数学建模多元回归模型 ()

合集下载

数学建模方法模型

数学建模方法模型

数学建模方法模型一、统计学方法1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候用到。

具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。

2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。

3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和 spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和 spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。

4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)2 聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。

这种模型的的特点是直观,容易理解。

2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(8) 利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。

多元回归模型数学建模论文

多元回归模型数学建模论文

多元回归模型数学建模论文研究方案:1. 研究背景与目的:多元回归模型是数学建模中一种常用的分析工具,它可以帮助研究者探索多个自变量对因变量的影响关系。

本研究旨在通过构建合适的多元回归模型,分析自变量对因变量的影响,并提出新的观点和方法,为解决实际问题提供有价值的参考。

2. 研究对象与变量选择:选择合适的研究对象是研究模型的基础,本研究选择某企业的销售额作为因变量,自变量包括广告投入、产品价格、产品质量等。

变量的选择应基于实际情况和理论基础,以获得可靠的研究结果。

3. 方案实施情况:在实施研究方案前,需要进行数据采集和整理,以及模型的建立和分析。

具体步骤如下:步骤一:数据采集通过企业相关部门提供销售数据、广告投入数据、产品价格数据、产品质量数据等,并对其进行有效性和可靠性检验。

步骤二:数据整理与探索性分析对采集到的数据进行清洗、整理和变量转换,包括缺失值处理、异常值处理、变量标准化等。

然后进行探索性分析,包括描述性统计、变量相关性分析等,以了解数据的基本情况和变量之间的关系。

步骤三:模型建立与系数估计根据变量之间的关系和实际问题,选择适当的多元回归模型,并进行模型的建立和系数估计。

可以采用最小二乘法或其他合适的方法进行参数估计。

步骤四:模型评估与优化通过模型评估指标,如残差分析、F检验、标准化系数等,对建立的多元回归模型进行评估和优化,以获得更准确和稳定的模型。

步骤五:创新和发展在已有研究成果的基础上,提出新的观点和方法,如引入其他自变量、改进模型结构等,以提高模型的预测精度和解释能力。

数据采集与分析:根据研究方案,我们采集了某企业2019年到2021年的销售额、广告投入、产品价格和产品质量等数据,共计N个样本。

通过数据整理与探索性分析,我们了解到各个变量的分布情况和相关性。

在进行多元回归分析之前,我们首先对变量进行了标准化处理,以消除量纲差异对模型估计的影响。

然后,我们采用最小二乘法估计多元回归模型的系数。

回归分析在数学建模中的应用

回归分析在数学建模中的应用

Keywords: Multiple linear regression analysis; parameter estimation;inspection
II
咸阳师范学院 2013 届本科毕业论文
目 录
摘 要.............................................................................................................................. I Abstract...................................................................................................................... II 目 录.......................................................................................................................... III 引言................................................................................................................................ 1 1 回归分析的背景来源及其概念................................................................................ 1 1.1 回归分析的背景............................................................................................. 1 1.2 回归分析的基本概念..................................................................................... 1 2 线性回归分析模型.................................................................................................... 2 2.1 一元线性回归的模型..................................................................................... 2 2.1.1 回归参数 0 , 1 和 2 的估计.............................................................. 3 2.1.2 一元线性回归方程的显著性检验.................................................... 3

多元回归模型残差平方和

多元回归模型残差平方和

多元回归模型残差平方和
多元回归模型是一种常见的统计分析方法,用于研究多个自变量对于因变量的影响关系。

在建立多元回归模型时,我们希望通过最小化残差平方和来找到最佳的拟合曲线,以描述自变量和因变量之间的关系。

在多元回归模型中,我们通常假设自变量与因变量之间存在线性关系。

通过最小二乘法,我们可以找到使残差平方和最小的拟合曲线,从而得到最佳的参数估计值。

残差平方和是指实际观测值与模型预测值之间的差异的平方的总和。

通过最小化残差平方和,我们可以找到最佳的参数估计值,从而得到对因变量的最佳预测。

在多元回归模型中,我们需要考虑多个自变量对于因变量的影响。

通过计算每个自变量的系数估计值,我们可以了解每个自变量对于因变量的贡献程度。

通过检验系数的显著性,我们可以确定哪些自变量对于因变量的影响是显著的。

除了自变量的系数估计值,我们还可以通过残差分析来评估模型的拟合程度。

残差是指实际观测值与模型预测值之间的差异。

通过检验残差的正态性、独立性和同方差性,我们可以评估模型是否符合基本假设。

在进行多元回归分析时,我们需要注意避免多重共线性的问题。


重共线性是指自变量之间存在高度相关性,导致参数估计值不稳定或不可靠。

通过计算自变量之间的相关系数,我们可以评估是否存在多重共线性,并采取相应的措施进行处理。

多元回归模型的残差平方和是一个重要的评估指标,它反映了模型的拟合程度。

通过最小化残差平方和,我们可以得到最佳的参数估计值,并进行模型的检验和评估。

多元回归模型的应用广泛,可以用于解决各种实际问题,如经济学、金融学、社会科学等领域的研究。

多元线性回归模型的估计与解释

多元线性回归模型的估计与解释

多元线性回归模型的估计与解释多元线性回归是一种广泛应用于统计学和机器学习领域的预测模型。

与简单线性回归模型相比,多元线性回归模型允许我们将多个自变量引入到模型中,以更准确地解释因变量的变化。

一、多元线性回归模型的基本原理多元线性回归模型的基本原理是建立一个包含多个自变量的线性方程,通过对样本数据进行参数估计,求解出各个自变量的系数,从而得到一个可以预测因变量的模型。

其数学表达形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、...、Xn为自变量,β0、β1、β2、...、βn为模型的系数,ε为误差项。

二、多元线性回归模型的估计方法1. 最小二乘法估计最小二乘法是最常用的多元线性回归模型估计方法。

它通过使残差平方和最小化来确定模型的系数。

残差即观测值与预测值之间的差异,最小二乘法通过找到使残差平方和最小的系数组合来拟合数据。

2. 矩阵求解方法多元线性回归模型也可以通过矩阵求解方法进行参数估计。

将自变量和因变量分别构成矩阵,利用矩阵运算,可以直接求解出模型的系数。

三、多元线性回归模型的解释多元线性回归模型可以通过系数估计来解释自变量与因变量之间的关系。

系数的符号表示了自变量对因变量的影响方向,而系数的大小则表示了自变量对因变量的影响程度。

此外,多元线性回归模型还可以通过假设检验来验证模型的显著性。

假设检验包括对模型整体的显著性检验和对各个自变量的显著性检验。

对于整体的显著性检验,一般采用F检验或R方检验。

F检验通过比较回归平方和和残差平方和的比值来判断模型是否显著。

对于各个自变量的显著性检验,一般采用t检验,通过检验系数的置信区间与预先设定的显著性水平进行比较,来判断自变量的系数是否显著不为零。

通过解释模型的系数和做假设检验,我们可以对多元线性回归模型进行全面的解释和评估。

四、多元线性回归模型的应用多元线性回归模型在实际应用中具有广泛的应用价值。

数学建模例题题

数学建模例题题

数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。

要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、线性规划模型—销售计划问题某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。

要求:若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型,并用软件求解。

【注】线性规划在MATLAB的库函数为:linprog。

语法为:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval,exitflag,output,lambda] = linprog(...)例如:线性规划目标函数的系数:f = [-5; -4; -6]约束方程的系数及右端项:A = [1 -1 13 2 43 2 0];b = [20; 42; 30];lb = zeros(3,1);调用线性规划程序linprog求解,得:[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);x= 0.000015.00003.0000三、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

数学建模四大模型总结(K12教育文档)

数学建模四大模型总结(K12教育文档)

数学建模四大模型总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数学建模四大模型总结(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数学建模四大模型总结(word版可编辑修改)的全部内容。

四类基本模型1优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS传播模型.1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。

1.5 组合优化经典问题●多维背包问题(MKP)背包问题:n个物品,对物品i,体积为w,背包容量为W。

如何将尽可能多的物i品装入背包。

多维背包问题:n个物品,对物品i,价值为p,体积为i w,背包容量为W。

如何i选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP难问题。

●二维指派问题(QAP)工作指派问题:n个工作可以由n个工人分别完成。

工人i完成工作j的时间为d.ij如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n台机器要布置在n个地方,机器i与k 之间的物流量为f,位置j与l之间的距离为jl d,如何布置使费用最小.ik二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

●旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d,找一条经过n个城市的巡ij回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

数学建模跳高问题97996

数学建模跳高问题97996

电子科技大学第十三届大学生数学建模竞赛承诺书我们仔细阅读了学校第十三届大学生数学建模竞赛的竞赛规如此。

我们完全明白,在竞赛开始后参赛队员不能以任何方式〔包括、电子、网上咨询等〕与队外的任何人〔包括指导教师〕研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规如此的, 如果引用别人的成果或其他公开的资料〔包括网上查到的资料〕,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们重承诺,严格遵守竞赛规如此,以保证竞赛的公正、公平性。

如有违反竞赛规如此的行为,我们将受到严肃处理。

我们参赛选择的题号是〔从A/B中选择一项填写〕: A我们的参赛报名号为:参赛队员(打印并签名) :1. 〔打印〕学号签名2. 〔打印〕学号签名3. 〔打印〕学号签名日期:年月日校评阅编号〔由校数模组评阅前进展编号〕:电子科技大学第十一届大学生数学建模竞赛编号专用页校评阅编号〔由校数模组评阅前进展编号〕:跳高运动中数学问题摘要随着现代科技的开展,将数学建模的思想融入到体育训练中,将更多数据量化,来分析体育运动员的优劣势,从而来帮助他们进展更合理的、更有针对性的体育训练,这是信息时代开展的必然趋势。

本文通过拟合、logistic模型〔阻滞增长模型〕、多元线性回归模型、非线性多元回归模型等方法对跳高运动进展了分析和预测。

针对问题一和二,我们采用了利用阻滞增长模型进展预测,主要原因是随着社会的高速开展,影响跳高运动员的身体素质指标在理论上也是有极限的,不可能无限制的增加。

所以我们根据logistic模型,对数据进展了拟合,得到相应的函数,根据函数预测出下一届奥运会的成绩,由于人体机能等因素的限制,其中男子的极限成绩将会达到2.4024米,女子达到2.1173米。

在问题三中,根据附表容,我们建立了各身体素质指标与跳高成绩的散点图,发现是符合线性关系的,因此,我们采用多元线性回归模型对国际男子的身体素质进展了分析,此外,我们还用到了随机数法检验多元线性回归模型的得到的成绩,利用rand函数产生一组随机数,对模型进展了检测,发现与真实数据非常吻合。

多元线性回归数学建模经典案例

多元线性回归数学建模经典案例

多元线性回归黄冈职业技术学院数学建模协会胡敏作业:在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。

x1 x2 x3 x4 x5 y9.200 2.732 1.471 0.332 1.138 1.1559.100 3.732 1.820 0.112 0.828 1.1468.600 4.882 1.872 0.383 2.131 1.84110.233 3.968 1.587 0.181 1.349 1.3565.600 3.732 1.841 0.297 1.815 0.8635.367 4.236 1.873 0.063 1.352 0.9036.133 3.146 1.987 0.280 1.647 0.1148.200 4.646 1.615 0.379 4.565 0.8988.800 4.378 1.543 0.744 2.073 1.9307.600 3.864 1.599 0.342 2.423 1.104编写程序如下:data ex;input x1-x5 y@@;cards;9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.8635.367 4.236 1.873 0.063 1.352 0.9036.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.9307.600 3.864 1.599 0.342 2.423 1.104 ;proc reg;model y=x1 x2 x3 x4 x5/cli;run;运行结果如下:(1)回归方程显著性检验.Analysis of VarianceSum of MeanSource DF Squares S quare F Value Pr > FModel 5 2.252070.45041 11.63 0.0170Error 4 0.154970.03874Corrected Total 9 2.40704Root MSE 0.19683 R-Square 0.9356Dependent Mean 1.13100 Adj R-Sq 0.8551Coeff Var 17.40333由Analysis of Variance表可知,其F Value=11.63,Pr > F的值0.0170小于0.05,故拒绝原假设,接受备择假设,认为y与x1 x2 x3 x4 x5之间具有显著性相关系;由R-Square的值为0.9356可知该方程的拟合度高,样本观察值有93.6%的信息可以用回归方程进行解释,故拟合效果较好,认为y与x1 x2 x3 x4 x5之间具有显著性的相关关系。

数学建模试题

数学建模试题

一、填空题(2’*8=16’) 1.对于人口模型0()t x t x e λ=,当t →∞时,人口变化趋势是()。

2.数学建模方法相结合,可以用()建立模型结构,用()确定模型参数。

3.传染病模型中,设λ为日接触率,μ为日治愈率,则/λμ表示()。

4.若线性回归模型的2R 统计量的值为0.98,F 统计量为206,则该模型()(线性显著、线性不显著)。

5.对于经济批量订购公式T Q rT ===若订购费1c 增加,则订购周期和订购量的变化趋势是()。

6.变量123,,x x x 与y 之间的多元线性回归模型为()。

7.对于模型1max ,nj j j Z c x ==∑1,1,2,...,,0,1,2,...,nij j i j ja xb i mx j n=⎧≤=⎪⎨⎪≥=⎩∑变量1x 的价值系数为( )。

8.二维线性规划问题的可行域若存在,则一定为( )。

二、判断题(2*6’=12’)9.线性规划问题12max 2,Z x x =+212121,251562245,0x x x x x x x ⎧≤⎪+≤⎨⎪+≤≥⎩的最优解为*7/2,3/2x ⎛⎫= ⎪⎝⎭若三个约束分别代表A 、B 、C 三种资源,则哪种资源的影子价格为0?那种资源在生产中已耗费完毕?那种资源未得到充分利用? 10.“生猪出售时机”模型中,(1)第t 天生猪体重函数为w(t)=w(0)+rt 时,表示体重变化趋势是什么?(2)体重函数为0()(0)/[(0)()]at m m w t w w w w w e -=+-时,表示体重变化趋势是什么?(3)哪个函数更符合实际? 三、模型分析题(2*6’=12’) 11.物体在时刻t 的温度为().xx t =在常温A 下,假设物体温度对时间的变化率与物体温度和周围温度之差成正比。

比例系数为k>0.(1)建立数学模型。

(2)在初始条件00()x t x =下,求平衡点。

多元线性回归模型之数学建模实验报告

多元线性回归模型之数学建模实验报告
b,bint,s
%y= 45.3636+0.3604*x1+3.0906*x2+11.8246*x3
rcoplot(r,rint)
x1=x(a,:)
y1=y(a)
[b1,bint1,r1,rint1,s1]=regress(y1',x1)
b1,bint1,s1
%y= 58.5101+0.4303*x1+2.3449*x2+10.3065*x3
30.0184 59.4982
-19.6030 32.7499
-28.9960 22.3987
-24.1742 26.8599
-23.8105 28.7839
-27.9825 22.9747
-22.6411 27.8754
-32.8481 18.0569
9.3635 48.2532
-30.5838 21.0099
-20.9189 30.3583
-35.7261 13.7317
x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 01 0 0 1 1 0 1 0 1];
plot(x1,y,’>’)
plot(x2,y,’*’)
x=[ones(30,1), x1',x2',x3']
[b,bint,r,rint,s]=regress(y',x)
1.0000 53.0000 28.6000 1.0000
1.0000 63.0000 28.3000 0
1.0000 29.0000 22.0000 1.0000
1.0000 25.0000 25.3000 0
1.0000 69.0000 27.4000 1.0000

数学建模练习题

数学建模练习题

一.摘要在分析和研究了这种水泥凝固时放出的热量与这种水泥的四种化学成分有关,通过对所给的数据研究之后,提出了简单的多元线性回归模型,且在通过多种方法建立了回归模型,综合这几种方法建立的多元线性回归模型解决了我们面临的实际问题。

模型求解和模型检验的结果表明,我们建立的模型是非常符合所求解的问题的,而且简单易懂,可操作性较高。

以下这个方程为上述模型的结果:多元线性回归模型:y=62.4054+ 1.5511x1+ 0.5102x2+ 0.1019x3-0.1441x4关键词:多元线性回归模型模型求解模型检验二.问题重述题目1:某种水泥在凝固时放出的热量y(卡/克)与水泥种的下列四种化学成分有关:X1: 3CAO.AL2O3的成分(%)X2: 3CAO.SiO2的成分(%)X1: 4CAO.AL2O3.Fe2O3的成分(%)X1: 2CAO.SiO2的成分(%)请用四种方法为发热量建立回归方程。

三.模型假设1. 水泥在凝固时放出热量为固定值,收集的数据准确无误2. 假设x1,x2,x3,x4为自变量,y 为因变量3. 假设y 与诸x 之间的线性关系可实际表示为011223344y b b x b x b x b x e =+++++4.0b 是实际回归常数,j b 是实际回归系数(j=1.2.3.4……)e是回归余四.问题分析与模型准备1. 问题分析回归分析法是一种处理变量间相关关系的数理统计方法,不仅可以提供变量间相关关系的数学表达式,而且可以利用概率统计知识对此关系进行分析,以判别其有效性;还可以利用关系式,由一个或多个变量值,预测和控制另一个因变量的取值,进一步可以知道这种预测和控制达到了何种程度,并进行因素分析。

回归分析法就是以统计回归概念为基础,采用多种类型的回归法建立预测方程,包括一元线性、多元线性、非线性等。

多元线性回归时要确定因变量与多个自变量之间的定量关系,它的数学模型为:011223344i i i i i y b b x b x b x b x e =+++++其中,0b ,1b ,m b 为待定参数;i e 为随机变量,是除x 以外其他随机因素对y 影响的总和。

多元线性回归模型

多元线性回归模型

多元线性回归模型引言:多元线性回归模型是一种常用的统计分析方法,用于确定多个自变量与一个连续型因变量之间的线性关系。

它是简单线性回归模型的扩展,可以更准确地预测因变量的值,并分析各个自变量对因变量的影响程度。

本文旨在介绍多元线性回归模型的原理、假设条件和应用。

一、多元线性回归模型的原理多元线性回归模型基于以下假设:1)自变量与因变量之间的关系是线性的;2)自变量之间相互独立;3)残差项服从正态分布。

多元线性回归模型的数学表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1,X2,...,Xn代表自变量,β0,β1,β2,...,βn为待估计的回归系数,ε为随机误差项。

二、多元线性回归模型的估计方法为了确定回归系数的最佳估计值,常采用最小二乘法进行估计。

最小二乘法的原理是使残差平方和最小化,从而得到回归系数的估计值。

具体求解过程包括对模型进行估计、解释回归系数、进行显著性检验和评价模型拟合度等步骤。

三、多元线性回归模型的假设条件为了保证多元线性回归模型的准确性和可靠性,需要满足一定的假设条件。

主要包括线性关系、多元正态分布、自变量之间的独立性、无多重共线性、残差项的独立性和同方差性等。

在实际应用中,我们需要对这些假设条件进行检验,并根据检验结果进行相应的修正。

四、多元线性回归模型的应用多元线性回归模型广泛应用于各个领域的研究和实践中。

在经济学中,可以用于预测国内生产总值和通货膨胀率等经济指标;在市场营销中,可以用于预测销售额和用户满意度等关键指标;在医学研究中,可以用于评估疾病风险因素和预测治疗效果等。

多元线性回归模型的应用可以为决策提供科学依据,并帮助解释变量对因变量的影响程度。

五、多元线性回归模型的优缺点多元线性回归模型具有以下优点:1)能够解释各个自变量对因变量的相对影响;2)提供了一种可靠的预测方法;3)可用于控制变量的效果。

然而,多元线性回归模型也存在一些缺点:1)对于非线性关系无法准确预测;2)对异常值和离群点敏感;3)要求满足一定的假设条件。

数学建模-回归分析例题

数学建模-回归分析例题
数学建模-回归分析例题
目录
引言 线性回归模型 非线性回归模型 多元回归模型 回归分析在实践中的应用
01
CHAPTER
引言
01
02
主题背景
在许多领域,如经济学、生物学、医学和社会学等,都需要用到回归分析来探索变量之间的因果关系或预测未来的发展趋势。
回归分析是数学建模中常用的统计方法,用于研究变量之间的关系。
残差分析
R方值
AIC和BIC值
预测能力
多元回归模型的评估
01
02
03
04
分析残差与拟合值之间的关系,检验模型的假设条件。
计算模型的决定系数,评估模型对数据的拟合程度。
使用信息准则评估模型的复杂度和拟合优度。
使用模型进行预测,评估预测结果的准确性和可靠性。
05
CHAPTER
回归分析在实践中的应用
线性回归模型
它基于最小二乘法原理,通过最小化预测值与实际值之间的平方误差来拟合数据。
线性回归模型适用于因变量与自变量之间存在线性关系的情况,且自变量对因变量的影响是线性的。
线性回归模型是一种预测模型,通过找到最佳拟合直线来描述因变量和自变量之间的关系。
线性回归模型介绍
首先需要明确研究的问题和目标,并确定因变量和自变量。
结果解释
数据分析
THANKS
感谢您的观看。
非线性回归模型
非线性回归模型适用于因变量和自变量之间存在幂函数、对数函数、多项式函数等非线性关系的场景。
适用场景
非线性回归模非线性函数。
数学表达式
非线性回归模型介绍
非线性回归模型的建立
数据准备
收集包含自变量 (x) 和因变量 (y) 的数据集,确保数据具有足够的数量和代表性。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

数学建模——回归分析模型 ppt课件

数学建模——回归分析模型  ppt课件

有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,

干货分享!20种数学建模方法!

干货分享!20种数学建模方法!

一、数学模型分类首先,既然是数模,你所知道的数学模型具体有哪些呢?按建立模型的数学方法,数学模型主要分为以下几种:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型 等。

其次,想要完成一篇优秀的数模论文,我们需要对建模方法有基本的了解,在审题时就可以快速找出最适合的方法。

二、建模方法分类目前,在数学建模中常用的方法有:通用型:类比法、二分法、量纲分析法、图论法;进阶型:差分法、变分法、数据拟合法、回归分析法、数学规划法(线性规划,非线性规划,整数规划,动态规划,目标规划)、 机理分析、排队方法、决策方法;高能型:层次分析法、主成分分析法、因子分析法、聚类分析法、TOPSIS法、模糊评判方法、时间序列方法;灰色理论方法、蒙特卡罗法、现代优化算法(模拟退火算法、遗传算法、神经网络法)等。

三、通用型1、类比法类比法建模一般在 具体分析该实际问题的各个因素 的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系。

在不同的对象或完全不相关的对象中找出同样的或相似的关系,用 已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。

2、二分法二分法 常用于数据的排序与查找,当数据量很大时宜采用该方法 。

3、量纲分析法量纲分析法常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化。

无量纲化是根据量纲分析思想,恰当地选择特征尺度,将有量纲量化为无量纲量,从而达到 减少参数、 简化模型 的效果。

4、图论法图论方法是数学建模中一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程,也是数学建模的一个必备工具。

图论是研究由线连成的点集的理论,一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。

初中数学建模实验报告(3篇)

初中数学建模实验报告(3篇)

第1篇一、实验背景随着科学技术的飞速发展,数学建模作为一种重要的科学研究方法,越来越受到人们的重视。

初中数学建模实验旨在培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。

本实验以某市居民出行方式选择为研究对象,通过建立数学模型,分析不同因素对居民出行方式的影响。

二、实验目的1. 理解数学建模的基本概念和步骤。

2. 学会运用数学知识分析实际问题。

3. 培养学生的创新思维和团队协作能力。

4. 提高学生运用数学知识解决实际问题的能力。

三、实验方法1. 收集数据:通过网络、调查问卷等方式收集某市居民出行方式选择的相关数据。

2. 数据处理:对收集到的数据进行整理、清洗和分析,为建立数学模型提供依据。

3. 建立模型:根据数据分析结果,选择合适的数学模型,如线性回归模型、多元回归模型等。

4. 模型求解:运用数学软件或编程工具求解模型,得到预测结果。

5. 模型验证:将预测结果与实际数据进行对比,验证模型的准确性。

四、实验过程1. 数据收集:通过问卷调查的方式,收集了500份某市居民的出行方式选择数据,包括出行距离、出行时间、出行目的、出行方式等。

2. 数据处理:对收集到的数据进行整理和清洗,剔除无效数据,得到有效数据490份。

3. 建立模型:根据数据分析结果,选择多元回归模型作为本次实验的数学模型。

4. 模型求解:利用SPSS软件对多元回归模型进行求解,得到以下结果:- 模型方程:Y = 0.05X1 + 0.03X2 + 0.02X3 + 0.01X4 + 0.005X5 + 0.002X6 + 0.001X7 + 0.0005X8- 其中,Y为居民出行方式选择概率,X1至X8分别为出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等自变量。

5. 模型验证:将模型预测结果与实际数据进行对比,结果显示模型具有较高的预测准确性。

五、实验结果与分析1. 模型预测结果:根据模型预测,出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等因素对居民出行方式选择有显著影响。

第五题-多元线性回归模型

第五题-多元线性回归模型

多元线性回归模型实验题目:设某公司生产的商品在市场一的销售价格为x1(元/件)、用于商品的广告费用为X2 (万元)、销售量为y (万件)的连续12个月的统计数据如下表所示。

月份销售价格X1 广告费用X2 销售量y1 100 5.50 552 90 6.30 703 80 7.20 904 70 7.00 1005 70 6.30 906 70 7.35 1057 70 5.60 808 65 7.15 1109 60 7.50 12510 60 6.90 11511 55 7.15 13012 50 6.50 130实验要求:1、建立销售量y关于销售价格X1和广告费用X2的多元线性回归模型。

2、设第13个月将该商品的销售价格定为80元/件,广告费用为7万元,预计该商品的销售量将是多少?并对其作统计上的误差分析。

3、利用MATLAB画出回归曲线的图形。

一、数学建模30 l ----------------- E --------------- c --------------- c --------------- c ---------------- c --------------- c --------------- L0 10 20 30 40 50 60 70图1:数据散点图y 与xl 、x2有较明显的线性关系,可做作几种尝试,用统计分析决定优劣 2、根据三点图形,设回归模型y - - o •:必! • : 2X 2Matlab 程序:x1=[100 90 80 70 70 70 70 65 60 60 55 50];x2=[5.50 6.30 7.20 7.00 6.30 7.35 5.60 7.15 7.50 6.90 7.15 6.50]; y=[55 70 90 100 90 105 80 110 125 115 130 130]'; x=[o nes(12,1) x1' x2'];[b,b in t,r,ri nt,stats]=regress(y,x) b =116.1568-1.307911.2459bin t =60.4045 171.9090-1.6005 -1.01524.9472 17.5446stats = 0.9606 109.5892 0.000027.6100利用程序rcoplot(r,rint),画出残差图:ibb111亠 匕 * * *< *4七120 "+■110 4 +十 Mr10090 ;牟 * -七七80 70十七60■ ■50 40 s480 90 100从图中分析可知第一个点和第七个点为异常点 因此,对异常点进行处理,程序如下: x 仁[100 90 80 70 70 70 70 65 60 60 55 50];x2=[5.50 6.30 7.20 7.00 6.30 7.35 5.60 7.15 7.50 6.90 7.15 6.50]; y=[55 70 90 100 90 105 80 110 125 115 130 130]';x1(1)=[];x2(1)=[];y(1)=[];x1 ⑺=[];x2 7)=[];y 7)=[];x=[o nes(10,1) x1'x2']; [b,b in t,r,ri nt,stats]=regress(y,x)图2 :残差分析图(1)b =109.8882 -1.4831 13.8233bint =65.4833 154.2930 -1.7529-1.21338.4229 19.2237stats =0.9730 125.93680.000015.6544利用程序rcoplot(r,rint),画出残差图:图3 :残差分析图(2)从图中分析可知第一个点仍为异常点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实习报告书
学生姓名:
学号:
学院名称:
专业名称:
实习时间: 2014年 06 月 05 日
第六次实验报告要求
实验目的:
掌握多元线性回归模型的原理,多元线性回归模型的建立、估计、检验及解释变量的增减的方法,以及运用相应的Matlab软件的函数计算。

实验内容:
已知某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据,见表1。

请选择恰当的解释变量和恰当的模型,建立粮食年销售量的回归模型,并对其进行估计和检验。

表1 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据
年份粮食年销售量Y/
万吨
常住人口X2/
万人
人均收入
X3/元
肉销售量
X4/万吨
蛋销售量
X5/万吨
鱼虾销售量
X6/万吨
1974 98.45 560.20 153.20 6.53 1.23 1.89 1975 100.70 603.11 190.00 9.12 1.30 2.03 1976 102.80 668.05 240.30 8.10 1.80 2.71 1977 133.95 715.47 301.12 10.10 2.09 3.00 1978 140.13 724.27 361.00 10.93 2.39 3.29 1979 143.11 736.13 420.00 11.85 3.90 5.24 1980 146.15 748.91 491.76 12.28 5.13 6.83 1981 144.60 760.32 501.00 13.50 5.41 8.36 1982 148.94 774.92 529.20 15.29 6.09 10.07 1983 158.55 785.30 552.72 18.10 7.97 12.57 1984 169.68 795.50 771.16 19.61 10.18 15.12 1985 162.14 804.80 811.80 17.22 11.79 18.25 1986 170.09 814.94 988.43 18.60 11.54 20.59 1987 178.69 828.73 1094.65 23.53 11.68 23.37
实验要求:
撰写实验报告,参考第10章中牙膏销售量,软件开发人员的薪金两个案例,写出建模过程,包括以下步骤
1.分析影响因变量Y 的主要影响因素及经济意义;
影响因变量Y 的主要影响因素有常住人口数量,城市中人口越多,需要的粮食数量就越多,粮食的年销售量就会相应增加。

粮食销量还和人均收入有关,人均收入增加了,居民所能购买的粮食数量也会相应增加。

另外,肉类销量、蛋销售量、鱼虾销售量也会对粮食的销售量有影响,这些销量增加了,也表示居民的饮食结构也在发生变化,生活水平在提高,所以相应的,生活水平提升了,居民也有能力购买更多的粮食。

2. 建立散点图考察Y 与每一个自变量之间的相关关系
从上述散点图,我们可以看出,当x2增大时,y 有向上增加的趋势,图中的曲线是用二次函数模型 。

随着x3,x4,x5,x6的增加,y 的值都有
比较明显的线性增长趋势,直线是用线性模型
3.建立多元线性回归模型,并计算回归系数和统计量; 综合上述分析,可以建立如下回归模型:
表1 初始模型的计算结果
εββ++=210x y εββ++=5
1
x y
我们用逐步回归法,在Matlab 中用stepwise ,运行出下面图
根据上图可以看出,变量x3,x5,x6对Y 值影响不大,可以舍弃,所以该模型建的不合理,应该只和x2,x4有关,改进后的模型为:42210y x x βββ++=,利用Matlab 求解,得到的结果如下:
表2 新模型的计算结果
检验:表2与表1的结果相比,2R 有所提高,说明新模型比初始模型有所改进。

F 的值从52.6601提高到113.9220 ,超过了临界的检验值,P=0.0000<α。

并且改进后,所有的置信区间都不包含零点,所以新模型更好,更符合实际。

所以最后的模型为:
4.对多元回归模型进行统计检验;
统计检验:用新模型对粮食的销售量作预测。

假设在某年,该市的人口数量是736.13万人,肉




11.85

吨。








y=-39.7948+0.2115*736.13+1.9092*11.85=138.5171万吨。

与实际销量143.11万吨误差不大,模型效果比较好。

5.分析回归模型对应的经济含义。

经济分析:由x2,x4变量的回归系数都大于零,同经济理论分析得到的结论是一致的。

说明回归方程的经济含义是:当肉销售量不变时,城市的人口每增加1万人,粮食的销量就增加0.2115万吨。

当城市人口数量不变时,肉类销量每增加1万吨,粮食的销量就增加1.9092万吨。

程序附录
// 画散点图
% function untitled1(x2 ,y)
% y=[98.45 100.70 102.80 133.95 140.13 143.11 146.15 144.60 148.94 158.55 169.68 162.14 170.09 178.69]'
% x2=[560.20 603.11 668.05 715.47 724.27 736.13 748.91 760.32 774.92 785.30 795.50 804.80 814.94 828.73]'
% x3=[153.20 190.00 240.30 301.12 361.00 420.00 491.76 501.00 529.20 552.72 771.16 811.80 988.43 1094.65]'
% x4=[6.53 9.12 8.10 10.10 10.93 11.85 12.28 13.50 15.29 18.10 19.61 17.22 18.60 23.53]'
% x5=[1.23 1.30 1.80 2.09 2.39 3.90 5.13 5.41 6.09 7.97 10.18 11.79 11.54 11.68]' % x6=[1.89 2.03 2.71 3.00 3.29 5.24 6.83 8.36 10.07 12.57 15.12 18.25 20.59 23.37]' % n=1
% a=polyfit(x2,y,n)
% y2=polyval(a,x2)
% plot(x2,y2)
% hold on
% plot (x2,y ,'.k')
% title ('x2和y的散点图')
% xlabel('x2')
% ylabel('y')
// 计算参数估计值,参数置信区间,进行逐步回归
% clc;
% clear;
%
% y=[98.45 100.70 102.80 133.95 140.13 143.11 146.15 144.60 148.94 158.55 169.68 162.14 170.09 178.69]';
% x2=[560.20 603.11 668.05 715.47 724.27 736.13 748.91 760.32 774.92 785.30 795.50 804.80 814.94 828.73]';
% x3=[153.20 190.00 240.30 301.12 361.00 420.00 491.76 501.00 529.20 552.72 771.16 811.80 988.43 1094.65]';
% x4=[6.53 9.12 8.10 10.10 10.93 11.85 12.28 13.50 15.29 18.10 19.61 17.22 18.60 23.53]';
% x5=[1.23 1.30 1.80 2.09 2.39 3.90 5.13 5.41 6.09 7.97 10.18 11.79 11.54 11.68]'; % x6=[1.89 2.03 2.71 3.00 3.29 5.24 6.83 8.36 10.07 12.57 15.12 18.25 20.59 23.37]'; % z=ones(14,1);
% x=[z x2 x4 ]
% [b,bint,r,rint,stats]=regress(y,x) % stepwise(x,y)。

相关文档
最新文档