数值计算方法习题

合集下载

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑==n k k x l0)(( ),∑==n k k j k x l x 0)(( ),当2≥n 时=++∑=)()3(204x l x x k k n k k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

《数值计算方法》习题答案

《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

数值计算方法 练习题

数值计算方法 练习题

数值计算方法练习题习题一1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝对误差限、相对误差限。

(1);(2);(3);(4);(5);(6);(7);2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字?3. 设均为第1题所给数据,估计下列各近似数的误差限。

(1);(2);(3)4. 计算,取,利用下列等价表达式计算,哪一个的结果最好?为什么?(1);(2);(3)(4)5. 序列满足递推关系式若(三位有效数字),计算时误差有多大?这个计算过程稳定吗?6. 求方程的两个根,使其至少具有四位有效数字(要求利用。

7. 利用等式变换使下列表达式的计算结果比较精确。

(1);(2)(3);(4)8. 设,求证:(1)(2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。

9.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

10.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

11.下列公式如何才比较准确?(1)(2)12.近似数x*=0.0310,是位有数数字。

13.计算取,利用式计算误差最小。

四个选项:习题二1. 已知,求的二次值多项式。

2. 令求的一次插值多项式,并估计插值误差。

3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。

0.4 0.5 0.6 0.7 0.80.38942 0.47943 0.56464 0.64422 0.717364. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。

5. 已知,求及的值。

6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。

X 1.615 1.634 1.702 1.828 1.921F (x) 2.41450 2.46459 2.65271 3.03035 3.340667. 已知函数的如下函数值表,解答下列问题(1)试列出相应的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。

(完整版)数值计算方法试题及答案

(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

计算机数值方法试题

计算机数值方法试题

计算机数值⽅法试题数值计算⽅法试题⼀、填空(共20分,每题2分)1、设,取5位有效数字,则所得的近似值x=_____.2、设⼀阶差商,则⼆阶差商3、数值微分中,已知等距节点的函数值则由三点的求导公式,有4、求⽅程的近似根,⽤迭代公式,取初始值,那么5、解初始值问题近似解的梯形公式是6、,则A的谱半径=,A的=7、设,则=和=8、若线性代数⽅程组AX=b 的系数矩阵A为严格对⾓占优阵,则雅可⽐迭代和⾼斯-塞德尔迭代都_____9、解常微分⽅程初值问题的欧拉(Euler)⽅法的局部截断误差为_____10、设,当时,必有分解式,其中L为下三⾓阵,当其对⾓线元素⾜条件时,这种分解是唯⼀的。

⼆、计算题(共60 分,每题15分)1、设(1)试求在上的三次Hermite插值多项式H(x)使满⾜H(x)以升幂形式给出。

(2)写出余项的表达式2、已知的满⾜,试问如何利⽤构造⼀个收敛的简单迭代函数,使0,1…收敛?3、试确定常数A,B,C和,使得数值积分公式有尽可能⾼的代数精度。

试问所得的数值积分公式代数精度是多少?它是否为Gauss型的?4、推导常微分⽅程的初值问题的数值解公式:三、证明题1、设(1)写出解的Newton迭代格式2、设R=I-CA,如果,证明:(1)A、C都是⾮奇异的矩阵(2)参考答案:⼀、填空题1、2.31502、3、4、1.55、6、7、8、收敛9、O(h)10、⼆、计算题1、1、(1)(2)2、由,可得因故故,k=0,1,…收敛。

3、,该数值求积公式具有5次代数精确度,它是Gauss型的4、数值积分⽅法构造该数值解公式:对⽅程在区间上积分,得,记步长为h,对积分⽤Simpson求积公式得所以得数值解公式:三、证明题1、证明:(1)因,故,由Newton迭代公式:n=0,1,…得,n=0,1,…⼜,则故此迭代格式是线性收敛的。

2、证明:(1)因,所以I–R⾮奇异,因I–R=CA,所以C,A都是⾮奇异矩阵 (2)故则有(2.1)因CA=I–R,所以C=(I–R)A-1,即A-1=(I–R)-1C⼜RA-1=A-1–C,故由(这⾥⽤到了教材98页引理的结论)移项得 (2.2)结合(2.1)、(2.2)两式,得模拟试题⼀、填空题(每空2分,共20分)1、解⾮线性⽅程f(x)=0的⽜顿迭代法具有_______收敛2、迭代过程(k=1,2,…)收敛的充要条件是___3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有效数字是___4、⾼斯--塞尔德迭代法解线性⽅程组的迭代格式中求______________5、通过四个互异节点的插值多项式p(x),只要满⾜_______,则p(x)是不超过⼆次的多项式6、对于n+1个节点的插值求积公式⾄少具有___次代数精度.7、插值型求积公式的求积系数之和___8、 ,为使A可分解为A=LL T, 其中L为对⾓线元素为正的下三⾓形,a的取值范围_9、若则矩阵A的谱半径(A)=___10、解常微分⽅程初值问题的梯形格式⼆、计算题(每⼩题15分,共60分)1、⽤列主元消去法解线性⽅程组2、已知y=f(x)的数据如下x 0 2 3f(x) 1 3 2求⼆次插值多项式及f(2.5)3、⽤⽜顿法导出计算的公式,并计算,要求迭代误差不超过。

数值计算试题

数值计算试题

数值计算试题一、选择题(每题4分,共10题,共40分)1. 数值计算方法常用的初值选取方法有()。

- A. 逐次逼近法- B. 二分法- C. 迭代法- D. 直接求解法2. 数值计算方法中,误差的主要来源是()。

- A. 截断误差- B. 舍入误差- C. 积分误差- D. 面积误差3. 二分法适用于()。

- A. 近似求解非线性方程- B. 数值积分- C. 插值拟合- D. 非线性规划4. 在数值计算过程中,防止误差传播和扩散的方法是()。

- A. 稳定性分析- B. 收敛性分析- C. 考虑计算精度- D. 选择合适的算法5. 牛顿迭代法的基本思想是()。

- A. 利用函数的导数进行迭代- B. 利用函数的积分进行迭代- C. 利用函数的差商进行迭代- D. 利用函数的微分方程进行迭代6. Richardson外推法是一种加快数值计算速度的方法,它基于()。

- A. 梯形公式- B. 中点公式- C. Simpson公式- D. Gauss公式7. 数值计算方法中,误差的度量方法包括()。

- A. 绝对误差- B. 相对误差- C. 条件数- D. 误差限8. 龙贝格积分法是一种数值积分方法,它基于()。

- A. 矩形公式- B. 符号函数- C. 拉格朗日多项式- D. 分段线性函数9. 数值计算中,条件数的大小反映了()。

- A. 算法的稳定性- B. 矩阵方程的解的灵敏度- C. 数值方法的收敛性- D. 迭代过程的迭代次数10. 复化求积公式是一种数值积分方法,它基于()。

- A. 梯形公式- B. 辛普森公式- C. 点插值公式- D. 泰勒公式二、填空题(每题4分,共10题,共40分)1. 数值计算方法中,求解非线性方程常用的方法有()。

2. 数值计算方法中,求解线性方程组常用的方法有()。

3. 数值计算方法中,求解常微分方程常用的方法有()。

4. 数值计算方法中,求解偏微分方程常用的方法有()。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。

《数值计算方法》试题集及答案(1-6)-2..

《数值计算方法》试题集及答案(1-6)-2..

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

数值计算方法倪勤习题答案

数值计算方法倪勤习题答案

数值计算方法倪勤习题答案数值计算方法倪勤习题答案数值计算方法是一门研究如何利用计算机进行数值计算的学科。

它在科学计算、工程计算、金融计算等领域中有着广泛的应用。

倪勤的《数值计算方法》是该领域的经典教材之一,其中的习题是帮助学生巩固所学知识的重要资源。

下面是一些数值计算方法倪勤习题的答案,供大家参考。

一、插值与拟合1. 设有下列数据点:(0, 0),(1, 1),(2, 4),(3, 9)。

试用拉格朗日插值多项式求x=2.5处的函数值。

解答:拉格朗日插值多项式的表达式为:P(x) = ∑[f(xi) * l(x)] / ∑[l(xi)]其中,l(x) = ∏[(x - xj) / (xi - xj)],i ≠ j根据给定的数据点,可以得到:l0(x) = (x - 1)(x - 2)(x - 3) / (0 - 1)(0 - 2)(0 - 3) = -x(x - 1)(x - 2) / 6l1(x) = (x - 0)(x - 2)(x - 3) / (1 - 0)(1 - 2)(1 - 3) = x(x - 2)(x - 3) / 2l2(x) = (x - 0)(x - 1)(x - 3) / (2 - 0)(2 - 1)(2 - 3) = -x(x - 1)(x - 3) / 2l3(x) = (x - 0)(x - 1)(x - 2) / (3 - 0)(3 - 1)(3 - 2) = x(x - 1)(x - 2) / 6代入公式,得到:P(x) = 0 * l0(x) + 1 * l1(x) + 4 * l2(x) + 9 * l3(x)= -x(x - 1)(x - 2) / 6 + 4x(x - 1)(x - 3) / 2 + 9x(x - 1)(x - 2) / 6= -x(x - 1)(x - 2) / 6 + 2x(x - 1)(x - 3) + 3x(x - 1)(x - 2) / 2= x^3 - 3x^2 + 3x将x=2.5代入上式,得到:P(2.5) = 2.5^3 - 3 * 2.5^2 + 3 * 2.5 = 2.375因此,当x=2.5时,函数值为2.375。

数值计算方法习题答案

数值计算方法习题答案

数值分析(p11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式 112(),0,1,2,......ka k kx x x k +=+=恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk kx k x x k x k +-=-=≥=证明: (1)(2211222k k k k k k k kx a x ax x x x x +⎫⎛-+=+-==⎪ ⎝⎭(2) 取初值0>x ,显然有0>kx,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若kx 有n 位有效数字,则n kx-⨯≤-110218,而()k k k kk x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥Θ1k x +∴必有2n 位有效数字。

8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为mna a a x 10 (02)1*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a xx x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为 025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x,有 003063.071.20083.022≈<-x e x对于718.23=x,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值分析(p11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式112(),0,1,2,......k ak k x x x k +=+= 恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k kx a x x x x +-⎫⎛-=+==⎪ ⎝⎭(2) 取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若k x 有n 位有效数字,则n k x -⨯≤-110218, 而()k k k k k x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+ nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥ 1k x +∴必有2n 位有效数字。

8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为m n a a a x 10......021*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a x x x ,其中1a 为*x 中第一个非零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。

《数值计算方法》试题与答案

《数值计算方法》试题与答案

习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352 ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+ =2(0.3443100.1352)fl ⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =0.3456210⨯易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少? 解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x>>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x =,(B )1cos2xy x-=;(4)(A)9y =-(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算方法期末试题及答案

数值计算方法期末试题及答案

一、选择题(每小题4分,共20分)1. 误差根据来源可以分为四类,分别是( A )A. 模型误差、观测误差、方法误差、舍入误差;B. 模型误差、测量误差、方法误差、截断误差;C. 模型误差、实验误差、方法误差、截断误差;D. 模型误差、建模误差、截断误差、舍入误差。

2. 若132)(356++-=x x x x f ,则其六阶差商=]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。

3. 数值求积公式中的Simpson 公式的代数精度为 ( D )A. 0;B. 1;C. 2;D. 3 。

4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B )A. 都发散;B. 都收敛C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散;D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。

5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C )A. 02≤≤-h ;B. 0785.2≤≤-h ;C. 02≤≤-h λ;D. 0785.2≤≤-h λ ;二、填空题(每空3分,共18分)1. 已知⎪⎪⎭⎫⎝⎛--='-=4321,)2,1(A x ,则 =2x 5,=1Ax 16 ,=2A 22115+2. 已知3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。

3. 要使20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。

三、利用下面数据表,1. 用复化梯形公式计算积分dxx f I )(6.28.1⎰=的近似值;解:1.用复化梯形公式计算 取2.048.16.2,4=-==h n 1分分分分7058337.55))6.2()2.08.1(2)8.1((22.04))()(2)((231114=+++=++=∑∑=-=f k f f b f x f a f hT k n k k2. 用复化Simpson 公式计算积分dxx f I )(6.28.1⎰=的近似值。

数值计算方法计算习题

数值计算方法计算习题

1.已知ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0.8329, 试用线性插值和抛物插值计算.ln2.1的值并估计误差(牛顿插值和拉格朗日插值)2.已知函数y=sinx 的数表如下,分别用前插和后插公式计算sin0.57891的值,并估算误差。

i x0.4 0.5 0.6 0.7 )(i x f0.389420.479430.564640.644223. 已知i x-2 -1 0 1 2 )(i x f42135求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。

4. 数值积分公式形如⎰'+'++=≈1)1()0()1()0()()(f D f C Bf Af x S dx x xf 试确定参数D C B A ,,,使公式代数精度尽量高;(2)设]1,0[)(4C x f ∈,推导余项公式⎰-=1)()()(x S dx x xf x R ,并估计误差。

5. 已知数值积分公式为:)]()0([)]()0([2)(''20h f f h h f f hdx x f h-++≈⎰λ,试确定积分公式中的参数λ,使其代数精确度尽量高,并指出其代数精确度的次数。

6. 用复化Simpson 公式计算积分()⎰=10sin dx x x I 的近似值,要求误差限为5105.0-⨯。

7. 已知012113,,424x x x ===,给出以这3个点为求积节点在[]0.1上的插值型求积公式。

8. 给出 900,cos ≤≤x x 的函数表,步长)60/1(1='=h ,若函数具有5位有效数字,研究用线性插值求x cos 近似值时的总误差界。

9. 求一个次数不高于4次的多项式)(x P ,使它满足0)0()0(='=P P ,1)1()1(='=P P ,1)2(=P 。

10. 单原子波函数的形式为bxae y -=,试按照最小二乘法决定参数a 和b ,已知数据如下:X 0 1 2 4 y2.010 1.210 0.740 0.45011. 分别用梯形公式和辛普森公式计算下列积分:⎰+1024dx x x。

数值计算方法答案

数值计算方法答案

数值计算方法习题一(2)习题二(6)习题三(15)习题四(29)习题五(37)习题六(62)习题七(70)2009.9,9习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)++; (2)+(+)哪个较精确 解:(1)++ ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+=2(0.3443100.1352)fl ⨯+=210⨯(2)+(+)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =210⨯易见++=210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==%5.下面计算y 的公式哪个算得准确些为什么(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x>>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x =,(B )1cos2xy x-=;(4)(A)9y =-(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法练习题

数值计算方法练习题

习题一1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝 对误差限、相对误差限。

(1)—1;(3) [J :八(4)— —「;(5) [-■:,;(6) ; -「 '■';2. 为使下列各数的近似值的相对误差限不超过 效数字?3. 设均为第1题所给数据,估计下列各近似数的误差限。

£(1)〔〔叮;(2) ; ;;;( 3):4•计算 ,取■■■ . I ,利用下列等价表达式计算,哪一个的结果最好?为什么?(1): ; ( 2)][二’; (3) I ;二(4):5. 序列 阳 满足递推关系式儿T 叽iT ("L2…)数值计算方法练习题''丨|「,问各近似值分别应取几位有 10112.近似数x*=0.0310,是位有数数字。

13.计算r _-『取、,禾I」用式计算误差最小。

四个选项:1 (-72 +1)6若「一’“代匚(三位有效数字),计算 '「时误差有多大?这个计算过程稳定吗?6. 求方程-■-; + ' I I的两个根,使其至少具有四位有效数字(要求利用7.利用等式变换使下列表达式的计算结果比较精确。

1-cosx«1; 1 1-x|x|«1;(1)sin x(2) 1 + 2x 1+ x(3)Fl-X » 1;(4)严d/ K “aX|8.设具仏求证:(1)a«匕⑺二0」2…)(2)利用(1 )中的公式正向递推计算时误差增大;反向递推时误差函数减小。

9. 设x>O,x*的相对误差为S,求f(x)=ln x 的误差限。

10. 下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

z;=l 1021f x> 0.03U>560?4011. 下列公式如何才比较准确?(1)⑵T习题二1. 已知 -■■-.,求.IJ 的二次值多项式。

(整理)计算机数值方法试题

(整理)计算机数值方法试题

数值计算方法试题一、填空(共20分,每题2分)1、设,取5位有效数字,则所得的近似值x=_____.2、设一阶差商,则二阶差商3、数值微分中,已知等距节点的函数值则由三点的求导公式,有4、求方程的近似根,用迭代公式,取初始值,那么5、解初始值问题近似解的梯形公式是6、,则A的谱半径=,A的=7、设,则=和=8、若线性代数方程组AX=b 的系数矩阵A为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都_____9、解常微分方程初值问题的欧拉(Euler)方法的局部截断误差为_____10、设,当时,必有分解式,其中L为下三角阵,当其对角线元素足条件时,这种分解是唯一的。

二、计算题(共60 分,每题15分)1、设在上的三次Hermite插值多项式H(x)使满足(1)试求H(x)以升幂形式给出。

(2)写出余项的表达式2、已知的满足,试问如何利用构造一个收敛的简单迭代函数,使0,1…收敛?3、试确定常数A,B,C和,使得数值积分公式有尽可能高的代数精度。

试问所得的数值积分公式代数精度是多少?它是否为Gauss型的?4、推导常微分方程的初值问题的数值解公式:三、证明题1、设(1)写出解的Newton迭代格式(2)证明此迭代格式是线性收敛的2、设R=I-CA,如果,证明:(1)A、C都是非奇异的矩阵(2)参考答案:一、填空题1、2.31502、3、4、1.55、6、7、8、收敛9、O(h)10、二、计算题1、1、(1)(2)2、由,可得因故故,k=0,1,…收敛。

3、 ,该数值求积公式具有5次代数精确度,它是Gauss 型的4、 数值积分方法构造该数值解公式:对方程 在区间上积分,得,记步长为h,对积分用Simpson 求积公式得所以得数值解公式:三、证明题1、证明:(1)因,故,由Newton迭代公式:n=0,1,…得,n=0,1,…(2)因迭代函数,而,又,则故此迭代格式是线性收敛的。

2、证明:(1)因,所以I–R非奇异,因I–R=CA,所以C,A都是非奇异矩阵(2)故则有(2.1)因CA=I–R,所以C=(I–R)A-1,即A-1=(I–R)-1C又RA-1=A-1–C,故由(这里用到了教材98页引理的结论)移项得(2.2)结合(2.1)、(2.2)两式,得模拟试题一、填空题(每空2分,共20分)1、解非线性方程f(x)=0的牛顿迭代法具有_______收敛2、迭代过程(k=1,2,…)收敛的充要条件是___3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有效数字是___4、高斯--塞尔德迭代法解线性方程组的迭代格式中求______________5、通过四个互异节点的插值多项式p(x),只要满足_______,则p(x)是不超过二次的多项式6、对于n+1个节点的插值求积公式至少具有___次代数精度.7、插值型求积公式的求积系数之和___8、 ,为使A可分解为A=LL T, 其中L为对角线元素为正的下三角形,a的取值范围_9、若则矩阵A的谱半径(A)=___10、解常微分方程初值问题的梯形格式是___阶方法二、计算题(每小题15分,共60分)1、用列主元消去法解线性方程组2、已知y=f(x)的数据如下x 0 2 3f(x) 1 3 2求二次插值多项式及f(2.5)3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过。

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为,拉格朗日插值多项式为。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有(2)位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f (1),=]4,3,2,1,0[f (0);7、计算方法主要研究(截断)误差和(舍入)误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为(12+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为,拉格朗日插值多项式为。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有(2)位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f (1),=]4,3,2,1,0[f (0);7、计算方法主要研究(截断)误差和(舍入)误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为(12+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.下列各数都是经过四舍五入得到的近似数,试指出它们有几位有
效数字以及它们的绝对误差限、相对误差限。

(1);(2);(3);(4);(5);(6);(7);
(1)5,,;(2)2,,;(3)4,,;(4)5,,;(5)1,,;
(6)2,,(7)6,,
2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字?
;;
3. 设均为第1题所给数据,估计下列各近似数的误差限。

(1);(2)
;(3)
(1);(2);(3)
4. 计算,取,利用下列等价表达式计算,(3)的结果最好.(1);(2); (3)(4)
5. 序列满足递推关系式若
(三位有效数字),计算时误差有多大?这个计算
过程稳定吗?不稳定。

从计算到时,误差约为
6. 求方程的两个根,使其至少具有四位有效数字(要求利用。


7. 利用等式变换使下列表达式的计算结果比较精确。

1);2)
3);
4);
8. 设,求证:1)2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。

9.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,有
已知x*的相对误差满足
,而

故即
10.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义得
有5位有效数字,其误差限
,相对误差限
有2位有效数字,
有5位有效数字,11.下列公式如何才比较准确?
(1)(2)
解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)12.近似数x*=0.0310,是位有(3位)有效数字。

13.计算取
,利用()式计算误差最小。

四个选项:
习题二
1. 已知,求的二次值多项式。

2. 令求的一次插值多项式,并估计插值误差。

解:;,介于x和0,1决定的区间内;,当时。

3. 给出函数的数表,分别用线性插值与二次插值求
的近似值,并估计截断误差。

0.54667,0.000470;0.54714,0.000029
0.4 0.5 0.6 0.7 0.8
0.38942 0.47943 0.56464 0.64422 0.71736
4. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。

5. 已知,求及的值。

1,0
6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和
的近似值。


X 1.615 1.634 1.702 1.828 1.921
F (x) 2.41450 2.46459 2.65271 3.03035 3.34066
7. 已知函数的如下函数值表,解答下列问题(1)试列出相应的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。

X0.0 0.1 0.2 0.3 0.4 0.5
f (x) 1.00 1.32 1.68 2.08 2.52 3.00 解:向前插值公式
向后插值公式
8. 下表为概率积分的数据表,试问:1)时,积分2)为何值时,积分?。

X 0.46 0.47 0.48 0.49
P 0.484655 0.4937452 0.5027498 0.5116683
9. 利用在各点的数据(取五位有效数字),求方程在0.3和0.4之间的根的近似值。

0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。

x0 1
y0 1
y¢-3 9
11. 依据数表11
X0 1 2
Y0 -2 3
y¢0 1
12. 在上给出的等距节点函数表,用分段线性插值求的近似值,要使截断误差不超过,问函数表的步长h应怎样选取?
13. 将区间分成n等分,求在上的分段三次埃尔米特插值多项式,并估计截断误差。

14、给定的数值表
用线性插值与二次插值计算ln0.54的近似值并估计误差限
解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。

线性插值时,用0.5及0.6两点,用Newton插值
误差限,因,故
二次插值时,用0.5,0.6,0.7三点,作二次Newton插值
误差限
,故
15、在-4≤x≤4上给出的等距
节点函数表,若用二次插值法求
的近似值,要使误差不超
过,函数表的步长h应取多少?
解:用误差估计式,
令因

16、若,求

解:由均差与导数关系于是
17、若互异,求
的值,这里p≤n+1.
解:,由均差对称性
可知当
有而当P=n+1时
于是得
18、求证
解:只要按差分定义直接展开得
19、已知的函数表
求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.
解:根据给定函数表构造均差表
当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3)
由此可得f(0.23) N3(0.23)=0.23203由余项表达式可得
由于
20、给定f(x)=cosx的函数表
用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差.
解:计算,用n=4得Newton前插公式
误差估计
其中计算
时用Newton后插公式(5.18)
误差估计得
这里仍未0.565 21.求一个次数不高于四次的多项式p(x),使它满足
解:这种题目可以有很多方法去做,但应以简单为宜。

此处可先造
使它满足
,显然
,再令
p(x)=x2(2-x)+Ax2(x-1)2由p(2)=1求出A=,于是
22.令称为第二类Chebyshev
多项式,试求的表达式,并
证明是[-1,1]上带权
的正交多项式序列. 解:因
23、用最小二乘法求一个形如的经验公式,使它拟合下列数据,并计算均方误差.
解:本题给出拟合曲线,即
,故法方程系数
法方程为解得
最小二乘拟合曲线为均方程为
1) 满足条件插值多项式p(x)=().
2) ,则f[1,2,3,4]=?,f [1,2,3,4,5]=?.
3) 设为互异节点,
为对应的四次插值基函数,则
=?,
=?.
4) 设是区间[0,1]上权函数为ρ(x)=x的最高项系数为1的正交多项式序列,其中
,则
=?,=?;。

相关文档
最新文档