(完整版)弹性力学期末考试练习

合集下载

弹性力学复习重点+试题及答案【整理版】

弹性力学复习重点+试题及答案【整理版】

)))))))弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

弹性力学试题及答案

弹性力学试题及答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学试题含答案

弹性力学试题含答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移」_2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量, 也就是正应力和切应力。

应力及其分量的量纲是L M T。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性_________6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量J=100MPa 口y=50MPa弋xy=10/5O MPa,则主应力6= 150MPao^nQMPa a r=35l6"。

&已知一点处的应力分量, a ^200 MPa 口y=0MPa Jy=—400 MPa,则主应力▽“=512 MPa, 二2 =-312 MPa,: 1 =-37 ° 57'。

9、已知一点处的应力分量,匚x=-2000 MPa匚y =1000 MPa,岑=-400 MPa,则主应力匚1 = 1052 MPa二2= -2052 MPa , :- "-82 ° 32'。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界________________ 条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。

A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。

A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。

答案:内2. 弹性力学的基本假设之一是______连续性假设。

答案:材料3. 弹性力学中,应变的量纲是______。

答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。

答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。

答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。

2. 解释弹性力学中的杨氏模量和剪切模量。

答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。

3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。

四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

期末考试试卷A答案—弹性力学

期末考试试卷A答案—弹性力学

,考试作弊将带来严重后果!华南理工大学2011年期末考试试卷(A )卷《弹性力学》1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷;20分)、五个基本假定在建立弹性力学基本方程时有什么用途?(10分)答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

(2分) 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。

(4分) 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。

因此,反映这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。

(6分) 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。

进一步地说,就是物体的弹性常数也不随方向而变化。

(8分)5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。

同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。

在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

(10分)2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分)解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。

简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。

而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。

例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。

所以,严格来说,不成立。

3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分)解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。

《弹性力学及有限单元法》期末考试试卷

《弹性力学及有限单元法》期末考试试卷

《弹性力学及有限元基础》期末考试班级: 姓名: 学号:一.填空题(37分)1(9分). 杆件在竖向体力分量f (常量)的作用下,其应力分量为:x C x 1=σ;32C y C y +=σ;0=xy τ。

支承条件如图所示,C 1 =______ ;C 2=______; C 3=______。

2(12分). 一无限长双箱管道,深埋在地下,如图2所示,两箱中输送的气体压强均为σ0,设中间隔板AB (图中阴影所示)的位移分量为:u = Cx , v = 0,隔板材料模量为E 和μ。

计算隔板上各点的应力分量:σx = _______, σy ,= ______, σz =______。

3(9分). 圆环的内半径为r ,外半径为R ,受内压力q 1及外压力q 2的作用。

若内表面的环向应力为0,则内外压力的关系是:_________________。

4(10分).等截面实心直杆受扭矩的作用,假设应力函数为:()()222222y bx a by x a k -++-=Φ,扭矩引起的单位长度扭转角测得为θ,材料的剪切弹性模量为G ,a 、b 均为常数,则k = _____ 二.分析题5.(20分)一宽度为b 的单向薄板,两长边简支,横向荷载为⎪⎭⎫⎝⎛=b y p p πsin 0,计算板的挠度方程。

(设材料的弹性模量为E ,泊松比为μ,薄板的弯曲刚度为D )6.(20分)如图,一长度为l 的简支梁,在距右端为c 的位置作用一集中荷载P ,请用里兹法计算梁的挠度曲线。

(设挠度曲线为)(x l ax w -=,a 为代求系数)7.(23分)1cm 厚的三角形悬臂梁,长4m ,高2m 。

其三个顶点i , j , k 及内部点m 的面积坐标如图所示。

在面积坐标(1/8,1/2,3/8)处和j 节点处受到10kN 的集中力的作用,在jk 边受到垂直于斜边的线性分布力的作用。

用一个4节点的三角形单元对此题1图 题2图 x 题5图悬臂梁进行有限元分析,域内任一点的位移都表示成⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++=+++=m m k k j j i i m m k k j j i i v N v N v N v N v u N u N u N u N u 。

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。

2. 在弹性碰撞中,两个物体的速度满足_________定律。

3. 弹簧的弹簧常数_________,表示弹簧的_________。

4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。

5. 弹性模量是衡量材料_________的物理量。

四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。

(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。

求物体滑到斜面底部时的速度。

(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。

它们从静止开始相互碰撞,求碰撞后A和B的速度。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。

A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。

A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。

答案:内2. 弹性力学的基本假设之一是______连续性假设。

答案:材料3. 弹性力学中,应变的量纲是______。

答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。

答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。

答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。

2. 解释弹性力学中的杨氏模量和剪切模量。

答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。

3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。

四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。

弹性力学期末考试卷及答案

弹性力学期末考试卷及答案
答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分 别为:
平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于 xy 平面,外
力沿板厚均匀分布,只有平面应力分量 x , y , xy 存在,且仅为 x,y 的函数。
平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于 xy 平面,
B q 2b
考察次要边界 y 0 的边界条件,应用圣维南原理,三个积分的应力边界条件为
(j)
b 2
b 2
b 2 y
dx
y0
b 2
6Dx 2E dx 2Eb 0 ;
得 E0
b 2
b 2 y
xdx
y0
b 2
6Dx 2E
b 2
xdx Db3 2
0,
得 D0
b 2
ql 2
2. (10 分)试考察应力函数 cxy3 , c 0 ,能满足相容方程,并求出应力分量(不计体力),画出
图 5-2 所示矩形体边界上的面力分布,并在次要边界上表示出面力的主矢和主矩。
图 5-2
解:(1)相容条件:将
cxy3 代入相容方程
4 x4
2
4 x2y 2
4 y 4
0 ,显然满足。
外力沿 z 轴无变化,只有平面应变分量 x , y , xy 存在,且仅为 x,y 的函数。
3. (8 分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数 求解,应力函数 必须满
足哪些条件?
答:(1)相容方程: 4 0
(2)应力边界条件(假定全部为应力边界条件, s
s
):
;体力和面力符号

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、选择题(每题2分,共20分)1. 下列哪种材料不具有弹性特性?A. 钢材B. 橡胶C. 水泥D. 玻璃答案:C2. 弹性力学中的胡克定律描述了什么关系?A. 应力与应变的关系B. 应力与位移的关系C. 应变与位移的关系D. 应力与应变能的关系答案:A3. 在弹性力学中,下列哪个物理量表示单位体积内的应变能?A. 应力B. 应变C. 应变能密度D. 弹性模量答案:C4. 下列哪个物理量表示材料的抗拉强度?A. 弹性模量B. 泊松比C. 屈服强度D. 抗拉强度答案:D5. 在弹性力学中,下列哪个物理量表示单位长度上的位移?A. 应变B. 位移C. 位移梯度D. 位移矢量答案:C二、填空题(每题2分,共20分)1. 胡克定律表达式为:σ = Eε,其中σ表示____,E 表示____,ε表示____。

答案:应力、弹性模量、应变2. 在三维应力状态下,应力张量的分解表达式为:σ = σ_0 + σ_1 + σ_2,其中σ_0表示____,σ_1表示____,σ_2表示____。

答案:平均应力、最大切应力、最小切应力3. 下列物理量中,表示单位体积内应变能的物理量为____。

答案:应变能密度4. 在弹性力学中,泊松比μ表示____与____的比值。

答案:横向应变、纵向应变5. 在弹性力学中,下列物理量中与应力状态无关的是____。

答案:位移三、计算题(每题20分,共60分)1. 已知一矩形截面梁,截面尺寸为10cm×20cm,受到均匀分布载荷q=10kN/m,求梁的弯曲应力σ和挠度w。

答案:σ = 5MPa,w = 0.0025m2. 一根长为2m的杆件,弹性模量E=200GPa,泊松比μ=0.3,两端受到轴向拉力F=100kN,求杆件的伸长量Δl。

答案:Δl = 0.005m3. 一圆形截面杆,直径d=10cm,受到扭矩M=2kN·m,弹性模量E=200GPa,泊松比μ=0.3,求杆件的扭转角φ。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案题目一:弹性力学基础知识试题:1. 弹性力学是研究什么样的物体的变形与应力关系?答案:弹性力学是研究具有弹性的物体(即能够恢复原状的物体)的变形与应力关系的学科。

2. 弹性力学中的“应力”是指什么?答案:应力是物体内部相邻两部分之间的相互作用力与其接触面积之比。

3. 弹性力学中的“应变”是指什么?答案:应变是物体在受力作用下发生形变的程度。

正应变表示物体在拉伸力作用下的伸长程度与原始长度之比,负应变表示物体在压缩力作用下的压缩程度与原始长度之比。

4. 弹性力学中的“胡克定律”是什么?答案:胡克定律描述了弹簧的弹性特性。

根据胡克定律,当弹簧的变形量(即伸长或缩短的长度)与施加在弹簧上的力成正比时,弹簧的弹性变形是符合弹性恢复原状的规律的。

题目二:弹性系数计算试题:1. 弹性模量是用来衡量什么的物理量?答案:弹性模量是衡量物体在受力作用下发生弹性形变的硬度和刚度的物理量。

2. 如何计算刚体材料的弹性模量?答案:刚体材料的弹性模量可以通过应力与应变之间的关系来计算。

弹性模量E等于应力σ与应变ε之比。

3. 如何计算各向同性材料的体积弹性模量(Poisson比)?答案:各向同性材料的体积弹性模量(Poisson比)可以通过材料的横向应变与纵向应变之比来计算。

Poisson比v等于横向应变ε横与纵向应变ε纵之比。

4. 如何计算材料的剪切弹性模量?答案:材料的剪切弹性模量G(也称剪切模量或切变模量)可以通过材料的剪应力与剪应变之比来计算。

题目三:弹性体的应力分析试题:1. 弹性体的应力状态可以用什么来表示?答案:弹性体的应力状态可以用应力张量来表示。

2. 什么是平面应力状态和轴对称应力状态?答案:平面应力状态是指在某一平面上的应力分量仅存在拉伸(或压缩)和剪切,而垂直于该平面的应力分量为零的应力状态。

轴对称应力状态是指应力分量只与径向位置有关,而与角度无关的应力状态。

3. 弹性体的应力因子有哪些?答案:弹性体的应力因子包括主应力、主应力差、偏应力、平均应力、最大剪应力、最大剪应力平面等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、弹性力学的基本假设是什么?弹性力学的基本假设是:连续性、完全弹性、均匀性、各向同性、小变形假定。

2、简述什么是弹性力学?弹性力学与材料力学的主要区别?弹性力学又称为弹性理论,事固体力学的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变何位移。

弹性力学与材料力学的区别:从研究对象看;材料力学主要研究杆件,在拉压、剪、弯、扭转等作用下的应力、形变何位移。

弹性力学研究各种形状的弹性体,出杆件外,还研究平面体、空间体、平板和壳体等。

从研究方法看;弹性力学的研究方法是;在弹性体区域内必须严格地考虑静力学、几何学和物理学;而材料力学中虽然也考虑这几方面的条件,但不是十分严密。

3、如图所示悬臂梁,试写出其边界条件。

解:(1)x a =,1,00,0x y l m f f ==⎧⎪⎨==⎪⎩由()()()()x s xy s xy s xy s yl m f m l f στστ+=+=得()()0,0x xy s s στ==(2),y h =-0,10,x y l m f f q==-⎧⎪⎨==⎪⎩()()()()0(1)0(1)0x xy s s y xy ssqστστ⋅+⋅-=⋅-+⋅=则()(),0y xy s s q στ=-=(3),y h =+0,10,0x y l m f f ==+⎧⎪⎨==⎪⎩()()()()0(1)0(1)00x xy s s y xy ssστστ⋅+⋅+=⋅++⋅=得()()0,0y xy s s στ==(4)0,x =00s su v =⎧⎨=⎩4、已知下列位移,试求在坐标为(2,6,8)的P 点的应变状态()32103012-⨯+=x u ,31016-⨯=zy v ,()321046-⨯-=xy z w解:根据⎪⎭⎫ ⎝⎛∂∂+∂∂==∂∂=∂∂+∂∂==∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==∂∂=z u x w zw z v y w y v x v y u x u zx zx z yz yz y xy xy x 2121,)(2121,2121,εγεεγεεγε 得到-34801201284410124496ij ε-⎡⎤⎢⎥=⨯⎢⎥⎢⎥-⎣⎦5、图示平面薄板,弹性模量E=200GPa ,泊松比v=0.3,求各应变分量()[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+-=yx z z x z y y z y x x v E v E v E σσσεσσσεσσσε111⎪⎪⎪⎩⎪⎪⎪⎨⎧===G G G zx zx yz yz xy xy τγτγτγ 得到100MPa50MPa41075.5-⨯=x ε,4104-⨯-=y ε, 41075.0-⨯-=z ε,0===yz xz xy γγγ6、下面给出平面应力问题(单连通域)的应力场,试分别判断它们是否为可能的应力场(不计体力)。

(10分)224331,,24x y xy x y y xy σστ=-=-=解:(1)将上式代入平衡微分方程:00xyx x yx y yf x y f xy τστσ∂⎧∂++=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩得22333300xy xy y y ⎧-+=⎪⎨-=⎪⎩满足。

(2)将上式代入相容方程:22431()24x y x y y σσ+=-+2222222()3330x y y x y x y σσ⎛⎫∂∂++=---≠ ⎪∂∂⎝⎭∴ 上式不是一组可能的应力场。

7、图示薄板,在y 方向受均匀拉力作用,证明在板中间突出部分的尖点A 处无应力存在。

(15分)解:在 AC 、AB 边界上无面力作用。

即0x y f f == AB 边界:111cos ,sin l m αα==由应力边界条件公式,有()()()()x s xy s xy s xy s y l m f m l f στστ+=+=1111cos sin 0sin cos 0x xy y xy ασατασατ+=+= (1)AC 边界:2222cos sin l m αα==-代入应力边界条件公式,有2222cos sin 0sin cos 0x xy y xy ασατασατ-=-+= (2)∵A 点同处于 AB 和 AC 的边界,∴满足式(1)和(2),解得0x y xy σστ===∴ A 点处无应力作用8、 已知某点的应力状态,求主应力和最大切应力, , , x y z a a a σσσ==-=0, 0, xy yz zx a τττ===-。

解: 321230I I I σσσ-+-=1x y z I a σσσ=++=2222222222x y y z z x xy yz zxI a a a a aσσσσσστττ=++--- =--+-=-22233320x y z xy yz zx x yz y zx z xyI a a σσστττστστστ=+--- =-+=32220a a σσσ--=(2)()0a a σσσ-+=1232, 0, a a σσσ===- 13max 322a σστ-==9. 设悬臂梁右端受向下的大小为P 的荷载作用,如取挠度曲线为23w ax bx =+,试用最小势能原理求a 、b 的值。

解:由23w ax bx =+得 223dw ax bx dx =+,2226d w a bx dx =+222012l d w U EJ dx dx ⎛⎫= ⎪⎝⎭⎰()21262lEJa bx dx =+⎰()22321412122EJ la l ab l b =++()()2323x lx lW PwP ax bxP al bl====+=+U W ∏=-=()()2232231412122EJ la l ab l b P al bl ++-+ 由最小势能原理得0δ∏=,即()0U W δ-=得()()222334606120la l b EJ Pl a l a l b EJ Pl b δδδδ∏⎧=+-=⎪⎪⎨∏⎪=+-=⎪⎩⇒2232346612Pl la l b EJ Pl l a l b EJ ⎧+=⎪⎪⎨⎪+=⎪⎩解之得:26Pl a EJ P b EJ ⎧=⎪⎪⎨⎪=-⎪⎩10、已知应力分量312x C Qxy x +-=σ,2223xyC y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。

试利用平衡微分方程求系数C 1,C 2,C 3。

解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 11、证明应力函数2by =ϕ能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计,0≠b )。

解:将应力函数2by =ϕ代入相容方程024422444=∂∂+∂∂∂+∂∂yy x x ϕϕϕ 可知,所给应力函数2by =ϕ能满足相容方程。

由于不计体力,对应的应力分量为b yx 222=∂∂=ϕσ,022=∂∂=x y ϕσ,02=∂∂∂-=y x xy ϕτ 对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:上边,2hy -=,0=l ,1-=m ,0)(2=-=-=h y xy x f τ,0)(2=-=-=h y y y f σ;下边,2hy =,0=l ,1=m ,0)(2===h y xy x f τ,0)(2===h y y y f σ;左边,2lx -=,1-=l ,0=m ,b f l x x x 2)(2-=-=-=σ,0)(2=-=-=l x xy y f τ;右边,2lx =,1=l ,0=m ,b f l x x x 2)(2===σ,0)(2===l x xy y f τ。

可见,上下两边没有面力,而左右两边分别受有向左和向右的均布面力2b 。

因此,应力函数2by =ϕ能解决矩形板在x 方向受均布拉力(b >0)和均布压力(b <0)的问题。

12、如图所示的矩形截面的长坚柱,密度为ρ,在一边侧面上受均布剪力,试求应力分量。

解:根据结构的特点和受力情况,可以假定纵向纤维互不挤压,即设0=x σ。

由此可知022∂∂=yx ϕσ将上式对y 积分两次,可得如下应力函数表达式())()(,21x f y x f y x +=ϕ将上式代入应力函数所应满足的相容方程则可得0)()(424414=+dx x f d dx x f d y 这是y 的线性方程,但相容方程要求它有无数多的解(全柱内的y 值都应该满足它),可见它的系数和自由项都应该等于零,即0)(414dx x f d , 0)(424=dxx f d 这两个方程要求I Cx Bx Ax x f +++=231)(, K Jx Ex Dx x f +++=232)(代入应力函数表达式,并略去对应力分量无影响的一次项和常数项后,便得2323)(Ex Dx Cx Bx Ax y ++++=ϕ对应应力分量为022∂∂=yx ϕσgy E Dx B Ax y xy ρϕσ-+++=∂∂=26)26(22C Bx Ax yx xy ---=∂∂∂-=2322ϕτ以上常数可以根据边界条件确定。

左边,0=x ,1-=l ,0=m ,沿y 方向无面力,所以有0)(0==-=C x xy τ右边,b x =,1=l ,0=m ,沿y 方向的面力为q ,所以有q Bb Ab b x xy =--==23)(2τ上边,0=y ,0=l ,1-=m ,没有水平面力,这就要求xy τ在这部分边界上合成的主矢量和主矩均为零,即0)(00==⎰dx y bxyτ将xy τ的表达式代入,并考虑到C =0,则有0)23(2302302=--=--=--⎰Bb Ab Bx Ax dx Bx Ax b b而00)(00=⋅=⎰dx y b xy τ自然满足。

又由于在这部分边界上没有垂直面力,这就要求y σ在这部分边界上合成的主矢量和主矩均为零,即0)(00==⎰dx y by σ,0)(00==⎰xdx y byσ将y σ的表达式代入,则有02323)26(202=+=+=+⎰Eb Db Ex Dxdx E Dx b b022)26(230230=+=+=+⎰Eb Db Ex Dx xdx E Dx b b由此可得2b q A -=,b qB =,0=C ,0=D ,0=E 应力分量为0=x σ, gy b x b y q y ρσ-⎪⎭⎫ ⎝⎛-=312, ⎪⎭⎫⎝⎛-=23b x b x q xy τ虽然上述结果并不严格满足上端面处(y =0)的边界条件,但按照圣维南原理,在稍远离y =0处这一结果应是适用的。

相关文档
最新文档