多元统计分析练习题

合集下载

统计师职称考试多元统计分析与应用考试 选择题 64题

统计师职称考试多元统计分析与应用考试 选择题 64题

1. 在多元统计分析中,主成分分析的主要目的是:A. 减少变量数量B. 增加变量数量C. 提高模型复杂度D. 降低模型复杂度2. 下列哪种方法不属于多元回归分析?A. 逐步回归B. 岭回归C. 主成分回归D. 判别分析3. 在因子分析中,公因子的数量通常是如何确定的?A. 根据经验B. 根据数据特征C. 根据特征值大于1的原则D. 根据样本数量4. 多元统计分析中的聚类分析主要用于:A. 数据降维B. 数据分类C. 数据预测D. 数据可视化5. 在判别分析中,Fisher判别法的主要思想是:A. 最大化类间距离B. 最小化类内距离C. 最大化类内距离D. 最小化类间距离6. 下列哪种统计方法适用于处理非正态分布数据?A. 多元回归分析B. 主成分分析C. 因子分析D. 非参数统计方法7. 在多元统计分析中,协方差矩阵的作用是:A. 描述变量间的线性关系B. 描述变量间的非线性关系C. 描述变量间的独立关系D. 描述变量间的随机关系8. 下列哪种方法可以用于处理多重共线性问题?A. 逐步回归B. 岭回归C. 主成分回归D. 以上都是9. 在多元统计分析中,偏相关系数的定义是:A. 控制其他变量后,两个变量间的相关性B. 控制其他变量后,两个变量间的独立性C. 控制其他变量后,两个变量间的依赖性D. 控制其他变量后,两个变量间的随机性10. 下列哪种方法不属于时间序列分析?A. 移动平均法B. 指数平滑法C. 主成分分析D. 自回归模型11. 在多元统计分析中,典型相关分析的主要目的是:A. 分析两个变量集之间的相关性B. 分析两个变量集之间的独立性C. 分析两个变量集之间的依赖性D. 分析两个变量集之间的随机性12. 下列哪种方法可以用于处理缺失数据?A. 删除含有缺失数据的样本B. 使用均值填充C. 使用回归模型预测缺失值D. 以上都是13. 在多元统计分析中,马氏距离的定义是:A. 基于协方差矩阵的距离度量B. 基于相关矩阵的距离度量C. 基于方差矩阵的距离度量D. 基于标准差矩阵的距离度量14. 下列哪种方法不属于非线性降维方法?A. 主成分分析B. 核主成分分析C. 局部线性嵌入D. 等距映射15. 在多元统计分析中,偏最小二乘回归的主要优点是:A. 处理多重共线性问题B. 处理非正态分布数据C. 处理缺失数据D. 处理高维数据16. 下列哪种方法可以用于处理高维数据?A. 主成分分析B. 因子分析C. 偏最小二乘回归D. 以上都是17. 在多元统计分析中,核方法的主要思想是:A. 将数据映射到高维空间B. 将数据映射到低维空间C. 将数据映射到同维空间D. 将数据映射到随机空间18. 下列哪种方法不属于分类方法?A. 判别分析B. 逻辑回归C. 支持向量机D. 主成分分析19. 在多元统计分析中,支持向量机的主要优点是:A. 处理线性可分问题B. 处理线性不可分问题C. 处理非线性可分问题D. 处理非线性不可分问题20. 下列哪种方法可以用于处理不平衡数据集?A. 过采样B. 欠采样C. 合成少数类过采样技术D. 以上都是21. 在多元统计分析中,随机森林的主要优点是:A. 处理高维数据B. 处理缺失数据C. 处理不平衡数据集D. 以上都是22. 下列哪种方法不属于集成学习方法?A. 随机森林B. 梯度提升机C. 自适应提升D. 主成分分析23. 在多元统计分析中,梯度提升机的主要思想是:A. 逐步构建模型B. 逐步优化模型C. 逐步简化模型D. 逐步复杂化模型24. 下列哪种方法可以用于处理时间序列数据?A. 移动平均法B. 指数平滑法C. 自回归模型D. 以上都是25. 在多元统计分析中,时间序列分析的主要目的是:A. 预测未来值B. 分析历史值C. 分析周期性D. 以上都是26. 下列哪种方法不属于时间序列预测方法?A. 移动平均法B. 指数平滑法C. 自回归模型D. 主成分分析27. 在多元统计分析中,移动平均法的主要优点是:A. 处理趋势数据B. 处理季节性数据C. 处理周期性数据D. 处理随机性数据28. 下列哪种方法可以用于处理季节性数据?A. 移动平均法B. 指数平滑法C. 季节性分解D. 以上都是29. 在多元统计分析中,指数平滑法的主要优点是:A. 处理趋势数据B. 处理季节性数据C. 处理周期性数据D. 处理随机性数据30. 下列哪种方法可以用于处理周期性数据?A. 移动平均法B. 指数平滑法C. 季节性分解D. 以上都是31. 在多元统计分析中,季节性分解的主要目的是:A. 分析趋势B. 分析季节性C. 分析周期性D. 分析随机性32. 下列哪种方法不属于时间序列分解方法?A. 移动平均法B. 指数平滑法C. 季节性分解D. 主成分分析答案部分(1-32题)1. A2. D3. C4. B5. A6. D7. A8. D9. A10. C11. A12. D13. A14. A15. A16. D17. A18. D19. D20. D21. D22. D23. B24. D25. D26. D27. A28. D29. A30. D31. B32. D以下是后32题:选择题部分(33-64题)33. 在多元统计分析中,自回归模型的主要目的是:A. 预测未来值B. 分析历史值C. 分析周期性D. 以上都是34. 下列哪种方法不属于自回归模型?A. ARIMAB. SARIMAC. VARD. 主成分分析35. 在多元统计分析中,ARIMA模型的主要优点是:A. 处理趋势数据B. 处理季节性数据C. 处理周期性数据D. 处理随机性数据36. 下列哪种方法可以用于处理多变量时间序列数据?A. ARIMAB. SARIMAC. VARD. 以上都是37. 在多元统计分析中,VAR模型的主要目的是:A. 分析多变量时间序列数据B. 预测多变量时间序列数据C. 分析多变量时间序列数据的周期性D. 以上都是38. 下列哪种方法不属于时间序列模型?A. ARIMAB. SARIMAC. VARD. 主成分分析39. 在多元统计分析中,SARIMA模型的主要优点是:A. 处理趋势数据B. 处理季节性数据C. 处理周期性数据D. 处理随机性数据40. 下列哪种方法可以用于处理非线性时间序列数据?A. ARIMAB. SARIMAC. VARD. 非线性自回归模型41. 在多元统计分析中,非线性自回归模型的主要目的是:A. 预测未来值B. 分析历史值C. 分析周期性D. 以上都是42. 下列哪种方法不属于非线性时间序列模型?A. 非线性自回归模型B. 神经网络模型C. 支持向量机模型D. 主成分分析43. 在多元统计分析中,神经网络模型的主要优点是:A. 处理趋势数据B. 处理季节性数据C. 处理周期性数据D. 处理随机性数据44. 下列哪种方法可以用于处理复杂时间序列数据?A. 神经网络模型B. 支持向量机模型C. 随机森林模型D. 以上都是45. 在多元统计分析中,支持向量机模型的主要目的是:A. 预测未来值B. 分析历史值C. 分析周期性D. 以上都是46. 下列哪种方法不属于复杂时间序列模型?A. 神经网络模型B. 支持向量机模型C. 随机森林模型D. 主成分分析47. 在多元统计分析中,随机森林模型的主要优点是:A. 处理趋势数据B. 处理季节性数据C. 处理周期性数据48. 下列哪种方法可以用于处理高维时间序列数据?A. 神经网络模型B. 支持向量机模型C. 随机森林模型D. 以上都是49. 在多元统计分析中,高维时间序列数据的主要特点是:A. 数据量大B. 数据维度高C. 数据复杂度高D. 以上都是50. 下列哪种方法不属于高维时间序列数据处理方法?A. 神经网络模型B. 支持向量机模型C. 随机森林模型D. 主成分分析51. 在多元统计分析中,主成分分析在高维时间序列数据处理中的主要作用是:A. 数据降维B. 数据分类C. 数据预测D. 数据可视化52. 下列哪种方法可以用于处理高维时间序列数据的缺失值?A. 删除含有缺失数据的样本B. 使用均值填充C. 使用回归模型预测缺失值D. 以上都是53. 在多元统计分析中,高维时间序列数据的缺失值处理的主要目的是:A. 提高数据完整性B. 提高数据准确性C. 提高数据可靠性D. 以上都是54. 下列哪种方法不属于高维时间序列数据的缺失值处理方法?A. 删除含有缺失数据的样本B. 使用均值填充C. 使用回归模型预测缺失值D. 主成分分析55. 在多元统计分析中,高维时间序列数据的可视化主要目的是:B. 提高数据分析性C. 提高数据预测性D. 以上都是56. 下列哪种方法可以用于高维时间序列数据的可视化?A. 散点图B. 热力图C. 平行坐标图D. 以上都是57. 在多元统计分析中,高维时间序列数据的可视化方法的主要优点是:A. 提高数据理解性B. 提高数据分析性C. 提高数据预测性D. 以上都是58. 下列哪种方法不属于高维时间序列数据的可视化方法?A. 散点图B. 热力图C. 平行坐标图D. 主成分分析59. 在多元统计分析中,高维时间序列数据的预测主要目的是:A. 提高数据理解性B. 提高数据分析性C. 提高数据预测性D. 以上都是60. 下列哪种方法可以用于高维时间序列数据的预测?A. 神经网络模型B. 支持向量机模型C. 随机森林模型D. 以上都是61. 在多元统计分析中,高维时间序列数据的预测方法的主要优点是:A. 提高数据理解性B. 提高数据分析性C. 提高数据预测性D. 以上都是62. 下列哪种方法不属于高维时间序列数据的预测方法?A. 神经网络模型B. 支持向量机模型C. 随机森林模型D. 主成分分析63. 在多元统计分析中,高维时间序列数据的分类主要目的是:A. 提高数据理解性B. 提高数据分析性C. 提高数据预测性D. 以上都是64. 下列哪种方法可以用于高维时间序列数据的分类?A. 神经网络模型B. 支持向量机模型C. 随机森林模型D. 以上都是答案部分(33-64题)33. D34. D35. A36. D37. D38. D39. B40. D41. D42. D43. D44. D45. D46. D47. D48. D49. D50. D51. A52. D53. D54. D55. D56. D57. D58. D59. C60. D61. C62. D63. D64. D。

多元统计分析模拟考题及答案

多元统计分析模拟考题及答案

一、判断题( 对 )112(,,,)p X X X X '=的协差阵一定是对称的半正定阵( 对 )2标准化随机向量的协差阵与原变量的相关系数阵相同。

( 对)3典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。

( 对 )4多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据分析方法。

( 错)5),(~),,,(21∑'=μp p N X X X X ,,X S 分别是样本均值和样本离差阵,则,SX n分别是,μ∑的无偏估计。

( 对)6),(~),,,(21∑'=μp p N X X X X ,X 作为样本均值μ的估计,是无偏的、有效的、一致的。

( 错)7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化( 对)8因子载荷阵()ij A a =中的ij a 表示第i 个变量在第j 个公因子上的相对重要性。

( 对 )9 判别分析中,若两个总体的协差阵相等,则Fisher 判别与距离判别等价。

(对)10距离判别法要求两总体分布的协差阵相等,Fisher 判别法对总体的分布无特定的要求。

二、填空题1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、样本相关系数矩阵.2、设∑是总体1(,,)m X X X =的协方差阵,∑的特征根(1,,)i i m λ=与相应的单位正交化特征向量12(,,,)i i i im a a a α=,则第一主成分的表达式是11111221m my a X a X a X =+++,方差为1λ。

3设∑是总体1234(,,,)X X X X X =的协方差阵,∑的特征根和标准正交特征向量分别为:'112.920(0.1485,0.5735,0.5577,0.5814)U λ==--- '221.024(0.9544,0.0984,0.2695,0.0824)U λ==-'330.049(0.2516,0.7733,0.5589,0.1624)U λ==--'440.007(0.0612,0.2519,0.5513,0.7930)U λ==--,则其第二个主成分的表达式是212340.95440.09840.26950.0824y X X X X =-++,方差为1.0244. 若),(~)(∑μαp N X ,(n ,,2,1 =α)且相互独立,则样本均值向量X 服从的分布是(,)p N nμ∑.5.设(,),1,2,,16i p X N i μ∑=,X 和A 分别是正态总体的样本均值和样本离差阵,则2115[4()][4()]T X A X μμ-'=--服从 215(15,)(,)16p T p F p n p p--或6设3(,),1,2,,10i X N i μ∑=,则101()()i i i W X X μμ='=--∑服从3(10,)W ∑7.设随机向量123(,,)X X X X '=,且协差阵4434923216-⎛⎫ ⎪∑=-- ⎪ ⎪-⎝⎭,则其相关矩阵R =231382113631186⎛⎫-⎪ ⎪ ⎪-- ⎪ ⎪ ⎪- ⎪⎝⎭8. 设122(,)(,),X X X N μ=∑,其中212(,),ρμμμσρ⎛⎫=∑=⎪⎝⎭11,则1212,)X X X X +-=Cov(09设X,Y 是来自均值向量为μ,协差阵为∑的总体G 的两个样品,则X ,Y 间的马氏平方距离2(,)d X Y =1()()X Y X Y -'-∑-10设X,Y 是来自均值向量为μ,协差阵为∑的总体G 的两个样品,则X 与总体G 的马氏平方距离2(,)d X G =1()()X X μμ-'-∑-11设随机向量123(,,)X X X X '=的相关系数矩阵通过因子分析分解为121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭则1X 的共性方差21h = 0.9342 =0.872 ,其统计意义是:描述了全部公因子对变量X1的总方差所作的贡献,称为变量X1的共同度,反映了公共因子对变量X1的影响程度。

多元统计分析模拟试题

多元统计分析模拟试题

多元统计分析模拟试题Tomorrow Will Be Better, February 3, 2021多元统计分析模拟试题两套:每套含填空、判断各二十道A卷1)判别分析常用的判别方法有距离判别法、贝叶斯判别法、费歇判别法、逐步判别法;2)Q型聚类分析是对样品的分类,R型聚类分析是对变量_的分类;3)主成分分析中可以利用协方差矩阵和相关矩阵求解主成分;4)因子分析中对于因子载荷的求解最常用的方法是主成分法、主轴因子法、极大似然法5)聚类分析包括系统聚类法、模糊聚类分析、K-均值聚类分析6)分组数据的Logistic回归存在异方差性 ,需要采用加权最小二乘估计7)误差项的路径系数可由多元回归的决定系数算出,他们之间的关系为P e=√1−R28)最短距离法适用于条形的类,最长距离法适用于椭圆形的类;9)主成分分析是利用降维的思想,在损失很少的信息前提下,把多个指标转化为几个综合指标的多元统计方法;10)在进行主成分分析时,我们认为所取的mm<p,p为所有的主成分个主成分的累积贡献率达到85%以上比较合适;11)聚类分析的目的在于使类内对象的同质性最大化和类间对象的异质性最大化12)y1是随机变量,并且有y1~N(0,1),那么y12服从卡方分布;13)在对数线性模型中,要先将概率取对数,再分解处理,公式:ηij=lnp ij=lnp i+,i,j=1,2lnp.j+ln p ijp j p i14)将每个原始变量分解为两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子15)判别分析的最基本要求是分组类型在两组之上,每组案例的规模必须至少一个以上,解释变量必须是可测量的16)当被解释变量是属性变量而解释变量是度量变量时判别分析是合适的统计分析方法17)多元正态分布是一元正态分布的推广18)多元分析的主要理论都是建立在多元正态总体基础上的,多元正态分布是多元分析的基础19)因子分析中,把变量表示成各因子的线性组合,而主成分分析中,把主成分表示成各变量的线性组合;20)统计距离包括欧氏距离和马氏距离两类1)因子负荷量是指因子结构中原始变量与因子分析时抽取出的公共因子的相关程度;√ p1472)主成分分析是将原来较少的指标扩充为多个新的综合指标的多元统计方法;×p243)判别分析其被解释变量为属性变量,解释变量是度量变量;√p904)Logistic回归对于自变量有要求,度量变量或者非度量变量都不可以进行回归;× p2205)在系统聚类过程中,聚合系数越大,合并的两类差异越小;× P596)spss只能对单变量进行正态性检验; √7)Logistic回归中的估计参数b0,b1,b2,… ,b n)反应优势比率的变化,如果b i是正的,它的反对数值指数一定小于1; 2288)密度函数可以是负的;× p39)计算典型函数推导的典型权重有较小的不稳定性; × p20510)10、对应分析可以用图形的方式提示变量之间的关系,同时也可以给出具体的统计量来度量这种相关关系,使研究者在作用对应分析时得到主观性较强的结论;×p17911)多元检验具有概括和全面考察的特点,容易发现各指标之间的关系和差异;×p2512)名义尺度的指标用一些类来表示,这些类之间有等级关系,但没有数量关系;×p4313) k-均值法是一种非谱系聚类法√p4414)一般而言,不同聚类方法的结果不完全相同√p615)判别分析最基本要求是分组类型在两组以上且解释变量必须是可测量的√p9016)非谱系聚类法是把变量聚集成k个类的集合;×p6417)主成分的数目大大少于原始变量的数目;√p11418)因子分析只能用于研究变量之间的相关关系;×p14319)聚类分析中的分类方法中,系统聚类法和分解法相似相反;×P4320)聚类分析的目的就是把相似的研究对象归类;√P42B卷一、填空题1. 因子分析中因子载荷系数a ij 的统计意义是第i 个变量与第j 个公因子的相关系数;P 146)2. 类平均法的两种形式为组间联结法和组内联结法 P563. 设3~(,),i 1,2,10.i x x μ∑=⋅⋅⋅则101()~i i W x μ==-∑3(10)W ∑, p54.聚类分析根据实际的需要可能有两个方向,一是对样品,一是对指标聚类;P435. 模糊聚类分析方法中对原始数据进行变换,变换方法通常有标准化变换,极差变换,对数变换 p63()1~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ∑==∑=+-6、设其中则Cov(,)=07.非谱系聚类法是把样品聚集成K 个类的集合;P648.因子分析的基本思想是根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组间的相关性较低;P1429.两总体均值的比较问题也可分为两总体协方差阵相等与两总体协方差不相等两种情形;P2510.因子旋转分为正交旋转和斜交旋转;P15011.Q 型聚类是指对样品进行聚类,R 型聚类是指对指标变量进行聚类;42页12. 一元回归的数学模型是: y =β0+β1x +ε,多元回归的数学模型是:_y =β0+β1x 1+β2x 2+ βp x p +ε_;13.变量的类型按尺度划分有间隔尺度、有序尺度、名义尺度_. 43页 14. 判别分析是判别样品所属类型的一种统计方法,常用的判别方法有距离判别法、Fisher 判别法、Bayes 判别法、逐步判别法;80页15若12112~(,),,~(,),0,p p p W n n W n A A ∑≥∑∑>,且A 1和A 2相互独立,则112~AA A+12p n n Λ(,,). ;19页16. 对应分析是将R 型因子分析和Q 型因子分析结合起来进行的统计分析方法;170页17. 典型相关分析是研究两组变量之间相关分析的一种多元统计方法;194页18.判别分析适用于被解释变量是非度量变量的情形; 19. 主成分分析是利用降维的思想,在损失很少信息的前提下,把多个指标转化为几个综合指标的多元统计方法;113页20. 设i x ,1,2,16i =⋅⋅⋅是来自多元正态总体(,)p N μ∑,X 和A 分别为正态总体(,)p N μ∑的样本均值和样本离差阵,则2115[4(X )][4(X )]~T A μμ-'=--2(15P)T ,二、判断题1、 对于任何随机向量X='21)X ...,X X p ,,(来说,其协方差阵∑都是对称阵,同时总是非负定的; T P52、 能够体现各个变量在变差大小上的不同,以及有时存在的相关性还要求距离与各变量所用的单位无关,这种距离是欧式距离; F P73、 最长距离法中,选择最小的距离作为新类与其他类之间的距离,然后将类间距离最小的两类进行合并,一直合并到只有一类为止; F P554、 当总体21G G 和为正态总体且协方差相等时,选用马氏距离; T P905、 进行主成分分析的目的之一是减少变量的个数,所以一般不会去p 个主成分,而是取mm<p 个主成分; T P1196、 第k 个主成分k Y 与原始变量i X 的相关系数 k Y ,i X 称为因子负荷量;T P1207、 F=’),,(m 21F ......,F F m<p 是不可观测的变量,其均值向量EF=0,协方差矩阵covF=I,即向量F 的各分量不是相互独立的; F P1458、 每个典型函数都包括一对变量,通常一个代表自变量,另一个代表因变量;T P2029、 分组数据的Logistic 回归不仅适用于大样本的分组数据,对小样本的未分组数据也适用;F P23210、 一个未知参数可以由显变量的协方差矩阵的一个或多个元素的代数函数来表达,就称这个为参数可识别; T P26411、 随机向量 的协方差阵一定是对称的半正定阵;T P512、 标准化随机变量的协方差阵与原变量的相关系数相同; T P513、 对应分析反应的是列变量与行变量的交叉关系; F P17014、 若一个随机向量的任何边缘分布均为正态,则它是多元正态分布;T p1015、特征函数描述空间的元素之间是否有关联,而隶属度描述了元素之间的关联是多少; T p6216、非谱系聚类法是把变量聚集成K个类的集合; F p6417、在对因素A和因素B进行对应分析之前没有必要进行独立性检验; Tp17318、系统聚类法中的“离差平方和法”的基本思想来源于如果类分得正确,同类样品的离差平方和应该较小,类与类之间的离差平方和应该较大;T p5719、距离判别法对总体的分布没有特定的要求; T p9020、 Wilks统计量可以化成T2统计量但是化不成F统计量; F p18。

多元统计分析SPSS实验练习(2016)

多元统计分析SPSS实验练习(2016)

多元统计分析SPSS 实验练习1、某超市经销十种品牌的饮料,其中有四种畅销,三种滞销,三种平销。

下表是这十种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分⑵ 现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味的评分平均为8,信任评分平均为5,试预测该饮料的销售情况。

2、从胃癌患者、萎缩性胃炎患者和非胃炎患者中分别抽取五个病人进行四项生化指标的化验:血清铜蛋白()1X 、蓝色反应()2X 、尿吲哚乙酸()3X 和中性硫化物()4X ,数据见下表。

试用距离判别法建立判别函数,并根据此判别函数对原3、映每人平均生活消费支出情况的六个经济指标。

试通过统计分析软件用不同的方4、下表是2003年我国省会城市和计划单列市的主要经济指标:人均GDP 1x (元)、人均工业产值2x (元)、客运总量3x (万人)、货运总量4x (万吨)、地方财政预算内收入5x (亿元)、固定资产投资总额6x (亿元)、在岗职工占总人口的比例7x (%)、在岗职工人均工资额8x (元)、城乡居民年底储蓄余额9x (亿元)。

试通过统计分析软件进行系统聚类分析,并比较何种方法与人们观察到的实际情况较资料来源:《中国统计年鉴2004》5、下表是我国1991-2003年的固定资产投资价格指数,试对这段时期进行分段,试用主成10、 某年级学生的期末考试中,有的课程闭卷考试,有的课程开卷考试。

44名试对闭卷(1X ,2X )和开卷(3X ,4X ,5X )两组变量进行典型相关分析。

多元统计分析练习题

多元统计分析练习题

多元统计分析练习题一、主成分练习题填空题1.主成分分析是通过适当的变量替换,使新变量成为原变量的___________,并寻求_________的一种方法。

2.主成分分析的基本思想是______________。

3.主成分的协方差矩阵为_________矩阵。

4.主成分表达式的系数向量是_______________的特征向量。

5.原始变量协方差矩阵的特征根的统计含义是________________。

6.原始数据经过标准化处理,转化为均值为____,方差为____的标准值,且其________矩阵与相关系数矩阵相等。

7.因子载荷量的统计含义是_____________________________。

8.样本主成分的总方差等于_____________。

9.变量按相关程度为,在__________程度下,主成分分析的效果较好。

10.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为________________。

11.SPSS 中主成分分析采用______________命令过程。

计算题1.设三个变量(x1,x2,x3)的样本协方差矩阵为:2121002222222<<−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡r s rs r s s r s r s s 试求主成分及每个主成分的方差贡献率。

2.在一项研究中,测量了376只鸡的骨骼,并利用相关系数矩阵进行主成分分析,见下表: Y1 Y2 Y3 Y4 Y5 Y6 头长x1 头宽x2 肱骨x3 尺骨x4 股骨x5 胫骨x6 0.35 0.33 0.44 0.44 0.43 0.44 0.53 0.70 0.19 0.25 0.28 0.22 0.76 -0.64 -0.05 -0.02 -0.06 -0.05 -0.05 0.00 0.53 0.48 0.51 0.48 -0.04 0.00 0.19 0.15 0.67 0.70 0.00 0.04 0.59 0.63 0.48 0.15 特征值4.570.710.410.170.080.06解释6个主成分的实际意义。

多元统计分析习题与答案

多元统计分析习题与答案

多元统计分析习题与答案多元统计分析是一种在社会科学研究中广泛应用的方法,它通过同时考虑多个变量之间的关系,帮助研究者更全面地理解和解释现象。

在本文中,我将分享一些多元统计分析的习题和答案,希望能够帮助读者更好地掌握这一方法。

习题一:相关分析假设你正在研究一个学生的学习成绩和他们每天花在学习上的时间之间的关系。

你收集了100个学生的数据,学习成绩用分数表示,学习时间用小时表示。

以下是你的数据:学习成绩(X):75, 80, 85, 90, 95, 70, 65, 60, 55, 50学习时间(Y):5, 6, 7, 8, 9, 4, 3, 2, 1, 0请计算学习成绩和学习时间之间的相关系数,并解释其含义。

答案一:首先,我们需要计算学习成绩和学习时间之间的协方差和标准差。

根据公式,协方差可以通过以下公式计算:协方差= Σ((X - X平均) * (Y - Y平均)) / (n - 1)其中,X和Y分别表示学习成绩和学习时间,X平均和Y平均表示它们的平均值,n表示样本数量。

标准差可以通过以下公式计算:标准差= √(Σ(X - X平均)² / (n - 1))根据以上公式,我们可以得出学习成绩和学习时间之间的协方差为-22.5,标准差分别为18.03和2.87。

然后,我们可以通过以下公式计算相关系数:相关系数 = 协方差 / (X标准差 * Y标准差)根据以上公式,我们可以得出相关系数为-0.93。

由于相关系数接近于-1,可以得出结论:学习成绩和学习时间之间存在强烈的负相关关系,即学习时间越长,学习成绩越低。

习题二:多元线性回归假设你正在研究一个人的身高(X1)、体重(X2)和年龄(X3)对其收入(Y)的影响。

你收集了50个人的数据,以下是你的数据:身高(X1):160, 165, 170, 175, 180, 185, 190, 195, 200, 205体重(X2):50, 55, 60, 65, 70, 75, 80, 85, 90, 95年龄(X3):20, 25, 30, 35, 40, 45, 50, 55, 60, 65收入(Y):5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500请利用多元线性回归分析,建立一个预测人的收入的模型,并解释模型的结果。

多元统计分析第三版课后练习题含答案

多元统计分析第三版课后练习题含答案

多元统计分析第三版课后练习题含答案1. 组间差异比较题目有两组数据,分别为A组和B组,经过检验发现两组数据的方差不相等,则应该使用那种方法进行比较?答案当两组数据的方差不相等时,应该使用Welch’s t检验方法进行比较,而不是常规的Student’s t检验方法。

2. 主成分分析题目主成分分析(PCA)是一种常用的数据降维方法。

在PCA分析中,如何选择主成分的个数?答案选择主成分的个数要根据实际情况而定。

一般来说,我们可以参考数据的累计方差贡献率,将累计贡献率大于80%的主成分选出来作为数据的主要特征,进而进行后续的数据分析处理。

3. 线性回归模型题目在线性回归模型中,如何衡量模型的拟合程度?答案模型的拟合程度可以通过R方(R-squared)值来衡量。

R方值越接近1,说明模型越拟合数据,反之则说明拟合程度不高。

但需要注意的是,仅仅使用R方值来衡量一个模型的好坏还不够,也需要考虑其它因素的影响,如是否存在共线性等问题。

4. 混淆矩阵题目什么是混淆矩阵(Confusion Matrix)?在分类问题中,混淆矩阵的作用是什么?答案混淆矩阵是用来评估分类模型的准确度,它可以将分类问题的结果与实际结果进行比较分析。

一般来说,混淆矩阵包含4个参数:真阳性(True Positive, TP)、假阳性(False Positive, FP)、真阴性(True Negative, TN)和假阴性(False Negative, FN)。

在分类问题中,混淆矩阵的作用主要有以下三个:1.衡量模型的质量。

通过混淆矩阵,我们可以计算出分类模型的准确率、精度、召回率等指标来评估模型的质量。

2.选择模型的阈值。

分类模型的阈值是指将不同的样本劃分到不同的分类中的界限值。

通过混淆矩阵,我们可以选择不同的阈值,以获得更好的模型表现。

3.确定模型需要改进的方面。

通过混淆矩阵,我们可以识别出模型中需要改进的方面,从而进一步优化模型。

应用多元统计分析试题及答案.doc

应用多元统计分析试题及答案.doc

一、填空题:1、多元统计剖析是运用数理统计方法来研究解决多指标问题的理论和方法 .2、回归参数明显性查验是查验解说变量对被解说变量的影响能否著.3、聚类剖析就是剖析怎样对样品(或变量)进行量化分类的问题。

往常聚类分析分为Q型聚类和R型聚类。

4、相应剖析的主要目的是追求列联表行要素A和列要素B的基本剖析特点和它们的最优联立表示。

5、因子剖析把每个原始变量分解为两部分要素:一部分为公共因子,另一部分为特别因子。

6、若x( ): N P( ,),=1,2,3 .n且互相独立,则样本均值向量x 听从的散布为 _ x ~N(μ,Σ /n)_。

二、简答1、简述典型变量与典型有关系数的观点,并说明典型有关剖析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间拥有最大的有关系数。

选用和最先精选的这对线性组合不有关的线性组合,使其配对,并选用有关系数最大的一对,这样下去直到两组之间的有关性被提取完成为止。

被选出的线性组合配对称为典型变量,它们的有关系数称为典型有关系数。

2、简述相应剖析的基本思想。

相应剖析,是指对两个定性变量的多种水平进行剖析。

设有两组要素A和B,此中要素 A 包括 r 个水平,要素 B 包括 c 个水平。

对这两组要素作随机抽样检查,获得一个 rc 的二维列联表,记为。

要追求列联表列要素 A 和行要素 B 的基本剖析特点和最优列联表示。

相应剖析即是经过列联表的变换,使得要素 A和要素 B 拥有平等性,进而用同样的因子轴同时描绘两个要素各个水平的情况。

把两个要素的各个水平的情况同时反应到拥有同样坐标轴的因子平面上,进而获得要素 A 、 B 的联系。

3、简述费希尔鉴别法的基本思想。

从 k 个整体中抽取拥有 p 个指标的样品观察数据,借助方差剖析的思想结构一个线性鉴别函数系数:确立的原则是使得整体之间差别最大,而使每个整体内部的离差最小。

将新样 品的 p 个指标值代入线性鉴别函数式中求出 值,而后依据鉴别必定的规则,就能够鉴别新的样品属于哪个整体。

多元统计分析

多元统计分析

多元统计分析多元统计分析习题集(⼀)⼀、填空题1.若()(,),(1,2,,)p X N n αµα∑= 且相互独⽴,则样本均值向量X 服从的分布是____________________。

2.变量的类型按尺度划分为___________、____________、_____________。

3.判别分析是判别样品_____________的⼀种⽅法,常⽤的判别⽅法有_____________、_____________、_____________、_____________。

4.Q 型聚类是指对_____________进⾏聚类,R 型聚类指对_____________进⾏聚类。

5.设样品12(,,,),(1,2,,)i i i ip X X X X i n '== ,总体(,)p X N µ∑ ,对样品进⾏分类常⽤的距离有____________________、____________________、____________________。

6.因⼦分析中因⼦载荷系数ij a 的统计意义是_________________________________。

7.主成分分析中的因⼦负荷ij a 的统计意义是________________________________。

8.对应分析是将__________________和__________________结合起来进⾏的统计分析⽅法。

9.典型相关分析是研究__________________________的⼀种多元统计分析⽅法。

⼆、计算题 1.设3(,)X N µ∑ ,其中410130002?? ?∑= ? ??,问1X 与2X 是否独⽴?12(,)X X '与3X 是否独⽴?为什么?2.设抽了5个样品,每个样品只测了⼀个指标,它们分别是1,2,4.5,6,8。

若样品间采⽤绝对值距离,试⽤最长距离法对其进⾏分类,要求给出聚类图。

(完整)多元统计分析期末试题及答案,推荐文档.docx

(完整)多元统计分析期末试题及答案,推荐文档.docx

1 、设 X ~ N2 ( ,), 其中 X( x1 , x 2 ),( 1 ,212 ),,1则 Cov( x1x 2 , x1x 2 )=____.102、设X i ~N 3 (,), i 1, L,10,则 W =( X i)( X i)i 1服从_________。

4433、设随机向量X x1x2x3, 且协方差矩阵 4 9 2 ,3 2 16则它的相关矩阵R___________________4、设 X= x1x2x3,的相关系数矩阵通过因子分析分解为112330.93400.1280.4171R100.4170.9340.83530.8940.8940.027 0.83500.4472010.4470.10332__________,__________,X1的共性方差 h1X1的方差11公因子 f 1对 X的贡献 g12________________。

5、设 X i , i 1,L ,16 是来自多元正态总体N p (, ), X 和 A分别为正态总体N p ( ,)的样本均值和样本离差矩阵 , 则T 215[4( X)] A 1[4( X)] ~ ___________。

1642、设( x1 , x2 , x3) ~ N3(, ),其中(1,0, 2) ,44 1 ,1X214试判断 x12 x3与x2x3是否独立?x12、对某地区农村的 6 名 2 周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下 , 根据以往资料 , 该地区城市 2周岁男婴的这三个指标的均值0(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

82.0 4.310714.62108.9464其中 X60.2 ,(5 S ) 1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 (0.01,F 0.01 (3, 2)99.2, F 0.01 (3,3)29.5,F0.01 (3, 4)16.7)、设已知有两正态总体G与 G,且12,24,1211,3126219而其先验概率分别为q1q20.5,误判的代价C (2 1)4;e ,C(1 2)e试用判别法确定样本X 3属于哪一个总体?Bayes514、设X( X1 , X2 , X3 , X4 )T,协方差阵1~ N (0, ),0111(1)试从Σ出发求 X 的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上。

多元统计复习题答案

多元统计复习题答案

多元统计复习题答案一、单项选择题1. 多元统计分析中,用于描述多个变量之间关系的统计方法是()。

A. 相关分析B. 聚类分析C. 因子分析D. 主成分分析答案:C2. 以下哪个不是多元统计分析中常用的降维方法?()A. 主成分分析B. 因子分析C. 聚类分析D. 典型相关分析答案:C3. 在多元统计分析中,用于识别数据集中的异常值或离群点的统计方法是()。

A. 马氏距离B. 箱线图C. 相关系数D. 卡方检验答案:B二、多项选择题1. 多元统计分析中,以下哪些方法可以用来进行变量选择?()A. 逐步回归B. 岭回归C. 偏最小二乘回归D. 主成分分析答案:A|B|C2. 多元统计分析中,以下哪些方法可以用来进行数据的分类?()A. 判别分析B. 聚类分析C. 因子分析D. 典型相关分析答案:A|B三、判断题1. 多元统计分析中的因子分析可以用于变量的降维。

(对)2. 多元统计分析中的主成分分析和因子分析是完全相同的方法。

(错)3. 多元统计分析中的聚类分析可以用于识别数据集中的异常值。

(错)四、简答题1. 简述多元统计分析中主成分分析(PCA)的主要步骤。

答:主成分分析的主要步骤包括:数据标准化、计算协方差矩阵、求解特征值和特征向量、选择主成分、构造主成分得分。

2. 描述多元统计分析中判别分析的应用场景。

答:判别分析在多元统计分析中主要应用于根据已有的分类变量来预测新样本的分类,例如在医学诊断、市场细分、信用评分等领域。

五、计算题1. 给定一组数据,计算其主成分得分。

答:首先需要对数据进行标准化处理,然后计算协方差矩阵,接着求解特征值和特征向量,最后根据特征值的大小选择前几个主成分,并计算对应的得分。

2. 利用判别分析对一组数据进行分类,并给出分类结果。

答:首先需要确定分类的依据,然后计算各类别的判别函数,接着对新样本进行判别分析,最后根据判别得分将样本分类到相应的类别中。

投资组合的多元统计分析考核试卷

投资组合的多元统计分析考核试卷
A.箱线图
B.距离测量
C.马氏距离
D.置信区间
17.以下哪些因素可能导致投资组合的收益与预期不符?()
A.经济周期的变化
B.政策变动
C.公司层面的特定事件
D.投资者情绪的变化
18.在因子分析中,以下哪些步骤是关键的?()
A.选择因子
B.构建因子模型
C.估计因子载荷
D.解释因子
19.以下哪些方法可以用于提高投资组合的流动性?()
5.投资组合的跟踪误差越小,其管理效率)
7.投资组合中的资产数量越多,分散风险的效果越好。()
8.风险价值(VaR)能够完全描述投资组合的风险特征。()
9.在因子分析中,提取的因子数量越多,模型的解释能力越强。()
10.投资组合管理的主要目的是最大化短期收益。()
3.风险价值(VaR)是在给定置信水平下,投资组合可能的最大损失。VaR有助于量化风险,但面临模型风险、参数选择和极端市场情况等问题。
4.因子分析通过提取影响资产收益的共同因素来简化资产之间的关系,优化资产配置。通过构建因子模型,投资者可以依据因子暴露来调整投资组合,以追求更高的风险调整收益。
A.散点图
B.饼图
C.箱线图
D.直方图
2.以下哪项不是投资组合多元统计分析的目的?()
A.降低投资风险
B.提高投资收益
C.消除市场系统性风险
D.评估资产间的相关性
3.在多元正态分布中,相关系数ρ=0表示:()
A.两个变量完全正相关
B.两个变量完全负相关
C.两个变量线性无关
D.两个变量非线性相关
4.投资组合的期望收益是由以下哪个公式计算得出的?()
D.多重共线性
11.以下哪些是有效的风险控制手段?()

(完整版)多元统计分析试题及答案

(完整版)多元统计分析试题及答案

(完整版)多元统计分析试题及答案试题:1. 试解释多元统计分析的含义及其与单变量和双变量统计分析的区别。

2. 简述卡方检验方法及适用场景。

3. 请解释回归分析中的回归系数及其p值的含义及作用,简单说明如何进行回归模型的选择和评估。

4. 试解释主成分分析的原理及目的,如何进行主成分分析及如何解释因子载荷矩阵。

5. 请列举和简要解释聚类分析和判别分析的适用场景,并说明两种方法的区别。

答案:1. 多元统计分析是一种将多个变量进行综合分析的方法。

与单变量和双变量统计分析不同的是,多元统计分析可以处理多个自变量和因变量的组合关系,从而探究它们之间的综合关系。

该方法通常适用于探究多种变量在某个问题中的关系、探究影响某一结果变量的因素、探究各个变量相互作用的影响等。

2. 卡方检验是根据样本数据与期望值的差异来判断观察值与理论预期是否相符,以此来验证假设是否成立的方法。

它通常用于对某个现象进行分类的相关度检验。

适用场景包括:样本的数量大于等于40,且至少有一个期望值小于5;变量为分类变量,且分类类别数不超过10个。

卡方检验的原理是将观察值和期望值进行比较,并计算卡方值,然后根据卡方值与自由度的乘积查找p值,从而得出结论。

3. 回归系数是回归方程中自变量与因变量之间的关系,在线性回归中,回归系数表示每一个自变量单位变化与因变量单位变化的关系。

p值是评估回归系数是否具有显著性的指标。

回归模型的选择有两种方法:一种是逐步回归分析,根据不同的准则进行多个回归模型的比较,选择最优的模型;另一种是正则化回归,通过加入惩罚项来保证回归模型具有良好的泛化性能。

回归模型的评估有多种方法,包括:残差分析、R方值、方差齐性检验、变量的共线性检验等。

4. 主成分分析是一种将多维数据降维处理的方法,它的目的是通过数据的变换,将多个变量转化为一些综合指标,这些指标是原始变量的线性组合。

主成分分析的步骤包括:数据标准化、计算协方差矩阵或相关系数矩阵、计算特征值和特征向量、选取主成分。

多元统计分析试题

多元统计分析试题

一、填空题(30分):1、多元正态分布检验用到的三大分布为、、o2、若X〜N〃(4,Z),则AX + d~o (服从什么分布)3、常用的聚类方法有、动态聚类、等。

4、我们将变量的类型按照尺度可分为、、三类。

5、统计距离公式为o6、相似系数一般有、两种测度。

7、常用的多元数据图表示法有、、o二、计算证明题(30分):1、设抽取5个样本,每个样本只检测一个指标,他们是13, 14, 15.5, 19, 21o试用最短距离法对5个样本进行分类并画出谱系图。

71° 1 12、试验证函数/(X,九2,*3)=即+6刍+-玉工2,其中0<XI < 1,0<犬2 <2,0<工3 <一为随3机向量X=(X1,X2,X3)'的密度函数。

113、证明Gov(X,5y)= Cw(X,y)B'。

15《多元统计分析》简答题1、试简单比较一元正态总体单样本均值检验和多元正态总体均值检验。

(方差或协差阵未知时,应包括所用到的统计量,有何联系等内容)34一元正态总体样本均值的检验(方差未知时):当〃未知时,用S2 =-^—Y(X i-X)2(3.2)作为/的估计量,用统寸量:;在4 册(3.3)S来做检验。

当假设成立时,统计量/服从自由度为〃-1的,分布,从而否定域为111> %2 5 T),%2(〃—1)为自由度为〃T的,分布上的。

/2分位点。

这里我们应该注意数(33)式可以表示为t2 = 丁) = X -^\S2Y\X -//)(3.4)对于多元变量而言,可以将,分布推广为下面将要介绍的Hotelling T~分布。

多元正态总体均值检验:(-)协差阵E未知时均值向量的检验"(): JI =% (%为已知向量)H}: "No假设“。

成立,检验统计量为(〃:1):〃 + 1尸〜尸(p,〃— p)(3.7)(〃一1)〃其中,T2 =(n- 1)LV^(X-Ji()ys-1 V^(x-ji())J给定检验水平a,查产分布表,使定[-〃二二a,可[5-l)p J确定出临界值尸a,再用样本值计算出72,若〃二〃-屑〉(〃-1)〃则否定“。

(完整word版)多元统计分析习题

(完整word版)多元统计分析习题

1.已知n=4,p=3的一个样本数据阵143X =626,X S 833534ρ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦计算,,v,2.已知23514241130010322X ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,用最短、最长、中间距离法聚类,并画出聚类树形图3.已知52=22⎡⎤∑⎢⎥⎣⎦,要求: ①求特征根12λλ, ②求特征向量12μμ,③构造主成分12,F F④计算1F 的方差Var(F 1)和2F 的方差Var(F 2)⑤计算()()()()11122122,,,,;;;F X F X F X F X ρρρρ4.设有12,G G 两个总体,从中分别抽取容量为3的样品如下:要求:(1)样本的均值向量()()12,XX 及离差阵12,S S(2)假定()()12==∑∑∑,用12,S S 联合估计∑(3)已知待判样品(27)X T=,分别用距离判别法、Fisher 判别法、Bayes 判别法判定X 的归属。

5.设111=n 个和122=n 个的观测值分别取自两个随机变量1X 和2X 。

假定这两个变量服从二元正态分布,且有相同的协方差阵。

样本均值向量和联合协方差阵为:⎥⎦⎤⎢⎣⎡--=111X ,⎥⎦⎤⎢⎣⎡=122X ,⎥⎦⎤⎢⎣⎡--=∑8.41.11.13.7。

新样品⎥⎦⎤⎢⎣⎡=21X ,要求用Bayes 法和Fisher 进行判别分析。

6.已知2变量协方差阵⎥⎦⎤⎢⎣⎡=∑3224,要求:(1)求∑的特征根及其对应的单位特征向量;(2)组建主成分1F 、2F ;(3)验证j j F Var λ=)(;(4)计算11x F ρ、21x F ρ。

7、试分析某海运学院100名新生的性别与来自的区域有无相关关系。

(20.05(1) 3.84χ=)8、已知4个样品3个数据的数据如下:44068644363X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,试求均值向量X 、协方差阵∑、相关阵R 。

9、已知随机向量X=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ,具有均值向量826X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦和协方差阵,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411161113。

应用多元统计分析试题及答案

应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。

通常聚类分析分为 Q型聚类和R型聚类。

4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。

5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。

6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。

二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、简述相应分析的基本思想。

相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。

对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。

要寻求列联表列因素A和行因素B 的基本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。

3、简述费希尔判别法的基本思想。

从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。

将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档