直驱式风力发电机知识
直驱式永磁同步风力发电机概述
直驱式永磁同步风力发电机概述永磁同步发电机是一种以永磁体进行励磁的同步电机,应用于风力发电系统,称为永磁同步风力发电机。
永磁同步风力发电机一般不用齿轮箱,而将风力机主轴与低速多极同步发电机直接连接,为“直驱式”,所以称为直驱式永磁同步风力发电机,以下本章除特指外均简称为永磁同步发电机。
一、永磁同步发电机的特点1.与传统电励磁同步发电机比较同步发电机是一种应用广泛的交流电机,其显著特点是转子转速n与定子电流频率f之间具有固定不变的关系,即n=n0=60f/p,其中n为同步转速,p为极对数。
现代社会中使用的交流电能几乎全部由同步发电机产生。
永磁同步发电机是一种结构特殊的同步发电机,它与传统的电励磁同步发电机的主要区别在于:其主磁场由永磁体产生,而不是由励磁绕组产生。
与普通同步发电机相比,永磁同步发电机具有以下特点:(1)省去了励磁绕组、磁极铁芯和电刷-集电环结构,结构简单紧凑,可靠性高,免维护。
(2)不需要励磁电源,没有励磁绕组损耗,效率高。
(3)采用稀土永磁材料励磁,气隙磁密较高,功率密度高,体积小,质量轻。
(4)直轴电枢反应电抗小,因而固有电压调整率比电励磁同步发电机小。
(5)永磁磁场难以调节,因此永磁同步发电机制成后难以通过调节励磁的方法调节输出电压和无功功率(普通同步发电机可以通过调节励磁电流方便地调节输出电压和无功功率)。
(6)永磁同步发电机通常采用钕铁硼或铁氧体永磁,永磁体的温度系数较高,输出电压随环境温度的变化而变化,导致输出电压偏离额定电压,且难以调节。
(7)永磁体存在退磁的可能。
目前,永磁同步发电机的应用领域非常广泛,如航空航天用主发电机、大型火电站用副励磁机、风力发电、余热发电、移动式电源、备用电源、车用发电机等都广泛使用各种类型的永磁同步发电机,永磁同步发电机在很多应用场合有逐步代替电励磁同步发电机的趋势。
2.与非直驱式双馈风力发电机比较虽然双馈风力发电机是目前应用最广泛的机型,但随着风力发电机组单机容量的增大,双馈型风力发电系统中齿轮箱的高速传动部件故障问题日益突出,于是不用齿轮箱而将风力机主轴与低速多极同步发电机直接连接的直驱式布局应运而生。
永磁直驱风力发电机结构
永磁直驱风力发电机结构:永磁直驱风力发电机的结构主要包括风轮、永磁同步发电机、机架及偏航系统、主控系统、变流器、空-空循环冷却系统、液压系统、润滑系统、变压器、中央监控系统、塔架和机舱等部分。
风轮是永磁风力发电机的核心部件,也是最直接受到风能作用的部分。
它由多个叶片组成,通过风力的作用使得风轮旋转。
风轮通常采用可调角度的叶片设计,以便在不同风速下获得最高效率的转动。
发电机通过法兰与风轮直接相连,省去了影响风机可靠性的最薄弱环节———齿轮箱,以及主轴系统、联轴器等传动部件。
风轮与发电机转子直联,简化了结构,缩短了传动链,最大限度地提高了机组的可靠性和传动效率。
机架和偏航系统支持整个发电机组的运行,并能根据风向的变化自动调整机舱的角度,以保证风轮始终对准风向,提高发电效率。
主控系统负责整个发电机组的运行控制,包括启动、停机、偏航、故障保护等功能。
变流器将发电机产生的电能转换为符合电网要求的电能,空-空循环冷却系统则负责冷却发电机和变流器等发热部件。
液压系统和润滑系统则分别提供机组运行所需的液压动力和润滑。
此外,永磁直驱风力发电机还包括变压器、中央监控系统、塔架和机舱等部分。
变压器将发电机产生的电能升压后送入电网,中央监控系统则负责监控整个发电机组的运行状态和性能。
塔架和机舱则构成了发电机组的支撑结构和运行环境。
直驱式风力发电机简介
直驱风力发电机简介
•齿轮箱增速的水平轴风力发电机组
•不用齿轮箱用风力机浆叶直接带动发电机旋转发电是可行的,这必须采用专用的低转速发电机,称之为直驱式风力发电机。
•低转速发电机都是多极结构,水轮发电机就是低速多极发电机,目前风力机用的直驱式发电机主要采用多极构造,有多极内转子结构与多极外转子结构等,只是要求在结构上更轻巧一些。
•采用永磁体技术的直驱式发电机结构简单、效率高。
永磁直驱式发电机在结构上主要有轴式结构与盘式结构两种,轴式结构的磁场方向为径向气隙磁通,又分为内转子、外转子等;盘式结构的磁场方向为轴向气隙磁通,又分为中间转子、中间定子、多盘式等;
内转子永磁直驱式风力发电机
外转子永磁直驱式风力发电机
盘式永磁直驱式风力发电机
内转子永磁直驱式风力发电机
外转子永磁直驱式风力发电机的发电绕组外转子电机的特点是定子固定在靠轴中间位置不动,转子在定子的外围旋转,也属径向气隙磁通结构,与内转子结构相比是转子与定子换了个位置。
盘式永磁直驱式风力发电机
定子与转子都呈平面圆盘结构,定子与转子轴向排列,有中间转子、中间定子、多盘式等结构。
直驱风力发电机
主要零部件
变距系统设计方案 • 驱动装置: 采用三个相互独立的变 频调速电机传动机构。 • 后备储能单元: 采用大容量电容, 免维护,可靠性高。 • 传动方式: 同步齿型带,免维护, 成本低。
主要零部件
机舱底座
主要零部件
轮毂
永磁电机效率对比
1.2MW永磁直接驱动风机功率曲线
发 电 量 对 比
成本问题
由于稀土永磁材料目前的价格还比较贵,稀土永磁 发电机的成本一般比电励磁式发电机高,但这个成会在 电机高性能和运行中得到较好的补偿。在今后的设计中 会根据具体使用的场合和要求,进行性能、价格的比较, 并进行结构的创新和设计的优化,以降低制造成本。 无可否认,现正在开发的产品成本价格比目前通用 的发电机略高,但是我们相信,随着产品更进一步的完 美,成本问题会得到很好的解决。美国DELPHI(德尔 福)公司的技术部负责人认为:“顾客注重的是每公斤 瓦特上的成本。”他的这一说法充分说明了交流永磁发 电机的市场前景不会被成本问题困扰。
•
因此,必须建立新的设计概念,重新分析和改进磁 路结构和控制系统;必须应用现代设计方法,研究新的分 析计算方法,以提高设计计算的准确度;必须研究采用先 进的测试方法和制造工艺。
永磁材料的技术性能与退磁曲线的形状, 对电机的性 能、外形尺寸、运行可靠性等有很大的影响,是设计与制 造永磁电机时需要考虑的十分重要的参数。对于不同的情 况, 不同的场合, 应采用不同的结构形式和永磁材料。图 给出这几种永磁材料的退磁曲线(还受温度影响)。
直驱式永磁同步风力发电机变速变桨距控制
直驱式永磁同步风力发电机变速变桨距控制变桨距是最常见的控制风力发电机组吸收风能的方法。
变桨距控制会对所有由风轮产生的空气动力载荷产生影响。
直驱式永磁风力发电机组一旦达到额定转矩,载荷转矩就不能继续增加,但风速还在增加,所以转速也开始增加,应用变桨距控制调节转速,使转速不超过上限,并由变流器保证载荷转矩恒定不变。
通常PI或PID调节器调节桨距角就可以满足要求,在有些情况下要用滤波器对转速误差进行处理,以防止过度的桨距动作。
一、变速变桨距控制概述1.基本控制要求在额定风速以下时,风力发电机组应该尽可能捕捉较多风能,所以这时没有必要改变桨距角,此时的空气动力载荷通常比在额定风速以上时的动力载荷小,也没有必要通过变桨距来调节载荷。
在额定风速以上时,变桨距控制可以有效调节风力发电机组的吸收功率及风轮产生的载荷,使其不超出设计的限定值。
而且为了达到良好的调节效果,变桨距应该对变化的情况作出迅速的反应。
这种主动控制器需要仔细设计,因为它会与风力发电机组的动态特性相互影响。
随着叶片攻角的变化,气流对风轮的作用力也会随之发生改变,这就会导致风力发电机组塔架的振动。
随着风速的增加,为了保持功率恒定,转矩桨距角也随着增加,风轮所受到的力将会减小。
这就使塔架的弯曲减小,塔架的顶端就会向前移动引起以风轮为参照物的相对风速的增加。
空气动力产生的转矩进一步增加,引起更大的调桨动作。
显然,如果变桨距控制器的增益太高会导致正反馈不稳定。
2.主动失速变桨距在额定风速以下时,桨距角设定值应该设置在能够吸收最大功率的最优值。
按照这个原则,当风速超过额定风速时,增大或减小桨距角都会减小机组转矩。
减小桨距角,即将叶片前缘转向背风侧,通过增大失速角来调节转矩,使升力减小,阻力增加,称为主动失速变桨距。
尽管顺桨是更常见的控制策略,但是有些风力发电机组采用主动失速变桨距的方法,通常称为主动失速。
向顺桨方向变桨距比主动失速需要更多的动态主动性,一旦大部分叶片失速,就没有足够的变桨距调节来控制转矩。
双馈、直驱、半驱风力发电机工作原理
双馈、直驱、半驱风力发电机工作原理双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。
它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中得到广泛应用。
我们来了解一下双馈风力发电机的工作原理。
双馈风力发电机是一种采用异步发电机的结构,其转子由两部分组成:一个是固定子,另一个是转子。
风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。
在双馈风力发电机中,转子的定子通过拖动转子的磁场,使得风力发电机可以实现变频调速。
双馈风力发电机具有转矩平稳、响应速度快的优点,可以适应不同风速下的工作状态。
接下来,我们介绍一下直驱风力发电机的工作原理。
直驱风力发电机是一种采用永磁同步发电机的结构,其转子由永磁体构成。
风力通过叶片传递给转子,转子通过直接驱动发电机产生电能。
直驱风力发电机不需要传动系统,减少了能量转换的损失,提高了发电效率。
直驱风力发电机具有结构简单、体积小、维护成本低等优点,逐渐成为风力发电领域的主流技术。
我们来了解一下半驱动风力发电机的工作原理。
半驱动风力发电机是双馈风力发电机和直驱风力发电机的结合体,它采用了双馈发电机的转子结构和直驱发电机的永磁体。
风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。
半驱动风力发电机兼具双馈风力发电机和直驱风力发电机的优点,具有较高的发电效率和稳定性。
双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。
它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中发挥重要作用。
双馈风力发电机通过变频调速实现转矩平稳,响应速度快;直驱风力发电机通过永磁同步发电机实现高效发电;半驱动风力发电机兼具双馈和直驱的优点,具有较高的发电效率和稳定性。
随着风力发电技术的不断发展,这些风力发电机构将进一步完善和提升,为可持续能源的开发和利用做出更大贡献。
直驱型风力发电机的优越性和特点
直驱型风力发电机的优越性先进性没有了齿轮箱的整个机组,不仅降低了成本,减轻了整机重量,同时避免了齿轮箱过热、噪音大等缺陷,大大降低了故障率。
经济性发电机采用永磁式,提高了发电机的输出电压,减少了在传输过程中的线损,节省了箱变的费用。
通过对风机机组的零部件的优化设计、计算及检验,能够大幅度的延长整机的工作寿命。
安全性合理的机舱提升机设计安装在机舱内部,避免了工作人员直接与机舱尾部的窗口接触,扩大了活动空间,大大提高了安全性能。
在整机零部件之间加入防雷保护系统,可以很好的避免雷雨天气对风机的损坏,并在设计过程中全方位的考虑了天气的变化对机组的影响;塔筒之间采用高强度的螺栓连接,保证了塔筒的稳定性。
可靠性产品在研发和生产过程中,进行了全方位的认证工作,与国内多家知名认证公司保持着长期联系,并达成一致,为我们生产的直驱型风力发电机组进行全面的认证工作,包括设计认证、型式认证等。
完善的售后服务体系在安装过程中,我们有大量的技术人员会进行全程跟踪指导,建立客户档案,定期进行交流,经常保持与客户的联系,及时解决客户遇到的问题和困难。
我们的所有部件的采购都是选择著名且已获认证的供货商,保证了所有的零部件的高质量、高性能,能够满足广大用户的需求;同时我们有专业的研究开发人员,能够为用户提供详细的技术指导。
直驱型风力发电机的主要特点直驱永磁风力发电机组取消了沉重的增速齿轮箱,发电机轴直接连接到叶轮轴上,转子的转速随风速而改变,其交流电频率也随之变化。
,经过置于地面的大功率电力电子变换器,将频率不定的交流电整流成直流电,再逆变成与电网同频率的交流电输出。
国际先进的无齿轮箱直驱风力发电机,多沿用低速多极永磁发电机,并使用一台全功率变频器将频率变化的风电送入电网。
直接驱动式风力发电机组由于没有齿轮箱,零部件数量相对传统风电机组要少得多。
其主要部件包括:叶轮叶片、轮毂、变桨系统、发电机转子、发电机定子、偏航系统、测风系统、底板、塔架。
直驱风力发电机分析
主要零部件
变距系统设计方案
• 驱动装置: 采用三个相互独立的变 频调速电机传动机构。
• 后备储能单元: 采用大容量电容, 免维护,可靠性高。
• 传动方式: 同步齿型带,免维护, 成本低。
主要零部件
机舱底座
主要零部件
轮毂
永磁电机效率对比
1.2MW永磁直接驱动风机功率曲线
发电 量 对 比
MW永磁直驱发电机特点
零部件
• 定子支架
轴 加 工 完 的 定 子 支 架
多极永磁发电机发电系统
变速恒频闭环控制模型
风
发电机
转速
测量
转速
传感器 转速
风机
控制器
叶片 桨距
发电机 转矩需求
桨距执 桨距 行机构 需求
需求 转矩 转速
变流系统原理框图
1
MA
~~
永磁 发电机
2 B
三相 整流
3
=C =
升降 压
4
=D 逆变~~~
小带来的好处就是重量轻,易于运输。
直接驱动永磁发电机
磁钢Leabharlann 铁心绕组风
无需励磁能量
长寿命的低速发电机 高效 抗环境侵蚀和腐蚀保护
外转子发电机,利于磁钢散热 自然空气冷却,大的外表面, 利于散热不必使用强迫风冷
冷却风道 定子
转子
直接驱动风力发电机组 — 结构形式及工作原理
径向永磁电机结构
轴向永磁电机结构
变流器
5 E
滤波 器
6
变压 器
7 F
电网
•
多极永磁发电机型风力发电系统结构如图所示。风力
机与发电机直接相连,风力机采用变桨距功率控制方式实
永磁直驱风力发电机组并网发电原理
永磁直驱风力发电机组并网发电原理
永磁直驱风力发电机组并网发电是一种新型的发电技术,它利用风力将机组的转矩转化为电能,并将该电能输出到电网中。
永磁直驱风力发电机组是一种特殊的发电机组,它采用永磁材料制造的发电机,可以将风力转换为电能,而无需使用变速箱和传动轴。
永磁直驱风力发电机组可以输出一定的功率,其输出电能可以用于发电。
并网发电是指将发电机组输出的电能输入到电网中,实现了发电和用电之间的互联互通。
发电机组可以将连续的电能输出到电网中,供用户使用,从而实现发电。
永磁直驱风力发电机组并网发电的优点是结构简单,可靠性高,运行维护成本低,可以有效地利用风能,实现节能环保,并可以获得较大的发电量,可以节约大量的能源费用,给社会带来更多的经济效益。
永磁直驱风力发电机组并网发电不仅可以节省能源,而且可以缓解电网负荷,提高电网的可靠性和安全性,进一步推动可再生能源的发展。
总之,永磁直驱风力发电机组并网发电是一项重要的发电技术,它具有结构简单、可靠性高、运行维护成本低等优点,
可以节省能源,缓解电网负荷,提高电网可靠性和安全性,进一步推动可再生能源的发展,给社会带来更多的经济效益。
直驱式风力发电机原理及发电机组概述
直驱式风力发电机原理及发电机组概述二极三相交流发电机转速约每分钟3000转,四极三相交流发电机转速约每分钟1500转,而风力机转速较低,小型风力机转速约每分钟最多几百转,大中型风力机转速约每分钟几十转甚至十几转,必须通过齿轮箱增速才能带动发电机以额定转速旋转。
下图是一台采用齿轮箱增速的水平轴风力发电机组的结构示意图。
使用齿轮箱会降低风力机效率,齿轮箱是易损件,特别大功率高速齿轮箱磨损厉害、在风力机塔顶环境下维护保养都较困难。
不用齿轮箱用风力机浆叶直接带动发电机旋转发电是可行的,这必须采用专用的低转速发电机,称之为直驱式风力发电机。
近些年直驱式风力发电机已从小型风力发电机向大型风力发电机应用发展,国内具有自主知识产权的2MW永磁直驱风力发电机已研制成功,据报道目前国外最大的风力发电机组已达7MW,是直驱式发电机组。
低转速发电机都是多极结构,水轮发电机就是低速多极发电机,风力机用的直驱式发电机也有类似原理构造,一种多极内转子结构,只是要求在结构上更轻巧一些。
近些年高磁能永磁体技术发展很快,特别是稀土永磁材料钕铁硼在直驱式发电机中得到广泛应用。
采用永磁体技术的直驱式发电机结构简单、效率高。
永磁直驱式发电机在结构上主要有轴向与盘式结构两种,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;还有开始流行的双凸极发电机与开关磁阻发电机。
下图是一个内转子直驱式风力发电机组的结构示意图。
其定子与普通三相交流发电机类似,转子由多个永久磁铁构成。
外转子永磁直驱式风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁軛构成,外转子与风轮轮毂安装成一体,一同旋转。
本栏有对外转子直驱式风力发电机的专门介绍,下图是一个外转子直驱式风力发电机组的结构示意图。
盘式永磁直驱式风力发电机的定子与转子都呈平面圆盘结构,定子与转子轴向排列,有中间转子、中间定子、多盘式等结构,本栏有对中间转子与中间定子直驱式风力发电机的专门介绍,下图是一个中间定子直驱盘式风力发电机组的结构示意图。
直驱式永磁同步风力发电机组简介
直驱式永磁同步风力发电机组简介
直驱式永磁同步发电机采用永磁体外转子结构,相比较同功率的风力发电机组,尺寸和外径相对较小。
直驱永磁同步发电机组是风带动叶轮直接驱动转子转动,靠增加磁极的对数使发电机的额定转速下降达到转速调节的目的。
由于发电机组不需要增速齿轮箱,一般故障现象如润滑油泄漏,齿轮箱过载,机械损大等问题也减少很多,直接降低客户后期的运维成本。
直驱式永磁同步风力发电机组可以通过变桨系统来控制风力发电机组输出的最大功率,同时也会控制有功功率的上升变化率功能。
当风电场的风速急剧上升时,通过控制变桨的角度,风力发电机组不会出现因功率急剧上升载荷突然增大引起风机安全事故的情况。
同时永磁风力发电机组具备机端电压控制控制功能,机组具备有一定的无功调节能力,当系统出现电压波动时,可以控制和稳定机端电压。
直驱永磁同步发电机采用全功率变流器来实现并网,初始发电机发出交流电的电压和频率还有相位都不稳定。
需要通过整流单元整流变成直流电,经过电压升高,将电能输送到直流母排上,通过逆变单元把直流电逆变成能够和电网相匹配的电能。
变流器机侧和网侧有各有独立的控制器,各个系统之间通过控制器通讯进行数据交换和控制。
直驱式风力发电机知识
是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了直驱永磁风力发电机组特点直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。
由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。
直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。
随着近几年技术的发展,其优势才逐渐凸现。
德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。
1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。
2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。
2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。
目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出兆瓦直驱式风力发电机。
直驱式风力发电机知识
是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了直驱永磁风力发电机组特点直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。
由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。
直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。
随着近几年技术的发展,其优势才逐渐凸现。
德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。
1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。
2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。
2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。
目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的2.5兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出1.5兆瓦直驱式风力发电机。
直驱式和双馈式风力发电机组介绍
直驱式和双馈式风力发电机组介绍
直驱式风力发电机组的风轮直接驱动发电机,主要由风轮、传动装置、发电机、控制系统等组成。
为了提高低速发电机式风力发电机组采用大幅度增加极对数(一般极数提高到100左右)来提高风能利用率,采用全功率变流器实现风力发速。
直驱发电机按照励磁方式可分为电励磁和永磁两种。
电励磁直驱风力发电机组采用与水轮发电机相同的工作原理,技术成熟,德国公司在这方面取得了很好市场业绩。
永磁直驱是近年来研发的风电技术,该技术用永磁材料替代复杂的电励磁系统,发电结构简单对励磁直驱机组较轻。
但永磁部件存在长期强冲击振动和大范围温度变化条件下的磁稳定性问题,永磁材料的抗盐雾腐蚀问题,空金属颗粒在永磁材料上的吸附从而引起发电机磁隙变化问题,以及在强磁条件下机组维护困难问题等。
此外,永磁直驱式风力发电造过程中,需要稀土这种战略性资源的供应,成本较高。
双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。
双馈式风力发电机组的系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。
发电机定子绕组网连接,转子绕组和频率、幅值、相位都可以按照要求进行调节的变频器相连。
变频器控制电机在亚同步和超同步转速下都保持发在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时逆变器将直流侧能量馈送回电网。
在亚同步发电时,通过定子向能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。
永磁直驱风力发电机组并网发电原理
永磁直驱风力发电机组并网发电原理风力发电是以永磁直驱风力发电机组为基础,利用风力驱动风力发电机组发电,并将其发出的电能接入电网的技术。
利用当前的技术,让永磁直驱风力发电机组达到发电要求是可行的。
首先,永磁直驱风力发电机组中的永磁发电机的特性是风力直接由风扇驱动,没有外部润滑油,也不需要外部调速设备,能够直接转换风力能量到机械和电能,从而使发电量有更多的可控性。
其次,由于永磁直驱风力发电机组的发电特性,它具有较大的输出电力,出力范围宽,发电稳定,调节性强,维护成本低,维修简单的特点,可以满足大规模风力发电系统的发电要求。
永磁直驱风力发电机组的工作原理永磁直驱风力发电机组是由永磁发电机、叶片、叶轮、结构框架以及其他相关电控设备组成的新型高效发电装置,其工作原理如下:当风向和风速稳定时,风力发电机组中的叶片会受到风力驱动而转动,从而驱动永磁发电机的转子运行。
随着转子的转动,永磁发电机的定子上的线圈会感受到变化的磁场,并产生变化的电场,形成交流电能,将其发出的电能接入电网。
永磁直驱风力发电机组的优势永磁直驱风力发电机组具有多种优势:首先,永磁直驱风力发电机组的发电量大,发电出力范围广,最大发电量可以达到200兆瓦;其次,永磁直驱风力发电机组具有较强的发电稳定性,其发电量可以在一定幅度内控制;再次,永磁直驱风力发电机组无需外部调速设备,能够直接转换风力能量到机械和电能,具有较强的调节性;最后,永磁直驱风力发电机组使用简单,维护成本低,工程实施周期短,可以有效提高风能发电的用户参与度。
总结永磁直驱风力发电机组是一种新型的高效发电装置,它具有较大的输出电力,出力范围宽,发电稳定,调节性强,维护成本低,维修简单等优势,可以高效转换风力能量,满足大规模风力发电系统的发电要求。
因此,永磁直驱风力发电机组并网发电技术的发展将对促进风能发电的发展具有重要的作用。
直驱式永磁同步风力发电机控制与运行概述
直驱式永磁同步风力发电机控制与运行概述一、直驱式永磁同步风力发电机运行区间根据风力机的功率特性把风速划分为5个区间:①风速低于切入风速;②风速在切入风速和额定转速之间;③风速超过风轮额定转速,发电机组运行在恒转速区;④风速继续增大到切出风速以下,发电机运行在恒功率区;⑤风速大于切出风速。
风力发电机组运行区域如图7-1所示。
图7-1 风力发电机组运行区域(1)停机模式。
风力机在风速小于切入风速或大于切出风速时,风能转化效率为零,称为停机模式。
当风速低于风力机的切入风速时,其产生的功率很小甚至低于内部消耗的功率,因此处于停机模式,此时叶片处于完全顺风状态,风力机的机械制动器处于开启状态;当风速超过风力机的切出风速时,为了保护风力机的安全,叶片被调至完全顺桨状态,风力机转速也下降为零,风力机将被锁定进入停机模式。
其他3个风速区间是风力发电机的正常运行状态,为了捕获到更多的风能,同时保证发电机组的安全运行,在不同的风速阶段对桨距角采用了不同的控制策略。
(2)最佳叶尖速比运行区。
即第②区间,即图7-1的AB区间。
当风速超过切入风速时,风力发电机组开始作为发电机运行。
此时要调节桨距角到最佳值使风能利用系数C恒定为最大值,以保证风力发电机组运行在最大功率点跟踪状p态。
(3)恒转速运行区间。
即第③区间,即图7-1的BC区间。
为了保证风力发电机组的安全稳定运行,一般都会根据风力发电机组的特性设定一个额定风速点对应图7-1中B点的速度,这个额定风速点应小于发电机的额定转速。
当风力机转速超过额定风速点时,随着风速的继续增大,要调节桨距角使Cp值减小,以保证风力发电机组进入恒转速区间。
但此时发电机的功率随风速的增加而增加,但仍然在额定功率以下。
(4)恒功率运行区间。
即第④区间,即图7-1中的CD段。
当风速继续增大,不仅发电机转速到达其额定值,同时发电机的输出功率也到达额定功率。
此时如果仍然按照最大风能捕获的控制策略将会使发电机的输入功率大于输出功率,发电机组将会导致“飞车”而使整个机组脱网。
永磁直驱式风力发电机的工作原理
你好,你的这个问题问的比较广。
我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双馈机和永磁直驱发电机。
永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。
总所周知,一般发电机要并网必须满足相位、幅频、周期同步。
而我国电网频率为50hz这就表示发电机要发出50hz的交流电。
学过电机的都知道。
转速、磁极对数、与频率是有关系的n=60f/p。
所以当极对数恒定时,发电机的转速是一定的。
所以一般双馈风机的发电机额定转速为1800r/min。
而叶轮转速一般在十几转每分。
这就需要在叶轮与发电机之间加入增速箱。
而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。
而齿轮箱是风力发电机组最容易出故障的部件。
所以,永磁直驱的可靠性要高于双馈。
对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。
风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。
不知道有木有解释清楚。
还有什么不清楚可以继续追问,知无不言。
风力发电机也在逐步的永磁化。
采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。
风力机的直驱化也是当前的一个热点趋势。
目前大多风电系统发电机与风轮并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。
直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。
直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。
直驱型风力发电系统概述
直驱型风力发电系统概述1引言随着风电机组单机容量的增大,双馈型风电系统中齿轮箱的高速传动部件故障问题日益突出,于是没有齿轮箱而将主轴与低速多极同步发电机直接连接的直驱式布局应运而生;从中长期来看,直驱型和半直驱型传动系统将逐步在大型风电机组中占有更大比例,另外在传动系统中采用集成化设计和紧凑型结构是未来大型风电机组的发展趋势。
在大功率变流技术和高性能永磁材料日益发展完善的背景下,大型风电机组越来越多地采用pmsg, pmsg不从电网吸收无功功率,无需励磁绕组和直流电源,也不需要滑环碳刷,结构简单且技术可靠性高,对电网运行影响小。
pmsg与全功率变流器结合可以显著改善电能质量,减轻对低压电网的冲击,保障风电并网后的电网可靠性和安全性,与双馈型机组(变流器容量通常为1/3风电机组额定功率)相比,全功率变流器更容易实现低电压穿越等功能,更容易满足电网对风电并网日益严格的要求[1-2]。
中国风电行业发展迅速,但与国际发展水平还有很大差距,目前主要依靠进口,对外依赖性强;基于pmsg和背靠背双pwm变流器的直驱型风电系统是一种发展很快的技术,具有优良的性能,国外大型风电厂商已有成熟的直驱风电产品,国内在理论研究与产品性能方面,都还亟需提高与改进,因此很有必要对其涉及的关键技术进行研究。
2直接驱动型风力发电系统介绍图1是典型的永磁直驱型变速恒频风力发电系统,包括永磁同步发电机(pmsg和全功率背靠背双pwm变流器,无齿轮箱。
pmsg通过全功率变流器直接与电网连接,通常极对数较多,低转速,大转矩,径向尺寸较大,轴向尺寸较小,呈圆环状;由于省去了齿轮箱,从而简化了传动链,提高了系统效率,降低了机械噪声,减小了维修量,提高了机组的寿命和运行可靠性;发电机通过变流器与电网隔离,因此其应对电网故障的能力更强,与dfig风电系统相比,更容易实现低电压穿越功能。
但是永磁材料目前的成本仍然较高;变流器容量较大,损耗较大,变流器的成本较高。
3MW直驱风力发电机组总体技术参数
3MW直驱风力发电机组总体技术参数1.额定功率:3MW。
这意味着该发电机组在额定运行条件下,能够产生3MW的电能。
这一功率水平适用于中等到大型的风力发电场。
2.额定风速范围:3-25m/s。
风速是影响风力发电效率的重要因素之一,而该发电机组在3-25m/s的风速范围内,可以保持较高的发电效率。
3.风轮直径:120m。
风轮的直径与该发电机组的功率和效率密切相关。
较大的风轮直径可以提供更大的叶片受力面积,从而增加发电机组的输出功率。
4.最佳工作风速:8-15m/s。
在这一风速范围内,发电机组的发电效率最高,能够最大限度地转换风能为电能。
5.频率:50Hz/60Hz。
在欧洲和大部分亚洲国家,电力系统的频率为50Hz;而在北美和一些南美国家,电力系统的频率为60Hz。
该发电机组可根据不同地区的需求,选择相应的频率。
6. 额定转速:10-20rpm。
转速是风力发电机组的重要参数之一、在这一转速范围内,风力发电机组能够达到最佳的机械性能和转换效率。
7.额定电压:690V。
风力发电机组产生的电能需要经过变压器升压后才能输送到电网。
该发电机组的额定电压为690V,可以便利地与变压器进行匹配。
8.机组类型:直驱式。
与传统的齿轮传动方式不同,该发电机组采用直驱式设计,将风轮的转动直接传递到发电机上,减少了能量转换的损耗。
9.控制系统:智能化控制。
该发电机组配备了智能化控制系统,可以实时监测风速、温度、转速等参数,并自动调节发电机组的运行状态,以实现最佳的发电效率和稳定性。
10.运维成本:低。
由于采用了直驱式设计,该发电机组的运维成本相对较低。
此外,智能化控制系统可以提前发现潜在故障,并进行预防性维护,进一步降低了运维成本。
总的来说,3MW直驱风力发电机组具有高效率、低噪音和可靠性强的特点,并且拥有智能化控制系统,能够实现最佳的发电效率和稳定性。
该发电机组适用于中等到大型的风力发电场,为社会提供可持续、清洁的能源。
永磁直驱式风力发电机的工作原理
永磁直驱式风力发电机的工作原理概述风力发电是一种绿色、可再生的能源形式,近年来逐渐受到人们的重视,并已经成为了不同国家的电力部门战略的一部分。
最新的风力发电机设计中普遍采用永磁直驱式风力发电机作为核心动力。
本文将介绍永磁直驱式风力发电机的工作原理。
永磁直驱式风力发电机永磁直驱式风力发电机简单来说就是将风能转化成电能的装置,它通过天线承受风力并转化为动能,转化后的能量被永磁直驱电机接收并被转换为可用的电能。
那么它是如何工作的呢?下面是详细解释。
工作原理永磁直驱式风力发电机利用叶轮旋转过程中的风能驱动转子旋转,发电机将叶轮的旋转转换为磁场的旋转,通过系统上的电路转变成直流电并输出。
磁场的产生永磁体作为最基本的部分,它产生的磁场为转子在正常工作时的磁场。
对于永磁直驱式风力发电机,主要采用了永磁体的磁场以产生转矩、增大效率。
在转子内部固定有许多磁钢,其成对固定在转子和定子上的相邻表面,形成有序且闭合环路的磁力线。
磁场的产生使得产生能量和承载载荷的磁力线逐渐发生变化,从而增加或减小空间磁场的强度。
磁场的转化将空间磁场转换为电力的方式很简单,利用部分转子上的线圈共同作用于磁场时,会产生一个电动势,然后流经线圈释放出的能量就作为输出电能传输至整个风力电站的主轴。
线圈位置设计在直驱发电机中,由于转子上的线圈应该共同作用于磁场,因此它们应该被两两固定在相对位置。
这样,就能产生一个比较强大而稳定的磁场。
对于风力发电机中的整个系统,转子中线圈的数量应该根据总发电机负载确定。
永磁直驱式风力发电机的运行是由风轮将风能转换为机械能,进而通过驱动永磁直驱电机的转子带动电机作业的。
转子的磁铁产生的磁场信息被转换成电动势以及电流,这些能量被输出到电池组上再进入电网供应电量。
理解永磁直驱式风力发电机的工作原理至关重要,他对于整个系统的运行效率和能量获取能力都具有重要的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了直驱永磁风力发电机组特点直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。
由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。
直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。
随着近几年技术的发展,其优势才逐渐凸现。
德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。
1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。
2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。
2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。
目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的2.5兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出1.5兆瓦直驱式风力发电机。
编辑本段直驱永磁风力发电机组特点直驱永磁风力发电机有以下几个方面优点[1]:1.发电效率高:直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。
2.可靠性高:齿轮箱是风力发电机组运行出现故障频率较高的部件,直驱技术省去了齿轮箱及其附件,简化了传动结构,提高了机组的可靠性。
同时,机组在低转速下运行,旋转部件较少,可靠性更高。
3.运行及维护成本低:采用无齿轮直驱技术可减少风力发电机组零部件数量,避免齿轮箱油的定期更换,降低了运行维护成本。
4.电网接入性能优异:直驱永磁风力发电机组的低电压穿越使得电网并网点电压跌落时,风力发电机组能够在一定电压跌落的范围内不间断并网运行,从而维持电网的稳定运行。
直驱型风力发电机组没有齿轮箱,低速风轮直接与发电机相连接,各种有害冲击载荷也全部由发电机系统承受,对发电机要求很高。
同时,为了提高发电效率,发电机的极数非常大,通常在100极左右,发电机的结构变得非常复杂,体积庞大,需要进行整机吊装维护。
且永磁材料及稀土的使用增加了一些不确定因素。
直驱永磁风力发电机组发展情况概述2010/11/9 10:58:19一、概况直驱式风力发电机,是一种由风轮直接驱动发电机的风力发电机组,亦称无齿轮风力发电机组,这种风力发电机采用多极发电机与风轮直接连接进行驱动的方式,免去了齿轮箱这一传统部件。
由于目前在某些兆瓦级风力发电机组中齿轮箱是容易过载和损坏率较高的部件,而无齿轮箱的直驱方式能有效地减少由于齿轮箱磨损问题而造成的机组故障,可有效提高系统运行的可靠性和寿命,减少维护成本,因而得到了市场青睐。
此外,直驱式风电系统主要采用全功率变流技术,该技术可使风轮和发电机的调速范围扩展到0 %~150% 的额定转速,提高了风能利用范围。
且全功率变流技术对低电压穿越技术有很好的解决途径,为直驱式风力发电机进一步发展增加了优势。
对于直驱式风力发电机的研究,国外从20世纪90年代就开始了。
1992年,德国ENERCON公司开始研制直驱式励磁风力发电机组。
1997年,世界风力发电机市场上出现了该公司开发的E-33、E-48、E-70等型号的直驱式励磁变速变桨距风力发电机组。
这些容量330kW~2MW的高产能、运行维护成本低的先进机型的优点逐渐显露,引起了风电场开发商的青睐。
2004年以来,直驱式风力发电机的年安装量逐年增加。
目前,德国ENERCON公司研制的直驱式励磁风力发电机组已有多个品种,最大功率已达到7MW,该公司生产的直驱式励磁风力发电机组,在2009年占据德国风电市场55%以上的份额。
荷兰Largewey风电公司现在也开始生产2MW的直驱永磁风力发电机组,并已经进入欧洲市场。
近来,德国西门子公司开发了3.6MW直驱永磁同步风力发电机组样机和3MW直驱永磁同步风力发电机组,技术可利用率达98%。
我国的中小型风力发电机组,从100瓦到100千瓦都是直驱永磁风力发电机组,2009年中小型直驱永磁风力发电机组产量约10万台。
到目前为止,中小型直驱永磁风力发电机组已经累计生产约60万台,是世界上生产、应用最多的国家。
在大型并网风力发电机组开发领域,我国也拥有世界领先的直驱永磁风力发电机组制造技术。
2009年,我国新增大型并网直驱永磁风力发电机组装机容量约240万千瓦,而德国新增直驱励磁风力发电机组装机容量约115万千瓦。
因而,我国是2009年全球安装大型直驱式风力发电机组最多的国家。
现今,我国有19家企业在从事大型并网直驱永磁风力发电机组的研发生产,也是全球大型并网直驱永磁风力发电机组生产企业最多的国家。
我国在1.5MW直驱永磁机组已经实现大批量生产的基础上,又推出2.5MW直驱永磁机组,已经完成五台样机的安装,目前已进行6.0MW直驱永磁风力发电机组研制项目。
二、直驱永磁风力发电机组特点直驱永磁风力发电机有以下几个方面优点:1.发电效率高:直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。
2.可靠性高:齿轮箱是风力发电机组运行出现故障频率较高的部件,直驱技术省去了齿轮箱及其附件,简化了传动结构,提高了机组的可靠性。
同时,机组在低转速下运行,旋转部件较少,可靠性更高。
3.运行及维护成本低:采用无齿轮直驱技术可减少风力发电机组零部件数量,避免齿轮箱油的定期更换,降低了运行维护成本。
4.电网接入性能优异:直驱永磁风力发电机组的低电压穿越使得电网并网点电压跌落时,风力发电机组能够在一定电压跌落的范围内不间断并网运行,从而维持电网的稳定运行。
直驱型风力发电机组没有齿轮箱,低速风轮直接与发电机相连接,各种有害冲击载荷也全部由发电机系统承受,对发电机要求很高。
同时,为了提高发电效率,发电机的极数非常大,通常在100极左右,发电机的结构变得非常复杂,体积庞大,需要进行整机吊装维护。
且永磁材料及稀土的使用增加了一些不确定因素。
三、我国直驱型风力发电机组制造企业概况近年来,我国参与直驱永磁风力发电机组研发的企业数量逐年增加。
截至2010年8月底,国内永磁直驱型风力发电机组制造商已经达到19家(见附表),其中,国有、国有控股公司10家,民营制造企业5家,合资企业3家,外商独资企业1家。
根据企业的产品产业化落实程度,大致可分为以下四种类型:第一类:产业化落实程度很好,已具备大批量生产能力的风力发电机组制造企业。
如:新疆金风科技股份有限公司、湖南湘电风能有限公司;第二类:产业化落实程度较好,产品已成功投入运行并已小批量生产的风力发电机组制造企业,如:内蒙古航天万源风机制造有限公司、东方电气新能源设备(杭州)有限公司、潍坊瑞其能电气有限公司等;第三类:产品样机已投入运行试验,产业化工作正在进一步落实的风力发电机组制造企业,如:哈尔滨风电设备股份有限公司、上海万德风力发电股份有限公司、广西银河艾万迪斯风力发电有限公司等企业;第四类:正在进行样机研制或试验的企业,如:江苏新誉风力发电设备有限公司、山东鲁科风电设备有限公司等。
1.直驱永磁风力发电机组配套部件制造企业概况随着国内直驱式风力发电机组市场需求的扩大,直驱风力发电机组关键部件配套生产企业有了较快的发展,风电设备制造和配套部件专业化产业链正逐步形成:永磁发电机制造企业有:永济电机厂有限公司、株洲南车电机股份有限公司、湘潭电机有限公司、大连天元电机公司和金风科技等,基本能够满足国内直驱永磁风力发电机组市场需要。
生产叶片的企业在国内已有50 多家,其中已经批量生产的企业有:中航(保定)惠腾风电设备有限公司、中材科技公司、连云港中复连众复合材料集团、北京玻璃钢研究院和天津LM公司等,其它企业正在建设或试制中。
目前,国产风力发电机组叶片基本能够满足国内风电产业发展的需要。
目前全功率的变流器主要采用ABB公司和奥地利Windtec等国外公司生产的设备。
现在国内已有金风科技、北京科诺伟业科技有限公司、北京景新电气公司、株洲时代集团、永济电机厂有限公司和哈尔滨九州电器等企业在研制生产大型直驱永磁风力发电机组的全功率变流器。
2010年2月,大全集团与海军工程技术大学联合组建的“国家能源新能源接入设备研发(实验)中心”研发的2 MW级永磁直驱风力发电变流器通过鉴定,填补了国内空白,该变流器应用在湘电股份有限公司的国内生产变桨和偏航轴承的企业有:洛阳轴承集团技术中心有限公司、瓦房店轴承集团有限责任公司和徐州罗特艾德回转支承有限公司。
这些公司也在试制主轴轴承,但没有经过长期运行考验。
大部分公司还采用国外SKF和FAG的产品,但供货周期比较长,对风力发电机组产能会有一定影响。
2.国内并网直驱型风力发电机组的技术来源根据对国内正在制造和生产的风力发电机组的调查分析,其主要技术来源大致可分为以下四类:第一类:与国外设计技术公司联合设计,在国内进行制造和生产,如:金风科技与德国Vinces 联合设计的1.5MW直驱风力发电机组,现在已在国内大批量生产和供货。
还有东方电气新能源设备(杭州)有限公司与英国公司联合设计的1.5MW直驱风力发电机组,现在这家公司的产品已经有小批量生产;第二类:与国外公司合资,引进国外成熟技术在国内进行生产。
例如湘电风能、广西银河艾万迪斯风力发电有限公司,2.5MW风机已在国内分别生产出产品样机;第三类:采用国内大学和科技公司自主创新、自行开发的设计制造技术,在国内进行生产的风力发电机组。