人教高中数学等差数列ppt完美课件
合集下载
人教版高中数学选择性必修第二册4.2.1(第1课时)等差数列的概念及通项公式【课件】
![人教版高中数学选择性必修第二册4.2.1(第1课时)等差数列的概念及通项公式【课件】](https://img.taocdn.com/s3/m/d44e3ebd9a89680203d8ce2f0066f5335b816760.png)
类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规
律的数列,建立它们的通项公式和前n项和公式,并运用它们解决实际问题和
数学问题,从中感受数学模型的现实意义与应用.
下面,我们从一类取值规律比较简单的数列入手.
新知导入
请看下面几个问题中的数列.
1. 北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,围绕天心石的
这个数列不能称为等差数列.
新知讲解
等差中项
由三个数a,A,b组成的等差数列可以看成是最简单的等差数列.
这时,A 叫做 a 与 b 的等差中项.
根据等差数列的定义可以知道,2A=a+b.
(1)条件:如果a,A,b成等差数列
(2)结论:A叫做a与b的等差中项
(3)满足的关系式是 2A=a+b
合作探究
是9圈扇环形的石板,从内到外各圈的石板数依次为
9,18,27,36,45,54,63,72,81. ①
2. S,M,L,XL,XXL,XXXL型号的女装上衣对应的尺码分别是
38,40,42,44,46,48. ②
3. 测量某地垂直地面方向海拔500m以下的大气温度,得到从距离地面
20m起每升高100m处的大气温度(单位:℃)依次为
1 − ( ∈ ) 当x=n时的函数值,即 = () .
如图4.2-1, 在平面直角坐标系中画出
= + −
的图象,
就得到一条斜率为d,截距为1 − 的直线.
合作探究
在这条直线上描出点
, , , , ⋯ , , , ⋯ ,
就得到了等差数列{ }的图象.
an=a1+(n-1)d (n∈N*)
合作探究
律的数列,建立它们的通项公式和前n项和公式,并运用它们解决实际问题和
数学问题,从中感受数学模型的现实意义与应用.
下面,我们从一类取值规律比较简单的数列入手.
新知导入
请看下面几个问题中的数列.
1. 北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,围绕天心石的
这个数列不能称为等差数列.
新知讲解
等差中项
由三个数a,A,b组成的等差数列可以看成是最简单的等差数列.
这时,A 叫做 a 与 b 的等差中项.
根据等差数列的定义可以知道,2A=a+b.
(1)条件:如果a,A,b成等差数列
(2)结论:A叫做a与b的等差中项
(3)满足的关系式是 2A=a+b
合作探究
是9圈扇环形的石板,从内到外各圈的石板数依次为
9,18,27,36,45,54,63,72,81. ①
2. S,M,L,XL,XXL,XXXL型号的女装上衣对应的尺码分别是
38,40,42,44,46,48. ②
3. 测量某地垂直地面方向海拔500m以下的大气温度,得到从距离地面
20m起每升高100m处的大气温度(单位:℃)依次为
1 − ( ∈ ) 当x=n时的函数值,即 = () .
如图4.2-1, 在平面直角坐标系中画出
= + −
的图象,
就得到一条斜率为d,截距为1 − 的直线.
合作探究
在这条直线上描出点
, , , , ⋯ , , , ⋯ ,
就得到了等差数列{ }的图象.
an=a1+(n-1)d (n∈N*)
合作探究
高中数学人教版必修5课件:2.2.1等差数列(共21张PPT)
![高中数学人教版必修5课件:2.2.1等差数列(共21张PPT)](https://img.taocdn.com/s3/m/6999f059bb4cf7ec4bfed04d.png)
1、理解等差数列的概念及分类; 2、掌握等差中项; 3、探索并掌握等差数列的通项公式并能解决
一些简单问题; 4、通过教学,培养学生的观察、分析、归纳、
推理的能力,渗透由特殊到一半的思想。 • 重点:等差数列的概念及通项公式。 • 难点:概括通项同事推导过程中的数学思
想方法。
研究发现我国儿童年龄在2-12周
岁之间,其标准的身高、体重大
致成规律性变化:
你能预测12岁儿童
相差7
的身高和体重吗?
年龄 2 3 4 5 6 … 11 12
身高 84 91 98 105 112 … 147 154 (cm)
体重 12 14 16 18 20 … 30 32 (kg)
相差2 (1)84,91,98,105,112,…,147,154; (2)12,14,16,18,20,…,30,32.
• 这个常数叫做等差数列的公差,公差通常 用字母d表示。
• 即:an-an-1=d
观察:以下数列有什么共同特点? 相差7
相差2(1) 84,91,98,105,112,…,147,154. (2) 12,14,16,18,20,…,30,32 相差4 (3) 1996,2000,2004,2008,2012,2016
1896年,雅典举行第一届现代奥运会,到2012年 的伦敦奥运会已经是第30届奥运会。 相差4
(3)1896,1900,1904,…,2008,2012,(2016 )
你能预测出第31届 奥运会的时间吗?
1、等差数列的定义:
• 如果一个数列从第2项起,每一项与它的 前一项的差等于同一个常数,这个数列就 叫做等差数列。
2.2 等差数列
Yesterday once more
一些简单问题; 4、通过教学,培养学生的观察、分析、归纳、
推理的能力,渗透由特殊到一半的思想。 • 重点:等差数列的概念及通项公式。 • 难点:概括通项同事推导过程中的数学思
想方法。
研究发现我国儿童年龄在2-12周
岁之间,其标准的身高、体重大
致成规律性变化:
你能预测12岁儿童
相差7
的身高和体重吗?
年龄 2 3 4 5 6 … 11 12
身高 84 91 98 105 112 … 147 154 (cm)
体重 12 14 16 18 20 … 30 32 (kg)
相差2 (1)84,91,98,105,112,…,147,154; (2)12,14,16,18,20,…,30,32.
• 这个常数叫做等差数列的公差,公差通常 用字母d表示。
• 即:an-an-1=d
观察:以下数列有什么共同特点? 相差7
相差2(1) 84,91,98,105,112,…,147,154. (2) 12,14,16,18,20,…,30,32 相差4 (3) 1996,2000,2004,2008,2012,2016
1896年,雅典举行第一届现代奥运会,到2012年 的伦敦奥运会已经是第30届奥运会。 相差4
(3)1896,1900,1904,…,2008,2012,(2016 )
你能预测出第31届 奥运会的时间吗?
1、等差数列的定义:
• 如果一个数列从第2项起,每一项与它的 前一项的差等于同一个常数,这个数列就 叫做等差数列。
2.2 等差数列
Yesterday once more
人教版高中数学必修5《等差数列》PPT课件
![人教版高中数学必修5《等差数列》PPT课件](https://img.taocdn.com/s3/m/cd807120f68a6529647d27284b73f242336c31f7.png)
an=a1+(n-1)d
等差数列的通项公式中包含四个量: an、a1、n、d
这四个量只需知道其中的三个就可以求出第四个.
例2.在等差数列{an}中, a5=10, (1)若a12=31,求a25 ; (2)若d=2,求a10; 解:(1)依题意得
a1+4d=10 a1+11d=31 解得 a1= - 2 , d = 3 ∴ a25=a1+24d = -2+24×3=70
解:a8=a1+7d=-1+7×4=27
(2)已知a1=15,an=3,d= -3,求n; 解:∵3=15-3(n-1) ∴n=5
(3)已知a1=8,a6=23,求d; 解:∵a6=a1+5d,即23=8+5d ∴ d=3
(4)已知d=2,a7=9,求a1; 解:∵a7=a1+6d 即9=a1+6×2 ∴a1=-3
拓展:在等差数列{an}中, 若a5=10,a12=31,求a25 。 解:设等差数列{an}的公差为d,则依题意有
d a12 a5 3110 3 12 5 7
∴ a25=a5+20d = 10+20×3=70
练习:在下列两个数中间再插入两个数,使这四个数组成 一个等差数列,(1)-1,5; (2)-12,0.
观察并发现:下面数列有什么共同特点?
(1)0,5,10,15,20,25,…
(2)鞋的尺寸,按照国家统一规定,有: 22,22.5,23,23.5,24,24.5,25,25.5,26,… (3)21,19,17,15,…… (4)3,3,3,3,……
(1)从第2项起,每一项与前一项的差都等于 5 (2)从第2项起,每一项与前一项的差都等于 0.5 (3)从第2项起,每一项与前一项的差都等于 -2 (4)从第2项起,每一项与前一项的差都等于 0
等差数列的通项公式中包含四个量: an、a1、n、d
这四个量只需知道其中的三个就可以求出第四个.
例2.在等差数列{an}中, a5=10, (1)若a12=31,求a25 ; (2)若d=2,求a10; 解:(1)依题意得
a1+4d=10 a1+11d=31 解得 a1= - 2 , d = 3 ∴ a25=a1+24d = -2+24×3=70
解:a8=a1+7d=-1+7×4=27
(2)已知a1=15,an=3,d= -3,求n; 解:∵3=15-3(n-1) ∴n=5
(3)已知a1=8,a6=23,求d; 解:∵a6=a1+5d,即23=8+5d ∴ d=3
(4)已知d=2,a7=9,求a1; 解:∵a7=a1+6d 即9=a1+6×2 ∴a1=-3
拓展:在等差数列{an}中, 若a5=10,a12=31,求a25 。 解:设等差数列{an}的公差为d,则依题意有
d a12 a5 3110 3 12 5 7
∴ a25=a5+20d = 10+20×3=70
练习:在下列两个数中间再插入两个数,使这四个数组成 一个等差数列,(1)-1,5; (2)-12,0.
观察并发现:下面数列有什么共同特点?
(1)0,5,10,15,20,25,…
(2)鞋的尺寸,按照国家统一规定,有: 22,22.5,23,23.5,24,24.5,25,25.5,26,… (3)21,19,17,15,…… (4)3,3,3,3,……
(1)从第2项起,每一项与前一项的差都等于 5 (2)从第2项起,每一项与前一项的差都等于 0.5 (3)从第2项起,每一项与前一项的差都等于 -2 (4)从第2项起,每一项与前一项的差都等于 0
人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)
![人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)](https://img.taocdn.com/s3/m/b8935d7a453610661fd9f403.png)
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
[答案] B
4.首项是 18,公差为 3 的等差数列的第________项开
始大于 100.
[解析] 由题意 an=18+3(n-1)=3n+15,
由
3n+15>100
得
1 n>283.
∵n∈N*,
∴n=29,即从 29 项开始大于 100.
[答案] 29
5.若b+1 c,c+1 a,a+1 b成等差数列,求证:a2,b2,c2 成等差数列.
又∵d 是整数,∴d=-4.故选 C. [答案] C
二、填空题
5.若 x≠y,数列 x,a1,a2,y 和 x,b1,b2,b3,y 各
自成等差数列,则ab11- -ab22=________. [解析] 由于 a1-a2=x-3 y,b1-b2=x-4 y,则ab11- -ab22=43.
[答案]
(2)若数列{an}既是等方差数列,又是等差数列,证明该 数列为常数列.
[解] (1)由等方差数列的定义可知:a2n-a2n-1=p(n≥2). (2)解法一:∵{an}是等差数列,设公差为 d,则 an-an -1=an+1-an=d(n≥2).又{an}是等方差数列,∴a2n-a2n-1= a2n+1-a2n(n≥2),∴(an+an-1)(an-an-1)=(an+1+an)(an+1- an),即 d(an+an-1-an+1-an)=-2d2=0,∴d=0,即{an} 是常数列.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
[答案] B
4.首项是 18,公差为 3 的等差数列的第________项开
始大于 100.
[解析] 由题意 an=18+3(n-1)=3n+15,
由
3n+15>100
得
1 n>283.
∵n∈N*,
∴n=29,即从 29 项开始大于 100.
[答案] 29
5.若b+1 c,c+1 a,a+1 b成等差数列,求证:a2,b2,c2 成等差数列.
又∵d 是整数,∴d=-4.故选 C. [答案] C
二、填空题
5.若 x≠y,数列 x,a1,a2,y 和 x,b1,b2,b3,y 各
自成等差数列,则ab11- -ab22=________. [解析] 由于 a1-a2=x-3 y,b1-b2=x-4 y,则ab11- -ab22=43.
[答案]
(2)若数列{an}既是等方差数列,又是等差数列,证明该 数列为常数列.
[解] (1)由等方差数列的定义可知:a2n-a2n-1=p(n≥2). (2)解法一:∵{an}是等差数列,设公差为 d,则 an-an -1=an+1-an=d(n≥2).又{an}是等方差数列,∴a2n-a2n-1= a2n+1-a2n(n≥2),∴(an+an-1)(an-an-1)=(an+1+an)(an+1- an),即 d(an+an-1-an+1-an)=-2d2=0,∴d=0,即{an} 是常数列.
4.2.1等差数列的概念 课件(共13张PPT)(2024)高二下学期数学人教A版选择性必修第二册
![4.2.1等差数列的概念 课件(共13张PPT)(2024)高二下学期数学人教A版选择性必修第二册](https://img.taocdn.com/s3/m/8b6f2d72cd7931b765ce0508763231126edb7728.png)
a, A, b 成等差数列
等差数列填空:
12,
,
,
,
0
探究新知
三.等差数列的通项公式
如果一个数列a1, a2, … , an, …是等差数列,它的公差是d, 那么
a2-a1=d
a2=a1+d
a3-a2=d
不
累
a3=a2+d=(a1+d)+d=a1+2d
完
a4-a3=d
加
…
…
全
a4=a3+d=(a1+2d)+d=a1+3d
[练习1]等差数列{an }中, 若a1 5, 公差d 3, 则a11 ___ .
析 : a11 a1 10 d 5 10 3 35
[变式]等差数列{an }中, 若a4 14 , 公差d 3, 则a11 ___ .
析 : a4 a1 3d a1 9 14, a1 5.
不是
(6), , , , …
不是
公差可为正、可为负也可为0
说明:判断数列是不是等差数列,
运用定义:看+ − 是否为
同一个常数.
探究新知
二.等差中项的定义
在如下的两个数之间, 插入一个数使这三个数成为一个等差数列:
(1) 2, ( 3 ), 4
(2) -1, ( 2 ), 5
新课导入
【情景2】 XXS,XS,S,M,L,XL,XXL,XXXL型号的女装
对应的尺码分别是: 34,36,38,40,42,44,46,48
新课导入
【情景3】 测量某地垂直地面方向上海拔500m以下的大气温度,得
高中数学人教A版必修5《等差数列》PPT课件
![高中数学人教A版必修5《等差数列》PPT课件](https://img.taocdn.com/s3/m/652c6c937c1cfad6185fa72f.png)
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)
高中数学等差数列ppt课件
![高中数学等差数列ppt课件](https://img.taocdn.com/s3/m/f29ceeff3086bceb19e8b8f67c1cfad6195fe9d2.png)
人教版·数学·必修5·第二章《数列》
2.2.1等差数列(1)
复习回顾
数列: 按照一定顺序排成的一列数称为数列。
实质: 数式:如果数列{an}的第n项an与项数n之间的 关系可以用一个公式来表示,这个公式就叫做这个 数列的通项公式.(反映项与序号之间的关系)
1、等差数列的定义
一般地,如果一个数列a1, a2, a3,…, an, …从第二项起,每一项与它的前一项的 差等于同一个常数d,
a2–a1=a3-a2=···=an-an-1=···=d 那么这个数列就叫做等差数列。常数d叫做等 差数列的公差。
等差数列定义的符号表示:
(1){an}是等差数列⇔an-an-1=d(n≥2,n ∈N*) (2){an}是等差数列⇔ an+1-an=d(n ∈N*)
又,当n=1时,等式成立 ∴ n∈N*时, an=a1+(n – 1)d
法二
∵{an}是等差数列,则有
an–an-1=d an-1–an-2=d an-2–an-3=d ……
累加法:
这一推导思想 在今后的数列 求和问题中也
a2–a1=d
有重要的应用
相加得:an – a1=(n–1)d
∴an=a1+(n–1)d
作差。 不能颠倒。 2、作差的结果要求是同一个常数。可以是正
数,也可以是0和负数。
温馨提示:
(1)从第二项起:如果一个数列,不从第2项起,而是从 第3项或第4项起,每一项与它前一项的差是同一个常数, 那么此数列不是等差数列,但可以说从第2项或第3项起是 一个等差数列。
(2)同一个常数:一个数列,从第2项起,每一项与它的 前一项的差,尽管等于一个常数,这个数列可不一定是等 差数列,因为这些常数可以不同,当常数不同时,当然不 是等差数列,因此定义中“同一个”常数,这个“同一个”十 分重要。
2.2.1等差数列(1)
复习回顾
数列: 按照一定顺序排成的一列数称为数列。
实质: 数式:如果数列{an}的第n项an与项数n之间的 关系可以用一个公式来表示,这个公式就叫做这个 数列的通项公式.(反映项与序号之间的关系)
1、等差数列的定义
一般地,如果一个数列a1, a2, a3,…, an, …从第二项起,每一项与它的前一项的 差等于同一个常数d,
a2–a1=a3-a2=···=an-an-1=···=d 那么这个数列就叫做等差数列。常数d叫做等 差数列的公差。
等差数列定义的符号表示:
(1){an}是等差数列⇔an-an-1=d(n≥2,n ∈N*) (2){an}是等差数列⇔ an+1-an=d(n ∈N*)
又,当n=1时,等式成立 ∴ n∈N*时, an=a1+(n – 1)d
法二
∵{an}是等差数列,则有
an–an-1=d an-1–an-2=d an-2–an-3=d ……
累加法:
这一推导思想 在今后的数列 求和问题中也
a2–a1=d
有重要的应用
相加得:an – a1=(n–1)d
∴an=a1+(n–1)d
作差。 不能颠倒。 2、作差的结果要求是同一个常数。可以是正
数,也可以是0和负数。
温馨提示:
(1)从第二项起:如果一个数列,不从第2项起,而是从 第3项或第4项起,每一项与它前一项的差是同一个常数, 那么此数列不是等差数列,但可以说从第2项或第3项起是 一个等差数列。
(2)同一个常数:一个数列,从第2项起,每一项与它的 前一项的差,尽管等于一个常数,这个数列可不一定是等 差数列,因为这些常数可以不同,当常数不同时,当然不 是等差数列,因此定义中“同一个”常数,这个“同一个”十 分重要。
高中数学选择性必修二(人教版)《4.2.1 等差数列的概念及通项公式》课件
![高中数学选择性必修二(人教版)《4.2.1 等差数列的概念及通项公式》课件](https://img.taocdn.com/s3/m/3f203816ff4733687e21af45b307e87101f6f8c8.png)
解:法一:∵a5=10,a12=31, ∴aa11+ +411dd==1301,, ∴ad1==3-,2. ∴an=a1+(n-1)d=3n-5,∴a20=3×20-5=55. 法二:∵a12=a5+7d,即 31=10+7d,∴d=3, ∴an=a12+(n-12)d=3n-5, ∴a20=a12+8d=31+8×3=55.
an=_a_1+__(_n_-__1_)_d__
(二)基本知能小试
1.判断正误
(1)等差数列{an}的单调性与公差 d 有关.
()
(2)根据等差数列的通项公式,可以求出数列中的任意一项. ( )
答案:(1),首项 a1=4,公差 d=-2,则通项公式 an 等于
∵cos 1-cos 0≠cos 2-cos 1,∴该数列不是等差数列.C.∵(3m+a)
-3m=(3m+2a)-(3m+a)=(3m+3a)-(3m+2a)=a,∴该数列是等
差数列.D.∵(a+1)-(a-1)=(a+3)-(a+1)=2,∴该数列是等差
数列. 答案:ACD
3. 已知 2m 与 n 的等差中项为 5,m 与 2n 的等差中项为 4,则 m 与 n
解:(1)依题意得,a10=10,a20=10+10d=40,所以 d=3. (2)a30=a20+10d2=10(1+d+d2) =10d+122+34(d≠0), 当 d∈(-∞,0)∪(0,+∞)时,a30∈125,+∞. (3)所给数列可推广为无穷数列{an},其中 a1,a2,…,a10 是首项为 1, 公差为 1 的等差数列,当 n≥1 时,a10n,a10n+1,…,a10(n+1)是公差 为 dn 的等差数列.
2.[等差数列的函数特性]已知等差数列{an}中,a15=33,a61=217,试 判断 153 是不是这个数列的项,如果是,是第几项? 解:设首项为 a1,公差为 d,则 an=a1+(n-1)d, 由已知aa11+ +1651- -11dd= =3231, 7, 解得ad1==4-. 23, 所以 an=-23+(n-1)×4=4n-27, 令 an=153,即 4n-27=153,解得 n=45∈N *,所以 153 是所给数
an=_a_1+__(_n_-__1_)_d__
(二)基本知能小试
1.判断正误
(1)等差数列{an}的单调性与公差 d 有关.
()
(2)根据等差数列的通项公式,可以求出数列中的任意一项. ( )
答案:(1),首项 a1=4,公差 d=-2,则通项公式 an 等于
∵cos 1-cos 0≠cos 2-cos 1,∴该数列不是等差数列.C.∵(3m+a)
-3m=(3m+2a)-(3m+a)=(3m+3a)-(3m+2a)=a,∴该数列是等
差数列.D.∵(a+1)-(a-1)=(a+3)-(a+1)=2,∴该数列是等差
数列. 答案:ACD
3. 已知 2m 与 n 的等差中项为 5,m 与 2n 的等差中项为 4,则 m 与 n
解:(1)依题意得,a10=10,a20=10+10d=40,所以 d=3. (2)a30=a20+10d2=10(1+d+d2) =10d+122+34(d≠0), 当 d∈(-∞,0)∪(0,+∞)时,a30∈125,+∞. (3)所给数列可推广为无穷数列{an},其中 a1,a2,…,a10 是首项为 1, 公差为 1 的等差数列,当 n≥1 时,a10n,a10n+1,…,a10(n+1)是公差 为 dn 的等差数列.
2.[等差数列的函数特性]已知等差数列{an}中,a15=33,a61=217,试 判断 153 是不是这个数列的项,如果是,是第几项? 解:设首项为 a1,公差为 d,则 an=a1+(n-1)d, 由已知aa11+ +1651- -11dd= =3231, 7, 解得ad1==4-. 23, 所以 an=-23+(n-1)×4=4n-27, 令 an=153,即 4n-27=153,解得 n=45∈N *,所以 153 是所给数
4.2.1等差数列的概念PPT课件(人教版)
![4.2.1等差数列的概念PPT课件(人教版)](https://img.taocdn.com/s3/m/a2e4a14f3069a45177232f60ddccda38366be171.png)
an a1 (n 1)d
结论:等差数列的通项公式的一般情势:an=am+(n-m)d
练习
求下列等差数列的通项公式
(1)9,18,27,36,45,54,63,72...
(1)an=9+(n-1)×9=9n
(2)38,40,42,44,46,48...
(2)an=38+(n-1)×2=2n+36
ab
叫做a与b的等差中项。即 A
2
这个式子叫做这个数列的递推公式.
引入
请看下面几个问题中的数列.
1.北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,
环绕天心石的是9圈扇环形的石板,从内到外各圈的石板数依
次为
9,18,27,36,45,54,63,72,81.①
2.S,M,L,XL,XXL,L型号的女装上衣对应的尺码分别是
38,40,42,44,46,48.②
求an 的公差和首项;(2)求等差数列 8,5, 2, 的第20项.
解: (1)当n 2时,由an 5 2n, 得
an1 5 2(n 1) 7 2n.
于是, d an an1 (5 2n) (7 2n) 2.
当n 1时, a1 5 2 3.
练习
判断下列数列是否为等差数列,若是,求出首项和公差
(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10
×
(2) 3,3,3,3,3,3
a1=3,公差 d=0 常数列
(3) 3x,6x,9x,12x,15x
a1=3x 公差 d= 3x
(4)95,82,69,56,43,30
a1=95 公差 d=-3
人教版高中数学必修五等差数列课件
![人教版高中数学必修五等差数列课件](https://img.taocdn.com/s3/m/e0163540482fb4daa58d4baa.png)
你能根据规律在( ) 内填上合适的数吗?
(1)0,5,10,15,20,( 25 ). (2) 32, 25.5, 19, 12.5, 6, …, (-20). (3) 1,4,7,10,( 13 ),16,…
(4) 2, 0, -2, -4, -6,( -8 )…
它们的共同特点是?
d=5
( 1 ) 0,5,10,15,20,(25)
(3)-8,-6,-4,-2,0,… 是 a1=-8,d=2
(4)3,3,3,3,…
是 a1=3,d=0
(5)1, 1 , 1 , 1 , 1 ,
不是
2345
(6)15,12,10,8,6,…
不是
人教版高中数学必修五2.2等差数列( 第一课 时)课 件
探究性问题1:
在如下的两个数之间,插入一个什么数后这三个
人教版高中数学必修五2.2等差数列( 第一课 时)课 件
练习二
人教版高中数学必修五2.2等差数列( 第一课 时)课 件
(1)求等差数列3,7,11…的第4项与第10项;
(2)判断100是不是等差数列`2,9,16,…的项? 如果是,是第几项,如果不是,说明理由。
解:(1)根据题意得: (2)由题意得:
通项公式
人教版高中数学必修五2.2等差数列( 第一课 时)课 件
已知等差数列{an}的首项是a1,公差是d
a2-a1=d
累加法
a3-a2=d a4-a3=d
……
an-an-1=d
(1) (2) (3)
(n-1)
(1)式+(2)式+…+(n-1)式得:
an-a1=(n-1)d,即 an=a1+(n-1)d
高中数学人教版必修5等差数列 课件PPT
![高中数学人教版必修5等差数列 课件PPT](https://img.taocdn.com/s3/m/cd250573312b3169a551a41a.png)
2.若 m 与 2n 的等差中项为 4,2m 和 n 的等差中项为 5,则 m 与 n 的 等差中项是________. 解析:由 m 和 2n 的等差中项为 4,得 m+2n=8. 又由 2m 和 n 的等 差中项为 5,得 2m+n=10,两式相加,得 m+n=6,所以 m 与 n 的等差中项为m+2 n=62=3. 答案:3
2 A.n+1
B.23n-1
C.23n
2 D.n+2
[解析] 因为 a1=1,a2=23, 所以a12-a11=32-1=12. 因为an1-1+an1+1=a2n(n≥2), 所以an1+1-a1n=a1n-an1-1(n≥2).
所以数列a1n是首项为 1,公差为12的等差数列. 所以a1n=1+12(n-1)=n+2 1, 所以 an=n+2 1. [答案] A
A.13,15,17,19
B.1, 3, 5, 7
C.1,-1,1,-1
D.0,0,0,0
答案:D
4.等差数列 1,-3,-7,-11,…的通项公式是________,它的 第 20 项是________. 解析:数列中 a2=-3,a1=1,∴d=a2-a1=-4. 通项公式为 an=a1+(n-1)×d =1+(n-1)×(-4) =-4n+5, a20=-80+5=-75. 答案:an=-4n+5 -75
4.设{an}为等差数列,若 a2+a3+a4+a5+a6+a7+a8=420,则 a1+ a9=________. 解析:∵a2+a8=a3+a7=a4+a6=2a5. ∴a2+a3+a4+a5+a6+a7+a8=7a5=420. ∴a5=60. a1+a9=2a5=2×60=120. 答案:120
探究二 等差中项及其应用 [典例 2] (1)在-1 与 7 之间顺次插入三个数 a,b,c 使这五个数成 等差数列,求此数列. (2)已知数列{xn}的首项 x1=3,通项 xn=2np+nq(n∈N*,p,q 为常数), 且 x1、x4、x5 成等差数列,求:p,q 的值.
人教版A版高中数学必修5:等差数列_课件26
![人教版A版高中数学必修5:等差数列_课件26](https://img.taocdn.com/s3/m/9537d8236c85ec3a87c2c530.png)
等差数列
1
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项与前一项的差都等于同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数 列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
2
(2)对于正整数m、n、p、q,若m+n=p+q,则等差数列中am
、an、ap、aq的关系为am+an=ap+aq;如果aa,A,bb成等差数
10n n2 n2 10n
50
(n≤5), (n 5).
38
错源二
忽略为零的项
【典例2】在等差数列{an}中,已知a1=10,前n项和为Sn,且 S10=S15,求n取何值时,Sn有最大值,并求出最大值.
39
[错解]设公差为d,由S10 S15, 得
10a1
10 9 2
A.5
B.-5
C.1
D.-1
解析:解法一:a1=1,a2=5,an+2=an+1-an(n∈N*)可得该数列为 1,5,4,-1,-5,-4,1,5,4,…
由此可得a1000=-1.
15
解法二:∵an+2=an+1-an,an+3=an+2-an+1(n∈N*),两式相加可得 an+3=-an,an+6=an,
通项公式,则可以利用定义法,否则,可以利用等差中项法.
18
【典例1】已知数列{an}的通项公式an=pn2+qn(p、q∈R,且 p、q为常数).
(1)当p和q满足什么条件时,数列{an}是等差数列; (2)求证:对任意实数p和q,数列{an+1-an}是等差数列. [解](1)an+1-an=[p(n+1)2+q(n+1)]-(pn2+qn)=2pn+p+q,要使
1
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项与前一项的差都等于同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数 列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
2
(2)对于正整数m、n、p、q,若m+n=p+q,则等差数列中am
、an、ap、aq的关系为am+an=ap+aq;如果aa,A,bb成等差数
10n n2 n2 10n
50
(n≤5), (n 5).
38
错源二
忽略为零的项
【典例2】在等差数列{an}中,已知a1=10,前n项和为Sn,且 S10=S15,求n取何值时,Sn有最大值,并求出最大值.
39
[错解]设公差为d,由S10 S15, 得
10a1
10 9 2
A.5
B.-5
C.1
D.-1
解析:解法一:a1=1,a2=5,an+2=an+1-an(n∈N*)可得该数列为 1,5,4,-1,-5,-4,1,5,4,…
由此可得a1000=-1.
15
解法二:∵an+2=an+1-an,an+3=an+2-an+1(n∈N*),两式相加可得 an+3=-an,an+6=an,
通项公式,则可以利用定义法,否则,可以利用等差中项法.
18
【典例1】已知数列{an}的通项公式an=pn2+qn(p、q∈R,且 p、q为常数).
(1)当p和q满足什么条件时,数列{an}是等差数列; (2)求证:对任意实数p和q,数列{an+1-an}是等差数列. [解](1)an+1-an=[p(n+1)2+q(n+1)]-(pn2+qn)=2pn+p+q,要使
4.2.1 第1课时 等差数列的概念及通项公式课件ppt
![4.2.1 第1课时 等差数列的概念及通项公式课件ppt](https://img.taocdn.com/s3/m/cdf97b1bcdbff121dd36a32d7375a417866fc1ce.png)
变式训练 3已知数列{an}中,a1=a2=1,an=an-1+2(n≥3).
(1)判断数列{an}是不是等差数列,并说明理由;
(2)求{an}的通项公式.
解 (1)当n≥3时,an=an-1+2,即an-an-1=2,
而a2-a1=0不满足an-an-1=2,
∴{an}不是等差数列.
(2)由(1)得,当n≥2时,an是等差数列,公差为2,
是首项为2,公差为2的等差数列,
1
1
(n-1)=2n,故
2
1
2
2
an= .
a1=2,
素养形成
构造等差数列解题
中的任意两项,就可以求出其他的任意一项.
微练习
(1)等差数列{an}:5,0,-5,-10,…的通项公式是
.
(2)若等差数列{an}的通项公式是an=4n-1,则其公差d=
答案 (1)an=10-5n (2)4
解析 (1)易知首项a1=5,公差d=-5,所以an=5+(n-1)·(-5)=10-5n.
微练习
判断下列各组数列是不是等差数列.如果是,写出首项a1和公差d.
①1,3,5,7,9,…;
②9,6,3,0,-3,…;
③1,3,4,5,6,…;
④7,7,7,7,7,…;
1 1 1 1
⑤1, , , , ,….
2 3 4 5
解 ①是,a1=1,d=2;②是,a1=9,d=-3;③不是;④是,a1=7,d=0;⑤不是.
2
2
1
a=2,
所以这个等差数列的每一项均为 1.故选 B.
(2)因为 a,b,c 成等差数列, , , 也成等差数列,
2 = + ,
4.2.1等差数列的概念(教学课件)-高中数学人教A版选择性必修第二册
![4.2.1等差数列的概念(教学课件)-高中数学人教A版选择性必修第二册](https://img.taocdn.com/s3/m/1ebc081d1611cc7931b765ce050876323012745f.png)
答案: 4
解析:设等差数列an 的公差为 d,且 d 为整数,
由题意得 a6 a1 5d 0 , a7 a1 6d 0 ,
所以 23 5d 0 ,且 23 6d 0 ,解得 23 d 23 ,
5
6
又 d 为整数,则公差 d 4 .
根据题意得
aa1101
11 11 ,即
220 220
10d 11d
11 11
,
解这个不等式组,得19 d 20.9 .
所以,d 的取值范围为19 d 20.9 .
例 4 已知等差数列{an} 的首项 a1 2 ,公差 d 8 ,在{an} 中每相邻两项 之间都插入 3 个数,使它们和原数列的数一起构成一个新的等差数列{bn} . (1)求数列{bn} 的通项公式. (2) b29 是不是数列{an} 的项?若是,它是{an} 的第几项?若不是,说明理由.
答案:
an
3n 4
7 4
n
N
解析:设数列an 的公差为 d,由 a5 4a3 ,得 a1 4d 4a1 2d ,
又 a1
1 ,所以 d
3 4
,所以 an
1
(n
1)
3 4
3 4
n
7 4
n
N
.
12.一个首项为 23,公差为整数的等差数列,若前 6 项均为正数,第 7 项起 为负数,则它的公差为_________________.
10.等差数列an 中, a1 1 , a9 21,则 a3 与 a7 等差中项的值为________.
答案:11
解析:根据题意,等差数列an 中, a1 1 , a9 21 ,
则有 a1 a9 a3 a7 1 21 22 ,
人教A版高中数学选择性必修第二册第四章4-2-1第1课时等差数列的概念及通项公式课件
![人教A版高中数学选择性必修第二册第四章4-2-1第1课时等差数列的概念及通项公式课件](https://img.taocdn.com/s3/m/8f400f6f3868011ca300a6c30c2259010202f39f.png)
应用迁移
1.等差数列{an}中,a1=2,a3=8,则公差d=(2
C.-4
D.-3
3
B [∵等差数列{an}中,a1=2,a3=8,
4
∴a3=a1+2d=8,∴d=3.故选B.]
题号
1
√
2
3
D [由2a+1是a-1与4a-2的等差中项,
4
得2×(2a+1)=a-1+4a-2,解得a=5.故选D.]
【链接·教材例题】 例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是 第几项? 分析:先求出数列的通项公式,它是一个关于n的方程,再看-401 是否能使这个方程有正整数解.
[解] 由a1=-5,d=-9-(-5)=-4,得这个数列的通项公式为 an=-5-4(n-1)=-4n-1. 令-4n-1=-401, 解这个关于n的方程,得 n=100. 所以,-401是这个数列的项,是第100项.
[解] (1)当n≥2时,由{an}的通项公式an=5-2n,可得 an-1=5-2(n-1)=7-2n. 于是
d=an-an-1=(5-2n)-(7-2n)=-2. 把n=1代入通项公式an=5-2n,得 a1=5-2×1=3. 所以,{an}的公差为-2,首项为3.
(2)由已知条件,得 d=5-8=-3. 把a1=8,d=-3代入an=a1+(n-1)d,得 an=8-3(n-1)=11-3n. 把n=20代入上式,得 a20=11-3×20=-49. 所以,这个数列的第20项是-49.
[提示] 以(1)为例,2 029-2 017=12,2 041-2 029=12,2 053- 2 041=12,2 065-2 053=12,2 077-2 065=12,…,后项与前项 的差为同一个常数,这个规律也适用于(2)(3).
人教版高中数学必修五课件:2.2.1等差数列
![人教版高中数学必修五课件:2.2.1等差数列](https://img.taocdn.com/s3/m/9bdca8a68ad63186bceb19e8b8f67c1cfad6ee2c.png)
解:1a1 8, d 5 8 3, n 20
a20 8 2013 49
2由a1 5, d 9 5 4
得到这个数列的通项公式为 an 4n 1
由题意知,问是否存在正整数n,使得
401 4n 1
解关于n 的方程,n 100
即-401是这个数列的第100项。
例2 在等差数列an中ຫໍສະໝຸດ 已知a5 10, a12 31,引例三
匡威运动鞋(女)的尺码(鞋底长,单位是cm)
鞋号34、 34.5、35、 35.5、36、 36.5、37··· 形成的数列: 34,34.5,35, 35.5,36, 36.5,37···
视察归纳 高斯计算的数列: 1,2,3,4, … ,100 姚明罚球个数的数列: 6000,6500,7000,7500,8000,8500,9000 鞋子码数: 34,34.5,35,35.5,36,36.5···
1+2+3+···+100=?
高斯
(1777—1855)
德国著名数学家
得到数列 1,2,3,4, … ,100
引例二
姚明刚进NBA一周训练罚球的个数:
第一天:6000, 第二天:6500, 第三天:7000, 第四天:7500, 第五天:8000, 第六天:8500, 第七天:9000.
得到数列: 6000,6500,7000,7500, 8000,8500,9000
(1)1,2,3,…,100; 公差d 1
(2)6000,6500,7000,7500,8000,8500,9000 (3)34,34.5,35,35.5,36,36.5,37···
公差d=500
1
公差d= 2
在等差数列a,A,b中,A与a,b有什么关系?
a20 8 2013 49
2由a1 5, d 9 5 4
得到这个数列的通项公式为 an 4n 1
由题意知,问是否存在正整数n,使得
401 4n 1
解关于n 的方程,n 100
即-401是这个数列的第100项。
例2 在等差数列an中ຫໍສະໝຸດ 已知a5 10, a12 31,引例三
匡威运动鞋(女)的尺码(鞋底长,单位是cm)
鞋号34、 34.5、35、 35.5、36、 36.5、37··· 形成的数列: 34,34.5,35, 35.5,36, 36.5,37···
视察归纳 高斯计算的数列: 1,2,3,4, … ,100 姚明罚球个数的数列: 6000,6500,7000,7500,8000,8500,9000 鞋子码数: 34,34.5,35,35.5,36,36.5···
1+2+3+···+100=?
高斯
(1777—1855)
德国著名数学家
得到数列 1,2,3,4, … ,100
引例二
姚明刚进NBA一周训练罚球的个数:
第一天:6000, 第二天:6500, 第三天:7000, 第四天:7500, 第五天:8000, 第六天:8500, 第七天:9000.
得到数列: 6000,6500,7000,7500, 8000,8500,9000
(1)1,2,3,…,100; 公差d 1
(2)6000,6500,7000,7500,8000,8500,9000 (3)34,34.5,35,35.5,36,36.5,37···
公差d=500
1
公差d= 2
在等差数列a,A,b中,A与a,b有什么关系?
人教版高中数学必修5《等差数列的前n项和》PPT课件
![人教版高中数学必修5《等差数列的前n项和》PPT课件](https://img.taocdn.com/s3/m/df2359257dd184254b35eefdc8d376eeaeaa170e.png)
例4、已知一个等差数列的前10项的和是310,前20 项的和是1220,求该数列前30项的和。
解:设该等差数列的前n项和Sn An2 Bn,则
S10 100A 10B 310
S20
400 A
20B
1220
解得A 3, B 1
Sn 3n2 n S30 3 900 30 2730
解:依题意知,S10=310,S20=1220
将它们代入公式
Sn
na1
n(n 1) d 2
得 10a1+45d=310
思考:对于等差数
20a1+190d=1220 列的相关a1,an,d,n,Sn,
解得 a1=4,d=6
已知几个量就可
以确定其他量?
an 4 6(n 1) 6n 2
Sn
分析:∵Sn=a1+a2+…+an, Sn-1=a1+a2+…+an-1(n≥2)
∴an=Sn-Sn-1 (n≥2) 特别地,当n=1时,a1=S1
,求该数列
例3、已知数列{an}的前n项和为
,求该数列
的通项公式,这个数列是等差数列吗?如果是,它的首项
和公差分别是什么?
解:当n≥2时,
①
当n=1时, ∵a1也满足①式 ∴数列{an}的通项公式为 这是首项为 ,公差为2的等差数列
一般地,若等差数列{an}的前n项和为Sn,则数列 Sn,S2n-Sn,S3n-S2n ,…
也为等差数列。
3、数列{an}是等差数列
练习:在等差数列{an}中,若a2=-18,a4=-10,则该数列 的前n项和Sn何时取得最小值,最小值是多少?
解:∵ a2=-18,a4=-10
4.2.1等差数列的概念(1)PPT课件(人教版)
![4.2.1等差数列的概念(1)PPT课件(人教版)](https://img.taocdn.com/s3/m/93043573876fb84ae45c3b3567ec102de2bddf87.png)
当d=-2时,这三个数分别为6,4,2.
解惑提高
几个数成等差数列的设项方法与技能
(1)当已知条件中出现与首项、公差有关的内容时,可直接设首项为a1,
公差为d,利用已知条件建立方程求出a1和d,即可确定数列.
(2)当已知数列有3项时,可设为a-d,a,a+d,此时公差为d.
(3)当已知数列有4项时,可设为a-3d,a-d,a+d,a+3d,此时公
是等差数列.
应用举例
例4 三数成等差数列,它们的和为12,首尾二数的积也为12,求此三数.
解:设这三个数分别为a-d,a,a+d, 则
(a-d)+a+(a+d)=12,即3a=12
∴a=4
又∵ (a-d)(a+d)=12,即(4-d)(4+d)=12
解得 d=±2
∴当d=2时,这三个数分别为2,4,6;
化,其价值会逐年减少.经验表明,每经过一年其价值就会减少d(d为正常数)
万元.已知这台设备的使用年限为10年,超过10年,它的价值将低于购进价
值的5%,设备将报废.请确定d的取值范围.
解:设使用n年后,这台设备的价值为an万元,则可得数列{an} 是一个公差
为-d的等差数列.
因为购进设备的价值为220万元,所以a1 =220-d,
设备将报废.请确定d的取值范围.
分析:这台设备使用n年后的价值构成一个数列
{an}.由题意可知,10年之内(含10年),这台设备的
价值应不小于(220×5%=)11万元;而10年后,这台
设备的价值应小于11万元.可以利用{an}的通项公
式列不等式求解.
应用举例
例6 某公司购置了一台价值为220万元的设备,随着设备在使用过程中老
解惑提高
几个数成等差数列的设项方法与技能
(1)当已知条件中出现与首项、公差有关的内容时,可直接设首项为a1,
公差为d,利用已知条件建立方程求出a1和d,即可确定数列.
(2)当已知数列有3项时,可设为a-d,a,a+d,此时公差为d.
(3)当已知数列有4项时,可设为a-3d,a-d,a+d,a+3d,此时公
是等差数列.
应用举例
例4 三数成等差数列,它们的和为12,首尾二数的积也为12,求此三数.
解:设这三个数分别为a-d,a,a+d, 则
(a-d)+a+(a+d)=12,即3a=12
∴a=4
又∵ (a-d)(a+d)=12,即(4-d)(4+d)=12
解得 d=±2
∴当d=2时,这三个数分别为2,4,6;
化,其价值会逐年减少.经验表明,每经过一年其价值就会减少d(d为正常数)
万元.已知这台设备的使用年限为10年,超过10年,它的价值将低于购进价
值的5%,设备将报废.请确定d的取值范围.
解:设使用n年后,这台设备的价值为an万元,则可得数列{an} 是一个公差
为-d的等差数列.
因为购进设备的价值为220万元,所以a1 =220-d,
设备将报废.请确定d的取值范围.
分析:这台设备使用n年后的价值构成一个数列
{an}.由题意可知,10年之内(含10年),这台设备的
价值应不小于(220×5%=)11万元;而10年后,这台
设备的价值应小于11万元.可以利用{an}的通项公
式列不等式求解.
应用举例
例6 某公司购置了一台价值为220万元的设备,随着设备在使用过程中老
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-10n n(n -1) 4 54 ,
2
整理得 n2 6n 27 0 , 解得 n1 9, n2 3(舍去), 因此,等差数列-10,- 6,- 2,2, 前9项的和是54 .
注:本题体现了方程的思想.
人教高中数学等差数列ppt完美课件
人教高中数学等差数列ppt完美课件
等差数列前n项和公式的运算: 知三求二
na1
(n n 1) 2
d
n
an
人教高中数学等差数列ppt完美课件
人教高中数学等差数列ppt完美课件
n(n 1)
Sn na1
2
d
Sn
( n a1 2
an )
思考:
(1)两个求和公式有何异同点?
(2)在等差数列 an中,如果已知五个元素
中 a1, an , n, d, Sn 的任意三个, 请问: 能否求出其
(4)解:原式 [1 3 5 (2n 1)] (2 4 6 2n). 又解:原式 (1 2) (3 4) (5 6) [(2n 1) 2n].
人教高中数学等差数列ppt完美课件
人教高中数学等差数列ppt完美课件
课堂练习: 课本P45 练习第1题
人教高中数学等差数列ppt完美课件
怎样求一般等差数列的前n项和呢?
Sn a1 a2 an. Sn an an1 a1.
2Sn (a1 an ) (a2 an1) (an a1)
n(a1 an ).
a1 an a2 an1
Sn
n(a1 an ) . 2
an a1
人教高中数学等差数列ppt完美课件
高斯出生于一个工匠家庭, 幼时家境贫困,但聪敏异常. 上小学四年级时,一次老师 布置了一道数学习题:“把 从1到100的自然数加起来, 和是多少?”年仅10岁的小 高斯略一思索就得到答案 5050,这使老师非常吃惊. 那么高斯是采用了什么方法 来巧妙地计算出来的呢?
高斯(1777---1855), 德 国数学家、物理学家和天文学家. 他和牛顿、阿基米德,被誉为有 史以来的三大数学家.有“数学 王子”之称.
人教高中数学等差数列ppt完美课件
等差数列的前n项和公式
公式1
Sn
n(a1 2
an )
公式2
an a1 (n 1)d
Sn
na1
n(n 1) 2
d
人教高中数学等差数列ppt完美课件
人教高中数学等差数列ppt完美课件
公式记忆 —— 类比梯形面积公式记忆
Sn
( n a1 an ) 2
a1
Sn
高斯算法用到了等差数列的什么性质?
m n p q am an ap aq .
情景2
如图,是一堆钢管,自上而下每层钢管数为4、5、 6、7、8、9、10,求钢管总数.
即求:S=4+5+6+7+8+9+10.
高斯算法:
还有其它算 法吗?
S=(4+10) +(5+9)+(6+8)+7 = 14×3+7=49.
人教高中数学等差数列ppt完美课件
等差数列前n项和公式的运算: 知三求二
课本44页:例2
人教高中数学等差数列ppt完美课件
人教高中数学等差数列ppt完美课件
练习1、
等差数列10, 6, 2,2, 前多少项的和是54?
解:设该等差数列为an,其前n项和是Sn ,
则a1 10, d 6 (10) 4, Sn 54. 根据等差数列前项和公式,得
你知道这个图案一共花了多少宝石吗?
复习
1.等差数列的定义:
an是等差数列 an an1 d(n 2)
2.通项公式:
an a1 (n 1)d .
3.重要性质:
⑴an am (n m)d .
⑵m n p q am an a p aq .
情景1
高斯“神速求和”的故事:
S=4+5+6+7+8+9+10. S=10+9+8+7+6+5+4. 相加得,
倒序相加法
2S (410) (59) (68) (7 7) (86) (95) (10 4)
(4 10)Байду номын сангаас.
S (4 10) 7 49. 2
新课
人教高中数学等差数列ppt完美课件
设等差数列an的前n项和为Sn,即Sn a1 a2 an .
求 S=1+2+3+······+100=?
高斯算法:
你知道高斯是怎 么计算的吗?
首项与末项的和:
1+100=101,
第2项与倒数第2项的和: 2+99 =101,
第3项与倒数第3项的和: 3+98 =101,
······ 第50项与倒数第50项的和:50+51=101,
于是所求的和是: 101100 5050. 2
泰姬陵坐落于印度古都阿格,是十七 世纪莫卧儿帝国皇帝沙杰罕为纪念其爱 妃所建,她宏伟壮观,纯白大理石砌建 而成的主体建筑叫人心醉神迷,成为世 界七大奇迹之一.陵寝以宝石镶饰,图案 之细致令人叫绝.
传说陵寝中有一个三角形图案,以相 同大小的圆宝石镶饰而成,共有100层 (见左图),奢靡之程度,可见一斑.
S10
10(a1 a10 ) 2
5(a1
a10 )
529 145.
人教高中数学等差数列ppt完美课件
人教高中数学等差数列ppt完美课件
练习4在 、 等差数列an中,
ad1
1, 3.
10 9 S10 10a1 2 d 145.
又解:由aa18
a2 a9
a3 12, a10 75
a1
a10
a2
a9
a3
a8
87.
a1 a10 a2 a9 a3 a8,
整体运算 的思想!
3(a1 a10 ) 87即(a1 a10 ) 29.
课本46页习题2.3 A组 第2题
人教高中数学等差数列ppt完美课件
人教高中数学等差数列ppt完美课件
练习3、数列an为等差数列,若a1 a2 a3 12,
a8 a9 a10 75, 求 S10.
解:
由aa18
a2 a9
a3 12, a10 75
aa11
d 4, 8d 25
余两个量 ?
结论:知 三 求 二
人教高中数学等差数列ppt完美课件
举例
人教高中数学等差数列ppt完美课件
例1、计算:
(1)1 2 3 (2)1 3 5
n;
n(n 1) 2
(2n 1); n2
(3)2 4 6 2n; n(n 1)
(4)1 2 3 4 5 6 (2n 1) 2n.