。
本实验装置可以利用上面的公式来验证直管阻力损失计算,测定~Re的关系曲线。
流体在长度和直径一定的管道内流动时,利用U型管压差计实验测出一定流量下流体流经该长度管段所产生的压降,即可算得h f,利用公式(2)可得到,根据流速和物性数据可按公式(5)计算出对应的雷诺数Re,从而关联出与Re的关系曲线。
改变实验管可得出不同粗糙度(不同材质直管)的与Re的关系曲线。
2. 局部阻力系数和当量长度l e对于由阀门或管件造成的局部阻力损失,可以用以下的公式计算:当量长度法(5)局部阻力系数法(6)式中:h f 局部阻力损失 (J/kg);局部阻力系数;l e当量长度 (m);图2-2 局部阻力测量原理示意图测出一定流速时流体通过阀门或管件的压降h f,就可利用公式(5)、(6)计算出对应的当量长度或局部阻力系数。
化工原理实验装置
班级:11级制药工程姓名:陈鑫瑀学号:20115211031化工原理实验装置一.化工流动过程综合实验装置图1-1 流体流动过程综合实验流程示意图1-水箱;2-水泵;3-入口真空表;4-出口压力表;5、16-缓冲罐;6、14-测局部阻力近端阀;7、15-测局部阻力远端阀;8、17-粗糙管测压阀;9、21-光滑管测压阀;10-局部阻力阀;11-文丘里流量计(孔板流量计);12-压力传感器;13-涡流流量计;18、32-阀门;20-粗糙管阀;22-小转子流量计;23-大转子流量计;24阀门;25-水箱放水阀;26-倒U 型管放空阀;27- 倒U型管;28、30-倒U型管排水阀;29、31-倒U型管平衡阀图1—2 流体流动过程综合实验装置【基本原理】1.流体阻力实验a.直管摩擦系数λ与雷诺数Re 的测定:直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。
流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:ρρff p p p h ∆=-=21 ⑴又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)22u d l p h ff λρ=∆= ⑵整理⑴⑵两式得22u p l d f∆⋅⋅=ρλ ⑶ μρ⋅⋅=u d R e ⑷式中: -d 管径,m ;-∆f p 直管阻力引起的压强降,Pa ;-l 管长,m ; -u 流速,m / s ;-ρ流体的密度,kg / m 3;-μ流体的粘度,N·s / m 2。
在实验装置中,直管段管长l 和管径d 都已固定。
若水温一定,则水的密度ρ和粘度μ也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降f p ∆与流速u (流量V )之间的关系。
根据实验数据和式⑶可计算出不同流速下的直管摩擦系数λ,用式⑷计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 流动过程综合实验实验1-1 流体阻力测定实验一、实验目的⒈学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。
⒉掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。
⒊掌握局部阻力的测量方法。
⒋学习压强差的几种测量方法和技巧。
⒌掌握坐标系的选用方法和对数坐标系的使用方法。
二、实验内容⒈测定实验管路内流体流动的阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。
⒊在本实验压差测量范围内,测量阀门的局部阻力系数。
三、实验原理⒈直管摩擦系数λ与雷诺数Re 的测定流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。
流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:h f = ρfP ∆=22u d l λ (1-1)λ=22u P l d f∆⋅⋅ρ (1-2) Re =μρ⋅⋅u d (1-3)式中:-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3;-μ流体的粘度,N ·s / m 2。
直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。
在实验装置中,直管段管长l 和管径d 都已固定。
若水温一定,则水的密度ρ和粘度μ也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。
根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(1-3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
⒉局部阻力系数ζ的测定22'u P h ff ζρ=∆=' (1-4) 2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ (1-5)式中:-ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。
图1-1 局部阻力测量取压口布置图局部阻力引起的压强降'f P ∆ 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a'和b-b ',见图1-1,使ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式: P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P'f (1-6)在b~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f= △P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联立式(1-6)和(1-7),则:'f P ∆=2(P b -P b ')-(P a -P a ')为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
用差压传感器来测量。
四、实验装置⒈本实验共有八套装置,第1~6套实验装置用图1-2所示的实验装置流程图,第7~8套实验装置用图1-3所示的实验装置流程图。
在图1-2中, 光滑管阻力系数流程:A →B (C →D )→E →F →G →H →J →M →N →P ; 粗糙管阻力系数流程:A →B (C →D )→E →F →G →H →K →L →O →P ;(C →D )为流量小于2 m 3/h 时的流程。
⒉ 流量测量:在图1-2中由转子流量计和涡轮流量计测量,在图1-3中由转子流量计测量。
⒊ 直管段压强降的测量:差压变送器或倒置U 形管直接测取压差值。
图1-2 第1~6套流动过程综合实验装置流程图⑴离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;[21]—变频器;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差;5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L—粗糙管图1-3 第7~8套流动过程综合实验装置流程图1.—变频器2.—功率表3.—真空表4.—不锈钢水泵5.—压力表6.7.—流量调节阀8.—光滑管9.—粗糙管10.—被测局部阻力阀门11.12.—转子流量计13.—被测文丘里流量计14.—压力变送器15.—数显表16.17.18.—流向导通阀19.—频率表20.—涡轮流量计21.—倒置U型管22.—差压变送器23.—数字电压表24.—水箱五、实验方法第1~6套实验方法:⒈按下电源和离心泵的绿色按钮,通电预热数字显示仪表,记录差压数字表第2~7路的初始值,关闭流量调节阀⑵⑶和回流阀⒀,按一下变频器上的启动按钮,启动离心泵。
⒉光滑管阻力测定:(1)关闭截止阀⒇,将闸阀⒆全开,并旋开光滑管平衡阀⒁。
(2)在流量为零条件下,旋开倒置U形管左右旋钮,检查导压管内是否有气泡存在。
若倒置U形管内液柱高度差不为零,则表明导压管内存在气泡,需要进行赶气泡操作。
操作方法如下:开大流量调节阀⑶,使倒置U形管内液体充分流动,以赶出管路内的气泡;若认为气泡已赶净,将流量阀关闭;慢慢旋开倒置U形管上部的放空阀,使液柱降至零点上下时马上关闭,管内形成气—水柱;此时管内液柱高度差应为零。
(3)关闭光滑管平衡阀⒁,通过阀⑶调节流量。
根据流量大小选择大、小量程的转子流量计测量。
(4)直管段的压差:小流量时用倒置∪形管压差计测量,大流量时用差压数字表(第2路)测量。
应在最大流量和最小流量之间进行实验,一般测取12~15组数据,建议流量读数在40L/h之内,不少于4个点,以便得到滞流状态下的λ—Re关系。
在能用倒置∪形管测压差时,尽量不用差压数字表测压差。
(5)闸阀⒆局部阻力测量:在最大流量时,直管段压差测量完后,将闸阀⒆往回转5圈,再读取差压数字表第4、5路压差数据。
3.粗糙管阻力测定:(1)关闭闸阀⒆,全开截止阀⒇,并旋开粗糙管平衡阀⒃,逐渐调大流量调节阀⑵,赶出导压管内气泡。
(2)关闭粗糙管平衡阀⒃,通过阀⑵⑶调节流量。
流量小于2 m3/h时,选择大量程的转子流量计测量;流量大于2 m3/h时,选择涡轮流量计测量。
从小流量到最大流量,一般测取10~15组数据。
(3)直管段的压差用差压数字表第3路测量。
(4)截止阀⒇局部阻力测量:在最大流量时,读取差压数字表第6、7路压差数据。
4.在水箱中测取水温。
5.待数据测量完毕,关闭流量调节阀,核实差压数字表初始值,继续其它实验或切断电源。
第7~8套实验方法:1 按下电源的绿色按钮,通电预热数字显示仪表,记录差压数字表第1~4路的初始值,关闭流量调节阀6、7,按一下变频器的启动按钮,启动离心泵。
2. 针对某一测试对象选择对应的流向导通阀,逆时针全开。
3. 在进行光滑管阻力测定之前,应先检查导压系统内有无气泡存在。
当流量为0时,打开a、a'两阀门,若空气—水倒置U型管内两液柱的高度差不为0,则说明系统内有气泡存在,需赶净气泡方可测取数据。
赶气泡的方法:将流量调至较大,排出导压管内的气泡,直至排净为止;关闭a、a'两阀门,打开b、b'两阀门,慢慢旋开倒置U形管上部的放空阀,使液柱降至零点上下时马上关闭,使管内形成气—水柱,此时管内液柱高度差应为零。
4. 测取数据顺序可从大流量至小流量,反之也可,一般测约15组数据。
在进行光滑管阻力测定时,建议流量读数在40L/h之内不少于4个点,以便得到滞流状态下的λ—Re关系。
在能用倒置∪形管测压差时,尽量不用差压数字表测压差。
5. 待数据测量完毕,关闭流量调节阀,核实差压数字表初始值,继续其它实验或切断电源。
六、注意事项⒈启动离心泵之前,以及从光滑管阻力测量过渡到其它测量之前,都必须检查所有流量调节阀是否关闭。
⒉测数据时则必须关闭所有的平衡阀,并且在用差压数字表测量时,必须关闭通倒置U形管的阀门,防止形成并联管路。
七、报告内容⒈将实验数据和数据整理结果列在表格中,并以其中一组数据为例写出计算过程。
⒉在合适的坐标系上标绘光滑直管和粗糙直管λ—Re 关系曲线。
⒊根据所标绘的λ—Re曲线,求本实验条件下滞流区的λ—Re关系式,并与理论公式比较。
⒋回答如下思考题:⑴本实验用水为工作介质做出的λ一Re曲线,对其它流体能否使用?为什么?⑵本实验是测定等直径水平直管的流动阻力,若将水平管改为流体自下而上流动的垂直管,从测量两取压点间压差的倒置U形管读数R到△P f的计算过程和公式是否与水平管完全相同?为什么?⑶为什么采用差压变送器和倒置U形管并联起来测量直管段的压差?何时用变送器?何时用倒置U形管?操作时要注意什么?八、设备主要参数实验1-2 离心泵性能测定实验一、实验目的1. 熟悉离心泵的操作方法。
2. 掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。
3. 掌握离心泵特性管路特性曲线的测定方法、表示方法。
二、实验内容1. 练习离心泵的操作。
2. 测定某型号离心泵在一定转速下,H (扬程)、N (轴功率)、η(效率)与Q (流量)之间的特性曲线。
3. 测定流量调节阀某一开度下管路特性曲线。
三、实验原理(一)离心泵特性曲线离心泵是最常见的液体输送设备。
在一定的型号和转速下,离心泵的扬程H 、轴功率及 效率η均随流量Q 而改变。
通常通过实验测出H —Q 、N —Q 及 η—Q 关系,并用曲线表示 之,称为特性曲线。
特性曲线是确定泵的适宜操作条件和选用泵的重要依据。
泵特性曲线的 具体测定方法如下: ⒈ H 的测定:在泵的吸入口和压出口之间列柏努利方程出入入出入出入出出入出出出入入入)--+-+-+-=+++=+++f f H gu u g P P Z Z H H gu g P Z H g u g P Z 2(222222ρρρ上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力(不包括泵体内部的流 动阻力所引起的压头损失),当所选的两截面很接近泵体时,与柏努利方程中其它项比较,出入-f H 值很小,故可忽略。
于是上式变为:gu u g P P Z Z H 2(22入出入出入出)-+-+-=ρ将测得的)入出Z Z -(和入出P P -的值以及计算所得的u 入,u 出代入上式即可求得H 的值。