反比例函数的图象和性质-1

合集下载

人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】

人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】
60° 缩小 A1 60°
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
对应角相等
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
正六边形 AF
120° B
放大 B1 E
y= k
K>0
K<0
x
图 象
当k>0时,函数图象 当k<0时,函数图象
性 的两个分支分别在第 的两个分支分别在第

一、三象限,在每个 二、四象限,在每个 象限内,y随x的增大 象限内,y随x的增大
而减小.
而增大.
1.反比例函数y= -
5 x
的图象大致是(
D)
y
y
A.
o
x B.
o x
y
y
C.
o
x D.
y
6
6y
5 4
y
=
6 x
3
y=
6 x
5 4
3
2
2
1
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描一 些点,这样既可以方便连线,又可以使图象精确. 2.描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错. 3.线连时一定要养成按自变量从小到大的顺序依次画线,连 线时必须用光滑的曲线连接各点,不能用折线连接. 4.图象是延伸的,注意不要画的有明确端点. 5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.

反比例函数的图象和性质(1)

反比例函数的图象和性质(1)

试一试,画一画
画出反比例函数 y =Leabharlann 6 x的函数图象。
函数图象画法
描点法
列 表
描 点
连 线
x
y
=
6 x
注意:①列表时自变量 取值要均匀和对称②x≠0 ③选整数较好计算和描点。
做一做 5
你认为作反比例函数图象时应注意哪些问题?
• 列表时,自变量的值可以选取一些互为相反数的值,这 样既可简化计算,又便于对称性描点;
• 列表描点时,要尽量多取一些数值,多描一些点,这样 既可以方便连线,又较准确地表达函数的变化趋势;
• 连线时一定要养成按自变量从小到大的顺序,依次用 平滑的曲线连接,从中体会函数的增减性;
• ……
练一练
画出反比例函数 y 4 和 y 4 的函数图象。
x
x
函数图象画法
描点法
列 表



线
反比例函数的 图象和性质
而增大.
y4 x
-10
-5
反比例函数的图象是 由两支双曲线组成的. 因此称反比例函数的 图象为双曲线;
10
1、这几个函数图
象有什么共同点?
8
2、函数图象分别
6
位于哪几个象限?
4
y4 x
3、y随的x变化 有怎样的变化?
2
5
10
-2
当k>0时,两支双曲线分
-4
位于第一,三象限内; -6 当k<0时,两支双曲线分别
位于第二,四象限内;
-8
反比例函数的图象和性质:
1.反比例函数的图象是双曲线;
2.图象性质见下表:
y= k
K>0

2 .1反比例函数的图象(公开课课件)

2 .1反比例函数的图象(公开课课件)
22200
值为________.
-1
随堂练习

4. 反比例函数 =
(a,b为常数, < )的大致图象是 ( B )

5. 反比例函数 =


的图象两支分布在第二、四象限,则
点(m,m-2)在( C ) .
A. 第一象限
22200
B. 第二象限
C. 第三象限
D. 第四象限
合作探究二
22200
x错误:没有延伸源自 知识讲解合作探究1.列表时,自变量x的值可以选取一些互
为相反数的值这样既可简化计算,又便于
对称性描点。
2.描点时,要尽量多取一些数值,多描一些点,这
样既可以方便连线,又较准确地表达函数的
变化趋势。
3.连线时,按横坐标从小到大的顺序顺次用光
22200
滑的曲线依次连接各点,不能用折线连接.
随堂练习
拓展提升
1. 在同一平面直角坐标系中,一次函数y=kx+k与反比例函数

y= 的图象可能是(

A
22200

B
C
D
随堂练习
拓展提升
2.



如图,是三个反比例函数y= ,y= ,y= 在x轴上方的图象,由



此观察得到k1、k2、k3的大小关系为________(用“>”排列)

学习目标
形状: 反比例函数
的图象由两支曲线组成,
因此称反比例函数
的图象为双曲线.
位置:由k决定:
当k>0时,两支曲线分别位于_______________内;
第一、三象限
当k<0时,两支曲线分别位于_______________内.

反比例函数的图象和性质(1)

反比例函数的图象和性质(1)

26.1.2 反比例函数的图象和性质反比例函数的图象和性质(1)教学目标1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.3.经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.4.在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.【教学重点】画反比例函数图象,理解反比例函数的简单性质【教学难点】理解反比例函数性质,能用性质解决简单的问题.教学过程一、情境导入,初步认识问题我们知道,一次函数y = 6x的图象是一条直线,那么反比例函数y =6 x的图象是什么形状呢?你能用“描点”的方法画出函数的图象?二、思考探究,获取新知问题1 在同一坐标系中画出反比例函数y =6x和y =12x的图象;问题2 反比例函数y =-6x和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x和y =-6x的图象呢?同学间相互交流.【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减小),曲线越来越接近x轴(或y轴),但这两条曲线永不相交;(2) y = 6x和y =-6x及y =12x和y =-12x的图象分别关于x轴对称,也关于y轴对称.思考观察函数y = 6x和y =-6x以及y =12x和y =-12x的图象.(1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每个象限内y随x的变化如何变化?【归纳结论】反比例函数y =k x的图象及其性质: (1)反比例函数y=k x(k 为常数,且k ≠0)的图象是双曲线; (2)当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 随x 值的增大而减小;(3)当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y 随x 值的增大而增大.三、典例精析,掌握新知例 如图,一次函数y = kx 十b 的图象与反比例函数y =mx 的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值.【分析】(1)观察图象,可直接写出A 、B 两点的坐标;(2)利用A 、B 两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A 、B 的坐标得出答案.解:(1)观察图象可知A ( -6,-2),B (4,3)(2)由点B 在反比例函数y =m x 的图象上,所以把B (4,3)代入y =m x 得3 =4m ,故m =12,所以y=12x.由点A 、B 在一次函数y =kx 十b 的图象上,所以把A 、B 两点坐标代入y = kx 十b 得14326+2,1k b k k b b ⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 . 所以一次函数解析式为y =12x+1. (3)由图象可知,当一6<x <0或x >4时,一次函数的函数值大于反比例函数的函数值.四、运用新知,深化理解1 .若反比例函数 y =21m x-的图象的一个分支在第三象限,则m 的取值范围是 .2.如图是某一函数的一部分,则这个函数的表达式可能是( )A.y=5xB.y=-x+3C.y=-6xD.y=4 x【答案】1.m>122. C五、师生互动,课堂小结本节课学习了哪些知识?在知识应用过程中需要注意什么?你有哪些收获?课后作业1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.。

第11章 反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)

第11章  反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)

2021年中考数学一轮复习(通用版)第11章反比例函数考点梳理考点一反比例函数的概念、图象和性质1.反比例函数的概念一般地,函数y=(k为常数,且k≠0)叫做反比例函数.【点拨】(1)函数y=kx-1或xy=k都是反比例函数;(2)反比例函数中自变量的取值范围是x≠0. 2.反比例函数的图象和性质(1)反比例函数y=kx(k为常数,且k≠0)的图象是.(2)反比例函数的图象无限接近,但永不与相交.(3)反比例函数的图象和性质第一、三象限第二、四象限一象限,再结合每个象限内反比例函数图象的增减性来比较,解决这种问题的一个有效办法是画出草图,标上各点,再比较大小.3.确定反比例函数的表达式(1)求反比例函数的表达式可用待定系数法.由于反比例函数的表达式中只有一个待定系数,因此只需已知一组对应值即可.(2)求反比例函数表达式的一般步骤:①设反比例函数的表达式;①把已知的一组对应值代入函数表达式,建立方程;①解方程求得待定系数的值.4.反比例函数的系数k的几何意义如图,设点P(x,y)是反比例函数y=kx图象上任一点,过点P作x轴的垂线,垂足为A,则①OP A的面积=12OA·P A=12|xy|=12|k|,这就是反比例函数的系数k的几何意义.【点拨】根据比例系数k的几何意义,求k值时,要根据双曲线所在的象限正确确定k的符号.考点二反比例函数的应用1.反比例函数与一次函数的综合应用(1)求函数解析式一般先通过一个已知点求出反比例函数解析式,再由反比例函数的解析式求出另一个交点的坐标,再将这两点的坐标代入一次函数的解析式中,解方程(组)即可.(2)求交点坐标将一次函数的解析式与反比例函数的解析式联立成方程组求解即可;对于正比例函数与反比例函数,其均关于原点对称,只要知道一个交点的坐标,就可以求出其关于原点对称的另一个交点的坐标.(3)求面积①当有一边在坐标轴上时,通常将坐标轴上的边作为底边,再利用点的坐标求得底边上的高,然后利用面积公式求解;①当两边均不在坐标轴上时,一般可采用割补法将其转化为一边在坐标轴上的两个三角形面积的和或差来求解.此外,求面积时要充分利用“数形结合”的思想,即用“坐标”求“线段”,用“线段”求“坐标”.(4)比较两个函数值的大小,求自变量的取值范围2.反比例函数的实际应用利用反比例函数解决实际问题,首先要建立反比例函数的数学模型,这也是关键一步,一般地,建立反比例函数模型有两种思路:(1)题目中明确指出变量间存在反比例函数关系,在这种情况下,可利用待定系数法求反比例函数的解析式.(2)题目中未指出变量间存在反比例函数关系,在这种情况下可利用基本数量关系求反比例函数的关系式,反比例函数模型建立后,进一步地可利用反比例函数的图像及性质解决问题.重难点讲解考点一正确理解反比例函数的概念,会求k值和反比例函数的解析式方法指导:因为反比例函数的解析式y=kx(k≠0)中只有一个待定系数k,确定了k的值,也就确定了反比例函数的解析式,因而只需给出一组x,y的值或图象上一点的坐标,代入y=kx(k≠0)中即可求出k的值,从而确定反比例函数的解析式.另外,反比例函数解析式y=kx(k≠0)也可以变形为k=xy(k≠0),所以要求的k值就等于双曲线上任意一点的横坐标与纵坐标之积.进一步理解得到反比例函数解析式y=kx(k≠0)中,比例系数k的几何意义是过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.经典例题1 (2020•安徽滁州模拟)如图,在平面直角坐标系中,反比例函数y=kx(x>0)经过矩形ABOC的对角线OA的中点M,已知矩形ABOC的面积为16,则k的值为()A.2B.4C.6D.8【解析】设A(a,b),则ab=16,∵点M是OA的中点,∴M(12a,12b),∵反比例函数y=kx(x>0)经过点M,∴k=12a﹒12b=14ab=14×16=4.【答案】B考点二一次函数与反比例函数的综合方法指导:这类问题常有以下四种主要题型:(1)利用k值与图象的位置关系,综合确定系数符号或图象位置.解题策略:分k>0和k<0两种情况考虑.(2)已知直线与双曲线的表达式求交点坐标.解题策略:联立直线与双曲线的方程组成方程组求解.(3)用待定系数法确定直线与双曲线的表达式.解题策略:待定系数法.(4)应用函数图象的性质比较一次函数值与反比例函数值的大小.解题策略:看图象,以两个图象的交点为界,图象在上方的函数值比图象在下方的要大.经典例题2 (2020•黑龙江大庆模拟)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.【解析】(1)利用待定系数法求出点A坐标即可解决问题.(2)构建方程组求出交点B坐标,直线y=-x +5交y轴于E(0,5),根据S△AOB=S△OBE-S△AOE计算即可.解:(1)∵A(1,n)在直线y=-x+5上,∴n=-1+5=4,∴A(1,4),把A(1,4)代入y=kx得到k=4,∴反比例函数的解析式为y=4x.(2)由45y xy x ⎧=⎪⎨⎪=-+⎩,,解得14x y =⎧⎨=⎩,或41x y =⎧⎨=⎩,, ∴B (4,1),直线y =-x +5交y 轴于E (0,5), ∴S △AOB =S △OBE -S △AOE =12×5×4-12×5×1=7.5.考点三 反比例函数的应用 方法指导:利用反比例函数解决实际问题,我们应抽象概括出反比例函数关系,建立反比例函数模型.根据已知条件写出反比例函数的解析式,并能把实际问题反映在函数的图象上,结合图象和性质解决实际问题.因此,利用反比例函数解决实际问题的关键是建立反比例函数模型,即求出反比例函数解析式.一般地,建立反比例函数模型有以下两种常用方法:(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设反比例函数解析式为y =kx(k ≠0),然后求出k 的值即可.(2)列方程法:若题目信息中变量之间的函数关系不明确,在这种情况下,通常是列出关于函数(y )和自变量(x )的方程,进而解出函数,得到函数解析式.经典例题3 (2020·江西模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y (℃)与开机时间x (分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y (℃)与开机时间x (分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题: (1)当0≤x ≤10时,求水温y (℃)与开机时间x (分)的函数关系式; (2)求图中t 的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为y=kx+b,依据题意,得2010100 bk b⎧⎨⎩=,+=,解得820kb⎧⎨⎩=,=,故此函数解析式为y=8x+20.(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为y=mx,依据题意,得100=10m,即m=1000,故y=1000x,当y=20时,20=1000t,解得t=50.(3)∵57-50=7<10,∴当x=7时,y=8×7+20=76.答:小明散步57分钟回到家时,饮水机内的温度约为76℃.过关演练1.(2020·河南一模)已知点A(2,a),B(-3,b)都在双曲线y=-6x上,则()A.a<b<0B.a<0<b C.b<a<0 D.b<0<a2.(2020•山东德州中考)函数y=kx和y=-kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A B C D 3.(2020•贵州黔西南州中考)如图,在菱形ABOC中,AB=2,①A=60°,菱形的一个顶点C在反比例函数y═kx(k≠0)的图象上,则反比例函数的解析式为()A .y =-x B .y =-x C .y =-3xD .y =x4.(2020·湖南长沙模拟)若点A (3,4)是反比例函数y =kx图象上一点,则下列说法正确的是( ) A .图象分別位于二、四象限 B .当x <0时,y 随x 的增大而减小 C .点(2,-6)在函数图象上 D .当y ≤4时,x ≥3 5.(2020·安徽合肥模拟)在同一坐标系中,函数y =kx和y =-kx +3的大致图象可能是( )A B C D6.(2020·安徽合肥一模)如图,若反比例函数y =k x (x <0)的图象经过点(-12,4),点A 为图象上任意一点,点B 在x 轴负半轴上,连接AO ,AB ,当AB =OA 时,①AOB 的面积为( )A .1B .2C .4D .无法确定7. (2020•湖北孝感中考)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为( )A.I=24RB.I=36RC.I=48RD.I=64R8. (2020•湖南长沙中考)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=610tB.v=106t C.v=6110t2D.v=106t29.(2020·河北一模)已知反比例函数y=mx与一次函数y=kx+b的图象相交于点A(4,1),B(a,2)两点,一次函数的图象与y轴交于点C,点D在x轴上,其坐标为(1,0),则①ACD的面积为()A.12B.9C.6D.510.(2020·广东广州一模)如图所示,已知A(13,y1),B(3,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(13,0) B.(43,0) C.(23,0) D.(103,0)11.(2020·湖北十堰一模)已知反比例函数y=24kx+(k是常数,且k≠-2)的图象有一支在第二象限,则k的取值范围是.12.(2020•江苏无锡模拟)如果反比例函数y=3ax-(a是常数)的图象在第一、三象限,那么a的取值范围是.13.(2020•山东滨州中考)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.14.(2020•四川甘孜州中考)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2 x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且①ABP的面积是①AOB的面积的2倍,则点P的横坐标为.15.(2020·安徽阜阳模拟)如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD①x轴,双曲线y=5 x (x>0)经过A,B两点,则菱形ABCD的面积为.16.(2020•山东青岛)如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积是2,则k=.17.(2020•浙江台州中考)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小:y1-y2y2-y3.18.(2020•山东济宁中考)在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.19.(2020·安徽合肥三模)如图,一次函数y=-x+b的图象与反比例函数y=kx(x<0)的图象交于点A(-3,m),与x轴交于点B(-2,0).(1)求一次函数和反比例函数的表达式;(2)若直线y=3与直线AB交于点C,与双曲线交于点D,求CD的长;(3)根据图象,直接写出不等式-x+b<kx<3的解集.20.(2020·浙江金华模拟)如图,一次函数y1=-x+4的图象与反比例函数y2=kx(k为常数,且k≠0)的图象交于A(1,a),B两点,与y轴和x轴分别交于C,D两点,AM①y轴,BN①x轴,垂足分别为M,N两点,且AM与BN交于点E.(1)求反比例函数的表达式及点B的坐标;(2)直接写出反比例函数图象位于第一象限且y1<y2时自变量x的取值范围;(3)求①OAB与①ABE的面积的比.21.(2020•四川成都中考)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若①AOB的面积为①BOC的面积的2倍,求此直线的函数表达式.22.(2020•山东聊城中考)如图,已知反比例函数y=kx的图象与直线y=ax+b相交于点A(-2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得①P AB的面积为18,求出点P的坐标.23.(2020·江西南昌模拟)制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800①,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600①.煅烧时温度y(①)与时间x(min)成一次函数关系;锻造时,温度y(①)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是26①.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400①时,须停止操作,那么锻造的操作时间有多长?参考答案考点梳理考点一 1.kx2. (1)双曲线 (2)坐标轴 坐标轴 (3)减小 增大 中心 过关演练1. B 【解析】①双曲线y =6x,k =-6<0,①双曲线在第二、四象限,①2>0,-3<0,①点A (2,a )在第四象限,点B (-3,b )在第二象限,①a <0<b .2. D 【解析】在函数y =k x 和y =-kx +2(k ≠0)中,当k >0时,函数y =kx的图象在第一、三象限,函数y =-kx +2的图象在第一、二、四象限,故选项A 、B 错误,选项D 正确;当k <0时,函数y =kx的图象在第二、四象限,函数y =-kx +2的图象在第一、二、三象限,故选项C 错误.3. B 【解析】①在菱形ABOC 中,①A =60°,菱形边长为2,①OC =2,①COB =60°,①点C 的坐标为(-1,,①顶点C 在反比例函数y ═k x 的图象上,=1k,得k y =-x .4. B 【解析】①点A (3,4)是反比例函数y =kx图象上一点,①k =xy =3×4=12,①此反比例函数的解析式为y =12x.①k =12>0,①此函数的图象位于一、三象限,故选项A 错误;①k =12>0,①在每一象限内y 随x 的增大而减小,故选项B 正确;①2×(-6)=-12≠12,①点(2,-6)不在此函数的图象上,故选项C 错误;当y ≤4时,即y =12x≤4,解得x <0或x ≥3,故选项D 错误. 5. D 【解析】由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项A 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项B 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k <0,根据一次函数图象可得-k <0,则k >0,故选项C 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k <0,则k >0,故选项D 正确.6. B 【解析】①反比例函数y =k x (x <0)的图象经过点(-12,4),①k =-12×4=-2,过A 点作AC ①OB于点C,①①ACO的面积为12×2=1,①AO=AB,①OC=BC,①S①AOB=2S①AOC=2.7. C 【解析】设I=kR,把(8,6)代入得:k=8×6=48,故这个反比例函数的解析式为I=48R.8. A 【解析】①运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,①106=vt,①v=6 10t.9. D 【解析】①点A(4,1)在反比例函数y=mx上,①m=xy=4×1=4,①y=4x.把B(a,2)代入y=4x得2=4a,①a=2,①B(2,2).①把A(4,1),B(2,2)代入y=kx+b.①1422k bk b⎧⎨⎩=+,=+,解得123kb⎧⎪⎨⎪⎩=-,=,①一次函数的解析式为y=12x+3,①点C在直线y=12x+3上,①当x=0时,y=3,①C(0,3).过A作AE①x轴于点E.①S①ACD=S梯形AEOC-S①COD-S①DEA=(13)42+⨯-12×1×3-12×1×3=5.10. D 【解析】把A(13,y1),B(3,y2)代入反比例函数y=1x得y1=3,y2=13,①A(13,3),B(3,13).连接AB,在①ABP中,由三角形的三边关系定理得:|AP-BP|<AB,①延长AB交x轴于P′,当P在P′点时,P A-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0),把点A,B的坐标代入得133133a ba b⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1103ab⎧⎪⎨⎪⎩=-,=,①直线AB的解析式是y=-x+103,当y=0时,x=103,即P(103,0).11. k<-2 【解析】①反比例函数y=24kx+的图象有一支在第二象限,①2k+4<0,解得k<-2.12. a>3 【解析】∵反比例函数y=3ax-(a是常数)的图象在第一、三象限,∴a-3>0,∴a>3.13. y=2x【解析】当y=2时,即y=2x=2,解得x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=kx,解得k=2,故该反比例函数的解析式为y=2x.14. 2【解析】①当点P在AB下方时作AB的平行线l,使点O到直线AB和到直线l的距离相等,则①ABP的面积是①AOB的面积的2倍,直线AB与x轴交点的坐标为(-1,0),则直线l与x轴交点的坐标C(1,0),设直线l的表达式为y=x+b,将点C的坐标代入上式并解得:b=-1,故直线l的表达式为y=x-1①,而反比例函数的表达式为y=2x①,联立①①并解得x=2或-1(舍去);①当点P在AB上方时,同理可得,直线l的函数表达式为:y=x+3①,联立①①并解得x舍去负值).15. 452【解析】连接AC,与BD交于点M,①菱形对角线BD①x轴,①AC①BD,①点A,B横坐标分别为1和4,双曲线y=5x(x>0)经过A,B两点,①AM=5-54=154,BM=4-1=3,①AC=152,BD=6,①菱形ABCD的面积12AC·BD=452.16. -4 【解析】设反比例函数的解析式为y=kx.∵△AOB的面积=△ABP的面积=2,△AOB的面积=12|k|,∴12|k|=2,∴k=±4;又反比例函数的图象的一支位于第二象限,∴k<0.∴k=-4.17. 解:(1)设y与x之间的函数关系式为y=kx,把(3,400)代入y=kx得,400=3k,解得k=1200,①y与x之间的函数关系式为y=1200x;(2)>提示:把x=6,8,10分别代入y=1200x得,y1=12006=200,y2=12008=150,y3=120010=120,①y1-y2=200-150=50,y2-y3=150-120=30,①50>30,①y1-y2>y2-y3.18. 解:(1)y=4xx>0 提示:①在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2,①12xy=2,①xy=4,①y关于x的函数关系式是y=4x,x的取值范围为x>0.(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y =-x +3向上平移a (a >0)个单位长度后解析式为y =-x +3+a ,解34y x a y x =-++⎧⎪⎨=⎪⎩,, 整理得,x 2-(3+a )x +4=0,①平移后的直线与上述函数图象有且只有一个交点,①①=(3+a )2-16=0,解得a =1,a =-7(不合题意舍去),故此时a 的值为1.19. 解:(1)由点B (-2,0)在一次函数y =-x +b 上,得b =-2,①一次函数的表达式为y =-x -2;由点A (-3,m )在y =-x -2上,得m =1,①A (-3,1),把A (-3,1)代入数y =kx(x <0)得k =-3,①反比例函数的表达式为y =-3x. (2)y =3,即y C =y D =3,当y C =3时,-x C -2=3,解得x C =-5,当y D =3时,3=-3Dx ,解得x D =-1,①CD =x D -x C =-1-(-5)=4. (3)不等式-x +b <kx<3的解集为-3<x <-1. 20. 解:(1)当x =1时,a =-x +4=3,①点A 的坐标为(1,3).将点A (1,3)代入y =kx中,①k =1×3=3,①反比例函数的表达式为y =3x ,联立34y xy x ⎧⎪⎨⎪⎩=,=-+,解得13x y ⎧⎨⎩=,=,或31x y ⎧⎨⎩=,=, ①B (3,1). (2)反比例函数图象位于第一象限且y 1<y 2时自变量x 的取值范围为0<x <1或x >3. (3)①A (1,3),B (3,1),①E (3,3),AE =2,BE =2,①S ①ABE =12×2×2=2,①S ①OAB =S 四边形ONEM -S ①ABE -S ①AOM -S ①BON =3×3-2-12×3×1-12×3×1=4,①①OAB 与①ABE 的面积的比是4①2=2①1.21. 解:(1)①反比例函数y=mx(x>0)的图象经过点A(3,4),①k=3×4=12,①反比例函数的表达式为y=12x;(2)①直线y=kx+b过点A,①3k+b=4,①过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,①B(-b k ,0),C(0,b),①①AOB的面积为①BOC的面积的2倍,①12×4×|-bk|=2×12×|-bk|×|b|,①b=±2,当b=2时,k=23,当b=-2时,k=2,①直线的函数表达式为y=23x+2,y=2x-2.22. 解:(1)将点A(-2,3)的坐标代入反比例函数表达式y=kx,解得k=-2×3=-6,故反比例函数表达式为y=-6x,将点B的坐标代入上式,解得m=-6,故点B(1,-6),将点A,B的坐标代入一次函数表达式得326=a ba b=-+⎧⎨-+⎩,,解得3=3ab=-⎧⎨-⎩,,故直线的表达式为y=-3x-3;(2)设直线与x轴的交点为E,当y=0时,x=-1,故点E(-1,0),分别过点A,B作x轴的垂线AC,BD,垂足分别为C,D,则S①P AB=12PE•CA+12PE•BD=32PE+62PE=92PE=18,解得PE=4,故点P的坐标为(3,0)或(-5,0).23. 解:(1)材料锻造时,设y=kx(k≠0),由题意得600=8k,解得k=4800,当y=800时,4800x=800,解得x=6,①点B的坐标为(6,800).材料煅烧时,设y=ax+26(a≠0),由题意得800=6a+26,解得a=129,①材料煅烧时,y与x的函数关系式为y=129x+26(0≤x≤6).4800÷26=184.6,①锻造操作时y与x的函数关系式为y=4800x(6<x<184.6).(2)把y=400代入y=4800x,得x=12,12-6=6(分).答:锻造的操作时间为6分钟.。

6.2 反比例函数的图像和性质(1)课件(共31张ppt)

6.2 反比例函数的图像和性质(1)课件(共31张ppt)
问题1:
对于一次函数 y = kx + b (k、b为常数, k ≠ 0 ),我们是如何研究的?
问题2:
对于反比例函数
y
k x
(
k是常数,k

0
)
,我们能否像一次函数那样进行研究呢?
杭州育才中学 黄有宇
知识回顾
作一次函数图象的一般步骤:
y 6x
一条直线
描点法 列




线
反比例函数的图象是怎样的?
求m的取值范围.
5. 已知反比例函数
y k (k 0) x
与正比例函数
y=-2x的图象的一个公共点的纵坐标为-4,
求这个反比例函数的解析式,
并求出另一个公共点的坐标.
适度拓展,用药熏消毒法进
行消毒。已知药物燃烧时,室内每立方米空气中的
含药量 y(mg)与时间x(min)成正比例,药物燃烧
(2)
杭州育才中学 黄有宇
观察反比例函数 y k ( k 0 )的图象,说出y与x之
间的变化关系:
x
k 0
k 0
y
O
( x3,y(3xC)4,yD4 )
A ( x1,y1 ) B ( x2,y2 )
x
y
( x1,y1 ) A
( x2,y2 ) B
O
x
D ( x4,y4 )
C ( x3,y3 )
当k>0时,在一、三象限; 当k<0时,在二、四象限

减 当k>0时,y随x的增大而增大 性 当k<0时,y随x的增大而减小
当k>0时,在每一象限内,y 随x的增大而减小
当k<0时,在每一象限内, y随x的增大而增大

数学6.2 反比例函数的图像和性质(1)优质课件

数学6.2  反比例函数的图像和性质(1)优质课件
外国语学校
复习回顾
1. 反比例函数的定义: 函数 y k (k为常数,k 0) 叫做反比例函数.
x
2. 作函数图象的一般步骤:
描点法
列 表
描 点
连 线
合作交流,探究新知
画出反比例函数 y =
6 x
和y=
6 x
的函数图象。
x
y
=
6 x
y=
6 x
合作交流,探究新知
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
则m的取值范围是 __m__<_2__ .
3、对于函数 象限.
y
1 2x
,当 x<0时,图象在第
__三___
例题解析
例1:已知反比例函数y= k (k≠0)的图象的一支如图。 x
(1)判断k是正数还是负数;
(2)求这个反比例函数的解析式;
y
(3)补画这个反比例函数图象的另一支。
(-4,2)
0
x
随堂练习
P
(2)若P为图象是任意一点,那么S的值会
o
A x 变化吗?
你能得到一个一般性的结论吗?
k的几何意义:反比例函数 y k (k 0) 上任意一点向
x
坐标轴做垂线段形成的长方形的面积为: k
提高练习
1.如图,点P是反比例函数 y 4 图象上的一
x
点,PD⊥x轴于D.则△POD的面积为 2 .
4
3
2
-6
1
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
学习新知 双曲线 y k (的k 性0质) :

k-1的反比例函数图像

k-1的反比例函数图像

k<-1的反比例函数图像K<-1的反比例函数图像如下图:反比例函数的图像:属于以原点为对称中心的中心对称的两条曲线,反比例函数图象中每一象限的每一条曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

反比例函数表达式:y=k/x=k·1/x;xy=k;y=k·x^(-1) ;y=k/x 自变量的取值范围:①在一般的情况下 , 自变量 x 的取值范围可以是不等于0的任意实数;②函数 y 的取值范围也是任意非零实数。

反比例函数公式口诀:反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y的顺序可交换。

反比例函数性质:单调性:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大;k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

相交性:因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y轴。

图像表达:反比例函数图象不与x轴和y轴相交的渐近线为:x 轴与y轴;k值相等的反比例函数图象重合,k值不相等的反比例函数图象永不相交;|k|越大,反比例函数的图象离坐标轴的距离越远。

对称性:反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图象也是轴对称图形,其对称轴为y=x或y=-x;反比例函数图象上的点关于坐标原点对称;反比例函数关于正比例函数y=±x轴对称,并且关于原点中心对称。

反比例函数的图象和性质(一)

反比例函数的图象和性质(一)

“导探一体两主四环”生命化课堂教学备课用纸解:列表x…-6-5-4-3-2-1123456…y=6x-1-2-631y=-6x136描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次连接起来.探究反比例函数y=6x和y=-6x的图象什么共同特征?它们之间有什么关系?做一做把y=6x和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.归纳反比例函数y=6x和y=-6x的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线(hyperbola).此外,y=6x的图象和y=-6x的图象关于x轴对称,也关于y轴对称.做一做在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.交流两个函数图象都用描点法画出?【分析】由y=6x和y=-6x的图象及y=3x和y=-3x的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?猜想反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定? 在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?【归纳】(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y 值随x值的增大而减小.3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y 值随x值的增大而增大.三、典礼导练:例题指出当k>0时,下列图象中哪些可能是y=kx与y=kx(k≠0) 在同一坐标系中的图象()【分析】对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.四:小节导构:1.画反比例函数的图象.2.反比例函数的性质.3.反比例函数的图象在哪个象限由k决定,且y值随x值变化只能在“每一个象限内”研究.4.在y=kx(k≠0)中,由于x≠0,同时y≠0,因此双曲线两个分支不可能到达坐标轴教学后记。

反比例函数的图像和性质(1)

反比例函数的图像和性质(1)




1、反比例函数的图象是双曲线。 2、当K 〉0时,图象的两个分支分布在第一、 三象限内;在每个象限内Y随X的增大而减小。 3、当K〈 0时,图象的两个分支分布在第二、 四象限内;在每个象限内Y随X的增大而增大。 (囗诀:K大一三减,K小二四增) 4、反比例函数图像关于原点对称,且关于直 线y=x和y=-x对称。 思考:反比例函数、正比例、一次函数的性 质有何异同?(课后填充表格)

反比例函数定义:
形如Y=K/X(K≠0)的函数叫反 比例函数。注意反比例函数的另 两种形式:y=kx-1 xy=k (k≠0)
二、新课 反比例函数的图像和性质
例3:画出反比例函数Y=6/X和Y= -6/X 的图像。 思考:


1、作函数图象的一般步骤是什么? 2、列表时要注意些什么?取值要注意什么? 3、比较两个函数的图像,它们有何异同? 4、由此你能得到些什么结论? 5、图像在延伸后,会不会与两坐标轴相交?
反比例函数与正比例一次函数 性质的比较表
反比例函数 基 本 形 式 图 象 名 称 性 质 K>0 b<0 b>0 b>0 正比例函数 一次函数
K<0
b<0


再 见

3k
三、练习
(一)填空

1、当m 时,反比例函数y=(1-2m)/x的图象在一、 三象限。 2、若反比例函数y=K/x的图象在二、四象限,则直 线y=kx-3不经过第 象限。 3、当k>0时,反比例函数y=(k+1)/x的图象在 象 限。 4、当k<0时,反比例函数y=-k/x的图象在 象 限。 5、反比例函数y=(k2 +1)/x的图象在 象 限。
下列( )是函数y=kx-k和y=k/x的大致图象

人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件

人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件

y k(k>0)的图象上, x
若y1<y2,求a的取值范围.
解:由题意知,在图象的每一支上,y随x的增大而减小.
①当这两点在图象的同一支上时,
∵y1<y2,∴a-1>a+1, 无解; ②当这两点分别位于图象的两支上时,
∵y1<y2,∴必有y1<0<y2. ∴a-1<0,a+1>0, 解得:-1<a<1.
,4
4 5
),D(2,5)是否在这个函数的图象上?
解:设这个反比例函数的解析式为 y k ,因为点A(2,6)在其图象上,所
x
以有 6 k ,解得k=12.
2
所以反比例函数的解析式为 y 12 .
x
因为点B,C的坐标都满足该解析式,而点 D的坐标不满足,所以点B,C在
这个函数的图象上,点D不在这个函数的图象上.
结论吗?
一般地,当k>0时,对于反比例函数
y
k x
,由函数图象,并结合解析式,
我们可以发现:
(1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y随x的增大而减小.
归纳: 反比例函数 y k (k>0) 的图象和性质:
x
●由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;
例1 画出反比例函数y 6 与 y 12 的图象.
x
x
提示:画函数的图象步骤一般分为:列表 →描点→连线. 需要注意的是在反比例函 数中自变量 x 不能为 0.
解:列表如下:
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
6 x
… -1
-1.2
-1.5
-2
-3
-6
6

反比例函数的图象与性质1

反比例函数的图象与性质1

旦八初级中学导学案(2)双曲线的两支分别位于第一、第三象限; (3)在每个象限内,y 随着x 的增大而减小;(4)双曲线两支向两边无限延伸,与坐标轴没有交点; (5)双曲线两支关于坐标原点成中心对称.三、反比例函数y =(k <0)的图象与性质【师生活动】 学生在刚才的平面直角坐标系中画函数y =-与y =-的图象.观察函数图象,小组合作交流,归纳反比例函数y =(k <0)的性质.教师巡视过程中帮助学习有困难的学生,引导学生归纳反比例函数的性质. 【共同归纳】 (1)反比例函数y =(k <0)的图象是双曲线; (2)双曲线的两支分别位于第二、第四象限; (3)在每个象限内,y 随着x 的增大而增大;(4)双曲线两支向两边无限延伸,与坐标轴没有交点; (5)双曲线两支关于坐标原点成中心对称.四、归纳反比例函数y =(k ≠0)的图象与性质【课件4展示】五、例题讲解课堂小结正比例函数与反比例函数的区别与联系.函数 正比例函数反比例函数关系式 y =kx (k ≠0)y =(k ≠0)图象 过原点的直线与坐标轴没有交点的双曲线自变量的 取值范围 全体实数x ≠0的全体实数图象位置当k >0时,图象经过第一、第三象限 当k <0时,图象经过第二、第四象限 当k >0时,图象位于第一、第三象限当k <0时,图象位于第二、第四象限性质当k >0时,y 随x 的增大而增大 当k <0时,y 随x 的增大而减小 当k >0时,在每一象限内,y 随x 的增大而减小当k <0时,在每一象限内,y 随x 的增大而增大性质合作精神比以前学过的函数的方法和性质归纳总结法——类比法合思想是学习数学最常用的思想方法之一§26.1.2 反比例函数的图象和性质。

27.2 反比例函数的图象和性质 - 第1课时课件(共18张PPT)

27.2 反比例函数的图象和性质 - 第1课时课件(共18张PPT)
解:(1)把点P(-6,8)的坐标代入 ,得 .解得k=-48.所以这个反比例函数的表达式为 .(2)当x=4时,y=-12.当x=2时,y=-24≠24.所以,点M(4,-12)在这个反比例函数的图像上,点N(2,24)不在这个反比例函数的图像上.
课堂巩固
1. 下列图象中是反比例函数的是( ).
C
.
(-3,-4)
拓展提升
1.如果一个正比例函数图象与反比例函数 的图象交于A( ),B( )两点,那么( )( )的值为_____.2.在平面直角坐标系中,直线y=x与双曲线 交于A,B两点.若点A,B的横坐标分别为x1,x2,则x1+x2的值为 .
第 二十七章 反比例函数
27.2 反比例函数的图像和性质第1课时
学习目标
1.会用描点法画出反比例函数的图像.2.了解双曲线的定义.
学习重难点
理解并掌握画反比例函数的图像的方法.
重点
难点
理解反比例函数性质.
回顾复习
1.反比例函数
2.一次函数、二次函数的图象
一次函数的图象是一条直线.
二次函数的图象是一条抛物线.
24
0
课堂小结
描点法画反比例函数图像的步骤:列表、描点、连线 反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成,这样的曲线叫做双曲线. 反比例函数的图像关于直线y=±x对称,关于原点成中心对称.
同学们再见!
授课老师:
时间:2024年9月15日
它们的图像都由两条曲线组成;都关于y=±x对称,关于原点成中心对称;同时都与坐标轴不存在交点,且图像无限贴近坐标轴.
归纳总结
反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成已知点P(-6,8)在反比例函数 的图像上.(1)求这个反比例函数的表达式.(2)判断点M(4,-12)和N(2,24)是否在这个反比例函数的图像上.

反比例函数的图象和性质(1)课件

反比例函数的图象和性质(1)课件
当 $k > 0$ 时,在每个象限内,随着 $x$ 的增大, $y$ 值逐渐减小。
反比例函数的图象永远不会与坐标轴相交。
易错难点剖析指导
错误理解反比例函数的定义
学生容易将反比例函数与正比例函数混淆。正比例函数的形式是 $y = kx$,而反比例函 数的形式是 $y = frac{k}{x}$。在理解反比例函数时,要注意区分这两种函数形式。
分段连接
根据点的分布情况,可以将曲线分成 若干段进行连接。每一段都可以用一 条平滑的曲线来表示。
保持连续性
在连接各段曲线时,要确保它们之间 的连续性,避免出现断点或尖角。
调整和优化
连接完成后,可以对曲线进行调整和 优化,使其更加符合反比例函数的性 质和要求。
03
反比例函数性质分析
对称性特点
反比例函数的图象关于原点对称,即如果函数图象上有点(x, y),则点(-x, -y)也 在函数图象上。
04
反比例函数在实际问题中应用举例
面积问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知量求 解未知量。
过程
首先明确题目中的已知量和未知量,然后根据面积公式建立 反比例函数关系式,通过代入已知量求解未知量,最后进行 答案的验证和解释。
速度问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知速度和时间求解未知路 程。
工程中的应用
在工程领域中,反比例函数可以用来描述一些工程问题。例如,在电阻、电感、电容等电子元件的参数 计算中,经常涉及到反比例关系。通过利用反比例函数的性质进行计算和分析,可以简化问题的求解过 程。
THANKS
感谢观看
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是比例系数, 且 $k neq 0$。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据引入部分内容的探讨,进一步理解如何准确画出函数图象.
[活动3]结合反比例函数的图象探究反比例函数的性质.
老师提问:
按照前面我们学习函数图象的基本思路,首先考虑问题:
我们所画的上面的反比例函数的图象的形状以及函数图象的位置.
性质1:反比例函数 的图象由两条曲线组成,叫双曲线.
性质2: 时,函数图象在第一、三象限; 时,函数图象在第二、四象限.
反比例函数的图象和性质—1
教学任务分析
教学目标
知识技能
掌握反比例函数的图象的作法.
掌握反比例函数的性质.
数学思考Βιβλιοθήκη 通过反比例函数图象画法的全过程,体会无限趋近的思想.
完整全面的画出反函数的图象,锻炼缜密、严谨的数学思考水平.
解决问题
通过深入理解反比例函数的两个变量之间的关系来解决现实生活中的实际问题.
[活动4]结合练习,体会反比例函数的图象和性质.
1.试画出函数 的图象,并求出当 时, 的取值范围?
注:不能只回答 ,体会图象的一支在第一象限,向右无限接近x轴
2.试回答:对于函数 ,当自变量 时,函数值是否一定有 ?
注:要分类讨论,体会函数的增减性是指在同一象限内.
第一个问题:注意让学生观察函数的图象,回答要完整,体会函数图象的性质.
第二个问题:引导学生学会用分类讨论的思想来解决问题;注意深入理解函数图象的性质.
[活动5]作业:书P547,8
教师布置作业,
学生课后完成.
首先思考本节课所学内容,实行即时复习巩固.
然后通过独立思考练习,达到对知识的深入理解.
最后实行归纳总结,并实行自我评价学习效果.
在头脑中形成一般情况下函数图象的画法,加深反比例函数的概念,进一步提出问题:如何画出反比例函数的图象?
通过列表、描点、连线这三个基本步骤画出函数的图象,让学生体会反比例函数图象的画法过程中应该注意的问题.
引导学生通过观察反比例函数的图象,总结归纳出反比例函数的性质.
通过练习,加深对反比例函数的图象和性质的理解.
3.图象画成曲线.
通过实际问题引出事例,复习反比例函数的概念.
复习列表、描点、连线的基本步骤.
通过画这个函数图象,让学生体会出三个基本步骤应该注意的地方:
1.取多少个点?
2.在什么范围内取点.
3.如何连线?
[活动2]讨论反比例函数图象的画法.
例1:画出下列函数的图象
(1)
(2)
重点强调反比例函数图象的画法.
情感态度
互相探讨,逐步完善思考的合作精神.
重点
反比例函数的图象和性质
难点
反比例函数的图象和性质
教学流程安排
活动流程图
活动内容和目的
活动1复习反比例函数的定义、函数图象的画法.
活动2讨论反比例函数图象的画法.
活动3结合反比例函数的图象探究反比例函数的性质.
活动4结合练习,体会反比例函数图象和性质.
活动5布置作业.
老师提问:
学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24 的矩形饲养场.设它的一边长为 ,求另一边的长 与 的函数关系.
讨论与思考: 是 的什么函数?自变量取值范围是什么?
试画出函数 的图象?
老师带领学生复习画函数图象的步骤及注意事项.
可能出现的情况:
1.列表时函数值求错.
2.图象只画出在第一象限的部分.
课前准备
教具
学具
补充材料
三角板(直尺)、投影仪、实物投影仪
铅笔,橡皮,三角板(直尺),练习本
教学过程设计
问题与情境
师生行为
设计意图
[活动1]复习反比例函数的定义、函数图象的画法.
我们已经学习了反比例函数的定义,为了进一步了解反比例函数的性质,按照前面介绍的方法,我们能够从研究反比例函数的图象入手,为此我们首先要复习函数图象的画法.
[注]:双曲线的两个分支都不会与x轴、y轴相交.
老师提问:对于反比例函数,随着 的增大, 一定减小吗?
引导同学们观察图象,在图象上取特殊值实行讨论.
性质3: 时,在一、三象限, 随 的增大而减小; 时,在二、四象限, 随 的增大而增大.
[注]:函数的增减性是指在同一象限内;反比例函数的图象的位置和函数的增减性都由比例系数k的符号决定.
相关文档
最新文档