函数的基本性质——奇偶性
高中数学函数的基本性质 doc
高一数学函数的基本性质一、知识点1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
函数的奇偶性
必修1.P45复习参考题B组 6题
二、应用精讲 题型一 函数奇偶性的判断
判断下列各函数的奇偶性: 例1 .判断下列各函数的奇偶性: 判断下列各函数的奇偶性
x −x (1) f (x) = x −1
2
(2)y = loga (x + x +1)(a > 0, a ≠1)
2
练习
判断下列各函数的奇偶性: 判断下列各函数的奇偶性:
3.函数奇偶性定义的灵活变用 .函数奇偶性定义的灵活变用 定义
在会考或高考中,常有函数三性的综合题,要注意定 在会考或高考中,常有函数三性的综合题,要注意定 高考中 灵活运用: 义的灵活运用: =-f(x)遇到困难时, 遇到困难时, 当应用 f(-x)=f(x),或 f(-x)=- - = , - =- 遇到困难时 可以利用其等价形式 f(-x)-f(x)=0,f(-x)+f(x)=0, 可以利用其等价形式 - - = , - + = , f(-x) ( ) 前一个技巧常用于含对数运算的 或者 =±1[f(x)≠0], ≠ , 前一个技巧常用于含对数运算的 f(x) ( ) 函数,后一技巧常用于含指数运算的函数 含指数运算的函数. 函数,后一技巧常用于含指数运算的函数.
会考专题复习
函数的基本性质
——奇偶性及其应用 奇偶性及其应用
复习安排:约需两课时, 复习安排:约需两课时,本节为第一课时
学习目标
1、在必修教材内容“函数的奇偶性”学习的 、在必修教材内容“函数的奇偶性” 基础上,进一步深化 深化对函数奇偶性 基础上,进一步深化对函数奇偶性 定义的理解。 定义的理解。 2、通过精讲多练, 2、通过精讲多练,能熟练掌握基本题 型的基本方法, 型的基本方法,提升解决与奇偶性 基本方法 有关的综合问题的能力
新高考A版讲义:第三章函数 第3节 函数的基本性质奇偶性
第3节 函数的基本性质:奇偶性知识点一 函数奇偶性 1.奇偶性的几何特征一般地,图象关于y 轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数. 2.函数奇偶性的定义(1)偶函数:函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数.(2)奇函数:函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数.3.奇(偶)函数的定义域特征:奇(偶)函数的定义域关于原点对称.题型一、函数奇偶性的判断 例1 判断下列函数的奇偶性.(1)f (x )=1x ;(2)f (x )=x 2(x 2+2);(3)f (x )=xx -1;(4)f (x )=x 2-1+1-x 2.解 (1)f (x )=1x 的定义域为(-∞,0)∪(0,+∞),∵f (-x )=1-x=-1x =-f (x ),∴f (x )=1x 是奇函数.(2)f (x )=x 2(x 2+2)的定义域为R .∵f (-x )=f (x ),∴f (x )=x 2(x 2+2)是偶函数. (3)f (x )=xx -1的定义域为(-∞,1)∪(1,+∞), ∵定义域不关于原点对称,∴f (x )=xx -1既不是奇函数,也不是偶函数.(4)f (x )=x 2-1+1-x 2的定义域为{-1,1}.∵f (-x )=f (x )=-f (x )=0,∴f (x )=x 2-1+1-x 2既为奇函数,又为偶函数. 反思感悟 判断函数奇偶性的方法(1)定义法:①定义域关于原点对称;②确定f (-x )与f (x )的关系. (2)图象法.跟踪训练1 判断下列函数的奇偶性.(1)f (x )=x ;(2)f (x )=1-x 2x ;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解(1)函数f(x)的定义域为[0,+∞),不关于原点对称,所以f(x)=x是非奇非偶函数.(2)f(x)的定义域为[-1,0)∪(0,1],关于原点对称.f(-x)=1-x2-x=-f(x),所以f(x)为奇函数.(3)f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x>0时,-x<0,则f(-x)=(-x)2-(-x)=x2+x=f(x);当x<0时,-x>0,则f(-x)=(-x)2+(-x)=x2-x=f(x),所以f(x)是偶函数.题型二、奇、偶函数图象的应用例2定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.解(1)先描出(1,1),(2,0)关于原点的对称点(-1,-1),(-2,0),连线可得f(x)的图象如图.(2)xf(x)>0即图象上横坐标、纵坐标同号.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).延伸探究把本例中的“奇函数”改为“偶函数”,重做该题.解(1)f(x)的图象如图所示:(2)xf(x)>0的解集是(-∞,-2)∪(0,2).反思感悟可以用奇(偶)函数图象关于原点(y轴)对称这一特性去画图,求值,解不等式等.跟踪训练2已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.解(1)如图,在[0,5]上的图象上选取5个关键点O,A,B,C,D.分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为{x |-2<x <0或2<x <5}. 题型三、利用函数的奇偶性求参数值例3 (1)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.解析 因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f (x )=13x 2+bx +b +1为二次函数,结合偶函数图象的特点,易得b =0.(2)已知函数f (x )=ax 2+2x 是奇函数,则实数a =________.解析 由奇函数定义有f (-x )+f (x )=0,得a (-x )2+2(-x )+ax 2+2x =2ax 2=0,故a =0. 反思感悟 利用奇偶性求参数的常见类型(1)定义域含参数:奇偶函数f (x )的定义域为[a ,b ],根据定义域关于原点对称,利用a +b =0求参数.(2)解析式含参数:根据f (-x )=-f (x )或f (-x )=f (x )列式,比较系数利用待定系数法求解. 跟踪训练3 (1)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 解析 方法一 显然x ∈R ,由已知得f (-x )=(-x )2-|-x +a |=x 2-|x -a |. 又f (x )为偶函数,所以f (x )=f (-x ),即x 2-|x +a |=x 2-|x -a |, 即|x +a |=|x -a |.又x ∈R ,所以a =0.方法二 由题意知f (-1)=f (1),则|a -1|=|a +1|,解得a =0.(2)已知函数f (x )是奇函数,当x ∈(-∞,0)时,f (x )=x 2+mx .若f (2)=-3,则m 的值为________. 解析 ∵f (-2)=-f (2)=3,∴f (-2)=(-2)2-2m =3,∴m =12.知识点二 奇偶性与单调性若函数f (x )为奇函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相同的单调性;若函数f (x )为偶函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相反的单调性.题型一、利用奇偶性求解析式 命题角度1 求对称区间上的解析式例1 函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求当x <0时,f (x )的解析式. 解 设x <0,则-x >0,∴f (-x )=-(-x )+1=x +1,又∵函数f (x )是定义域为R 的奇函数,∴当x <0时,f (x )=-f (-x )=-x -1.反思感悟 求给定哪个区间的解析式就设这个区间上的变量为x ,然后把x 转化为-x ,此时-x 成为了已知区间上的解析式中的变量,通过应用奇函数或偶函数的定义,适当推导,即可得所求区间上的解析式.跟踪训练1已知f (x )是R 上的奇函数,且当x ∈(0,+∞)时,f (x )=x (1+x ),求f (x )的解析式. 解 因为x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-x [1+(-x )]=x (x -1). 因为f (x )是R 上的奇函数,所以f (x )=-f (-x )=-x (x -1),x ∈(-∞,0).f (0)=0.所以f (x )=⎩⎪⎨⎪⎧x (1+x ),x ≥0,-x (x -1),x <0.命题角度2 构造方程组求解析式例2 设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式.解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ), 由f (x )+g (x )=1x -1.①,用-x 代替x ,得f (-x )+g (-x )=1-x -1,∴f (x )-g (x )=1-x -1,② (①+②)÷2,得f (x )=1x 2-1;(①-②)÷2,得g (x )=xx 2-1.反思感悟 f (x )+g (x )=1x -1对定义域内任意x 都成立,所以可以对x 任意赋值,如x =-x .利用f (x ),g (x )一奇一偶,把-x 的负号或提或消,最终得到关于f (x ),g (x )的二元方程组,从中解出f (x )和g (x ).跟踪训练2设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+2x ,求函数f (x ),g (x )的解析式. 解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ), 由f (x )+g (x )=2x +x 2.①用-x 代替x ,得f (-x )+g (-x )=-2x +(-x )2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.题型二、利用函数的奇偶性与单调性比较大小例3设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)解析因为函数f(x)为R上的偶函数,所以f(-3)=f(3),f(-2)=f(2).又当x∈[0,+∞)时,f(x)是增函数,且π>3>2,所以f(π)>f(3)>f(2),故f(π)>f(-3)>f(-2).反思感悟利用函数的奇偶性与单调性比较大小(1)自变量在同一单调区间上,直接利用函数的单调性比较大小;(2)自变量不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.跟踪训练3(1)已知偶函数f(x)在[0,+∞)上单调递减,则f(1)和f(-10)的大小关系为() A.f(1)>f(-10) B.f(1)<f(-10)C.f(1)=f(-10) D.f(1)和f(-10)关系不定答案A解析∵f(x)是偶函数,且在[0,+∞)上单调递减,∴f(-10)=f(10)<f(1).(2)定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,下列不等式中成立的有________.(填序号)①f(a)>f(-b);②f(-a)>f(b);③g(a)>g(-b);④g(-a)<g(b);⑤g(-a)>f(-a).解析f(x)为R上奇函数,增函数,且a>b>0,∴f(a)>f(b)>f(0)=0,又-a<-b<0,∴f(-a)<f(-b)<f(0)=0,∴f(a)>f(b)>0>f(-b)>f(-a),∴①正确,②错误.x∈[0,+∞)时,g(x)=f(x),∴g(x)在[0,+∞)上单调递增,∴g(-a)=g(a)>g(b)=g(-b),∴③正确,④错误.又g(-a)=g(a)=f(a)>f(-a),∴⑤正确.题型三、利用函数的奇偶性与单调性解不等式例4(1)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数.若f(-3)=0,则f(x)x<0的解集为________.解析∵f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数,∴f(x)在区间(0,+∞)上是减函数.∴f(3)=f(-3)=0.当x>0时,由f(x)<0,解得x>3;当x<0时,由f(x)>0,解得-3<x<0.故所求解集为{x |-3<x <0或x >3}.(2)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围为( ) A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23 解析 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝⎛⎭⎫13, 即-13<2x -1<13,解得13<x <23.反思感悟 利用函数奇偶性与单调性解不等式,一般有两类 (1)利用图象解不等式; (2)转化为简单不等式求解.①利用已知条件,结合函数的奇偶性,把已知不等式转化为f (x 1)<f (x 2)或f (x 1)>f (x 2)的形式; ②根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,脱掉不等式中的“f ”转化为简单不等式(组)求解.跟踪训练4 设定义在[-2,2]上的奇函数f (x )在区间[0,2]上是减函数,若f (1-m )<f (m ),求实数m 的取值范围.解 因为f (x )是奇函数且f (x )在[0,2]上是减函数,f (x )在[-2,2]上是减函数. 所以不等式f (1-m )<f (m )等价于⎩⎪⎨⎪⎧1-m >m ,-2≤m ≤2,-2≤1-m ≤2,解得-1≤m <12.1.下列函数中奇函数的个数为( ) ①f (x )=x 3; ②f (x )=x 5; ③f (x )=x +1x;④f (x )=1x2.A .1B .2C .3D .4 答案 C2.已知f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点中一定在函数f (x )的图象上的是( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3) 答案 A解析 f (-3)=2即点(-3,2)在奇函数的图象上, ∴(-3,2)关于原点的对称点(3,-2)必在f (x )的图象上.3.设f (x )是定义在R 上的一个函数,则函数F (x )=f (x )-f (-x )在R 上一定( ) A .是奇函数 B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 答案 A解析 F (-x )=f (-x )-f (x )=-[f (x )-f (-x )]=-F (x ). ∴F (x )为奇函数4.若f (x )=3x 3+5x +a -1为奇函数,则a 的值为( ) A .0 B .-1 C .1 D .2 答案 C解析 ∵f (x )为R 上的奇函数, ∴f (0)=0得a =1.5.如图,给出奇函数y =f (x )的局部图象,则f (-2)+f (-1)的值为( )A .-2B .2C .1D .0答案 A解析 f (-2)+f (-1)=-f (2)-f (1) =-32-12=-2.6.若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 答案 4解析 f (x )=x 2+(a -4)x -4a 是偶函数,∴a =4.7.已知y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (3)=6,则a 的值为________. 答案 5解析 因为f (x )是奇函数, 所以f (-3)=-f (3)=-6,所以(-3)2+a (-3)=-6,解得a =5.8.若f (x )为R 上的奇函数,给出下列四个说法: ①f (x )+f (-x )=0; ②f (x )-f (-x )=2f (x );③f(x)·f(-x)<0;④f(x)f(-x)=-1.其中一定正确的为________.(填序号)答案①②解析∵f(x)在R上为奇函数,∴f(-x)=-f(x).∴f(x)+f(-x)=f(x)-f(x)=0,故①正确.f(x)-f(-x)=f(x)+f(x)=2f(x),故②正确.当x=0时,f(x)·f(-x)=0,故③不正确.当x=0时,f(x)f(-x)分母为0,无意义,故④不正确.9.判断下列函数的奇偶性:(1)f(x)=x3+x5;(2)f(x)=|x+1|+|x-1|;(3)f(x)=2x2+2x x+1.考点函数的奇偶性判定与证明题点判断简单函数的奇偶性解(1)函数的定义域为R.∵f(-x)=(-x)3+(-x)5=-(x3+x5)=-f(x),∴f(x)是奇函数.(2)f(x)的定义域是R.∵f(-x)=|-x+1|+|-x-1|=|x-1|+|x+1|=f(x),∴f(x)是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.10.(1)如图①,给出奇函数y=f(x)的局部图象,试作出y轴右侧的图象并求出f(3)的值.(2)如图②,给出偶函数y=f(x)的局部图象,试作出y轴右侧的图象并比较f(1)与f(3)的大小.解(1)由奇函数的性质可作出它在y轴右侧的图象,图③为补充后的图象.易知f(3)=-2.(2)由偶函数的性质可作出它在y 轴右侧的图象,图④为补充后的图象,易知f (1)>f (3).11.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =-2x答案 B解析 对于函数y =|x |+1,f (-x )=|-x |+1=|x |+1=f (x ), 所以y =|x |+1是偶函数,当x >0时,y =x +1, 所以在(0,+∞)上单调递增.另外,函数y =x 3不是偶函数,y =-x 2+1在(0,+∞)上单调递减,y =-2x 不是偶函数.故选B.12.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .f (x )+|g (x )|是偶函数 B .f (x )-|g (x )|是奇函数 C .|f (x )|+g (x )是偶函数 D .|f (x )|-g (x )是奇函数 考点 函数的奇偶性判定与证明 题点 判断抽象函数的奇偶性 答案 A解析 由f (x )是偶函数,可得f (-x )=f (x ), 由g (x )是奇函数可得g (-x )=-g (x ), 故|g (x )|为偶函数, ∴f (x )+|g (x )|为偶函数.13.函数f (x )=4-x 22-|x +2|的定义域为________,为______函数(填“奇”或“偶”).答案 [-2,0)∪(0,2] 奇解析 依题意有⎩⎪⎨⎪⎧4-x 2≥0,2-|x +2|≠0,解得-2≤x ≤2且x ≠0, ∴f (x )的定义域为[-2,0)∪(0,2].∵f (x )=4-x 22-|x +2|=4-x 2-x=-4-x 2x ,定义域关于原点对称,∴f (-x )=4-x 2x =-f (x ),∴f (x )为奇函数.14.函数f (x )=ax 3+bx +cx +5满足f (-3)=2,则f (3)的值为________.答案 8解析 设g (x )=f (x )-5=ax 3+bx +cx (x ≠0),∵g (-x )=-ax 3-bx -cx =-g (x ),∴g (x )是奇函数,∴g (3)=-g (-3)=-[f (-3)-5] =-f (-3)+5=-2+5=3, 又g (3)=f (3)-5=3, ∴f (3)=8.15.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.考点 函数图象的对称性 题点 中心对称问题 答案 43解析 根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.16.设函数f (x )=ax 2+1bx +c 是奇函数(a ,b ,c ∈Z ),且f (1)=2,f (2)<3,求a ,b ,c 的值.解 由条件知f (-x )+f (x )=0, ∴ax 2+1bx +c +ax 2+1c -bx =0,∴c =0. 又f (1)=2,∴a +1=2b .∵f (2)<3,∴4a +12b <3,∴4a +1a +1<3,解得-1<a <2,∴a =0或1. ∴b =12或1,由于b ∈Z ,∴a =1,b =1,c =0.1.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,g (x ),x <0,且f (x )为偶函数,则g (-2)等于( ) A .6 B .-6 C .2 D .-2考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 A解析 g (-2)=f (-2)=f (2)=22+2=6.2.如果奇函数f (x )在区间[-3,-1]上是增函数且有最大值5,那么函数f (x )在区间[1,3]上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5答案 A解析 f (x )为奇函数,∴f (x )在[1,3]上的单调性与[-3,-1]上一致且f (1)为最小值, 又已知f (-1)=5,∴f (-1)=-f (1)=5,∴f (1)=-5,故选A.3.已知函数y =f (x )是R 上的偶函数,且f (x )在[0,+∞)上是减函数,若f (a )≥f (-2),则a 的取值范围是( )A .a ≤-2B .a ≥2C .a ≤-2或a ≥2D .-2≤a ≤2答案 D解析 由f (a )≥f (-2)得f (|a |)≥f (2),∴|a |≤2,∴-2≤a ≤2.4.已知函数y =f (x )是偶函数,其图象与x 轴有4个交点,则方程f (x )=0的所有实根之和是( )A .4B .2C .1D .0答案 D解析 y =f (x )是偶函数,所以y =f (x )的图象关于y 轴对称,所以f (x )=0的所有实根之和为0.5.设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A .f (-x 1)>f (-x 2)B .f (-x 1)=f (-x 2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案A解析∵x1<0,x1+x2>0,∴x2>-x1>0,又f(x)在(0,+∞)上是减函数,∴f(x2)<f(-x1),∵f(x)是偶函数,∴f(-x2)=f(x2)<f(-x1).6.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=________.答案-5解析由题意知f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.7.已知奇函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(1)的x的取值范围是________.考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案(-∞,1)解析由于f(x)在[0,+∞)上单调递增,且是奇函数,所以f(x)在R上单调递增,f(x)<f(1)等价于x<1.8.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的排列是________.答案f(-2)<f(1)<f(0)解析∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(m-1)x2-6mx+2=(m-1)x2+6mx+2恒成立,∴m=0,即f(x)=-x2+2.∵f(x)的图象开口向下,对称轴为y轴,在[0,+∞)上单调递减,∴f(2)<f(1)<f(0),即f(-2)<f(1)<f(0).9.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.考点 单调性与奇偶性的综合应用题点 求奇偶函数的单调区间解 (1)因为函数f (x )的图象关于原点对称,所以f (x )为奇函数,则f (0)=0.设x <0,则-x >0,因为当x >0时,f (x )=x 2-2x +3.所以当x <0时,f (x )=-f (-x )=-(x 2+2x +3)=-x 2-2x -3.于是有f (x )=⎩⎪⎨⎪⎧ x 2-2x +3,x >0,0,x =0,-x 2-2x -3,x <0.(2)先画出函数在y 轴右侧的图象,再根据对称性画出y 轴左侧的图象,如图.由图象可知函数f (x )的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).10.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数,且满足f (1)=52,f (2)=174. (1)求a ,b ,c 的值;(2)试判断函数f (x )在区间⎝⎛⎭⎫0,12上的单调性并证明. 考点 单调性与奇偶性的综合应用题点 判断或证明奇偶函数在某区间上的单调性解 (1)∵f (x )为奇函数,∴f (-x )=-f (x ),∴-ax -b x +c =-ax -b x-c , ∴c =0,∴f (x )=ax +b x. 又∵f (1)=52,f (2)=174, ∴⎩⎨⎧ a +b =52,2a +b 2=174.∴a =2,b =12.综上,a =2,b =12,c =0.(2)由(1)可知f (x )=2x +12x .函数f (x )在区间⎝⎛⎭⎫0,12上为减函数.证明如下:任取0<x 1<x 2<12,则f (x 1)-f (x 2)=2x 1+12x 1-2x 2-12x 2=(x 1-x 2)⎝⎛⎭⎫2-12x 1x 2=(x 1-x 2)4x 1x 2-12x 1x 2.∵0<x 1<x 2<12,∴x 1-x 2<0,2x 1x 2>0,4x 1x 2-1<0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在⎝⎛⎭⎫0,12上为减函数.11.设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为() A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)答案 C解析 ∵f (x )为奇函数,f (x )-f (-x )x <0,即f (x )x <0,∵f (x )在(0,+∞)上为减函数且f (1)=0,∴当x >1时,f (x )<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f (x )为减函数且f (-1)=0,即x <-1时,f (x )>0.综上使f (x )x<0的解集为(-∞,-1)∪(1,+∞). 12.已知f (x +y )=f (x )+f (y )对任意实数x ,y 都成立,则函数f (x )是( )A .奇函数B .偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数答案 A解析 令x =y =0,所以f (0)=f (0)+f (0),所以f (0)=0.又因为f (x -x )=f (x )+f (-x )=0,所以f (-x )=-f (x ),所以f (x )是奇函数,故选A.13.已知y =f (x )+x 2是奇函数且f (1)=1,若g (x )=f (x )+2,则g (-1)=________. 考点 函数奇偶性的应用题点 利用奇偶性求函数值答案 -1解析 ∵y =f (x )+x 2是奇函数,∴f (-x )+(-x )2=-[f (x )+x 2],∴f (x )+f (-x )+2x 2=0,∴f (1)+f (-1)+2=0.∵f (1)=1,∴f (-1)=-3.∵g (x )=f (x )+2,∴g (-1)=f (-1)+2=-3+2=-1.14.已知定义在R 上的函数f (x )满足f (1-x )=f (1+x ),且f (x )在[1,+∞)上为单调减函数,则当x =________时,f (x )取得最大值;若不等式f (0)<f (m )成立,则m 的取值范围是________. 答案 1 (0,2)解析 由f (1-x )=f (1+x )知,f (x )的图象关于直线x =1对称,又f (x )在(1,+∞)上单调递减,则f (x )在(-∞,1]上单调递增,所以当x =1时f (x )取到最大值.由对称性可知f (0)=f (2),所以f (0)<f (m ),得0<m <2,即m 的取值范围为(0,2).15.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( )A .-3B .-1C .1D .3考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 C解析 ∵f (x )-g (x )=x 3+x 2+1,∴f (-x )-g (-x )=-x 3+x 2+1.∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ).∴f (x )+g (x )=-x 3+x 2+1.∴f (1)+g (1)=-1+1+1=1.16.设f (x )是定义在R 上的奇函数,且对任意a ,b ∈R ,当a +b ≠0时,都有f (a )+f (b )a +b>0. (1)若a >b ,试比较f (a )与f (b )的大小关系;(2)若f (1+m )+f (3-2m )≥0,求实数m 的取值范围.解 (1)因为a >b ,所以a -b >0,由题意得f (a )+f (-b )a -b>0, 所以f (a )+f (-b )>0.又f (x )是定义在R 上的奇函数,所以f (-b )=-f (b ),所以f (a )-f (b )>0,即f (a )>f (b ).(2)由(1)知f (x )为R 上的单调递增函数,因为f (1+m )+f (3-2m )≥0,所以f (1+m )≥-f (3-2m ),即f (1+m )≥f (2m -3),所以1+m ≥2m -3,所以m ≤4.所以实数m 的取值范围为(-∞,4].。
专题11 函数的基本性质(奇偶性)(解析版)
专题11函数的基本性质(奇偶性)函数的奇偶性[知识点拨]由于f (x )和f (-x )须同时有意义,所以奇、偶函数的定义域关于原点对称. (2)奇、偶函数的对应关系的特点.①奇函数有f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1(f (x )≠0);②偶函数有f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1(f (x )≠0).(3)函数奇偶性的三个关注点.①若奇函数在原点处有定义,则必有f (0)=0.有时可以用这个结论来否定一个函数为奇函数;②既是奇函数又是偶函数的函数只有一种类型,即f (x )=0,x ∈D ,其中定义域D 是关于原点对称的非空集合;③函数根据奇偶性可分为奇函数、偶函数、既奇又偶函数、非奇非偶函数. (4)奇、偶函数图象对称性的应用.①若一个函数的图象关于原点对称,则这个函数是奇函数; ②若一个函数的图象关于y 轴对称,则这个函数是偶函数.重要考点一:函数奇偶性的判断【典型例题】根据定义,判断下列函数的奇偶性: (1)()52f x x =-;(2)g (x )=x 4+2;(3)21()h x x =;(4)1()2m x x =+. 【答案】(1)奇函数;(2)偶函数;(3)偶函数;(4)既不是奇函数,也不是偶函数. 【解析】(1)依题意知函数()52f x x =-的定义域为R ,且对任意的x ∈R ,有()()()5522f x x x f x -=--==-,所以函数()52f x x =-是奇函数;(2)依题意知函数()42g x x=+的定义域为R ,且对任意的x ∈R ,有()()()4422g x x x g x -=-+=+=,所以函数()42g x x=+是偶函数;(3)依题意知函数21()h x x=的定义域为{|0}x x ≠, 且对任意的{|0}x x x ∈≠,有()2211()()h x h x x x -===-, 所以函数21()h x x =是偶函数; (4)函数1()2m x x =+的定义域为{|2}x x ≠-,定义域不关于原点对称,所以函数1()2m x x =+既不是奇函数,也不是偶函数.【题型强化】1.判断下列函数的奇偶性. (1)f (x )=2x +1x; (2)f (x )=2-|x |; (3)f (x )(4)f (x )=1x x -. 【答案】(1)奇函数;(2)偶函数;(3)既是奇函数又是偶函数;(4)非奇非偶函数. 【解析】(1)因为函数f (x )的定义域是{x |x ≠0},关于原点对称, 又f (-x )=-2x +1x -=-12⎛⎫+ ⎪⎝⎭x x =-f (x ).∴f (x )为奇函数.(2)∵函数f (x )的定义域为R ,关于原点对称, 又f (-x )=2-|-x |=2-|x |=f (x ),∴f (x )为偶函数. (3)∵函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,又∵f (-x )=-f (x ),f (-x )=f (x ),∴f (x )既是奇函数又是偶函数.(4)显然函数f (x )的定义域为{x |x ≠1},不关于原点对称, ∴f (x )是非奇非偶函数. 2.判断函数f (x )=x +ax(a 为常数)的奇偶性,并证明你的结论. 【答案】()f x 为奇函数,证明见解析.【解析】()f x 为奇函数,证明如下:()f x 的定义域为{x|x≠0}.对于任意x≠0,()()a a f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭,∴()f x 为奇函数. 【名师点睛】 判断函数奇偶性的方法 (1)定义法:(2)图象法:即若函数的图象关于原点对称,则函数为奇函数;若函数图象关于y 轴对称,则函数为偶函数.此法多用在解选择题、填空题中.重要考点二:奇、偶函数图象的应用【典型例题】已知函数f (x )是定义在R 上的奇函数,且当x <0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象如图所示,(1)画出函数f (x ),x ∈R 剩余部分的图象,并根据图象写出函数f (x ),x ∈R 的单调区间;(只写答案) (2)求函数f (x ),x ∈R 的解析式.【答案】(1)图象见解析;递减区间为(﹣∞,﹣1],[1,+∞);增区间为(﹣1,1);(2)f (x )222020x x x x x x ⎧+≤=⎨-+⎩,,>.【解析】(1)根据题意,函数f (x )是定义在R 上的奇函数,则其图象如图: 其递减区间为(﹣∞,﹣1],[1,+∞); 增区间为(﹣1,1);(2)根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,满足f (x )=x 2+2x ; 当x >0时,则﹣x <0,则f (﹣x )=(﹣x )2+2(﹣x )=x 2﹣2x , 又由函数f (x )是定义在R 上的奇函数,则f (x )=﹣f (﹣x )=﹣x 2+2x ,综上:f (x )222020x x x x x x ⎧+≤=⎨-+⎩,,>.【题型强化】1.已知奇函数f (x )定义域为[-5,5]且在[0,5]上的图象如图所示,求使f (x )<0的x 的取值范围.【答案】()(]3,03,5-【解析】由题可知:函数是[-5,5]上的奇函数,则函数在[-5,5]上图象如下:所以f (x )<0的解集为()(]3,03,5-2.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()22f x x x =-. (1)求()f x 的解析式;(2)作出函数()f x 的图象并求出单调增区间.【答案】(1)()222,02,0x x x f x x x x ⎧--<=⎨-≥⎩;(2)图象见解析,单调递增区间为(),1-∞-和()1,+∞.【解析】(1)当0x ≥时,()22f x x x =-.当0x <时,0x ->,则()()()2222f x x x x x -=--⨯-=+.因为函数()y f x =是R 上的奇函数,则()()22f x f x x x=--=--.因此,()222,02,0x x x f x x x x ⎧--<=⎨-≥⎩;(2)函数()y f x =的图象如下图所示:由图象可知,函数()y f x =的单调递增区间为(),1-∞-和()1,+∞.【名师点睛】1.研究函数图象时,要注意对函数性质的研究,这样可避免作图的盲目性和复杂性. 2.利用函数的奇偶性作图,其依据是奇函数图象关于原点对称,偶函数图象关于y 轴对称.重要考点三:利用函数的奇偶性求解析式【典型例题】若函数()21x ax b f x x +=++在[]1,1-上是奇函数,则()f x 的解析式为______. 【答案】()21xf x x =+ 【解析】()f x 在[]1,1-上是奇函数,()00f ∴=,0a ∴=,()21xf x x bx ∴=++.又()()11f f -=-,1122b b -∴=--+,即0b =,()21x f x x ∴=+. 【题型强化】1.已知函数()y f x =是定义在R 上的奇函数,且0x ≥时,2()2f x x x =-,则0x <时,()f x =________【答案】22x x --【解析】设0x <,则0x ->,所以()22()22f x x x x x -=-+=+,又因为()()f x f x -=-,所以2()2f x x x -=+,所以()f x =22x x --. 故答案为:22x x --2.已知函数()223px f x q x +=-是奇函数,且()523f =-,则函数()f x 的解析式()f x =________.【答案】2223x x+-【解析】奇函数()y f x =的定义域为,,33q q ⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭,关于原点对称,所以03q=,得0q =,故()223px f x x +=-,又()523f =-,即42563p ⨯+=--,得2p =, 因此()22222233x x x x f x ++=--=.故答案为2223x x+-. 【名师点睛】利用函数奇偶性求函数解析式利用函数奇偶性求函数解析式的关键是利用奇偶函数的关系式f (-x )=-f (x )或f (-x )=f (x )成立,但要注意求给定哪个区间的解析式就设这个区间上的变量为x ,然后把x 转化为-x (另一个已知区间上的解析式中的变量),通过适当推导,求得所求区间上的解析式.重要考点四:忽略函数奇偶性对定义域的限制条件导致判断错误【典型例题】已知定义在[3,3]-上的函数()y f x =是增函数. (1)若(1)(21)f m f m +>-,求m 的取值范围;(2)若函数()f x 是奇函数,且(2)1f =,解不等式(1)10f x ++>.【答案】(1)[1,2)-;(2){32}xx -<∣. 【解析】(1)由题意可得,3133213121m m m m -≤+≤⎧⎪-≤-≤⎨⎪+>-⎩,求得12m -<,即m 的范围是[1,2)-.(2)∵函数()f x 是奇函数,且(2)1f =,∴(2)(2)1f f -=-=-,∵(1)10f x ++>,∴(1)1f x +>-,∴(1)(2)f x f +>-,∴12313x x +>-⎧⎨-≤+≤⎩,∴32x -<≤.∴不等式的解集为{32}xx -<∣. 【题型强化】1.已知函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)用定义法证明函数()f x 的单调性;(3)若()()210f m f m +->,求实数m 的取值范围. 【答案】(1)()21x f x x =+(2)证明见解析(3)113m << 【解析】(1)由题意可得:()001242255fb a bf ⎧==⎪+⎨⎛⎫== ⎪⎪⎝⎭⎩,解得:1a b =⎧⎨=⎩.即()21xf x x =+(2)证明:设1211x x -<<<()()()()()()121212122222*********x x x x x x f x f x x x x x ---=-=++++因为1211x x -<<<,所以120x x -<,1210x x -> 所以()()120f x f x -<,即()()12f x f x < 故()f x 在()1,1-上是增函数(3)()()210f m f m +->,即()()()2112f m f m f m >--=-所以11121112m m m m-<<⎧⎪-<-<⎨⎪>-⎩,解得:113m <<2.定义在[]22-,上的偶函数()f x ,当[]2,0x ∈-时()f x 单调递增,设()()1f m f m -<,求m 的取值范围.【答案】112m -≤< 【解析】解:()f x 是定义在[]2,2-上的偶函数, 又()()1f m f m -<,∴ ()()1f m f m -<又当[]2,0x ∈-时()f x 单调递增∴当[]0,2x ∈时单调递减.而10,0,1,m m m m -≥≥∴->()22212221m m m m⎧-≤-≤⎪⎪∴-≤≤⎨⎪->⎪⎩ 解得112m -≤<即所求m 的取值范围为11,2⎡⎫-⎪⎢⎣⎭.【名师点睛】1.函数y =f (x )是奇函数或偶函数的一个必不可少的条件是定义域关于原点对称. 2.确定函数的定义域时,要针对函数的原解析式.重要考点五:逻辑推理与转化思想的应用——再谈恒成立问题【典型例题】已知函数2()(1)|2|()f x x a x a a R =++++∈.(1)写出一个奇函数()g x 和一个偶函数()h x ,使()f x =()g x +()h x ; (2) 若()()h x g x ≥对于任意的x ∈R 恒成立,求实数a 的取值范围.【答案】(1)2()|2|h x x a =++,()(1)g x a x =+;(2){}13⎡-+⋃-⎣.【解析】(1)由奇偶函数的特征由2()(1)|2|()f x x a x a a R =++++∈的函数特征可知2yx 是偶函数,()1y a x =+是奇函数,2y a =+是偶函数,∴奇函数()g x 是()()1g x a x =+,偶函数2()|2|h x x a =++;(2)由(1)可知()221xa a x ++≥+恒成立,即()2120x a x a -+++≥恒成立,()21420a a ∆=+-+≤ ,即()2124a a ++≥ ()2124a a +⇒+≥或()2124a a ++≤-整理为2270a a --≤或2690a a ++≤,解得:11a -≤+3a=-,∴a的取值范围是{}13⎡-+⋃-⎣【题型强化】1.已知()f x 是定义在[1,1]-上的奇函数,且(1)1f =,若,[1,1]αβ∈-,0αβ+≠时,都有()()0f f αβαβ+>+.(1)解关于x 的不等式()21(33)0f x f x -+-<;(2)若对任意[1,1]x ∈-,[1,1]a ∈-,不等式2()21f x t at ≤-+恒成立,求实数t 的取值范围. 【答案】(1)41,3x ⎛⎤∈ ⎥⎝⎦(2)2t ≥或2t ≤-或0t =【解析】(1)因为()f x 是定义在[1,1]-上的奇函数,故任取1211x x ,则()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=--,1211x x -≤<≤,()120x x ∴+-≠,故有()()12120f x f x x x +->-,120x x -<,()()120f x f x ∴-<,即()f x 在[1,1]-上是增函数,因为()f x 是定义在[1,1]-上的奇函数,且在[1,1]-上是增函数,不等式可()21(33)0f x f x -+-<化为()21(33)f x f x -<-,所以221331111331x x x x ⎧-<-⎪-≤-≤⎨⎪-≤-≤⎩,解得41,3x ⎛⎤∈ ⎥⎝⎦;(2)由(1)知()f x 在[1,1]-上是增函数,所以()f x 在[1,1]-上的最大值为(1)1f =, 要使2()21f x t at ≤-+对任意[1,1]x ∈-,[1,1]a ∈-恒成立,只要2221120t at t at -+≥⇒-≥,设2()2g a t at =-,因为对任意[1,1]a ∈-,()0g a ≥恒成立,所以22(1)20(1)20g t t g t t ⎧-=+≥⎨=-≥⎩解得2t ≥或2t ≤-或0t =. 2.已知()f x 是定义在[1,1]-上的奇函数且单调递增,(1)1f =. (1)解不等式:1121f x f x ⎛⎫⎛⎫+< ⎪ ⎪-⎝⎭⎝⎭; (2)若2()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,求实数t 的取值范围. 【答案】(1)3,12⎡⎫--⎪⎢⎣⎭;(2)(]{}[),202,-∞-+∞【解析】(1)()f x 为定义在[]1,1-上的增函数,∴由1121f x f x ⎛⎫⎛⎫+< ⎪ ⎪-⎝⎭⎝⎭得:111211111121x x x x ⎧-≤+≤⎪⎪⎪-≤≤⎨-⎪⎪+<⎪-⎩,解得:312x -≤<-, ∴不等式1121f x f x ⎛⎫⎛⎫+<⎪ ⎪-⎝⎭⎝⎭的解集为3,12⎡⎫--⎪⎢⎣⎭. (2)()f x 为定义在[]1,1-上的增函数且()11f =,()1f x ∴≤,∴要使()221f x t at ≤-+对所有[]1,1x ∈-,[]1,1a ∈-恒成立,只需2211t at -+≥对[]1,1a ∈-恒成立,即220t at -≥恒成立.设()22g a t at =-,则只需()0g a ≥恒成立,即()min 0g a ≥.当0t =时,()0g a =,满足题意;当0t >时,()g a 在[]1,1-上单调递减,则()()2min 120g a g t t ==-≥,解得:2t ≥;当0t <时,()g a 在[]1,1-上单调递增,则()()2min 120g a g t t =-=+≥,解得:2t ≤-.综上所述:t 的取值范围为(]{}[),202,-∞-+∞.【名师点睛】1.在我们数学研究中,存在大量的恒成立问题,如:(1)f (x )在区间D 上单调递增,则对任意x 1,x 2∈D ,当x 1<x 2时,f (x 1)<f (x 2)恒成立;(2)若f (x )是奇函数,定义域为M ,则f (-x )=-f (x )对任意x ∈M 恒成立;若f (x )是偶函数,定义域为M ,则对任意x ∈M ,f (-x )=f (x )恒成立;(3)若f (x )的最大值为M ,最小值为m ,定义域为A ,则对任意x ∈A ,有m ≤f (x )≤M . 解答这类问题时,应充分利用其恒成立的特点选取解答方法.2.遇到f (-x )与f (x )的关系问题时,应首先从函数f (x )的奇偶性入手考虑,如果f (x )不具有奇偶性,看是否存在奇(偶)函数g (x ),使f (x )用g (x )表示,再利用g (x )的奇偶性来解答.课后练习1.若函数()222,0,0x x x f x x ax x ⎧-≥=⎨-+<⎩为奇函数,则实数a 的值为( )A .2B .2-C .1D .1-【答案】B 【解析】()f x 为奇函数 ()()f x f x ∴-=-当0x <时,0x -> ()()()2222f x f x x x x x ∴=--=-+=--又0x <时,()2f x x ax =-+ 2a ∴=-,本题正确选项:B2.已知奇函数()f x 在0x ≥时的图象如图所示,则不等式()0xfx <的解集为( )A .(1,2)B .(2,1)--C .(2,1)(1,2)--⋃D .(1,1)-【答案】C【解析】由图像可知在0x ≥时,在()()012+∞,,,()0f x >;在(1,2),()0f x <; 由()f x 为奇函数,图象关于原点对称,在0x <时,在()(),21,0∞-⋃--,()0f x <;在(2,1)--,()0f x >;又()y xfx =,在0x ≥时与()y f x =同号,在0x <时与()y f x =异号 故不等式()0xfx <的解集为:(2,1)(1,2)--⋃,故选:C3.已知定义在R 上的奇函数()f x ,对任意实数x ,恒有()()3f x f x +=-,且当30,2x ⎛⎤∈ ⎥⎝⎦时,()268f x x x =-+,则()()()()0122020f f f f +++⋅⋅⋅+=( )A .6B .3C .0D .3-【答案】B【解析】由题得()()6[(3)3]3[()]()f x f x f x f x f x +=++=-+=--=,所以函数的周期为6. 由题得(0)0,(1)1683,f f ==-+=(2)(2)(23)(1)3f f f f =--=-+==,(3)(3)(33)(0)f f f f =--=-+=,(4)(4)(43)(1)(1)3f f f f f =--=-+=-=-=-, (5)(5)(53)(2)(2)3f f f f f =--=-+=-=-=-所以(0)(1)(2)(3)(4)(5)0f f f f f f +++++=, 所以()()()()0122020f f f f +++⋅⋅⋅+=336[(0)(1)(2)(3)(4)(5)](0)(1)(2)(3)(4)3f f f f f f f f f f f ++++++++++=.故选:B.4.下列函数中,是偶函数,且在(],0-∞上是增函数的是( ) A .12y x = B .2y xC .3y x =D .,0,0x x y x x -≥⎧=⎨<⎩【答案】D【解析】A .定义域为[)0,+∞,不关于原点对称,故不符合;B .定义域为R 关于原点对称,()()()22f x x x f x -=-==,所以是偶函数,在(],0-∞上是减函数,不符合;C .定义域为R 关于原点对称,()()()33f x x x f x -=-=-=-,所以是奇函数,不符合; D .定义域为R 关于原点对称,当0x ≥时,()()f x x f x =-=-,当0x <时,()()f x x f x ==-,所以()f x 是偶函数,(],0x ∈-∞时,()f x x =是增函数,符合.故选:D.5.如果奇函数()f x 在区间[]3,7上是增函数且最小值为5,那么它在区间[]7,3--上是( ) A .增函数且最小值为5- B .增函数且最大值为5- C .减函数且最小值为5- D .减函数且最大值为5-【答案】B【解析】任取1x 、[]27,3x ∈--,且12x x <,即1273x x -≤<≤-,则2137x x ≤-<-≤,由已知,奇函数()y f x =在区间[]3,7上是增函数,则()()12f x f x ->-,即()()12fx f x ->-,()()12f x f x ∴<,所以,函数()y f x =在区间[]7,3--上是增函数,对任意的[]7,3x ∈--,[]3,7x -∈,由题意,()5f x -≥,可得()5f x -≥,则有()5f x ≤-,所以,函数()y f x =在区间[]7,3--上有最大值5-.故选:B.6.已知偶函数()f x 在区间[)0,+∞上的解析式为()1f x x =+,下列大小关系正确的是( )A .()()12f f >B .()()12f f >-C .()()12f f ->-D .()()12f f -<【答案】D【解析】因为偶函数()f x 在区间[)0,+∞上的解析式为()1f x x =+所以得到()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减,所以()()12f f <,所以A 选项错误;因为()f x 为偶函数,所以()()22f f -=, 所以()()()122f f f <=-,所以B 选项错误;因为()()()()1122f f f f -=<=-,所以C 选项错误; 因为()()()112f f f -=<,所以D 选项正确.故选:D.7.设函数3()1f x ax bx =+-,且(1)3f -=,则(1)f 等于( ) A .3- B .3 C .5- D .5【答案】C【解析】令3()g x ax bx =+,则3()()g x ax bx g x -=--=-,所以3()g x ax bx =+是奇函数, 又()()1113f g -=--=,所以()14g -=,所以()()()111115f g g =-=---=-. 故选:C.8.已知定义在R 上的函数()f x 满足:()2()f x f x =--,且函数(1)f x +是偶函数,当[]1,0x ∈-时,2()1f x x =-,则20203f ⎛⎫= ⎪⎝⎭________.【答案】139【解析】因为函数()f x 满足:()2()f x f x =--,且函数(1)f x +是偶函数,所以(1)(1)2f x f x ++--=,且(1)(1)f x f x +=-+,可得(1)(1)2f x f x -++--=,即(1)(1)2f x f x ++-=所以(2)()2f x f x ++=…①,(4)(2)2f x f x +++=…② ②-①,可得 (4)()f x f x +=,即()f x 是周期为4的周期函数;4420201684333f f f ⎛⎫⎛⎫⎛⎫=⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又1151311223333394922f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=-==--=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以 20203319f ⎛⎫=⎪⎝⎭.故答案为:139. 9.函数()f x 在(),-∞+∞单调递减,且为奇函数,若()11f =-,则满足()111f x -≤-≤的x 的取值范围是_________. 【答案】[]0,2【解析】函数()y f x =是R 上的奇函数,则()()111f f -=-=,由()111f x -≤-≤可得()()()111f f x f ≤-≤-,由于函数()y f x =在R 上单调递减,则111x -≤-≤,解得02x ≤≤. 因此,满足()111f x -≤-≤的x 的取值范围是[]0,2.故答案为:[]0,2.10.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,()12x f x -=,有下列命题:①2是函数()f x 的周期;②函数()f x 在()2,3上是增函数;③函数()f x 的最大值是1,最小值是0;④直线2x =是函数()f x 图象的一条对称轴.其中所有正确命题的序号是__________.【答案】①②④【解析】用1x +换()()11f x f x =+-中的x ,得()()2f x f x +=,所以()f x 是以2为周期的周期函数,故①正确;又函数()f x 是定义在R 上的偶函数且[]0,1x ∈时,()12x f x -=,作出函数()f x 的部分图象如图所示由图知,函数()f x 在()2,3上是增函数,故②正确;函数()f x 的最大值是1,最小值是12, 故③错误;直线2x =是函数()f x 图象的一条对称轴,故④正确. 故答案为:①②④11.已知函数()f x 为奇函数且(1)2f =,求(-1)f =_______. 【答案】﹣2【解析】函数()y f x =是奇函数,且(1)2f =,则()(-1)=12f f -=-.故答案为:﹣2. 12.已知()f x x x =,若()()()220f x m m f x m -≤>对任意1x ≥恒成立,则实数m 的取值范围为____________. 【答案】[)1,+∞【解析】()f x x x =的定义为R ,关于原点对称,()()()f x x f x x x x =---=--=.()f x ∴为定义在R 上的奇函数.当0x >时,()2f x x x x ==,在()0,∞+上单调递增.()f x ∴为定义在R 上的增函数.0m >()()22m f x m x x mx mx f mx ∴===()()()()220f x m m f x f mx m -≤=>2x m mx ∴-≤,即()120m x m --≤,设()()()12,1g x m x m x =--≥若()()()220f x m m f x m -≤>对任意1x ≥恒成立.则需()()0,1g x x ≤≥恒成立.当1m =时,在[)1,+∞上()10g x =-≤恒成立当1m <时,()g x 在[)1,+∞上单调递增,则不满足题意,舍去当1m 时,()g x 在[)1,+∞上单调递减,则需()1130g m =-≤解得13m ≥,即1m综上所述:m 1≥。
高中数学—函数的基本性质—完整版课件
• 当 > 时, − < ,则
• − = −
− = − = − ().
• 综上,对 ∈ (−∞,) ∪ (,+∞),
• ∴ ()为奇函数.
都有 − = − ().
奇偶性判定
• 【解析】 (4) =
−
−
• 定义域为 −, 关于原点对称
• ③一个奇函数,一个偶函数的积是 奇函数 .
函数的奇偶性
• 判断函数的奇偶性
• 1、首先分析函数的定义域,在分析时,不要把函数化简,而要根据
原来的结构去求解定义域,如果定义域不关于原点对称,则一定是非
奇非偶函数.
• 2、如果满足定义域对称,则计算(−),看与()是否有相等或互为
相反数的关系.
−
−−
+
++
−+
• 即
= 恒成立,
• 则2(+)2+2=0对任意的实数恒成立.
• ∴ ==0.
函数的单调性
+
•
(2)∵ =
∈ 是奇函数, 只需研究(, +∞)上()的单调区间即可.
•
任取, ∈ (,+∞),且 < ,则
应值,故函数取得最值时,一定有相应的x的值.
抽象函数的单调性
• 函数()对任意的、 ∈ ,都有 + = + − ,并且当
> 时,() > .
• (1)求证:()是上的增函数;
• (2)若()=,解不等式( − − ) < .
抽象函数的单调性
• ∴ ()=, ∴原不等式可化为( − − ) < (),
• ∵ ()是上的增函数,
高中数学必修1函数的基本性质
高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
函数的基本性质知识点总结
函数的基本性质知识点总结函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x 都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。
如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f(-x)与f(x)的关系;③作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y轴成轴对称;②设()g x的定义域分别是12,D D,那么在它们f x,()的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)。
(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
函数基本性质奇偶性
函数的基本性质——奇偶性学习目标:1.了解奇偶性的概念,会利用定义判断简单函数的奇偶性.2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.3.学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.学习重点:奇偶性概念的形成与函数奇偶性的判断。
学习难点:函数奇偶性概念的认识。
学习过程: (一) 合作探讨例1 判断下列函数的奇偶性(1)()4x x f = (2)()5x x f = (3)()x x x f +=1(4)()21xx f =例2已知函数y =f(x)是偶函数,且知道x ≥0时的图像,请作出另一半图像. 例3.已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数(二) 巩固练习:1、判断下列函数的奇偶性(1)()2432x x x f +=(2)()x x x f 23-=(3)()xx x f 12+=(4)()12+=x x f (5)()[]2,1,2-∈=x x x f (6)()2244x x x f -+-=2.若点(-1,3)在奇函数y =f (x )的图象上,则f (1)等于( ). A .0 B .-1 C .3 D .-3 3.下面四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点, ③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数是f (x )=0. 其中正确命题的个数为( ). A .1 B .2 C .3 D .4 4.函数y =1-x 2+91+|x |是( ).A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数5.设偶函数y =f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ). A .f (π)>f (-3)>f (-2) B .f (π)>f (-2)>f (-3) C .f (π)<f (-3)<f (-2) D .f (π)<f (-2)<f (-3)6.设函数2211)(xx x f -+=. (1) 求它的定义域;(2)判断它的奇偶性;(3)求证:)()1(x f xf -= 7.已知函数f(x)=x 2-, (1)它是奇函数还是偶函数? (2)它的图像具有怎样的对称性? (3)它在(0,+∞)上是增函数还是减函数?(4)它在(-∞,0)上是增函数还是减函数?8..已知f(x)是偶函数,在(0,+∞)上是减函数,判断f(x)在(-∞,0)上也是增函数还是减函数?并证明你的判断. 9. 已知f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
高一数学必修2 函数的基本性质——奇偶性
高一数学必修2函数的基本性质——奇偶性(一)、基本概念及知识体系:教学要求:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。
教学重点:熟练判别函数的奇偶性。
教学难点:理解奇偶性。
教学过程:一、复习准备:1.提问:什么叫增函数、减函数?★2.指出f(x)=2x 2-1的单调区间及单调性。
→变题:|2x 2-1|的单调区间★3.对于f(x)=x 、f(x)=x 2、f(x)=x 3、f(x)=x 4,分别比较f(x)与f(-x)。
二、讲授新课:1.教学奇函数、偶函数的概念:①给出两组图象:()f x x =、1()f x x=、3()f x x =;2()f x x =、()||f x x =. 发现各组图象的共同特征 → 探究函数解析式在函数值方面的特征② 定义偶函数:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ).③ 探究:仿照偶函数的定义给出奇函数(odd function )的定义.(如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数。
④ 讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性) ⑤ 练习:已知f(x)是偶函数,它在y 轴左边的图像如图所示,画出它右边的图像。
2.教学奇偶性判别:●例1:判别下列函数的奇偶性:f(x)=34x 、f(x)=43x 、f(x)=-4x 6+5x 2、f(x)=3x +31x 、f(x)=2x 4-+3。
★ 判别下列函数的奇偶性:f(x)=|x +1|+|x -1| f(x)=23x 、f(x)=x +x 1、 f(x)=21xx +、f(x)=x 2,x ∈[-2,3] ③ 小结奇偶性判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法判别f(x)与f(-x)的关系。
函数的基本性质(奇偶性、单调性、周期性、对称性)
函数的基本性质(奇偶性、单调性、周期性、对称性)函数的性质(奇偶性、单调性、周期性、对称性)“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。
1. 奇偶性f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称(2)若定义域不关于原点对称⾮奇⾮偶例如:3x y =在)1,1[-上不是奇函数常⽤性质:1.0)(=x f 是既奇⼜偶函数;2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满⾜)()()(x f x f x f =-=;4.奇函数图象关于原点对称,偶函数图象关于y 轴对称;5.0)(=x f 除外的所有函数的奇偶性满⾜:(1)奇函数±奇函数=奇函数偶函数±偶函数=偶函数奇函数±偶函数=⾮奇⾮偶(2)奇函数×奇函数=偶函数偶函数×偶函数=偶函数奇函数×偶函数=奇函数 6.任何函数)(x f 可以写成⼀个奇函数2)()()(x f x f x --=和⼀个偶函数2)()()(x f x f x -+=ψ的和。
2. 单调性定义:函数定义域为A ,区间,若对任意且①总有则称在区间M 上单调递增②总有则称在区间M 上单调递减应⽤:(⼀)常⽤定义法来证明⼀个函数的单调性⼀般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论(⼆)求函数的单调区间定义法、图象法、复合函数法、导数法(以后学) 注:常⽤结论(1)奇函数在对称区间上的单调性相同(2)偶函数在对称区间上的单调性相反(3)复合函数单调性-------同增异减3. 周期性(1)⼀般地对于函数内⼀切值时总有,那么叫做周期函数,T 叫做周期,kT (T 的整数倍)也是它的周期(2)如果周期函数在所有周期中存在⼀个最⼩正数,就把这个最⼩正数叫最⼩正周期。
(课件2)1.3函数的基本性质奇偶性
偶函数的性质
偶函数的定义
如果对于函数$f(x)$的定义域内 任意一个$x$,都有$f(-
x)=f(x)$,则称$f(x)$为偶函数 。
偶函数的图像
偶函数的图像关于y轴对称。
偶函数的性质
偶函数在$x=0$处有定义,即 $f(0)=0$。
偶函数的导数
如果一个函数是偶函数,那么 它的导数可能是奇函数或偶函 数,取决于导数的定义和计算
偶函数在其定义域内是连 续的,并且在$x=0$处有 定义。
02
CATALOGUE
奇偶性的判断方法
奇函数的判断方法
奇函数的定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=-f(x)$ ,则称$f(x)$为奇函数。
奇函数的性质
奇函数在原点对称,即当$x=0$时,$f(0)=0$。
奇偶性与周期性的关系
奇函数与周期性的关系
奇函数的周期性
奇函数在数学上具有一些特殊的性质,其中之一就是它的周 期性。奇函数通常具有一个或多个周期,这些周期是函数值 重复出现的点。对于奇函数,其周期通常为2π的整数倍。
奇函数的对称性
奇函数在对称轴两侧的函数值是相等的,但符号相反。因此 ,奇函数在对称轴两侧的函数值会以对称的方式重复出现, 这也是奇函数周期性的一个表现。
THANKS
感谢观看
偶函数在数学问题中的应用
概率分布
在概率分布中,偶函数可以用来 描述随机变量的概率密度函数, 帮助确定随机变量的概率分布规
律。
微分方程
在求解微分方程时,偶函数可以提 供一种对称性,简化方程的求解过 程。
几何形状
在几何形状中,偶函数可以用来描 述对称的几何图形,如圆形、椭圆 形等。
1.3函数的基本性质——奇偶性
函数的基本性质 ——奇偶性
讲授新课
1. 奇函数、偶函数的定义 奇函数:设函数y=f (x)的定义域为D,如 果对D内的任意一个x,都有f(-x)=-f(x), 则这个函数叫奇函数.
偶函数:设函数y=g (x)的定义域为D,如 果对D内的任意一个x,都有g(-x)=g(x), 则这个函数叫做偶函数.
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
(8) k( x)
1 x2 1.
练习
1. 判断下列函数的是否具有奇偶性 (1) f (x)=x+x3;(奇) (2) f (x)=-x2;
(3) h (x)=x3+1;
(4) k( x)
1 x2 1
x [1, 2];
(5) f (x)=(x+1) (x-1);
(6) g (x)=x (x+1);
(7) h( x) x 3 x ;
(8) k( x)
1 x2 1.
练习
1. 判断下列函数的是否具有奇偶性 (1) f (x)=x+x3;(奇) (2) f (x)=-x2;(偶)
(3) h (x)=x3+1;
(4) k( x)
1 x2 1
x [1, 2];
(5) f (x)=(x+1) (x-1);
(3) h (x)=x3+1;
(非奇非偶)
函数的奇偶性课件-2024届高三数学一轮复习
则
的最小值为
x
1 e
m n
− = −
−x ∈ A,且_______________,那么函数f
x 就叫作奇函数
图象
关于
轴
______
对称
关于
坐标原点
_______
对称
【微点拨】奇、偶函数定义域的特点是关于原点对称,函数的定义域关于原点
对称是函数具有奇偶性的必要不充分条件.
1.函数f x 具有奇偶性的前提是什么?
D.f c > f b > f a
1
log 2 ,
4
活动四 奇偶性的应用(求参数)
34页 2.已知函数f x = a −
2
ex +1
1
a ∈ 是奇函数,则a =___.
[例4] (1)若函数f x = x + a ln
A.−1
(2)若f x = ln a +
B.0
√
1
1−x
2x−1
2x+1
为偶函数,则a =(
B.c < b < a
C.b < c < a
2.(2024·常州调研)已知f x = lg e
则f a ,f b ,f c 的大小关系为(
A.f c
√
x
+ 1 ,a =
20.3 ,b
)
D.a < b < c
= log 3 2,c =
)
>f a >f b
B.f b > f a > f c
C.f a > f b > f c
3.已知f x = ax 2 + bx是定义在[a − 1,2a]上的偶函数,那么a + b的值是(
函数的基本性质——奇偶性
函数的基本性质——奇偶性一、函数的奇偶性1. 奇偶性的定义如果对于函数()f x 的定义域内的任意一个x ,都有()()f x f x =-,则称函数()f x 为偶函数;如果对于函数()f x 的定义域内的任意一个x ,都有()()f x f x =--,则称函数()f x 为奇函数。
2.奇偶性的几何意义具有奇偶性的函数的定义域关于原点对称,奇函数的图像关于原点对称,偶函数的图像关于y 轴对称。
3.函数奇偶性的判断(证明)(1)比较()f x 与()f x ±-的关系; (2)()()f x f x -(()0f x -≠)与1±的关系; (3)()()f x f x ±-与0的关系4.简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇二.典例解析题型一:判断函数的奇偶性例1.讨论下述函数的奇偶性:);111(1)()3(;)0)(1(1)0(0)0)(1(1)()2(;22116)()1(222+-+-=⎪⎩⎪⎨⎧<-+-=>++=++=x x og x f x x x n x x x x n x f x f x xx );0(||)()4(22≠-+-=a aa x x a x f 常数 题型二:奇偶性的应用例2.设f (x )是定义在R 上的奇函数,若当x ≥0时,f (x )=lo g 3(1+x ),则f (-2)=____ _。
题型三:奇偶性与其它性质的综合应用例3.若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________. 例4.定义在]11[,-上的函数)(x f y =是减函数,且是奇函数,若0)54()1(2>-+--a f a a f ,求实数a 的范围。
人教A版高中数学必修第一册函数的基本性质——奇偶性课件
2.偶函数的表达式满足: f x f x .
人教A版高中数学必修第一册函数的基 本性质 ——奇 偶性课 件
人教A版高中数学必修第一册函数的基 本性质 ——奇 偶性课 件
例题讲解 例 1.在你所了解的函数中,举一个函数是偶函数的例子,并说明理由.
解:如 f x 3x2 1. 1. f x 3x2 1的定义域为 R. 2. f x 3x2 1 3x2 1 f x . 所以 f x 3x2 1为偶函数.
答案:函数 f x 的图象关于原点中心对称,则其函数的表达式满足: f x f x.
人教A版高中数学必修第一册函数的基 本性质 ——奇 偶性课 件
人教A版高中数学必修第一册函数的基 本性质 ——奇 偶性课 件
学习新知——奇函数
奇函数:一般地,设函数 f x 的定义域为 I,如果 xI ,都有 x I ,且 f x f x ,那么函数 f x 就叫做奇函数(odd function).
问题:既为奇函数,也为偶函数的函数有多少个? 答案:无数个.
人教A版( 高2中01数9)学高必中修数第学一必册修函第数一的册基 函本数性的质 基—本—性奇 质偶第性课3 课件时— —奇偶 性课件 (共12 张ppt)
人教A版( 高2中01数9)学高必中修数第学一必册修函第数一的册基 函本数性的质 基—本—性奇 质偶第性课3 课件时— —奇偶 性课件 (共12 张ppt)
课堂小结Βιβλιοθήκη 函数的奇偶性与判断方法奇偶性是函数在它的定义域上的整体性质,所以判断函数的奇偶 性应先明确它的定义域是否关于原点对称.
再判断是否有 f x f x 0 或 f x f x 0 .
人教A版( 高2中01数9)学高必中修数第学一必册修函第数一的册基 函本数性的质 基—本—性奇 质偶第性课3 课件时— —奇偶 性课件 (共12 张ppt)
高一数学函数的基本性质知识点及练习题(含答案)
函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
函数的性质
函数的基本性质函数的三个基本性质:单调性,奇偶性,周期性一、单调性1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。
2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。
(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。
) 3.二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a , 当0>a 时函数)(x f 在对称轴abx 2-=的左侧单调减小,右侧单调增加; 当0<a 时函数)(x f 在对称轴abx 2-=的左侧单调增加,右侧单调减小; 一次函数单调性:1. 函数()()0f x kx b k =+≠的单调性是____________.2. 函数b x k y ++=)12(在实数集上是增函数,则()A .21->kB .21-<k C .0>bD .0>b二次函数单调性:3. 函数x x y 322+-=的单调递增区间是________;调递减区间是_________.能力拓展:例1:讨论函数322+-=ax x f(x)在(-2,2)内的单调性。
变式练习:函数f(x)=-x 2+2(a-1)x+2在区间(-∞,2]上单调递增,则a 的取值范围是( ) A 、[3,+∞) B 、(-∞,3] C 、(-∞,-3] D 、[-3,+∞)4.证明方法和步骤:(1)、设元:设21,x x 是给定区间上任意两个值,且21x x <; (2)、作差:)()(21x f x f -;(3)、变形:(如因式分解、配方等);(4)、定号:即0)()(0)()(2121<->-x f x f x f x f 或; (5)、根据定义下结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的基本性质——奇偶性
【教学目标】
1.知识与技能:理解函数的奇偶性及其几何意义;
2.过程与方法:学会运用函数图象理解和研究函数的性质;
3.情感、态度与价值观:学会判断函数的奇偶性。
【教学重难点】
教学重点:函数的奇偶性及其几何意义。
教学难点:判断函数的奇偶性的方法与格式。
【教学过程】
一、引入课题。
实践操作:(也可借助计算机演示)
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
①以轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,y 然后将纸展开,观察坐标系中的图形;
问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什()y f x =么特殊的关系?
答案:(1)可以作为某个函数的图象,并且它的图象关于轴对称;(2)若点()y f x =y 在函数图象上,则相应的点也在函数图象上,即函数图象上横坐标互为相()()x f x ,()()x f x -,反数的点,它们的纵坐标一定相等。
②以轴为折痕将纸对折,然后以轴为折痕将纸对折,在纸的背面(即第三象限)画出y x 第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:
问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什()y f x =么特殊的关系?
答案:(1)可以作为某个函数的图象,并且它的图象关于原点对称;(2)若()y f x =点在函数图象上,则相应的点也在函数图象上,即函数图象上横坐标互为()()x f x ,()()x f x -,相反数的点,它们的纵坐标也一定互为相反数。
二、新课教学。
函数的奇偶性定义:
象上面实践操作①中的图象关于y 轴对称的函数即是偶函数,操作②中的图象关于原点对称的函数即是奇函数。
1.偶函数(even function )
一般地,对于函数的定义域内的任意一个x ,都有,那么就叫做()f x ()()f x f x -=()f x 偶函数。
(学生活动):仿照偶函数的定义给出奇函数的定义
2.奇函数(odd function )
一般地,对于函数的定义域内的任意一个,都有,那么就叫做()f x x ()()f x f x -=()f x 奇函数。
注意:
①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个,则也一定是定义域内的一个自变量(即定义域关于原点对称)。
x x -具有奇偶性的函数的图象的特征
偶函数的图象关于轴对称;
y 奇函数的图象关于原点对称。
三、典型例题。
1.判断函数的奇偶性
例1.应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性。
(本例由学生讨论,师生共同总结具体方法步骤)
解:(略)
总结:利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定与的关系;
()f x -()f x
③作出相应结论:
若或,则是偶函数;
()()f x f x -=()()0f x f x --=()f x 若或,则是奇函数。
()()f x f x -=-()()0f x f x -+=()f x 说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数。
2.利用函数的奇偶性补全函数的图象
规律:
偶函数的图象关于y 轴对称;
奇函数的图象关于原点对称。
说明:这也可以作为判断函数奇偶性的依据。
3.函数的奇偶性与单调性的关系
(学生活动)举几个简单的奇函数和偶函数的例子,并画出其图象,根据图象判断奇函数和偶函数的单调性具有什么特殊的特征。
例3.已知是奇函数,在(0,+∞)上是增函数,证明:在(-∞,0)上也()f x ()f x 是增函数
解:(由一名学生板演,然后师生共同评析,规范格式与步骤)
规律:
偶函数在关于原点对称的区间上单调性相反;
奇函数在关于原点对称的区间上单调性一致。
四、归纳小结,强化思想。
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。
单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
五、作业布置。
补充作业:判断下列函数的奇偶性:
①;122)(2++=x x x x f ②
;x x x f 2)(3-=
③()
a x f =)(R x ∈④
⎩⎨⎧+-=)1()1()(x x x x x f .0,0<≥x x 六、教学反思。
已知是定义在R 上的函数,)(x f 设,2)()()(x f x f x g -+=2)()()(x f x f x h --=①试判断的奇偶性;)()(x h x g 与②试判断的关系;
)()(),(x f x h x g 与③由此你能猜想得出什么样的结论,并说明理由。