《工程材料基础》知识点汇总

合集下载

工程材料知识点

工程材料知识点

工程材料知识点1. 工程材料分类1.1 金属材料1.1.1 铁碳合金1.1.2 非铁金属1.1.2.1 铜合金1.1.2.2 铝合金1.2 非金属材料1.2.1 塑料1.2.2 陶瓷1.2.3 复合材料1.3 特种材料1.3.1 纳米材料1.3.2 生物材料2. 材料性能2.1 力学性能2.1.1 强度2.1.2 硬度2.1.3 韧性2.1.4 疲劳性能2.2 物理性能2.2.1 密度2.2.2 热膨胀系数2.2.3 导热性能2.3 化学性能2.3.1 耐腐蚀性2.3.2 化学稳定性3. 材料选择原则3.1 满足工程设计要求 3.1.1 功能需求 3.1.2 经济性3.1.3 可加工性 3.2 考虑环境因素3.2.1 温度3.2.2 湿度3.2.3 化学介质 3.3 考虑可持续性3.3.1 材料回收 3.3.2 环保性4. 材料加工工艺4.1 铸造4.2 锻造4.3 焊接4.4 热处理4.5 机械加工4.5.1 切削加工 4.5.2 非传统加工5. 材料测试与评估5.1 力学性能测试5.1.1 拉伸试验 5.1.2 冲击试验 5.2 物理性能测试5.2.1 热导率测试 5.2.2 密度测定 5.3 化学性能测试5.3.1 耐腐蚀测试5.3.2 化学成分分析6. 材料应用案例6.1 建筑行业6.1.1 结构材料6.1.2 装饰材料6.2 汽车工业6.2.1 车身材料6.2.2 发动机材料6.3 航空航天6.3.1 轻质高强度材料6.3.2 耐高温材料7. 材料发展趋势7.1 智能材料7.2 绿色材料7.3 3D打印材料8. 结语工程材料是现代工业和建筑的基础,了解不同材料的特性、性能和应用对于工程设计和产品开发至关重要。

随着科技的进步,新材料的研发和应用将不断推动各行各业的发展,提高产品性能,降低成本,同时更加注重环保和可持续性。

因此,工程师和设计师需要不断更新材料知识,掌握最新的材料技术和应用趋势。

工程材料学知识点总结

工程材料学知识点总结

工程材料学知识点总结一、材料的基本性质1. 密度:材料的密度是指单位体积内的质量。

密度越大,材料的质量就越大,密度越小,材料的质量就越小。

2. 弹性模量:材料的弹性模量是指材料在受力时产生弹性变形的能力。

弹性模量越大,材料的刚度就越大,抗压抗弯能力就越强。

3. 强度:材料的强度是指材料在受力时承受拉伸、压缩、剪切等力的能力。

强度越大,材料的抗拉强度、抗压强度、抗剪强度就越大。

4. 韧性:材料的韧性是指材料在受外力作用下能够吸收能量的能力。

韧性越大,材料的抗冲击性就越好。

5. 硬度:材料的硬度是指材料的抗划伤、抗刮伤能力。

硬度越大,材料就越难被划伤或刮伤。

6. 热膨胀系数:材料的热膨胀系数是指材料在温度变化时产生体积膨胀或收缩的程度。

热膨胀系数越大,材料在温度变化时的变形就越大。

二、金属材料1. 铁素体和奥氏体:铁素体是铁碳合金中的烤饼组织,具有较低的强度和硬度;奥氏体是铁碳合金中的馒头组织,具有较高的强度和硬度。

2. 钢的分类:钢可以按照成分分为碳钢、合金钢和特种钢;按照用途分为结构钢、工具钢和耐磨钢。

3. 铸铁的分类:铸铁可以按照形态分为白口铸铁和灰口铸铁;按照成分分为白口铸铁、灰口铸铁和球墨铸铁。

4. 不锈钢的特性:不锈钢具有耐腐蚀、耐高温、抗氧化等特性,适用于化工、食品加工、医疗器械等领域。

5. 铝合金的应用:铝合金具有轻质、耐腐蚀、导热性好的特性,广泛应用于航空航天、汽车、建筑等领域。

三、非金属材料1. 水泥混凝土:水泥混凝土应用广泛,常见于建筑、桥梁、水利工程等领域。

它具有强度高、耐久性好、施工方便等特点。

2. 砖瓦:砖瓦是建筑材料的重要组成部分,主要用于墙体、地面、屋面的施工。

它们具有隔热、隔音、防潮等特性。

3. 玻璃:玻璃具有透明、坚硬、抗腐蚀等特点,广泛应用于建筑、家具、日用品等领域。

4. 塑料:塑料具有轻质、耐腐蚀、可塑性好的特性,广泛应用于包装、日用品、建筑材料等领域。

5. 纤维素材料:纤维素材料主要包括木材、纸张、纺织品等,具有可再生、易加工、环保等特点。

大一工程材料知识点笔记

大一工程材料知识点笔记

大一工程材料知识点笔记一、材料分类1. 金属材料金属材料是指由金属元素组成的材料,常见的有铁、铜、铝等。

金属材料具有良好的导电导热性能和机械性能,广泛应用于工程领域。

2. 无机非金属材料无机非金属材料主要包括水泥、玻璃、陶瓷等。

它们具有高温稳定性和耐腐蚀性,在建筑、医疗等领域有广泛应用。

3. 有机高分子材料有机高分子材料是以碳元素为主要组成元素的聚合物材料,例如塑料、橡胶和纤维等。

它们轻巧且易加工,应用广泛。

4. 复合材料复合材料是由两种或更多种材料组成的材料,具有优异的综合性能。

常见的复合材料有纤维增强复合材料和层状复合材料等。

二、材料的性能和特点1. 机械性能机械性能是指材料在外力作用下的响应能力。

常见的机械性能指标有强度、韧性、硬度等。

不同的工程应用对材料的机械性能有不同的要求。

2. 导电性能和导热性能导电性能指材料传导电流的能力,导热性能指材料传导热量的能力。

金属材料通常具有良好的导电导热性能,而绝缘材料则具有较低的导电导热性能。

3. 耐腐蚀性能耐腐蚀性能是指材料在腐蚀介质中长期使用时不发生明显的腐蚀损失。

对于工作环境存在腐蚀物的工程,需要选择具有良好耐腐蚀性能的材料。

4. 热膨胀性能热膨胀性能是指材料在温度变化时的体积变化能力。

温度变化引起的热膨胀和收缩对工程结构的稳定性和使用寿命有较大影响,因此需要对此进行考虑。

三、常见材料及其应用领域1. 钢铁材料钢铁材料是一种常见的金属材料,广泛应用于建筑、桥梁、汽车制造等领域。

钢铁具有高强度和较好的可塑性,适合承受大力和形状复杂的结构。

2. 水泥混凝土水泥混凝土是一种无机非金属材料,常用于建筑、道路建设等领域。

它具有高强度和较好的耐久性,能够承受较大的压力和外部荷载。

3. 塑料材料塑料材料是一种常见的有机高分子材料,广泛应用于日常生活中的包装、家居用品等。

塑料具有轻质、耐用和成型性好的特点,易于加工和制作。

4. 纤维增强复合材料纤维增强复合材料是一种结构性材料,常用于航空航天、汽车制造等领域。

工程材料知识点总结

工程材料知识点总结

1、晶格:描述原子在晶体中排列规律的三维空间几何点阵。

2、晶胞:晶格中能够代表晶格特征的最小几何单元致密度=原子所占的总体积÷晶胞的体积属于面心立方晶格的常用金属:γ铁、铝、铜、镍等。

属于体心立方晶格的常用金属:α铬、钨、钼、钒、α铁、β钛、铌等。

属于密排六方晶格的常用金属:镁、锌、铍、α钛、镉等。

晶面:晶体中由物质质点所组成的平面。

晶向:由物质质点所决定的直线。

每一组平行的晶面和晶向都可用一组数字来标定其位向。

这组数字分别称为晶面指数和晶向指数。

晶面指数的确定:晶面与三个坐标轴截距的倒数取最小整数,用圆括号表示。

如(111)、(112)。

晶向指数的确定:通过坐标原点直线上某一点的坐标,用方括号表示。

如[111]晶面族:晶面指数中各个数字相同但是符号不同或排列顺序不同的所有晶面。

这些晶面上的原子排列规律相同,具有相同的原子密度和性质。

如{110}=(110)+(101)+(011)+(101)+(110)+(011)晶向族:原子排列密度完全相同的晶向。

如<111>=[111]+[111]+[111]+[111]由于各个晶面和晶向上原子排列密度不同,使原子间的相互作用力也不相同。

因此在同一单晶体内不同晶面和晶向上的性能也是不同的。

这种现象称为晶体的各向异性。

晶粒——金属晶体中,晶格位向基本一致,并有边界与邻区分开的区域。

亚晶粒——晶粒内部晶格位向差小于2°、3°的更小的晶块。

实际金属晶粒大小除取决于金属种类外,主要取决于结晶条件和热处理工艺。

晶界——晶粒之间原子排列不规则的区域。

亚晶界——亚晶粒间的过渡区。

晶体缺陷:是指晶体中原子排列不规则的区域。

1、点缺陷2、线缺陷3、面缺陷点缺陷类型主要有三种:(1)间隙原子(2)晶格空位(3)置换原子间隙原子:在晶格的间隙处出现多余原子的晶体缺陷。

☆晶格空位:在晶格的结点处出现缺少原子的晶体缺陷线缺陷·位错:指晶体中若干列原子发生有规律的错排现象。

材料工程基础知识点总结

材料工程基础知识点总结

材料工程基础知识点总结
第一章、材料的性能及应用
1、常用的力学性能,如:σS,σb,σe,σP 等所表示的含义,弹性模量E及其主要影响因素、塑性指标的意义。

不同材料所适用的硬度(HB、HR、HV)测量方法。

第二章、原子结构和结合键
1、结合键的类型(主要为金属键、离子键、共价键)及其主要特点,它们对材料性能的主要影响
第三章、晶体结构
1、晶面与晶向的标注和识别
2、BCC、FCC、HCP三种常见金属晶体结构中所含的原子数、它们的致密度。

3、相、固溶体、中间相、固溶强化的概念、固溶体的分类、中间相的分类以及固溶体和中间相的主要区别。

第四章、晶体缺陷
1、晶体缺陷的分类、位错的含义和分类及特点。

位错(及点缺陷)密度的变化对材料性能(主要是力学性能)的影响。

2、晶界原子排列?的特点及其分类,晶界的特性;相界的分类、润湿
第五章、固体材料中原子的扩散
1、Fick第一定律的含义、非稳态扩散的误差函数解的应用计算
2、扩散的机制及影响扩散的主要因素以及在工业上的应用(如:工业渗碳为何在奥氏体状态下进行)
第六章、相平衡与相图原理
1、Gibbs相律含义,二元匀晶、共晶相图分析,杠杆定律的应用计算;相图与合金使用性(强度、硬度)和工艺性(铸造)的关系
2、铁碳相图(简化版)及其标注上面主要的成分点和温度及相;不同含碳量的合金从高温到室温下组织的变化,利用杠杆定律计算组织或相组成物的含量(主要针对C%<2.11%的合金,即钢)第七章、材料的凝固
1、液态合金结构的特点,过冷度及其与冷却速率的关系?。

工程材料基础知识-课后习题及答案.docx

工程材料基础知识-课后习题及答案.docx

第一章工程材料基础知识参考答案1.金属材料的力学性能指标有哪些?各用什么符号表示?它们的物理意义是什么?答:常用的力学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。

强度是指金属材料在静荷作用下抵抗破坏(过量塑性变形或断裂)的性能。

强度常用材料单位面积所能承受载荷的最大能力(即应力。

,单位为Mpa)表示。

塑性是指金属材料在载荷作用下,产生塑性变形(永久变形)而不被破坏的能力。

金属塑性常用伸长率5和断面收缩率出来表示:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,是衡量材料软硬程度的指标,是一个综合的物理量。

常用的硬度指标有布氏硬度(HBS、HBW)、洛氏硬度(HRA、HRB、HRC等)和维氏硬度(HV)。

以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做冲击韧性。

冲击韧性的常用指标为冲击韧度,用符号a k表示。

疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。

疲劳强度用。

-1表示,单位为MPa。

2.对某零件有力学性能要求时,一般可在其设计图上提出硬度技术要求而不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量方法决定的。

硬度是一个表征材料性能的综合性指标,表示材料表面局部区域内抵抗变形和破坏的能力,同时硬度的测量操作简单,不破坏零件,而强度和塑性的测量操作复杂且破坏零件,所以实际生产中,在零件设计图或工艺卡上一般提出硬度技术要求而不提强度或塑性值。

3.比较布氏、洛氏、维氏硬度的测量原理及应用范围。

答:(1)布氏硬度测量原理:采用直径为D的球形压头,以相应的试验力F压入材料的表面,经规定保持时间后卸除试验力,用读数显微镜测量残余压痕平均直径d,用球冠形压痕单位表面积上所受的压力表示硬度值。

实际测量可通过测出d值后查表获得硬度值。

布氏硬度测量范围:用于原材料与半成品硬度测量,可用于测量铸铁;非铁金属(有色金属)、硬度较低的钢(如退火、正火、调质处理的钢)(2)洛氏硬度测量原理:用金刚石圆锥或淬火钢球压头,在试验压力F的作用下,将压头压入材料表面,保持规定时间后,去除主试验力,保持初始试验力,用残余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛氏硬度的数值。

工程材料基础知识要点

工程材料基础知识要点

第一章机械零件的失效分析一、基本要求本章主要介绍了机械零件在常温静载下的过量变形、在静载和冲击载荷下的断裂、在交变载荷下的疲劳断裂、零件的磨损失效和腐蚀失效以及在高温下的蠕变变形和断裂失效。

要求学生掌握全部内容。

二、重点内容1零件的过量变形以及性能指标,如屈服强度、抗拉强度、伸长率、硬度等。

2零件在静载和冲击载荷下的断裂及性能指标,如冲击韧性、断裂韧性等。

3零件在交变载荷下的疲劳断裂、疲劳抗力指标及影响因素。

4零件的磨损和腐蚀失效以及防止措施。

5零件在高温下的蠕变变形和断裂失效。

三、难点断裂韧性及衡量指标,影响断裂的因素。

四、基本知识点第一节零件在常温静载下的过量变形1、工程材料在静拉伸时的应力-应变行为变形:材料在外力作用下产生的形状或尺寸的变化。

弹性变形:外力去除后可恢复变形。

塑性变形:外力去除后不可恢复。

低碳钢,正火、退火、调质态的中碳钢或低、中碳合金钢和有些铝合金及某些高分子材料都具有图1-1所示的应力-应变行为。

即在拉伸应力的作用下的变形过程分为四个阶段:弹性变形、屈服塑性变形、均匀塑性变形、不均匀集中塑性变形。

2、静载试验材料性能指标刚度:零构件在受力时抵抗弹性变形的能力。

等于材料弹性模量与零构件截面积的乘积。

强度:材料抵抗变形或者断裂的能力,屈服强度、抗拉强度、断裂强度。

弹性指标:弹性比功。

塑性指标:伸长率、断面收缩率。

硬度:布氏硬度(HB )、洛氏硬度(HRC )、维氏硬度(HV ) 3过量变形失效过量弹性变形抗力指标:弹性模量E 或者切变模量G 。

过量塑性变形抗力指标:比例极限、弹性极限或者屈服强度。

第二节零件在静载和冲击载荷下的断裂1、基本概念断裂:材料在应力作用下分为两个或两个以上部分的现象。

韧性断裂:断裂前发生明显宏观塑性变形。

脆性断裂:断裂前不发生塑性变形,断裂后其断口齐平,由无数发亮的小平面组成。

2、冲击韧性及衡量指标冲击韧性:材料在冲击载荷下吸收塑性变形功和断裂功的能力,是材料强度和塑性的综合表现。

工程材料知识点总结

工程材料知识点总结

工程材料知识点总结一、工程材料的分类工程材料是指在建筑、道路、桥梁等工程中使用的各种材料。

工程材料按用途和性能可分为结构材料、装饰材料、防护材料。

结构材料主要用于承受力学作用,包括混凝土、钢材、木材等;装饰材料主要用于美观和环境保护,包括瓷砖、玻璃、涂料等;防护材料主要用于防水、隔热、防腐等,包括防水材料、隔热材料、防腐材料等。

二、混凝土及混凝土材料1. 混凝土的组成:混凝土是由水泥、骨料、粉煤灰、矿渣粉等混合配制而成的人工石料。

水泥是混凝土的胶凝材料,骨料是混凝土的填充材料,粉煤灰和矿渣粉是混凝土的掺合材料。

2. 混凝土的性能指标:混凝土的性能指标包括抗压强度、抗折强度、抗渗性、耐久性等。

三、钢材及钢材结构1. 钢材的种类:钢材主要包括普通碳素结构钢、低合金高强度结构钢、不锈钢、耐候钢等。

2. 钢材的性能:钢材具有优良的强度、韧性和可塑性,广泛应用于建筑结构中。

3. 钢结构的设计:钢结构的设计主要包括受力分析、结构优化、节点设计等。

四、木材及木结构1. 木材的种类:木材主要包括软木、硬木、板材等,不同种类的木材具有不同的物理力学性能。

2. 木结构的特点:木结构轻质、强度高、易加工、热工性能好,在建筑中得到广泛应用。

3. 木结构的设计:木结构的设计主要包括结构设计、连接设计、防腐设计等。

五、砖瓦及建筑装饰材料1. 砖瓦的种类:砖瓦主要包括粘土砖、红砖、瓷砖、玻璃砖等,根据用途和性能不同分为墙砖、地砖、护墙板等。

2. 建筑装饰材料的种类:建筑装饰材料主要包括大理石、花岗岩、涂料、墙纸等,用于装饰、改善建筑室内外环境。

六、防护材料1. 防水材料:防水材料主要包括沥青防水卷材、聚合物防水涂料等,用于建筑屋面、地下室、卫生间等防水工程。

2. 隔热材料:隔热材料主要包括聚苯板、岩棉、玻璃棉等,用于建筑外墙、屋面、地面隔热保温。

3. 防腐材料:防腐材料主要包括防腐漆、防腐涂料等,用于建筑结构、设备等的防腐蚀。

工程材料知识点总结(全)

工程材料知识点总结(全)

第二章材料的性能1、布氏硬度布氏硬度的优点:测量误差小,数据稳定.缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。

适于测量退火、正火、调质钢,铸铁及有色金属的硬度(硬度少于450HB)。

2、洛氏硬度HRA用于测量高硬度材料,如硬质合金、表淬层和渗碳层。

HRB用于测量低硬度材料, 如有色金属和退火、正火钢等.HRC用于测量中等硬度材料,如调质钢、淬火钢等。

洛氏硬度的优点:操作简便,压痕小,适用范围广.缺点:测量结果分散度大。

3、维氏硬度维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。

4、耐磨性是材料抵抗磨损的性能,用磨损量来表示.分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。

5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象.6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。

7、应力强度因子:描述裂纹尖端附近应力场强度的指标。

第三章金属的结构与结晶1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构.为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。

晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。

由任意两个原子之间连线所指的方向称为晶向。

组成晶格的最小几何组成单元称为晶胞。

晶胞的棱边长度、棱边夹角称为晶格常数.①体心立方晶格晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。

属于体心立方晶格的金属有铁、钼、铬等。

②面心立方晶格原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)典型金属(金、银、铝、铜等)。

③密排六方晶格每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。

典型金属锌等.2、各向异性:晶体中不同晶向上的原子排列紧密程度及不同晶面间距是不同的,所以不同方向上原子结合力也不同,晶体在不同方向上的物理、化学、力学间的性能也有一定的差异,此特性称为各向异性。

工程材料及成型基础知识点整理教材

工程材料及成型基础知识点整理教材

PPT填空题和简答题1一、填空题1、金属结晶包括形核与长大两个过程。

3、晶粒和晶粒之间的界面称为晶界。

4、在结晶过程中,细化晶粒的措施有提高冷却速度、变质处理、振动。

5、由于溶质原子的溶入,固溶体发生晶格畸变,变形抗力增大,使金属的强度、硬度升高的现象称为固溶强化。

6、常见的金属晶格类型体心立方、面心立方和密排立方。

7、在晶体缺陷中,点缺陷主要有空位、间隙原子、置换原子,线缺陷主要有刃型位错、螺型位错,面缺陷主要有晶界、亚晶界8、金属结晶时,实际结晶温度必须低于理论结晶温度,结晶过冷度主要受冷却速度影响。

9、当金属化合物呈细小颗粒均匀分布在固溶体基体上时,将使合金的强度、硬度及耐磨性明显提高,这一现象称为固溶强化。

10.再结晶退火的前提是冷变形+足够高的温度,它与重结晶的区别在于无晶体结构转变。

1.奥氏体的晶格类型是面心立方。

2.铁素体的晶格类型是体心立方。

11.亚共析钢的室温组织是F+P 。

1.钢的淬透性是指钢淬火时所能达到的最高硬度值。

23.渗碳钢渗碳后的热处理包括淬火和低温回火,以保证足够的硬度。

24.在光学显微镜下观察,上贝氏体显微组织特征是羽毛状,下贝氏体显微组织特征呈针状。

5.零件失效的基本类型为_表面损伤、过量变形、断裂。

2.线型无定型高聚物的三种力学状态为玻璃态、高弹态、粘流态。

1、一个钢制零件,带有复杂形状的内腔,该零件毛坯常用铸造方法生产。

2、金属的流动性主要决定于合金的成分3、流动性不好的铸件可能产生冷隔和浇不足缺陷。

4、铸造合金充型能力不良易造成冷隔和浇不足等缺陷,12.过共析钢的室温组织是P+Fe3C 。

13.共晶反应的产物是Ld1. 20钢齿轮、45钢小轴、T12钢锉的正火的目的分别是:提高硬度,满足切削加工的要求、作为最终热处理,满足小轴的使用要求、消除网状渗碳体。

2、在正火态的20钢、45钢、T8钢;、T13钢中,T8 钢的σb值最高。

3、在正火态的20钢、45钢、T8钢;、T13钢中,T13钢的HBS值最高。

工程材料及成形技术基础复习重点完整版

工程材料及成形技术基础复习重点完整版

一、二元相图的建立合金的结晶过程比纯金属复杂;常用相图进行分析;相图是用来表示合金系中各金在缓冷条件下结晶过程的简明图解;又称状态图或平衡图..合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金.. 组元是指组成合金的最简单、最基本、能够独立存在的物质..多数情况下组元是指组成合金的元素..但对于既不发生分解、又C..不发生任何反应的合物也可看作组元; 如Fe-C合金中的Fe3相图由两条线构成;上面是液相线;下面是固相线..相图被两条线分为三个相区;液相线以上为液相区L ;固相线以下为固溶体区;两条线之间为两相共存的两相区L+ ..3 枝晶偏析合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体..但实际冷速较快;结晶时固相中的原子来不及扩散;使先结晶出的枝晶轴含有较多的高熔点元素如Cu-Ni合金中的Ni; 后结晶的枝晶间含有较多的低熔点元素;如Cu-Ni合金中的Cu..在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析..与冷速有关而且与液固相线的间距有关..冷速越大;液固相线间距越大;枝晶偏析越严重枝晶偏析会影响合金的力学、耐蚀、加工等性能..生产上常将铸件加热到固相线以下100-200℃长时间保温;以使原子充分扩散、成分均匀;消除枝晶偏析;这种热处理工艺称作扩散退火..2、二元共晶相图当两组元在液态下完全互溶;在固态下有限互溶;并发生共晶反应时所构成的相图称作共晶相图..以 Pb-Sn 相图为例进行分析..1 相图分析①相:相图中有L、、三种相; 是溶质Sn在 Pb中的固溶体; 是溶质Pb在Sn中的固溶体..②相区:相图中有三个单相区: L、、;三个两相区: L+ 、L+ 、+ ..③液固相线:液相线AEB;固相线ACEDB..A、B分别为Pb、Sn的熔点..④固溶线: 溶解度点的连线称固溶线..相图中的CF、DG线分别为Sn在 Pb中和 Pb在 Sn中的固溶线..固溶体的溶解度随温度降低而下降..⑤共晶线:水平线CED叫做共晶线..在共晶线对应的温度下183 ℃;E点成分的合金同时结晶出C点成分的固溶体和D点成分的固溶体;形成这两个相的机械混合物LE C+D在一定温度下;由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变称作共晶转变或共晶反应..一、铁碳合金的组元和相C1. 组元:Fe、 Fe32. 相⑴铁素体——碳在-Fe中的固溶体称铁素体;用F或表示碳在–Fe中的固溶体用表示;体心立方间隙固溶体..铁素体的溶碳能力很低;在727℃时最大为0.0218%;室温下仅为0.0008%..铁素体的组织为多边形晶粒;性能与纯铁相似..2 奥氏体碳在 -Fe中的固溶体称奥氏体..用A或表示..是面心立方晶格的间隙固溶体..溶碳能力比铁素体大;1148℃时最大为2.11%..组织为不规则多面体晶粒;晶界较直..强度低、塑性好;钢材热加工都在区进行;碳钢室温组织中无奥氏体..3 渗碳体Fe3C含碳6.69%;用Fe3C或Cm表示..Fe3C硬度高、强度低 b35MPa;脆性大;塑性几乎为零..由于碳在 -Fe中的溶解度很小;因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在..重要知识点五个重要的成份点: P、S、E、C、F四条重要的线: ECF、PSK、ES、GS三个重要转变: 共晶转变反应式、共析转变反应式、包晶转变本节略二个重要温度: 1148 ℃、727 ℃第一节退火和正火一般零件的工艺路线为:毛坯铸造或锻造→退火或正火→机械粗加工→淬火+回火或表面热处理→机械精加工..退火与正火常作为预备热处理;其目的是为消除毛坯的组织缺陷;或为以后的加工作准备;淬火和回火工艺配合可强化钢材;提高零件使用性能;作为最终热处理..一、退火将工件加热到适当温度;保温一定时间;缓慢冷却热处理工艺目的根据不同情况;退火的作为可归纳为降低硬度;改善钢的成形和切削加工性能;均匀钢的化学成分和组织;消除内应力等..①调整硬度以便进行切削加工;②消除残余内应力;以防止钢件在淬火时产生变形或开裂;③细化晶粒;改善组织;提高力学性能;为最终热处理作准备..1、退火类型1 完全退火完全退火是将工件完全奥氏体化后缓慢冷却;获得接近平衡组织的退火工艺..工艺加热温度为Ac3以上20℃~30℃;保温时间依工件的大小和厚度而定;使工件热透;保证全部得到均匀化的奥氏体;冷却方式可采用随炉缓慢冷却;实际生产时为提高生产率;退火冷却至600℃左右即可出炉空冷..2球化退火工艺球化退火的加热温度为Ac1以上20℃~30℃;采用随炉缓冷;至500℃~600℃后出炉空冷;3去应力退火去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余内应力而进行的退火工艺..工艺去应力退火加热温度较宽;但不超过AC1点;一般在500℃~650℃之间;铸铁件去应力退火温度一般为500℃ ~ 550℃;焊接工件的去应力退火温度一般为500℃ ~600℃..去应力退火的保温时间也要根据工件的截面尺寸和装炉量决定..去应力退火后的冷却应尽量缓慢;以免产生新的应力..4扩散退火为减少铸件或锻坯的化学成分和组织不均匀性;将其加热到略低于固相线固相线以下 100℃~200℃的温度;长时间保温10h~15h;并进行缓慢冷却的热处理工艺;称为扩散退火或均匀化退火..二、正火1、正火的概念工艺正火处理的加热温度通常在Ac3或Accm以上30℃~50℃..对于含有V、Ti、Nb等碳化物形成元素的合金钢;采用更高的加热温度AC3 + 100℃~150℃..正火冷却方式常用的是将钢件从加热炉中取出在空气中自然冷却..对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢的冷却速度;达到要求的组织和性能..第二节钢的淬火将亚共析钢加热到Ac3以上;共析钢与过共析钢加热到Ac1以上;低于Accm的温度;保温后以大于Vk的速度快速冷却;使奥氏体转变为马氏体或贝氏体的热处理工艺叫淬火..马氏体强化是钢的主要强化手段;因此淬火的目的就是为了获得马氏体;提高钢的机械性能..淬火是钢的最重要的热处理工艺也是热处理中应用最广的工艺之一..1、淬火温度的确定淬火温度即钢的奥氏体化温度;是淬火的主要工艺参数之一..选择淬火温度的原则是获得均匀细小的奥氏体组织..亚共析钢的淬火温度一般为Ac3以上30~50℃;淬火后获得均匀细小的马氏体组织..温度过高;奥氏体晶粒粗大而得到粗大的马氏体组织;而使钢的机械性能恶化;特别是塑性和韧性降低;淬火温度低于Ac3;淬火组织中会保留未溶铁素体;使钢的强度硬度下降..4、钢的淬透性1淬透性与淬硬性的概念钢的淬透性是指奥氏体化后的钢在淬火时获得马氏体的能力也称为淬透层深度;其大小用钢在一定条件下淬火获得的淬硬层深度来表示..淬硬层深度指由工件表面到半马氏体区50%M + 50%P的深度..淬硬性是指钢淬火后所能达到的最高硬度;即硬化能力..淬透性与淬硬层深度的关系同一材料的淬硬层深度与工件尺寸、冷却介质有关..工件尺寸小、介质冷却能力强;淬硬层深.. 淬透性与工件尺寸、冷却介质无关..它只用于不同材料之间的比较;通过尺寸、冷却介质相同时的淬硬层深度来确定的..2淬透性的测定及其表示方法同一材料的淬硬层深度与工件的尺寸;冷却介质有关;工件尺寸小、冷却能力强;淬硬层深;工件尺寸小、介质冷却能力强;淬硬层深;而淬透性与工件尺寸、冷却介质无关;它只用于不同材料之间的比较;是在尺寸、冷却介质相同时;用不同材料的淬硬层深度进行比较的..淬透性常用末端淬火法测定如下图所示;将标准化试样奥氏体化后;对末端进行喷水冷却..然后从水冷段开始;每隔一定距离测量一个硬度值;即可得到试样沿轴向的硬度分布曲线;称为钢的淬透性曲线..即用 表示J 表示末端淬透性;d 表示半马氏体区到水冷端的距离;HRC 为半马氏体区的硬度..3 影响淬透性的因素钢的淬透性取决于临界冷却速度V K ; V K 越小;淬透性越高..V K 取决于C 曲线的位置;C 曲线越靠右;V K 越小..凡是影响C 曲线的因素都是影响淬透性的因素;即除Co 外;凡溶入奥氏体的合金元素都使钢的淬透性提高;奥氏体化温度高、保温时间长也使钢的淬透性提高..影响淬硬层深度的因素淬透性 冷却介质 工件尺寸对于截面承载均匀的重要件;要全部淬透..如连杆、模具等..对HRC J d于承受弯曲、扭转的零件可不必淬透淬硬层深度一般为半径的1/2-1/3;如轴类、齿轮等..淬硬层深度与工件尺寸有关;设计时应注意尺寸效应..第三节钢的回火回火——将淬火钢加热到Ac1以下的某温度保温后冷却的热处理工艺..1、回火的目的消除或减少淬火内应力;防止工件变形或开裂;获得工艺所要求的力学性能;稳定工件尺寸..淬火马氏体和残余奥氏体都是非平衡组织;有自发向平衡组织铁素体加渗碳体转变的倾向..回火可使马氏体和残余奥氏体转变为平衡或接近平衡的组织;防止使用时变形..对于未经淬火的钢;回火是没有意义的;而淬火钢不经回火一般也不能直接使用;为避免淬火件在放置过程中发生变形或开裂;钢件经淬火后应及时回火..3、回火工艺1低温回火<250℃低温回火后得到回火马氏体组织..其目的是降低钢的淬火应力和脆性;回火马氏体具有高的硬度一般为58~64HRC、强度和良好耐磨性..低温回火特别适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火等工求高硬度和耐磨性的工件..2中温回火350-500℃中温回火时发生如下变化;得到T回组织;即为在保持马氏体形态的铁素体基体上分布着细粒状渗碳体的组织..使钢具有高的弹性极限;较高的强度和硬度一般为35 ~ 50HRC;良好的塑性和韧性..中温回火主要用于各种弹性元件及热作模具..3高温回火>500℃高温回火后得到回火索氏体组织;即为在多边性铁素体基体上分布着颗粒状Fe3C的组织 ..工件淬火并高温回火的复合热处理工艺称为调质..高温回火主要适用于中碳结构钢或低合金结构钢制作的曲轴、连杆、螺栓、汽车半轴、等重要的机器零件..4、回火时的性能变化回火时力学性能变化总的趋势是随回火温度提高;钢的强度、硬度下降;塑性、韧性提高..5、回火脆性淬火钢的韧性并不总是随温度升高而提高..在某些温度范围内回火时;会出现冲击韧性下降的现象..1低温回火脆性淬火钢在250℃~350℃范围内回火时出现的脆性叫做低温回火脆性..几乎所有的钢都存在这类脆性..这是一种不可逆回火脆性;目前尚无有效办法完全消除这类回火脆性..所以一般都不在250℃~350℃这个温度范围内回火..2高温回火脆性淬火钢在500℃~650℃范围内回火时出现的脆性称为高温回火脆性;称为第二类回火脆性..这种脆性主要发生在含Cr、Ni、Si、Mn等合金元素的结构钢中..这种脆性与加热、冷却条件有关..加热至600℃以上后;以缓慢的冷却速度通过脆化温度区时;出现脆性;快速通过脆化区时;则不出现脆性..此类回火脆性是可逆的;在出现第二类回火脆性后;重新加热至600℃以上快冷;可消除脆性..第四节钢的表面淬火钢的表面热处理有两大类:一类是表面加热淬火热处理;通过对零件表面快速加热及快速冷却使零件表层获得马氏体组织;从而增强零件的表层硬度;提高其抗磨损性能..另一类是化学热处理;通过改变零件表层的化学成分;从而改变表层的组织;使其表层的机械性能发生变化..1、表面淬火表面具有高的强度、硬度和耐磨性;不易产生疲劳破坏;而心部则要求有足够的塑性和韧性..采用表面淬火可使钢的表面得到强化;满足工件这种“表硬心韧”的性能要求..1 表面淬火目的使表面具有高的硬度、耐磨性和疲劳极限;心部在保持一定的强度、硬度的条件下;具有足够的塑性和韧性..适用于承受弯曲、扭转、摩擦和冲击零件2 表面淬火用材料0.4-0.5%C的中碳钢..含碳量过低;则表面硬度、耐磨性下降含碳量过高;心部韧性下降;铸铁提高其表面耐磨性..3 预备热处理工艺对于结构钢为调质或正火..前者性能高;用于要求高的重要件;后者用于要求不高的普通件..目的①为表面淬火作组织准备②获得最终心部组织..表面淬火后的回火采用低温回火;温度不高于200℃..目的为降低内应力保留淬火高硬度耐磨性..表面淬火+低温回火后的组织:表层组织为M回;心部组织为S回调质或F+S正火..第五节化学热处理化学热处理是将钢件置于一定温度的活性介质中保温;使一种或几种元素渗入它的表面;改变其化学成分和组织;达到改进表面性能;满足技术要求热处理过程..目的1、提高渗层硬度和耐磨性;如渗碳、氮等;2、提高零件接触疲劳强度和提高抗擦伤能力;渗氮等;3、提高零件抗氧化、耐高温性能;如渗入铝、铬等;4、提高零件抗蚀性;如渗入硅、铬等..化学热处理基本过程1介质的分解—即加热时介质中的化合物分子发生分解并释放出活性原子;2工件表面的吸收—即活性原子向固溶体中溶解或与钢中某些元素形成化合物;3原子向内部扩散—即溶入的元素原子在浓度梯度的作用下由表层向钢内部的扩散..1、渗碳原理渗碳是指向钢表面渗入碳原子的过程..渗碳是为了使低碳钢工件含碳量为0.1%~0.25%表面获得高的碳浓度0.85%~1.05%;从而提高工件表面的硬度、耐磨性及疲劳强度;同时保持心部良好的韧性和塑性..若采用中碳以上的钢渗碳;则将降低工件心部的韧性..渗碳主要用于那些对耐磨性要求较高、同时承受较大冲击载荷的零件..2渗碳件用钢一般采用碳质量分数为0.1%~0.25%的低碳钢或低碳合金钢;20、20Cr、20CrMnTi等..可使渗碳件表面高硬度、耐磨;心部高强韧性、承受较大冲击..3渗碳后的热处理及性能渗碳缓冷后组织:表层为P+网状Fe3CⅡ; 心部为F+P;中间为过渡区..渗碳后必须经淬火+低温回火后才能满足使用性能的要求..热处理后使渗碳件表面具有马氏体和碳化物的组织;表面硬度58~64HRC..而心部根据采用钢材淬透性的大小和零件尺寸大小;获得低碳马氏体或其他非马氏体组织;具有心部良好强韧性..常用方法是渗碳缓冷后;重新加热到Ac1+30-50℃淬火+低温回火..表层:M回+颗粒状碳化物+A’少量; 心部:淬透时;M回+F..2、渗氮渗氮是在一定温度下于一定介质中使氮原子渗入工件表层的化学热处理工艺..方法主要有气体渗氮和离子渗氮等..1气体渗氮渗氮温度一般为500~560℃;时间一般为20~50小时;采用氨气NH3 作渗氮介质..氨气在450℃以上温度时即发生分解;产生活性氮原子: 2NH3——3H2+2N2渗氮的特点渗氮件的表面硬度高达;相当于65HRC~72HRC..并可保持到560~600℃而不降低..氮化后钢件不需其他热处理;渗氮件的变形小..渗氮后具有良好的耐腐蚀性能..这是由于渗氮后表面形成致密的氮化物薄膜;气体渗氮所需时间很长;渗氮层也较薄一般为0.3-0.6mm;38CrMoAl钢制压缩机活塞杆为获得0.4-0.6mm的渗氮层深度气体渗氮保温时间需60h左右..氮化缺点工艺复杂;成本高;氮化层薄..用于耐磨性、精度要求高的零件及耐热、耐磨及耐蚀件..第六节铸铁一、铸铁的成分、组织和性能特点1、铸铁的成分特点a. 含碳量理论上含C:2.11%~ 6.69% 的铁碳合金都属于铸铁; 但工业上常用铸铁的含碳量一般在:2.50%~4.00%之间..三、铸铁的分类1、灰口铸铁普通铸铁石墨呈片状;典型灰口铸铁;这类铸铁机械性能不高;但生产工艺简单;价格低廉;工业上所用铸铁几乎全部属于这类铸铁..灰口铸铁又根据第三阶段石墨化程度的不同分为:铁素体灰铁、 F+P灰铁、珠光体灰铁2、白口铸铁炼钢生铁第一、二、三阶段石墨化过程完全被抑制;Fe-C合金完全按照Fe-Fe3CC形式存在组织中存在莱氏体组织;断口呈白亮结晶而得到的铸铁;以Fe3色;故得名白口铸铁..白口铸铁硬脆;主要作为炼钢原料..3、可锻铸铁韧性铸铁;玛钢C分解而得到团石墨呈团絮状;用白口铸铁经长时间高温退火后;Fe3絮状石墨组织的铸铁..由于石墨呈团絮状;对基体的割裂作用比片状石墨小一些;故机械性能尤其冲击韧性高于灰口铸铁..可锻铸铁由于生产工艺复杂;成本较高;应用很少..4、球墨铸铁石墨组织呈球状;这种铸铁强度高;生产工艺比可锻铸铁简单;且可通过热处理进一步提高强度..球墨铸铁既保持了铸铁的特点;又具钢的高强度、高韧性;故应用越来越多..1球化处理与孕育处理Ⅰ球化处理铁水浇铸前;加入一定量的球化剂镁;硅铁-镁;铜-镁系;以促使石墨结晶时生长成为球状的工艺;称为球化处理..Ⅱ孕育处理变质处理球化处理只能在铁水中有石墨核心产生时;才能促使石墨生长成球状;而球化剂都是阻碍石墨化的元素;所以必须进行孕育处理变质处理;往铁水中加入变质剂75% Si-Fe..第七节铝及铝合金1性能特点纯铝银白色金属光泽;密度小2.72;熔点低660.4℃;导电导热性能优良..耐大气腐蚀;易于加工成形 ..具有面心立方晶格..铝合金一般具有有限固溶型共晶相图..可将铝合金分为变形铝合金和铸造铝合金两大类..3形变铝合金的牌号、性能变形铝及铝合金牌号表示方法;国标规定;变形铝及铝合金可直接引用国际四位数字体系牌号或采用国标规定的四位字符牌号..GB 3190-82中的旧牌号表示方法为防锈铝合金:LF +序号硬铝合金: LY +序号超硬铝合金:LC +序号锻铝合金: LD +序号4铸造铝合金牌号、分类Al- Si系:代号为ZL1+两位数字顺序号Al-Cu系:代号为ZL2+两位数字顺序号Al-Mg系:代号为ZL3+两位数字顺序号Al-Zn系:代号为ZL4+两位数字顺序号二、铜及铜合金1性能特点纯铜呈紫红色;又称紫铜;具有面心立方晶格;无同素异构转变;无磁性..纯铜具有优良的导电性和导热性;在大气、淡水和冷凝水中有良好的耐蚀性..塑性好..2黄铜以Zn为主要合金元素的铜合金称为黄铜..黄铜按化学成分可分为普通黄铜和特殊黄铜..按工艺可分为加工黄铜和铸造黄铜..单相黄铜塑性好;常用牌号有H80、H70、H 68..适于制造冷变形零件;如弹壳、冷凝器管等..三七黄铜两相黄铜热塑性好; 强度高..常用牌号有H59、H62..适于制造受力件;如垫圈、弹簧、导管、散热器等..四六黄铜3青铜青铜主要是指Cu-Sn合金..加工青铜的牌号为:Q +主加元素符号及其平均百分含量 + 其他元素平均百分含量.. QSn4-3含4%Sn 3%Zn 常用青铜有锡青铜、铝青铜、铍青铜、硅青铜、铅青铜等..常用牌号有:QSn4-3、QSn6.5-0.4、ZCuSn10Pb1轴承合金制造滑动轴承的轴瓦及其内衬的耐磨合金称为轴承合金..滑动轴承是许多机器设备中对旋转轴起支撑..由轴承体和轴瓦两部分组成..与滚动轴承相比滑动轴承具有承载面积大;工作平稳;无噪音及拆装方便等优点..一、组织性能要求速旋转时;轴瓦与轴颈发生强烈摩擦;承受轴颈施加的交变载荷和冲击力..⑴足够的强韧性;承受交变冲击载荷;⑵较小的热膨胀系数;良好的导热性和耐蚀性;以防止轴与轴瓦之间咬合;⑶较小的摩擦系数;良好的耐磨性和磨合性;以减少轴颈磨损;保证轴与轴瓦良好的跑合..为满足上述性能要求;轴承合金的组织应是软的基体上分布着硬的质点..当轴旋转时;软的基体或质点被磨损而凹陷;减少了轴颈与轴瓦的接触面积;有利于储存润滑油..软基体或质点还能起嵌藏外来硬杂质颗粒的作用;以避免擦伤轴颈..这类组织承受高负荷能力差;属于这类组织的有锡基和铅基轴承合金;又称为巴氏合金babbitt alloy1、锡基轴承合金以锡为主并加入少量锑、铜等元素组成的合金熔点较低;是软基体硬质点组织类型的轴承合金..锡基轴承合金具有较高的耐磨性、导热性、耐蚀性和嵌藏性;摩擦系数和热膨胀系数小;但疲劳强度较低;工作温度不超过150 ℃;价格高..广泛用于重型动力机械;如气轮机、涡轮机和内燃机等大型机器的高速轴瓦..2、铅基轴承合金以铅为主加入少量锑、锡、铜等元素的合金;软基体硬质点型轴承合金;ZChPbSb16Sn16Cu2..铅基轴承合金的强度、硬度、耐蚀性和导热性都不如锡基轴承合金;但其成本低;高温强度好;有自润滑性..常用于低速、低载条件下工作的设备;如汽车、拖拉机曲轴的轴承等..。

工程材料笔记整理重点

工程材料笔记整理重点

工程材料复习笔记整理(重点中的重点)名词解释:1.强度:抵抗塑性变形和破坏屈服强度:抵抗产生塑性变形抗拉强度:抵抗产生断裂前硬度:抵抗局部塑性变形塑性:产生塑性变形而不破坏的能力韧度:材料抵抗冲击载荷作用而不致破坏的极限能力称为冲击韧度疲劳强度:材料在规定的重复次数或交变应力作用下不致发生断裂的能力2.再结晶:升高温度,形成新的晶粒,使原来被拉大的晶粒转变为等轴晶粒,完全消除冷变形强化,力学性能恢复到塑性变形前的状态3.冷变形与热变形:再结晶温度以上进行的塑性变形为热变形,以下的为冷变形4.巴氏合金:铅基轴承合金5.下贝氏体,强度、韧度高,有最佳的综合机械性能,理想的强韧化组织,生产中常采用等温淬火获得下贝氏体组组织6. 一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。

二次渗碳体:指从奥氏体中析出的渗碳体三次渗碳体:从中析出的称为三次渗碳体共晶渗碳体:莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:珠光体中的渗碳体称为共析渗碳体7.纤维组织:热变形使铸态金属的偏析、分布在晶界上的夹杂物和第二相逐渐沿变形方向延展拉长、拉细而形成锻造流线;难以用热处理来消除8.变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

9.索氏体:在650〜600℃温度范围内形成层片较细的珠光体10.屈氏体:在600〜550℃温度范围内形成片层极细的珠光体。

11.马氏体:碳在a-Fe中的过饱和固溶体。

12.过冷度:实际结晶温度与理论结晶温度之差称为过冷度13.玻璃钢:玻璃纤维增强塑料称为玻璃钢。

玻璃钢具有成本低,工艺简单;强度低,绝缘等特点,它可制造壳体、管道、容器等14.加工硬化:随变形量的增加,金属的强度大为提高,塑性却有较大降低产生原因:位错密度升高为了继续变形,退火可消除加工硬化15.调质:调质处理后钢获得回火索氏体组织,其性能特点是具有较高的综合力学性能16.铁素体:(a或F )碳原子溶于a-Fe形成的间隙固溶体性能:固溶强化不明显,强度,硬度低,塑性韧性高17.奥氏体:(Y或A)碳原子溶于丫-Fe形成的间隙固溶体性能:高塑性,是理想的锻造组织18.渗碳体:(Fe3C )由12个铁原子和4个碳原子组成的具有复杂晶体结构间隙化合物性能:高硬度、高脆性、低强度19.珠光体:(P )铁素体和渗碳体的混合物称为珠光体,它具有较高的综合力学性能的特点20.莱氏体Ld 或Ld':组织:Ld : Fe3C ( Fe3C+Fe3CH) + Y Ld‘: Fe3C ( Fe3C+Fe3c口)+ P 机械化合物,性能:高硬度、高脆性。

材料工程基础复习要点及知识点整理

材料工程基础复习要点及知识点整理

材料工程基础复习要点及知识点整理材料工程是一门研究材料的性能与结构、制备与应用的学科。

在进行材料工程的复习时,可以从以下几个方面进行重点整理:1.材料的分类与性质:了解材料的基本分类,包括金属材料、无机非金属材料、有机材料和复合材料等。

每种材料都有其独特的性质和特点,例如金属具有高强度、导电性和塑性等特点;无机非金属材料具有高温性能和耐腐蚀性能等;有机材料具有低密度和良好的绝缘性能等。

2.材料的结构:掌握材料的晶体结构和非晶结构。

晶体结构可分为立方晶系、六方晶系、正交晶系等,不同结构对材料的性能有着重要影响。

非晶结构指材料的原子排列无规则,常见的非晶结构包括玻璃和塑料等。

3.材料的制备与工艺:了解常见的材料制备方法,包括熔融法、溶液法、气相法和固相法等。

掌握不同制备方法对材料性能的影响,以及材料的烧结、热处理、涂覆等工艺方法。

4.材料的物理性能:熟悉材料的物理性能,包括力学性能、热学性能、电学性能和磁学性能等。

了解不同材料的硬度、强度、韧性、导热性、导电性和磁性等方面的性能。

5.材料的化学性能:了解材料与环境的相互作用,包括腐蚀、腐蚀疲劳、氧化、烧蚀等现象。

熟悉不同材料的耐蚀性,以及如何通过表面涂层和防护措施来改善材料的化学性能。

6.材料的性能测试与评价:了解材料性能的测试方法和评价标准,例如拉伸试验、硬度测试、电阻测试等。

熟悉不同测试方法的原理和应用,并能够分析测试结果。

7.材料的应用:掌握材料在各个领域的应用,例如航空航天、汽车工业、电子技术和生物医药等。

了解材料的选择原则和设计原则,以及如何根据具体应用要求选择合适的材料。

除了上述基本要点和知识点,还可以参考相关教材和课堂笔记,结合习题和案例进行练习和思考,加深对材料工程的理解和应用。

同时,关注国内外的最新研究进展和材料工程的新技术,及时了解和学习材料工程领域的前沿知识。

不断提升自己的综合素质,掌握科学研究和工程实践中的材料选择、设计和改性等技术能力。

《工程材料基础》知识点汇总

《工程材料基础》知识点汇总

1.工程材料按属性分为:金属材料、陶瓷材料、碳材料、高分子材料、复合材料、半导体材料、生物材料。

2.零维材料:是指亚微米级和纳米级(1—100nm)的金属或陶瓷粉末材料,如原子团簇和纳米微粒材料;一维材料:线性纤维材料,如光导纤维;二维材料:就是二维薄膜状材料,如金刚石薄膜、高分子分离膜;三维材料:常见材料绝大多数都是三位材料,如一般的金属材料、陶瓷材料等;3.工程材料的使用性能就是在服役条件下表现出的性能,包括:强度、塑性、韧性、耐磨性、耐疲劳性等力学性能,耐蚀性、耐热性等化学性能,及声、光、电、磁等功能性能;工程材料按使用性能分为:结构材料和功能材料。

4.金属材料中原子之间主要是金属键,其特点是无方向性、无饱和性;陶瓷材料中的结合键主要是离子键和共价键,大多数是离子键,离子键赋予陶瓷材料相当高的稳定性;高分子材料的结合键是共价键、氢键和分子键,其中,组成分子的结合键是共价键和氢键,而分子间的结合键是范德瓦尔斯键。

尽管范德瓦尔斯键较弱,但由于高分子材料的分子很大,所以分子间的作用力也相应较大,这使得高分子材料具有很好的力学性能;半导体材料中主要是共价键和离子键,其中,离子键是无方向性的,而共价键则具有高度的方向性。

5.晶胞:是指从晶格中取出的具有整个晶体全部几何特征的最小几何单元;在三维空间中,用晶胞的三条棱边长a、b、c(晶格常数)和三条棱边的夹角α、β、γ这六个参数来描述晶胞的几何形状和大小。

6.晶体结构主要分为7个晶系、14种晶格;7.晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[uvw];晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为(hkl)。

8.实际晶体的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷,其中体缺陷有气孔、裂纹、杂质和其他相。

9.实际金属结晶温度Tn总要偏低理论结晶温度T0一定的温度,结晶方可进行,该温差ΔT=T0—Tn即称为过冷度;过冷度越大,形核速度越快,形成的晶粒就越细。

材料工程基础复习要点及知识点整理(全)

材料工程基础复习要点及知识点整理(全)

材料工程基础复习要点第一章粉体工程基础粉体:粉末质粒与质粒之间的间隙所构成的集合。

*粉末:最大线尺寸介于0.1~500μm的质粒。

*粒度与粒径:表征粉体质粒空间尺度的物理量。

粉体颗粒的粒度及粒径的表征方法:1.网目值表示——(目数越大粒径越小)直接表征,如果粉末颗粒系统的粒径相等时可用单一粒度表示。

2.投影径——用显微镜测试,对于非球形颗粒测量其投影图的投影径。

①法莱特(Feret)径D F:与颗粒投影相切的两条平行线之间的距离②马丁(Martin)径D M:在一定方向上将颗粒投影面积分为两等份的直径③克伦贝恩(Krumbein)径D K:在一定方向上颗粒投影的最大尺度④投影面积相当径D H:与颗粒投影面积相等的圆的直径⑤投影周长相当径D C:与颗粒投影周长相等的圆的直径3.轴径——被测颗粒外接立方体的长L、宽B、高T。

①二轴径长L与宽B②三轴径长L与宽B及高T4.球当量径——把颗粒看做相当的球,并以其直径代表颗粒的有效径的表示方法。

(容易处理)*粉体的工艺特性:流动性、填充性、压缩性和成形性。

*粉体的基本物理特性:1.粉体的能量——具备较同质的块状固体材料高得多的能量。

2.分体颗粒间的作用力——高表面能,固相颗粒之间容易聚集(分子间引力、颗粒间异性静电引力、固相侨联力、附着水分的毛细管力、磁性力、颗粒表面不平滑引起的机械咬合力)。

3.粉体颗粒的团聚。

第二章粉体加工与处理粉体制备方法:1.机械法——捣磨法、切磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法。

①脆性大的材料:捣磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法②塑性较高材料:切磨法、涡旋磨法、气流喷射粉碎法③超细粉与纳米粉:气流喷射粉碎法、高能球磨法2.物理化学法①物理法(雾化法、气化或蒸发-冷凝法):只发生物理变化,不发生化学成分的变化,适于各类材料粉末的制备②物理-化学法:用于制备的金属粉末纯度高,粉末的粒度较细③还原法:可直接利用矿物或利用冶金生产的废料及其他廉价物料作原料,制的粉末的成本低④电解法:几乎可制备所有金属粉末、合金粉末,纯度高3.化学合成法——指由离子、原子、分子通过化学反应成核和长大、聚集来获得微细颗粒的方法①固相法:以固态物质为原始原料(热分解反应法、化合反应法、水热法等)②液相沉淀法:最常见的方法沉淀法(直接沉淀法、均匀沉淀法、共沉淀法)、溶胶-凝胶法影响颗粒粉碎的因素:易碎性、碰撞速度(碎料例子碰撞速度、粉碎介质碰撞速度)粉体的分级:把粉体材料按某种粒度大小或不同种类颗粒进行分选的操作。

材料工程基础复习要点及知识点整理全

材料工程基础复习要点及知识点整理全

材料工程基础复习要点及知识点整理全材料工程是工科的一个重要领域,它研究材料的特性、性能和结构,以及材料的制备、改性和应用。

在材料工程的学习和研究中,掌握基础的知识和复习要点是非常重要的。

本文将从材料的分类、性能和结构、制备方法以及常见材料的特点等方面进行全面的整理,帮助读者回顾和巩固材料工程的基础知识。

一、材料的分类材料可以根据其组成和性质的不同进行分类。

常见的材料分类有金属材料、非金属材料和复合材料。

1. 金属材料金属材料具有良好的导电性、导热性和可塑性。

常见的金属材料有铁、铜、铝等。

金属材料常用于制造机械、汽车等工业产品。

2. 非金属材料非金属材料分为有机材料和无机材料。

有机材料具有较高的灵活性和可塑性,如塑料、橡胶等;无机材料具有较高的硬度和稳定性,如陶瓷、玻璃等。

非金属材料广泛应用于建筑、电子等领域。

3. 复合材料复合材料是由两种或两种以上的材料组成,具有优异的综合性能。

常见的复合材料有纤维增强复合材料、层状复合材料等。

复合材料在航空航天、汽车等领域得到了广泛应用。

二、材料的性能和结构材料的性能包括力学性能、物理性能、化学性能和热性能等。

1. 力学性能力学性能是材料的力学特征。

常见的力学性能有强度、韧性、硬度等。

强度表示材料抗拉、抗压、抗弯等载荷作用下的能力;韧性表示材料的抗断裂性能;硬度表示材料抵抗表面形变和划伤的能力。

2. 物理性能物理性能描述材料在物理方面的特性。

常见的物理性能有导电性、导热性、磁性等。

导电性表示材料传导电流的能力;导热性表示材料传导热量的能力;磁性表示材料受磁场作用的特性。

3. 化学性能化学性能是材料对外界化学物质的反应特性。

常见的化学性能有耐腐蚀性、稳定性等。

耐腐蚀性表示材料抵抗酸碱等侵蚀的能力;稳定性表示材料在不同条件下的性能变化情况。

4. 热性能热性能描述材料在温度变化下的特性。

常见的热性能有热导率、热膨胀系数等。

热导率表示材料传导热量的能力;热膨胀系数表示材料在温度变化下的膨胀程度。

材料工程基础复习要点及知识点整理全

材料工程基础复习要点及知识点整理全

材料工程基础复习要点及知识点整理全材料工程是化学、物理的交叉学科,它涉及到材料的物理、化学以及其结构等方面知识。

在学习材料工程基础时,我们需要掌握一些重要的复习要点和知识点,本文将对其进行系统的整理。

一、晶体结构与晶体缺陷晶体结构是材料工程基础的核心内容之一,其对材料的性质和应用有着非常重要的影响。

晶体结构的种类包括金属晶体、离子晶体、共价晶体、分子晶体等,每种结构都有其独特的特点和性质。

晶体缺陷是晶体中存在的缺陷或异质物,它对材料的性质和应用也有着重要的影响。

晶体缺陷包括点缺陷(空位、间隙、杂质)、线缺陷(位错、蚀刻通道)和面缺陷(晶界、界面)等。

二、材料的物理性质材料的物理性质包括密度、比热、热导率、电导率、热膨胀系数、磁性、光学性能等。

这些性质对于材料的性能和应用起着决定性的作用,因此学习和掌握这些物理性质是非常重要的。

三、材料的力学性质材料的力学性质包括弹性模量、屈服强度、断裂韧性、硬度等。

这些性质是衡量材料强度和耐久性的重要指标,对于材料的设计和应用也具有非常重要的作用。

四、材料的组织结构和相变材料的组织结构指的是材料内部的微观结构和相互之间的关系,包括晶体结构、晶粒大小、晶体缺陷、晶格畸变、相分布等。

了解和掌握材料的组织结构对于材料的性能和应用具有重要的意义。

材料的相变指的是材料在不同条件下发生的状态变化现象,包括固态相变、液态相变和气态相变等。

了解和掌握材料的相变规律可以为材料的制备和性能提高提供重要的理论依据和工程指导。

五、材料加工和处理材料加工和处理是将材料转变成所需的形态、结构和性能的过程。

常见的加工和处理方式包括热处理、冷加工、焊接、表面处理、涂层等。

了解和掌握这些加工和处理过程对于材料的制备和性能提高非常重要。

六、材料的应用材料的应用是材料工程学科的最终目的。

掌握材料的应用知识可以为实际工程和生产提供重要的理论基础和实践指导。

总之,材料工程基础涉及到的知识点非常丰富和复杂,需要我们通过多种途径进行学习和掌握。

材料工程基础复习资料知识点

材料工程基础复习资料知识点

第一章材料的熔炼熔炼:将原材料加热到熔点以上,使其熔化为液态,再冷凝为固体的制取过程。

1.1钢铁冶金:炼铁主要是还原过程,炼钢主要是氧化过程1、钢铁冶金1)、高炉炼铁生产过程:①还原:矿石中的铁被还原;②造渣:高温下石灰石分解形成的氧化钙与酸性脉石形成炉渣;③传热和渣底反应:被还原的矿石降落使温度升高加速反应将全部氧化铁还原成氧化亚铁,风口区残余的氧化亚铁还原成铁,与炉渣一起进入炉缸。

2)、高炉炼铁原料:铁矿石、燃料和熔剂焦炭:它是把炼焦的煤粉或是几种煤粉的混合物装在炼焦炉内,隔绝空气加热到1000~1100度,干馏后留下的多孔块状产物。

作用是提供热量和还原剂。

3)、直接还原炼铁方法:用煤或天然气等还原剂直接将铁矿石在固态还原成海绵铁煤基回转窑直接还原气基竖炉直接还原熔融还原炼铁方法:用铁矿石和普通烟煤作原料,在汽化炉的流化床中,将直接、还原得到海绵铁进一步加热熔化,在熔融汽化炉的炉底形成铁水与炉渣的熔池。

4)、炼钢过程中的理化过程:①:碳被氧气直接氧化:在温度高于1100℃条件下2C+O2→2CO间接氧化:在温度低于1100℃条件下2Fe+O2→2FeOC+FeO→Fe+CO②硅、锰的氧化:a.直接氧化反应:Si+O2 →Si022Mn+O2 →2MnOb.间接氧化,但主要是间接反应:Si+2FeO →Si02+2FeMn+FeO→MnO+Fe③脱磷:磷是以磷化铁(Fe2P)形态存在,炼钢利用炉渣中FeO及CaO与其化合生成磷酸钙渣去除Fe2P+5FeO+4CaO→(CaO)4·P2O5+9Fe④脱硫:硫是以FeS形式存在,利用渣中足够的CaO,把其中FeS去除。

反应式为FeS + CaO-->FeO + CaS⑤脱氧(再还原):通常采用的脱氧剂有:锰铁、硅铁和铝等。

Me +FeO-->MeO +Fe5)、炼钢炉:转炉炼钢:最早使用。

利用空气或氧气进行氧化,可采用低吹、侧吹、顶吹。

材料工程基础知识点复习总结.doc

材料工程基础知识点复习总结.doc

第一章钢铁冶金1.1冶金工程基础1.冶金工程:是基于矿产资源的开发利用和金属材料生产加工过程的工程技术。

冶金工程是给予矿产资源的开发利用和金属材料的生产加工过程的工程技术。

人们通常将矿石或境况中提金属的工业叫做冶金工业。

金属的冶炼:大多以化合物存在即矿石;用各种方法从矿石中提取金属元素即粗炼金属;分为火法冶金、湿法冶金和电冶金三类。

2.火法冶金:利用高温从矿石中提取金属或化合物的方法。

过程分为原料准备(选矿、烧结、球团、焙烧)、矿石冶炼(金属化合物的还原)、精炼提纯。

a)矿石准备:破碎和筛分,选矿,造块。

b)矿石冶炼:炉料在高温下发生的物理化学变化,生成粗金属或金属富集物和炉渣的冶金过程。

炉料:精矿、熔剂、还原剂和燃料。

冶炼方法:还原冶炼、造硫冶炼和氧化冶炼。

冶炼产品:熔硫或金属液,炉渣(脉石、溶剂、燃料中的灰分).c)精炼提纯:粗金属去除,杂质提纯。

分为物理精炼(熔析精炼、精憎精炼、区域熔炼)和化学精炼(氧化精炼、硫化精炼、氯化精炼、碱性精炼)3.湿法冶金:利用溶剂的化学作用进行氧化、还原、中和等反应对金属提取和分离。

工艺过程:离子浸出、固液分离、溶液净化、金属或化合物提取。

浸出:借助浸出剂提取金属,酸浸、碱浸、盐浸;浸出率、选择性好、易于过滤回收。

固液分离是将浸出液和残渣分离,残渣中的金属离子和冶金溶剂回收,方法分为沉降分离法和过滤分离法。

溶液净化是对浸出液净化富集。

用电解、化学置换、加压氢还原来提取金属或化合物。

4.电冶金:利用电能从矿石或其他原料中提取、回收、精炼金属的冶金过程。

电热冶金:加热速度快、调温准确、温度高、金属烧损少;但是耗能多。

电化学冶金:分为电解精炼(粗金属做阳极)、电解提取(不溶电极做阳极)、水溶液电解(金属的浸出液为电解液)、熔盐电解(熔盐作为电解质)。

1.2钢铁的冶炼钢铁的实质为:钢和生铁的统称。

钢铁的基本成分都是铁,差别仅在于碳的含量不同。

一、钢铁冶金过程的热力学1.铁矿石:铁的氧化物+脉石炼铁的任务:使铁从铁的氧化物中还原;并使还原出的铁与脉石分离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.工程材料按属性分为:金属材料、陶瓷材料、碳材料、高分子材料、复合材料、半导体材料、生物材料。

2.零维材料:是指亚微米级和纳米级(1—100nm)的金属或陶瓷粉末材料,如原子团簇和纳米微粒材料;一维材料:线性纤维材料,如光导纤维;二维材料:就是二维薄膜状材料,如金刚石薄膜、高分子分离膜;三维材料:常见材料绝大多数都是三位材料,如一般的金属材料、陶瓷材料等;3.工程材料的使用性能就是在服役条件下表现出的性能,包括:强度、塑性、韧性、耐磨性、耐疲劳性等力学性能,耐蚀性、耐热性等化学性能,及声、光、电、磁等功能性能;工程材料按使用性能分为:结构材料和功能材料。

4.金属材料中原子之间主要是金属键,其特点是无方向性、无饱和性;陶瓷材料中的结合键主要是离子键和共价键,大多数是离子键,离子键赋予陶瓷材料相当高的稳定性;高分子材料的结合键是共价键、氢键和分子键,其中,组成分子的结合键是共价键和氢键,而分子间的结合键是范德瓦尔斯键。

尽管范德瓦尔斯键较弱,但由于高分子材料的分子很大,所以分子间的作用力也相应较大,这使得高分子材料具有很好的力学性能;半导体材料中主要是共价键和离子键,其中,离子键是无方向性的,而共价键则具有高度的方向性。

5.晶胞:是指从晶格中取出的具有整个晶体全部几何特征的最小几何单元;在三维空间中,用晶胞的三条棱边长a、b、c(晶格常数)和三条棱边的夹角α、β、γ这六个参数来描述晶胞的几何形状和大小。

6.晶体结构主要分为7个晶系、14种晶格;7.晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[uvw];晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为(hkl)。

8.实际晶体的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷,其中体缺陷有气孔、裂纹、杂质和其他相。

9.实际金属结晶温度Tn总要偏低理论结晶温度T0一定的温度,结晶方可进行,该温差ΔT=T0—Tn即称为过冷度;过冷度越大,形核速度越快,形成的晶粒就越细。

10.通过向液态金属中添加某些符合非自发成核条件的元素或它们的化合物作为变质剂来细化晶粒,就叫变质处理;如钢水中常添加Ti、V、Al等来细化晶粒。

11.加工硬化是指随着塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度明显提高,塑性和韧性明显降低,也即形变强化;加工硬化是一种重要的强化手段,可以提高金属的强度并使金属在冷加工中均匀变形;但金属强度的提高往往给进一步的冷加工带来困难,必须进行退火处理,增加了成本。

12.金属学以再结晶温度区分冷加工和热加工:在再结晶温度以下进行的塑性变形加工是冷加工,在再结晶温度以上进行的塑性变形加工即热加工;热加工可以使金属中的气孔、裂纹、疏松焊合,使金属更加致密,减轻偏析,改善杂质分布,明显提高金属的力学性能。

13.再结晶是指随加热温度的提高,加工硬化现象逐渐消除的阶段;再结晶的晶粒度受加热温度和变形度的影响。

14.相:是指合金中具有相同化学成分、相同晶体结构并由界面与其他部分隔开的均匀组成部分;合金相图是用图解的方法表示合金在极其缓慢的冷却速度下,合金状态随温度和化学成分的变化关系;固溶体:是指在固态下,合金组元相互溶解而形成的均匀固相;金属间化合物:是指俩组元组成合金时,产生的晶格类型和特性完全不同于任一组元的新固相。

15.固溶强化:是指固溶体的晶格畸变增加了位错运动的阻力,使金属的塑性和韧性略有下降,强度和硬度随溶质原子浓度增加而略有提高的现象;弥散强化:是指以固溶体为主的合金辅以金属间化合物弥散分布,以提高合金整体的强度、硬度和耐磨性的强化方式。

16.匀晶反应:是指两组元在液态和固态都能无限互溶,随温度的变化,形成成分均匀的液相、固相或满足杠杆定律的中间相的固溶体的反应;共晶反应:是指由一种液态在恒温下同时结晶析出两种固相的反应;包晶反应:是指在结晶过程先析出相进行到一定温度后,新产生的固相大多包围在已有的固相周围生成的的反应;共析反应:一定温度下,由一定成分的固相同时结晶出一定成分的另外两种固相的反应。

17.铁素体(F):碳溶于α-Fe中形成的体心立方晶格的间隙固溶体;金相在显微镜下为多边形晶粒;铁素体强度和硬度低、塑性好,力学性能与纯铁相似,770℃以下有磁性;奥氏体(A):碳溶于γ-Fe中形成的面心立方晶格的间隙固溶体;金相显微镜下为规则的多边形晶粒;奥氏体强度和硬度不高,塑性好,容易压力加工,没有磁性;渗碳体(Fe3C):含碳量为6.69%的复杂铁碳间隙化合物;渗碳体硬度很高、强度极低、脆性非常大;珠光体(P):铁素体和渗碳体的共析混合物;珠光体强度较高,韧性和塑性在渗碳体和铁素体之间;莱氏体(Ld):奥氏体和渗碳体的共晶混合物;莱氏体中渗碳体较多,脆性大、硬度高、塑性很差。

18.包晶反应:1495℃时发生,有δ-Fe(C=0.10%)、γ-Fe(C=0.17%或0.18%,图中J点)、液相(C=0.53%或0.51%,图中B点)三相共存;δ-Fe(固体)+L(液体)=γ-Fe(固体)共晶反应:1148℃时发生,有A(C=2.11%)、Fe3C(C=6.69%)、液相L(C=4.3%)三相共存;Ld→Ae+Fe3Cf(恒温1148℃)共析反应:727℃时发生,有A(C=0.77%)、F(C=0.0218%)、Fe3C(C=6.69%)三相共存;As→Fp+Fe3Ck(恒温727℃)19.碳钢是指含碳量在0.02%—2.11%的铁碳合金;生铁是指含碳量大于2%的铁碳合金;铸铁是指含碳量大于2.11%的铁碳合金,其中碳多以石墨形式存在。

20.刚的热处理:就是将固态金属以一定的升温速度加热到既定的温度,保温一定时间,在以一定的降温速度冷却的工艺方法;基本类型及其目的:①退火、正火:消除内应力,改善组织,提高性能,为下道工序做准备;②淬火:获得马氏体组织以提高刚的强度和硬度;③回火:稳定组织,减少内应力,降低脆性,调整淬火工件的硬度。

21.铁碳合金相图如右:C:共晶点S:共析点E:碳在γ-Fe中溶解度最大的点P:碳在铁素体中溶解度最大的点N:δ-Fe与γ-Fe的同素异构转变点G:γ-Fe与α-Fe的同素异构转变点SE线:奥氏体对碳的溶解度曲线PSK线:共析线,冷却到该线温度是开始发生共析反应生成珠光体。

GS线:铁素体开始析出线PQ线:铁素体析出渗碳体的开始线22.Fe-Fe3C加热时相应相点变化如右图:完全退火:图中Ac3以上30℃左右;原理是通过完全重结晶获得细化晶粒,并降低硬度,改善切削性能消除内应力;等温退火:图中Ac3以上;原理是加热保温后很快冷却到珠光体区的某温度,保持等温以使奥氏体转变为珠光体;球化退火:图中Ac1以上30℃左右;原理是通过加热保温后随炉冷却到600℃后出炉冷却,是二次渗碳体和珠光体中的渗碳体球状化;去应力退火:图中低于Ac1处500-650℃;原理是使钢发生应力松弛,部分弹性变形变为塑性变形,使内应力消除;扩散退火:图中Ac3以上200℃;原理是通过长时间保温,使碳和合金元素充分扩散,消除偏析,减少组织成分的不均匀;正火:图中Ac3以上30-50℃(亚共析钢)或Accm以上30-50℃(过共析钢);原理是通过得到索氏体组织改善钢的组织结构性能。

23.如右图,共析钢等温转变曲线(图中实线)和连续转变曲线(图中虚线)及转变产物;24.表面淬火的目的是为了在钢件表面得到马氏体组织;常用方法:感应加热淬火、火焰加热淬火。

25.常用的化学热处理方法:渗碳、氮化、碳氮共渗及多元共渗、渗铬、渗硼等。

26.非碳化物元素有Si、Ni、Cu、Al、Co,它们可以增大碳在奥氏体中的扩散速度,加快奥氏体的形成;27.强碳化物形成元素Ti、Zr、Nb、V都显著阻止晶粒长大,对合金起到细化晶粒作用。

28.中等碳化物形成元素W、Mo、Cr具有中等阻止晶粒长大作用。

29.弱碳化物形成元素Mn、Fe少部分溶于渗碳体中,大部分溶于铁素体和奥氏体。

30.渗碳体、合金渗碳体、合金碳化物、特殊碳化物稳定性和硬度依次增高。

31.合金元素Si、Mn对铁素体固溶强化效果最为显著;合金元素Ni可以减少钢的冷脆性,并增加塑性和韧性。

32.奥氏体稳定化元素有Mn、Ni、Co、C、N、Cu,其中Ni、Mn被称为完全扩大γ相区元素。

33.铁素体稳定化元素有Cr、Mo、V、W、Ti、Si、Al、B、Nb,其中Cr、Ti、Si被称为完全封闭γ相区元素。

34.根据钢的化学成分可借助Schaeffler图来近似判别钢的组织类别,可以根据镍当量和铬当量质量分数来查图得出,其中镍当量计算来源于元素Ni、C、N、Mn和Cu 的贡献,铬当量计算来源于元素Cr、Si、Mo、Nb和Ti的贡献。

35.除Co外,几乎所有合金元素都会增大过冷奥氏体的稳定性,使C曲线右移,提高了钢的淬透性。

36.除Co、Si、Al之外,大多数合金元素会降低Ms和Mf点,使钢中残余奥氏体增加,从而降低了钢的硬度、抗疲劳性和耐磨性。

解决的方法是冷处理或多次回火。

37.合金元素会提高回火稳定性,即在同一温度下回火,合金钢的硬度和强度比碳钢高。

合金在450°~650°温度范围内容易出现高温回火脆性,可以通过回火快速冷却或加入元素W、Mo避免或消除这类脆性。

38.钢中的杂质主要有Mn、Si、S、P,其中杂质S使钢材产生热脆,杂质P使钢材产生冷脆。

39.碳钢的分类表、40.合金钢的分类表41.硬度值类:布氏硬度(HBS、HBW)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV)42.弹性模量:在弹性变形范围内,当应力低于比例极限时,应力与应变呈线性关系,即σ=Εε,上式称为虎克定律,式中E被称为弹性模量。

材料处于弹必状态下,其应力与应变成正比;这部分应力-应变曲线通常呈直线,E是曲线的斜率。

E值反映材料的刚度,E值越大,则刚度越高,即在一定应力下所产生的弹性应变越小。

43.奥氏体不锈钢中加入18%以上的Cr、9%以上的Ni的作用是什么?加Ti的作用是什么,除了加Ti,我们还有别的方法达到同样的甚至更好的目的吗?答:加Cr的作用是提高钢基体的电极电位,减小合金腐蚀率;Ni和Cr同时加入作为不锈钢的主要合金化元素,使不锈钢既耐氧化性腐蚀,也对不太强的还原性介质具有一定耐蚀性。

Ni还可使不锈钢获得具有优良冷热加工性能、可焊性的奥氏体组织;加Ti的作用是优先与碳形成TiC等稳定化合物,取代了Cr的碳化物,从而避免了晶界Cr的碳化物形成带来的Cr的贫化,有效地提高了抗不锈钢晶间腐蚀性能。

其他方法:降低碳含量,添加稳定剂(如加Ti、Nb等),进行固溶化处理等。

44.钢号的综合分类和用途。

碳钢:①普通碳素结构钢②优质碳素结构钢③碳素工具钢;合金钢:①合金结构钢②合金工具钢③特殊性能钢(详情参见课本P53)45.屈服点:呈现屈服现象的金属材料,试样在试验过程中力不增加(保持恒定)仍能继续伸长的应力,称为屈服点,即σs。

相关文档
最新文档