概率论与数理统计-4.5 矩
概率论与数理统计自测题
, 概率论与数理统计自测题(含答案,先自己做再对照)一、单项选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0 D .P (A ∪B )=12.设A ,B 为两个随机事件,且P(AB)>0,则P (A|AB)=( ) A .P (A ) B .P (AB) C .P (A |B) D .13.设随机变量X 在区间[2,4]上服从均匀分布,则P{2〈X<3}=( )A .P{3。
5<X 〈4。
5}B .P {1。
5<X 〈2.5}C .P{2.5<X<3.5}D .P{4。
5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于( )A .—1B .21-C .21D .15则P {X=Y}=( )A .0。
3B .0.5C .0.7D .0。
86.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( ) A .E (X )=0。
5,D (X )=0.25 B .E(X )=2,D (X )=2 C .E (X)=0.5,D (X)=0。
5 D .E (X )=2,D (X)=47.设随机变量X 服从参数为3的泊松分布,Y~B(8,31),且X ,Y 相互独立,则D (X-3Y—4)=( )A .-13B .15C .19D .238.已知D (X )=1,D (Y )=25,ρXY =0。
4,则D (X-Y)=( ) A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率10.设总体X 服从[0,2θ]上的均匀分布(θ〉0),x 1, x 2, …, x n 是来自该总体的样本,x为样本均值,则θ的矩估计θˆ=( )A .x 2B .xC .2xD .x 21 1A 2。
概率论与数理统计答案 魏宗舒
第六章习题1.设是取自总体X的一个样本,在下列情形下,试求总体参数的矩估计与最大似然估计:(1),其中未知,;(2),其中未知,。
2.设是取自总体X的一个样本,其中X服从参数为的泊松分布,其中未知,求3.设是取自总体X的一个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。
4.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计。
5.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计和最大似然估计。
6.设是取自总体X的一个样本,总体X服从参数为的几何分布,即,其中未知,,求的最大似然估计。
7. 已知某路口车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路口车辆经过的平均时间间隔的矩估计值与最大似然估计值。
8.设总体X的密度函数为,其中未知,设是取自这个总体的一个样本,试求的最大似然估计。
9. 在第3题中的矩估计是否是的无偏估计?解故的矩估计量是的无偏估计。
10.试证第8题中的最大似然估计是的无偏估计。
11. 设为总体的样本,证明都是总体均值的无偏估计,并进一步判断哪一个估计有效。
12.设是取自总体的一个样本,其中未知,令,试证是的相合估计。
13.某车间生产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天生产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。
14.假定某商店中一种商品的月销售量服从正态分布,未知。
为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个月,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和方差的双侧0.9置信区间。
15.随机地取某种子弹9发作试验,测得子弹速度的,设子弹速度服从正态分布,求这种子弹速度的标准差和方差的双侧0.95置信区间。
吴赣昌第五版经管类概率论与数理统计课后习题完整版
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.现习题91.2 随机事件的概率1.3 古典概型现习题3现习题4现习题5 现习题6现习题7现习题8现习题9现习题101.4 条件概率习题3空现习题41.5 事件的独立性现习题6现习题7现习题8总习题1习题3. 证明下列等式:习题4.现习题5习题6.习题7 习题8习题9 习题10习题11 现习题12习题14 习题15习题17习题19 习题20习题21 习题22现习题23现习题24第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.习题3一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大,写出随机变量X的分布律.习题4(空)习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下:X 10 20 30 40pi 0.15 0.25 0.45 0.15求因代营业务得到的收入大于当天的额外支出费用的概率.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.习题10纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ断头的概率为0.005,在τ这段时间断头次数不大于2的概率.习题11设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.2.3 随机变量的分布函数习题1.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.习题4习题5习题6在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间的概率与这个小区间的长度成正比例,试求X的分布函数.2.4 连续型随机变量及其概率密度习题1习题2习题3习题4习题5设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.习题6习题7 (空) 习题8习题9习题10习题112.5 随机变量函数的分布习题1习题2习题3习题4习题5习题6总习题二1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、第三章多维随机变量及其分布3.1 二维随机变量及其分布1、2、⑴⑵⑶3、⑴⑵⑶5、6、8、9、。
概率论与数理统计复习笔记
概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。
概率论与数理统计(经管类)(有答案)
实用文档04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。
A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。
A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。
A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。
A .nk k m q p CB .kn k k n q p C -C .k n pq -D .k n k q p -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。
A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。
A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。
A .21)0(=≤+Y X PB .21)1(=≤+Y X P实用文档C .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。
《概率论与数理统计》数学期望
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
概率论与数理统计
§4.4 协方差和相关系数
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 协方差
1. 定义
§4.4 协方差和相关系数 协方差
2. 协方差的计算公式
概率论与数理统计
§4.1 数学期望
离散型随机变量的数学期望
连续型随机变量的数学期望
授课内容
数学期望的性质
§4.1 数学期望 离散型随机变量的数学期望
1. 定义
§4.1 数学期望 离散型随机变量的数学期望
关于定义的几点说明
(2) 级数的绝对收敛性保证了级数的和不随级数各项次序的改变 而改变 , 之所以这样要求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
§4.4 协方差和相关系数 相关系数
3. 不相关的定义
§4.4 协方差和相关系数 相关系数
4. 不相关性的判定
以下四个条件等价 (1) ρ 0; (2)Cov( X ,Y ) 0; (3) D( X Y ) DX DY;
(4)3 随机变量函数的数学期望 二维随机变量函数的数学期望
§4.3 随机变量函数的数学期望 二维随机变量函数的数学期望
一维随机变量函数的数学期望 二维随机变量函数的数学期望 授课内容 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
5 .不相关与相互独立的关系
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 例题
概率论与数理统计-点估计-矩法估计
x
dx
2
2
0
故令
1
n
n
i2
i 1
2ˆ2
n
于是解得 的矩估计量为
ˆ
1 2n
i2
i 1
估计量的评价 标准
点估计有多种方法,同一个未知参数用不同的方法可得 到不同的估计量,那一个估计量好呢?必须有个评价标准。 评价标准有多种,用不同方法评价,得到的结论也不一样。
因此,说一个估计量的好坏,必须说明是用那一个评价标准 评价的。否则,是没有意义的。
点估计的求法: (两种) 矩估计法和极大似然估计法.
一、 矩估计法 它是基于一种简单的“替换” 思想建立起来的一种估计方法 . 是英国统计学家K.皮尔逊最早提出的 . 其基本思想是用样本矩估计总体矩 .
理论依据: 大数定律
由辛钦大数定理知,
可以用
X
1 n
n i 1
Xi去估计EX,
如.求一个战士的射击命中率?
估计量,这个估计量称为矩估计量.
例2.设 : (, 2),求, 2的矩法估计量。
解:p( ,, 2 )
1
e
(
x )2 2 2
2
E x
1
(x )2
e 2 2 dx
2
xR
E 2 x2
1
(x )2
e 2 2 dx 2 2
2
列方程组:
2
1 n
n i1
2 1
n
i
n i 1
点估计问题就是要构造一个适当的统计量
ˆ(1,2 ,L ,n ),用它的观察值ˆ(x1, x2 ,L , xn ) 来估计未知参数 .
ˆ(1,2,L ,n )称为 的估计量. 通称估计,
第一节 矩估计(概率论与数理统计)
设待估计的参数为 θ1,θ2 ,L,θk 设总体的 r 阶矩存在,记为
E( X r ) = r (θ1,θ2 ,L,θk )
1 n r 样本 X1, X2,…, Xn 的 r 阶矩为 Ar = ∑Xi n i=1 令 1n r r (θ1,θ2 ,L,θk ) = ∑Xi r =1,2,L, k n i=1 —— 含未知参数 θ1,θ2, …,θk 的方程组
= X + 3( A X 2 ) b矩 2
3 2 = X + ∑(Xi X ) . n i=1
n
设某产品的寿命服从指数分布, 例6 设某产品的寿命服从指数分布,其概率密度为
λe f (x, λ) = 0,
λx
,
x > 0; x ≤ 0.
λ 为未知参数,现抽得 n 个这种产品,测得其寿命数据 为未知参数, 个这种产品,
什么是参数估计? 什么是参数估计?
参数是刻画总体某方面概率特性的数量. 参数是刻画总体某方面概率特性的数量. 当此数量未知时,从总体抽出一个样本, 当此数量未知时,从总体抽出一个样本,用某种 方法对这个未知参数进行估计就是参数估计. 方法对这个未知参数进行估计就是参数估计. 例如,X ~N ( ,σ 2), 例如, 未知, 通过构造样本的函数, 若, σ 2未知 通过构造样本的函数 给出它们 的估计值或取值范围就是参数估计的内容. 的估计值或取值范围就是参数估计的内容
(b a) a + b E( X ) = D( X ) + E ( X ) = + 12 2 a +b 令 =X 2 2 n a)2 a + b (b 1 = A2 = ∑Xi2 + 12 2 n i=1
2 2
浙大版概率论与数理统计答案---第七章
第七章 参数估计注意: 这是第一稿(存在一些错误)1、解 由θθθμθ2),()(01===⎰d x xf X E ,204103)(2221θθθ=-==X D v ,可得θ的矩估计量为X 2^=θ,这时θθ==)(2)(^X E E ,nnX D D 5204)2()(22^θθθ=⋅==。
3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为:3262121^=-=-=X θ。
建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L令0148))1ln(4ln 8()(ln =--=∂-+∂=∂∂θθθθθθθL ,得到θ的极大似然估计值:32^=θ 4、解:矩估计:()1012122μθλθλθλ=⋅+⋅+⋅--=--,()()()()2222222121νθλθθλλθλθλ=--++-++--, 11A =,234B =, 故()()()()222ˆˆ221,3ˆˆˆˆˆˆˆˆˆˆ222121.4θλθλθθλλθλθλ⎧--=⎪⎨--++-++--=⎪⎩解得1ˆ,43ˆ.8λθ⎧=⎪⎪⎨⎪=⎪⎩为所求矩估计。
极大似然估计:(){}()33214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,()(),330,1,230.1l l θλθθθλθλλλθλ∂⎧=-=⎪⎪∂--⎨∂⎪=-=⎪∂--⎩解得3ˆ,81ˆ.4θλ⎧=⎪⎪⎨⎪=⎪⎩即为所求。
5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p 的矩估计量为^394(3)34322X X p -----==建立关于p 的似然函数:3210)1()2)1(3()()2)1(()(22n n n n p p p p p p p L ---= 令0)(ln =∂∂pp L ,求得到θ的极大似然估计值:n n n n p 22210^++=6、解:(1)()1112EX x x dx θθθθ+=+=+⎰, 由ˆ1ˆ2X θθ+=+得21ˆ1X X θ-=-为θ的矩估计量。
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第五章
复制过来让大家都能下载哈第五章数理统计的基础知识5.1 数理统计的基本概念习题1已知总体X服从[0,λ]上的均匀分布(λ未知),X1,X2,⋯,Xn为X的样本,则().(A)1n∑i=1nXi-λ2是一个统计量;(B)1n∑i=1nXi-E(X)是一个统计量;(C)X1+X2是一个统计量;(D)1n∑i=1nXi2-D(X)是一个统计量.解答:应选(C).由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm),得到如下表中所列的数据. 按区间[70,80),[80,90),⋯,[150,160),将100个数据分成9个组,列出分组数据计表(包括频率和累积频率),并画出频率累积的直方图.解答:分组数据统计表求样本容量n,样本均值X¯,样本方差S2.解答:对于抽到的每个居民户调查均收入,可见n=200.这里,没有给出原始数据,而是给出了整理过的资料(频率分布),我们首先计算各组的“组中值”,然后计算X¯和S2的近似值:分别表示样本均值和样本二阶中心矩,试求E(X¯),E(S2).解答:由X∼B(10,3100),得E(X)=10×3100=310,D(X)=10×3100×97100=2911000,所以E(X¯)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.习题6设某商店100天销售电视机的情况有如下统计资料f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,又X(1)的概率密度为f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:(1)没有元件在800h之前失效的概率;(2)没有元件最后超过3000h的概率.解答:(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,分布函数F(x)={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X(1)>800},有P{X(1)>800}=[P{X>800}]6=[1-F(800)]6=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6=[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2,若至少要以95%的概率保证∣X¯-μ∣<0.1σ,问样本容量n应取多大?解答:因当n很大时,X¯-N(μ,σ2n),于是P{∣X¯-μ∣<0.1σ}=P{μ-0.1σ<X¯<μ+0.1σ}≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95,则Φ(0.1n)≥0.975,查表得Φ(1.96)=0.975,因Φ(x)非减,故0.1n≥1.96,n≥384.16,故样本容量至少取385才能满足要求.5.2 常用统计分布习题1对于给定的正数a(0<a<1),设za,χa2(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是().(A)z1-a(n)=-za(n);(B)χ1-a2(n)=-χa2(n);(C)t1-a(n)=-ta(n);(D)F1-a(n1,n2)=1Fa(n2,n1).解答:应选(B).因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以(A)和(C)是对的.(B)是错的. 对于F分布,若F∼F(n1,n2),则1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2)由于1F∼F(n2,n1),所以P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a,即F1-a(n1,n2)=1Fa(n2,n1). 故(D)也是对的.习题2(1)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (1)X1-X2X32+X42;解答:因为Xi∼N(0,1),i=1,2,⋯,n,所以:X1-X2∼N(0,2),X1-X22∼N(0,1),X32+X42∼χ2(2),故X1-X2X32+X42=(X1-X2)/2X32+X422∼t(2).习题2(2)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (2)n-1X1X22+X32+⋯+Xn2;解答:因为Xi∼N(0,1),∑i=2nXi2∼χ2(n-1),所以n-1X1X22+X32+⋯+Xn2=X1∑i=2nXi2/(n-1)∼t(n-1).习题2(3)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布?(3)(n3-1)∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2∼χ2(3),∑i=4nXi2∼χ2(n-3),所以:(n3-1)∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/(n-3)∼F(3,n-3).习题3设X1,X2,X3,X4是取自正态总体X∼N(0,22)的简单随机样本,且Y=a(X1-2X2)2+b(3X3-4X4)2,则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?解答:解法一Y=[a(X1-2X2)]2+[b(3X3-4X4)]2,令Y1=a(X1-2X2),Y2=b(3X3-4X4),则Y=Y12+Y22,为使Y∼χ2(2),必有Y1∼N(0,1),Y2∼N(0,1),因而E(Y1)=0,D(Y1)=1,E(Y2)=0,D(Y2)=1,注意到D(X1)=D(X2)=D(X3)=D(X4)=4,由D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2))=a(4+4×4)=20a=1,D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4)=b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,分别得a=120,b=1100.这时Y∼χ2(2),自由度为n=2.解法二因Xi∼N(0,22)且相互独立,知X1-2X2=X1+(-2)X2∼N(0,20),3X3-4X4=3X3+(-4)X4∼N(0,100),故X1-2X220∼N(0,1),3X3-4X4100∼N(0,1),为使Y=(X1-2X21/a)2+(3X3-4X41/b)2∼χ2(2),必有X1-2X21/a∼N(0,1),3X3-4X41/b∼N(0,1),与上面两个服从标准正态分布的随机变量比较即是1a=20,1b=100,即a=120,b=1100.习题4设随机变量X和Y相互独立且都服从正态分布N(0,32).X1,X2,⋯,X9和Y1,Y2,⋯,Y9是分别取自总体X和Y的简单随机样本,试证统计量T=X1+X2+⋯+X9Y12+Y22+⋯+Y92服从自由度为9的t分布.解答:首先将Xi,Yi分别除以3,使之化为标准正态.令X′i=Xi3,Y′i=Yi3,i=1,2,⋯,9,则X′i∼N(0,1),Y′i∼N(0,1);再令X′=X′1+X′2+⋯+X′9,则X′∼N(0,9),X′3∼N(0,1),Y′2=Y′12+Y′22+⋯+Y′92,Y′2∼χ2(9).因此T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),注意到X′,Y′2相互独立.习题5设总体X∼N(0,4),而X1,X2,⋯,X15为取自该总体的样本,问随机变量Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)服从什么分布?参数为多少?解答:因为Xi2∼N(0,1),故Xi24∼χ2(1),i=1,2,⋯,15,而X1,X2,⋯,X15独立,故X12+X22+⋯+X1024∼χ2(10),X112+X122+⋯+X1524∼χ2(5),所以X12+X22+⋯+X1024/10X112+X122+⋯+X1524/5=X12+X22+⋯+X1022(X112+X122+⋯+X152)=Y习题6证明:若随机变量X服从F(n1,n2)的分布,则(1)Y=1X服从F(n2,n1)分布;(2)并由此证明F1-α(n1,n2)=1Fα(n2,n1).解答:(1)因随机变量X服从F(n1,n2),故可设X=U/n1V/n2,其中U服从χ2(n1),V服从χ2(n2),且U与V相互独立,设1X=V/n2U/n1,由F分布之定义知Y=1x=V/n2U/n1,服从F(n2,n1).(2)由上侧α分位数和定义知P{X≥F1-α(n1,n2)}=1-α,P{1X≤1F1-α(n1,n2)=1-α,即P{Y≤1F1-α(n1,n2)=1-α,1-P{Y>1F1-α(n1,n2)=1-α,故P{Y>1F1-α(n1,n2)=α,而P{Y≥Fα(n2,n1)}=α.又Y为连续型随机变量,故P{Y≥1F1-α(n1,n2)=α,从而Fα(n2,n1)=1F1-α(n1,n2),即F1-α(n1,n2)=1Fα(n2,n1).习题7查表求标准正态分布的上侧分位数:u0.4,u0.2,u0.1与u0.05.解答:u0.4=0.253,u0.2=0.8416,u0.1=1.28,u0.05=1.65.习题8查表求χ2分布的上侧分位数:χ0.952(5),χ0.052(5),χ0.992(10)与χ0.012(10).解答:1.145,11.071,2.558,23.209.习题9查表求F分布的上侧分位数:F0.95(4,6),F0.975(3,7)与F0.99(5,5).解答:0.1623,0.0684,0.0912.习题10查表求t分布的下侧分位数:t0.05(3),t0.01(5),t0.10(7)与t0.005(10).解答:2.353,3.365,1.415,3.169.5.3 抽样分布(2)P{X¯>4.5}=P{Z>4.5-42/9=1-P{Z≤2.25}≈1-Φ(2.25)=1-0.9878=0.0122.习题2设总体X服从正态分布N(10,32),X1,X2,⋯,X6是它的一组样本,设X¯=16∑i=16Xi.(1)写出X¯所服从的分布;(2)求X¯>11的概率.解答:(1)X¯∼N(10,326),即X¯∼N(10,32).(2)P{X¯>11}=1-P{X¯≤11}=1-Φ(11-1032)≈1-Φ(0,8165)≈1-Φ(0.82)=0.2061.习题3设X1,X2,⋯,Xn是总体X的样本,X¯=1n∑i=1nXi,分别按总体服从下列指定分布求E(X¯),D(X¯).(1)X服从0-1分布b(1,p);(2)*X服从二项分布b(m,p);(3)X服从泊松分布P(λ);(4)X服从均匀分布U[a,b];(5)X服从指数分布e(λ).解答:(1)由题意,X的分布律为:P{X=k}=Pk(1-P)1-k(k=0,1).E(X)=p,D(X)=p(1-p).所以E(X¯)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=1n⋅np=p,D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(X1)=1n2⋅np(1-p)=1np(1-p). (2)由题意,X的分布律为:P{X=k}=CmkPk(1-p)m-k(k=0,1,2,⋯,m).同(1)可得E(X¯)=mp,D(X¯)=1nmp(1-p).(3)由题意,X的分布律为:P{X=k}=λkk!e-λ(λ>0,k=0,1,2,⋯).E(X)=λ,D(X)=λ.同(1)可得E(X¯)=λ,D(X¯)=1nλ.(4)由E(X)=a+b2,D(X)=(b-a)212,同(1)可得E(X¯)=a+b2,D(X¯)=(b-a)212n.(5)由E(X)=1λ,D(X)=1λ2,同(1)可得D(X¯)=1λ,D(X¯)=1nλ2.习题4某厂生产的搅拌机平均寿命为5年,标准差为1年,假设这些搅拌机的寿命近似服从正态分布,求:(1)容量为9的随机样本平均寿命落在4.4年和5.2年之间的概率;(2)容量为9的随机样本平均寿命小于6年的概率。
《概率论与数理统计》期末试题一答案
1、 设A 与B 为互不相容的两个事件,0)B (P >,则=)|(B A P 0 。
2、 事件A 与B 相互独立,,7.0)(,4.0)(=+=B A P A P 则 =)(B P 0.5 。
3、 设离散型随机变量X 的分布函数为 0 1-<x=)(x F a 11<≤-xa 32- 21<≤x b a + 2≥x且21)2(==X P ,则=a61 =b , 65。
4、 某人投篮命中率为54,直到投中为止,所用投球数为4的概率为___6254________。
5、 设随机变量X 与Y 相互独立,X 服从“0-1”分布,4.0=p ;Y 服从2=λ的泊松分布)2(π,则._______24.2____)(_______,4.2____)(=+=+Y X D Y X E6、 已知,31,9)Y (D ,16)X (D X Y =ρ== 则.___36___)Y 2X (D =-7、 设总体X 服从正态分布),,0(2σN 从总体中抽取样本,,,,4321X X X X 则统计量24232221X X X X ++服从_______)2,2(F ______________分布。
8、 设总体X 服从正态分布),1,(μN 其中μ为未知参数,从总体X 中抽取容量为16的样本,样本均值,5=X 则总体均值μ的%95的置信区间为____(4.51,5.49)____。
(96.1975.0=u )9、 若),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,则Y X Z +=服从______),(222121σσμμ++N ______分布。
一、 计算题(每小题10分,共60分)1、 (10分)已知8只晶体管中有2只次品,从其中取两次,每次任取一只,做不放回抽样。
求下列事件的概率:(1)一只是正品,一只是次品;(2)第二次才取得次品;(3)第二次取出的是次品。
概率论与数理统计课后答案第4章
概率论与数理统计课后答案第第4章大数定律与中心极限定理4.1设D(x)为退化分布:讨论下列分布函数列的极限是否仍是分布函数?1 1 卄亠(1){D(x n)}; (2){D(x )};(3){D(x 0},其中n =1,2;n n解:(1) (2)不是;(3)是。
4.2设分布函数F n(x)如下定义:‘0x 兰-nl /、x + nF n (x)=」---- 一n c x 兰n2n1 x > n问F(x) =lim F n(x)是分布函数吗?n_)pC解:不是。
4.3设分布函数列{ F n(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{F n(x)}在(」:,::)上一致收敛于F(x)。
证:对任意的;.0,取M充分大,使有1 —F(x) ::;, —x _ M; F(x) ::;,—x^ -M对上述取定的M,因为F(x)在[-M,M]上一致连续,故可取它的k分点:捲- -M :: X2 :…X k4 ::X k = M ,使有F(X j .J - F(xJ ::;,1 一i ::k ,再令x° - - ::, X k 1 =::,则有F(X i J —FW) :::;,0 G ::k 1(1)这时存在N,使得当n • N时有| F n(X i) —F(X i)|::;,0 叮牛 1(2)成立,对任意的X •(-::,::),必存在某个i(0 _i 一k),使得x・(X i,X i 1),由(2) 知当n •N时有F n (X)— F n (X i i ) ::: F(X j .J ;F n (X)_ F n (X i ) . F(X i )-;(4) 由( 1), (3), (4)可得F n (x) -F(x)::: F(X i 1)-F(x) , F(X i i )-F(X i ); :::2;,F n (x) - F (x) F (X i ) - F (x) - ; _ F (X i ) - F (X i .1)- ; -2 ;,即有F n (x )-F (x ) 名成立,结论得证4.5设随机变量序列「鳥同时依概率收敛于随机变量 •与,证明这时必有P (二)二1。
04183概率论与数理统计(经管类)(有答案)
04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。
A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。
A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。
A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。
A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。
A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。
A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。
A .21)0(=≤+Y X P B .21)1(=≤+Y X PC .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。
概率论与数理统计教程(魏宗舒第二版)5-6章答案_split_1
说明:本习题答案是针对魏宗舒编写的《概率论与数理统计教程》(第二版).5.1设(x l ,x 2,···,x n )及(u 1,u 2,···,u n )为两组子样的观测值,它们有如下关系:u i =x i −ab,(b =0,a 为常数)求子样均值¯u 与¯x ,子样方差S 2u 与S 2x 的关系.解:¯u =1n n ∑︁i =1u i =1n n ∑︁i =1x i −a b =1b (︃1n n ∑︁i =1x i −a )︃=1b(¯x −a )S 2u=1n n ∑︁i =1(u i −¯u )2=1n n ∑︁i =1(︂x i −a b −¯x −a b )︂2=1b 2[︃1n n ∑︁i =1(x i −¯x )2]︃=1b2S 2x.5.2若子样观测值x 1,x 2,···,x m 的频数分别为n 1,n 2,···,n m ,试写出计算子样平均数¯x 和子样方差S 2n 的公式(这里n =n 1+n 2+···+n m )解:¯x =1n m∑︁i =1m i x iS 2n=1n m∑︁i =1m i (x i −¯x )2.5.3利用切比雪夫不等式求钱币需抛掷多少次才能使子样均值¯ξ落在0.4到0.6之间的概率至少为0.9?如何才能更精确地计算是概率接近0.9所需要的次数是多少?解:设需要掷n 次,E ¯ξ=0.5,D (¯ξ)=14n.由切比雪夫不等式可得:P (0.4≤¯ξ≤0.6)=P (|¯ξ−0.5|≤0.1)≥1−14n ×(0.1)2=1−25n≥0.9⇒n ≥250.所以由切比雪夫不等式估计,至少需要掷250次才能使样本均值落在0.4到0.6之间的概率至少为0.9.¯ξ−0.5√︀1/(4n )=2√n (¯ξ−0.5)近似服从标准正态分布,所以P (0.4≤¯ξ≤0.6)=P (︀2√n (0.4−0.5)≤2√n (¯ξ−0.5)≤2√n (0.6−0.5))︀=2Φ(2√n ×0.1)−1≥0.9⇒Φ(0.2√n )≥0.95.其中Φ(x )是标准正态分布N (0,1)的分布函数,查表可得Φ(1.645)=0.95.因此0.2√n =1.647⇒n =67.65,因此至少要掷68次硬币.5.4若一母体ξ的方差σ2=4,而¯ξ是容量为100的子样的均值.分别利用切比雪夫不等式和极限定理求出一个下界,使得¯ξ−μ(μ为母体ξ的数学期望Eξ)夹在这界限之间的概率为0.9.解:设P (|¯ξ−μ|≤a )≥0.9.注意到母体的数学期望为μ,方差为σ2.所以E ¯ξ=μ,D ¯ξ=σ2/n =125.由切比雪夫不等式可知:P (|¯ξ−μ|≤a )≥1−D ¯ξa 2=1−125a2≥0.90⇒1/(25a 2)≤0.1⇒a ≥0.4.故由切比雪夫不等式得到的界限是0.4.根据大数定律可知¯ξ−μ√︀1/25=5(¯ξ−μ)近似服从标准正态分布,所以P (|¯ξ−μ|≤a )=P (5(¯ξ−μ)≤5a )=2Φ(5a )−1≥0.9⇒Φ(5a )≥0.95⇒5a ≥1.645⇒a ≥0.329.由大数定律得到的界限是0.329.5.5假定¯ξ1和¯ξ2分别是取自正态总体N(μ,σ2)的容量为n的两个独立子样(ξ11,ξ12,···,ξ1n)和(ξ21,ξ22,···,ξ2n)的均值,确定n使得两个子样均值之差超过σ的概率大约为0.01.解:由题意可知¯ξi∼N(μ,σ2/n),i=1,2,并且¯ξ1,¯ξ2相互独立.因此¯ξ1−¯ξ1∼N(0,2σ2/n),即√n¯ξ1−¯ξ2√2σ∼N(0,1).由P(|¯ξ1−¯ξ2|>σ)=0.01可得:P(√n⃒⃒⃒⃒¯ξ1−¯ξ2√2σ⃒⃒⃒⃒>√nσ√2σ)=0.01⇒P(√n⃒⃒⃒⃒¯ξ1−¯ξ2√2σ⃒⃒⃒⃒>√︂n2)=0.01⇒2(1−Φ(√︀n/2))=0.01⇒√︀n/2=2.576⇒n=13.27.所以当n=13时,可使得两个子样均值之差超过σ个概率大约为0.01.5.6设母体ξ∼N(μ,4),(ξ1,ξ2,···,ξn)是取自此母体的一个子样,¯ξ为子样均值.试问:子样容量n应取多大,才能使(1)E(|¯ξ−μ|2)≤0.1;(2)E(|¯ξ−μ|)≤0.1;(3)P(|¯ξ−μ|≤0.1)≥0.95.解:由题意可知√n2(¯ξ−μ)∼N(0,1).设η∼N(0,1),那么E(|η|2)=∫︁∞−∞1√2π|x|2e−12x2dx=2∫︁∞−∞1√2πx2e−12x2dx=Eη2=Dη+(Eη)2=1;E(|η|)=∫︁∞−∞1√2π|x|e−12x2dx=2∫︁∞1√2πxe−12x2dx=−2√2πe−12x2⃒⃒⃒∞=√︂2π.(1).E(|¯ξ−μ|2)=4nE⃒⃒⃒⃒√n2(¯ξ−μ)⃒⃒⃒⃒2=4n≤0.1⇒n≥40.所以当n取40时,可以使得E(|¯ξ−μ|2)≤0.1.(2).E(|¯ξ−μ|)=2√nE⃒⃒⃒⃒√n2(¯ξ−μ)⃒⃒⃒⃒=2√n√︂2π≤0.1⇒n≥800π.(3).P(|¯ξ−μ|≤0.1)=P(|√n2(¯ξ−μ)|≤0.1√n2)≥0.95⇒2Φ(0.1√n2)−1≥0.95⇒Φ(0.1√n2)≥0.975⇒0.1√n2≥1.96⇒n≥39.22=1536.6.即当n≥1537时,才能使P(|¯ξ−μ|≤0.1)≥0.95.5.7设母体ξ∼b(1,p)(二点分布),(ξ1,ξ2,···,ξn)为取自此母体的一个子样,¯ξ为子样均值.(1).若p=0.2,子样容量n应取多大,才能使①P(|¯ξ−p|≤0.1)≥0.75;②E(|¯ξ−p|2)≤0.01.(2).若p ∈(0,1)为未知数,则对每个p ,子样容量n 为多大时才能使E (|¯ξ−p |2)≤0.01.解:记q =1−p ,则√n (¯ξ−p )近似服从正态分布N (0,pq ).(1).P (|¯ξ−p |≤0.1)=P (⃒⃒√n (¯ξ−p )/√pq ⃒⃒≤0.1√n √pq )≈2Φ(︂0.1√n √pq)︂−1所以由P (|¯ξ−p |≤0.1)≥0.75可得Φ(︂0.1√n √pq)︂≥0.875.查表得Φ(1.15)=0.875,因此0.1√n/√pq ≥1.15⇒n ≥11.52×pq =21.16,即当n ≥22时,才能保证P (|¯ξ−p |≤0.1)≥0.75.②.E (|¯ξ−p |2)=E (¯ξ−p )2=E (¯ξ−E ¯ξ)2=D ¯ξ=Dξ/n =pq/n =0.16/p .所以要使E (|¯ξ−p |2)≤0.01,只需0.16n≤0.01⇒n ≥0.160.01=16,故只有当n ≥16,才能使E (|¯ξ−p |2)≤0.01.(2).类似于(1)中的②,E (|¯ξ−p |2)=D ¯ξ=p (1−p )n.因此要使E (|¯ξ−p |2)≤0.01,子样容量n 必须≥p (1−p )0.01=100p (1−p ).5.8设母体ξ的k 阶原点矩和中心矩分别为v k =Eξk ,μk =E (ξ−v 1)k ,k =1,2,3,4.ξk ,m k 分别为容量为n 的子样k 阶原点矩和中心矩,求证:∙E (¯ξ−v 1)3=μ3n 2;∙E (¯ξ−v 1)4=3μ2n 2+μ4−3μ22n3.解:令η=ξ−v 1=ξ−Eξ,ηi =ξi −v 1,那么η1,η2,···,ηn 就是来自总体η的子样,并且Eηki =Eηk =E (ξ−v 1)k =μk .令¯η=1n ∑︀n i =1ηi ,那么¯η=¯ξ−v 1.所以(1)E (¯ξ−v 1)3=E ¯η3=1n3∑︁i,j,kEηi ηj ηk =1n 3⎛⎜⎝n ∑︁i =1Eη3i +∑︁i,j,k 不全相等Eηi ηj ηk ⎞⎟⎠=1n 3⎛⎝nμ3+3∑︁i =j,i =kEηi (ηj ηk )⎞⎠=1n 2μ3+3n 3∑︁i =j,i =kEηi E (ηj ηk )=μ3n 2(2)E (¯ξ−v 1)4=E ¯η4=1n4∑︁i,j,k,lEηi ηj ηk ηl=1n 4⎛⎝n ∑︁i =1Eη4i +∑︁i =j =k =lEη2i η2k +∑︁i =k =j =lEη2i η2j +∑︁i =l =k =jEη2i η2j +E∑︁elseηi ηj ηk ηl ⎞⎠=1n 4(︀nμ4+3n (n −1)μ22)︀=3(n −1)μ22n 3+μ4n 3=μ4−3μ22n 3+3μ22n2其中对i,j,k,l 求和时,把这四个下标分成三类,一类是i =j =k =l ,第二类是这四个下标分成两组,在同组中的下标都相等,其余的分在第三类.注意在第三类中,我们肯定可以找到一个下边,它和其余三个下标都不同,此时Eηi ηj ηk ηl =0,这因为,比如i 不等于其余三个下标,那么Eηi ηj ηk ηl =Eηi Eηj ηk ηl ,而Eξi =0.5.9.设母体ξ∼N (μ,σ2),子样方差S 2n =1n ∑︀n i =1(ξi −¯ξ)2.求ES 2n ,DS 2n ,并证明当n 增大时,他们分别为σ2+o (1n )和2σ4n +o (︀1n )︀.解:ES 2n =(n −1)σ2n=σ2−1nσ2=σ2+o (1).(注:习题中有错误,不是o (1n ),1n 的高阶无穷小,而是o (1),即无穷小.)对于后一问,只需利用P 233的定理5.1,我们在这里这需计算μ2,μ4.μ2=Dξ=σ2,μ4=E (ξ−μ)4=∫︁∞−∞(x −μ)4p ξ(x )dx =∫︁∞−∞x 41√2πσexp {︂−12x 2σ2}︂dx =∫︁∞−∞x 31√2πσexp {︂−12x 2σ2}︂dx 22=−x 3σ√2πexp {︂−12x 2σ2}︂⃒⃒⃒∞−∞+3σ2∫︁∞−∞x 21√2πσexp {︂−12x 2σ2}︂dx=3σ4.把μ2,μ4的结果带入定理5.1,可知:DS 2n=σ4[︀2n−2n 2]︀=2σ4n+o (︀1n )︀.实际上,我们也可以这样计算:令随机变量η∼χ2(n ),那么Eη=∫︁∞0x 12n 2Γ(n 2)x n 2−1e −12x dx =2n +22Γ(n +22)2n 2Γ(n 2)=n Eη2=∫︁∞x 212n 2Γ(n 2)x n 2−1e −12x dx =n (n +2).因此Eη=n,Dη=2n .从以上可知:D (S 2n )=σ4n2D (︂nS 2n σ2)︂=2(n −1)σ4n 2=2σ2n+o(︂1n)︂.5.10设(ξ1,ξ2)为取自正态母体ξ∼N (0,σ2)的一个子样,试证:(1).ξ1+ξ2与ξ1−ξ2是相互独立的;(2).(ξ1+ξ2)2(ξ1−ξ2)2服从F (1,1)分布.解:(ξ1,ξ2)是ξ∼N (μ,σ2)的子样,从而ξ*=[︃ξ1ξ2]︃∼N(︃[︃μμ]︃,σ2I 2)︃,其中I 2表示二阶单位矩阵.那么η=[︃η1η2]︃=[︃111−1]︃ξ* Bξ*∼N (︃B [︃μμ]︃,σ2BI 2B ′)︃,即η∼N (︃[2μ,0]′,[︃2002]︃)︃.因此可知η1,η2即ξ1+ξ2,ξ1−ξ2相互独立,且分别有分布N (2μ,2),N (0,2).5.11设母体的分布函数为F (x ),(ξ1,ξ2,···,ξn )是取自该母体的一个字样.若F (x )的二阶矩存在,¯ξ为字样均值,试证(ξi −¯ξ)与(ξj −¯ξ)的相关系数为ρ=−1n −1,i =j =1,2,···,n .解:方法一:由相关系数的定义,我们先计算Cov(ξi −¯ξ,ξj −¯ξ)和D (ξi −¯ξ)=D (ξj −¯ξ).记总体ξ的期望为μ,方差为σ2.令ηi =ξi −μ,i =1,2,···,n ,那么Eηi =0,Eηi ηj =0,i =j,Eη2i=σ2.从而可知:Cov(ξi −¯ξ,ξj −¯ξ)=Cov(ηi −¯η,ηj −¯η)=Cov(ηi ,ηj )−2Cov(ηi ,¯η)+Cov(¯η,¯η)=0−2Cov(ηi ,1n ηi )+σ2/n =−1n σ2.D (ξi −¯ξ)=D (ηi −¯η)=Cov(ηi −¯η,ηi −¯η)=D (ηi )−2Cov(ηi ,¯η)+D ¯η=σ2−2Cov(ηi ,1n ηi )+σ2/n =n −1nσ2.所以ξi −¯ξ,ξj −¯ξ的相关系数为−σ2/n√︂n −1n σ2n −1nσ2=−1n −1,i =j.方法二:首先由ξ1,ξ2,···,ξn 的独立性可知:D (ξ−¯ξ)=D (n −1n ξi −1n∑︁j =iξj )=(︂n −1n )︂2Dξi +1n2∑︁j =iDξj=σ2(︃(︂n −1n )︂2+n −1n 2)︃=n −1nσ2.由对称性可知对任意的i =j ,Cov(ξi ,ξj )=Cov(ξ1,ξ2) c .同时注意到∑︀n i =1(ξi −¯ξ)=0,所以=D (n ∑︁i =1(ξi −¯ξ))=n ∑︁i =1D (ξi −¯ξ)+∑︁i =jCov(ξi −¯ξ,ξj −¯ξ)=(n −1)σ2+n (n −1)c⇒c =−n −1n (n −1)σ2=−1nσ2.因此Cov(ξi −¯ξ,ξj −¯ξ)=−1n σ2n −1nσ2=−1n −1.5.12设¯ξn ,S 2n 分别是子样(ξ1,ξ2,···,ξn )的子样均值和子样方差,现又获得第n +1个观测值,试证:(1).¯ξ=¯ξn +1n +1(ξn +1−¯ξn );(2).S 2n +1=n n +1[︁S 2n +1n +1(ξn +1−¯ξn )2]︁.解:(1).¯ξn +1=1n +1n +1∑︁i =1ξi =1n +1ξn +1+n n +11n n∑︁i =1ξi=1n +1ξn +1+n n +1¯ξn =1n +1(ξn +1−¯ξn )+¯ξn .S2n+1=1n+1n+1∑︁i=1ξ2i−¯ξ2n+1=nn+1(1nn∑︁i=1ξ2−¯ξ2n)+nn+1¯ξ2n+1n+1ξ2n+1−(︃¯ξ2n+2n+1¯ξn(ξn+1−¯ξn)+(︂1n+1)︂2(ξn+1−¯ξn)2)︃=nn+1S2n+1n+1[︀ξ2n+1−2ξn+1¯ξn+¯ξn]︀−1(n+1)2(ξn+1−¯ξn)2=nn+1[︂S2n+1n+1(ξn+1−¯ξn)2]︂.5.13从装有一个白球、两个黑球的罐子里有放回地取球.令ξ=0表示取到白球,ξ=1表示取到黑球.求容量为5的子样均值和子样方差的期望值.解:实际上,我们知道E¯ξ=Eξ,ES2n =n−1nDξ,所以我们只需计算出总体的期望和方差.由题意可知总体ξ有分布列ξ01P132 3那么Eξ=23,Dξ=1323=29,因此E¯ξ=23,ES2n=2(n−1)9n.习题5.14设母体ξ服从参数为λ的泊松分布,(ξ1,ξ2,···,ξn)是取自此母体的一个子样.求(1).子样的联合概率分布列;(2).子样均值¯ξ的分布列、E¯ξ、D(¯ξ)和ES2n.解:因为ξ1,ξ2,···,ξn是总体ξ∼P(λ)的子样,所以ξ1,ξ2,···,ξn独立同分布,且均服从参数为λ的泊松分布.故(1)子样的联合分布列为P(ξ1=x1,ξ2=x2,···,ξn=x n)=n∏︁i=1P(ξi=x i)=n∏︁i=1λx ix i!e−λ=λ∑︀ni=1x i e−nλ(︃n∏︁i=1x i!)︃−1.x i=0,1,2,···,i=1,2,···,n.(2).回顾78页例2.12,该例题说明两个相互独立的泊松分布P(λ1),P(λ2)的和服从泊松分布P(λ1+λ2),因此在本题中n∑︁i=1ξi∼P(nλ)所以¯ξ的分布列为:P(¯ξ=kn)=P(n∑︁i=1ξi=k)(nλ)kk!e−nλ.因为总体的期望和方差都是λ,因此E¯ξ=Eξ=λ,D¯ξ=Dξn=λn,ES2n=n−1nDξ=(n−1)λn.5.15设ξ1,ξ2,···,ξn是取自正态母体N(μ,σ2)的子样,求u=k∑︀i=1ξi和v=∑︀ni=rξi,0<k<r<n的联合分布列.解:由于k<r,所以u,v相互独立.又因为ξ1,ξ2,···,ξn独立同分布,均服从N(μ,σ2)分布,而u,v都是ξ1,ξ2,···,ξn的线性组合,故u,v也都服从正态分布.又Eu=k∑︁i=1Eξi=kμ,Du=k∑︁i=1Dξi=kσ2,Ev=n∑︁i=rEξi=(n−r+1)μ,Dv=n∑︁i=rDξi=(n−r+1)σ2,所以u,v 的联合分布为二维正态分布N (kμ,(n −r +1)μ,kσ2,(n −r +1)σ2,0).5.16设母体η=(ξ1,ξ2)∼N (μ1,μ2,σ21,σ22,ρ),(η1,η2,···,ηn )是取自此母体的一个子样,求子样均值¯η=(¯ξ1,¯ξ2)=(︂1nn ∑︀i =1ξ1i ,1n n∑︀i =1ξ2i )︂的分布密度函数.解:首先可知¯η服从二维正态分布.又ηi ∼N (μ1,μ2,σ21,σ22,ρ),所以Eξ1i =μ1,Eξ2=μ2,Dξ1i =σ21,Dξ2i =σ22,Cov(ξ1i ,ξ2i )=ρσ1σ2.又因为当i =j 时,ηi ,ηj 相互独立,故Cov(ξ1i ,ξ2j )=0.这样我们就有如下结果:E ¯ξ1=1n n∑︁i =1Eξ1i =μ1;E ¯ξ2=1n n∑︁i =1Eξ2i =μ2;D ¯ξ1=1n 2n ∑︁i =1Dξ1i=1n σ21;D ¯ξ2=1n 2n ∑︁i =1Dξ2i=1n σ22;Cov(¯ξ1,¯ξ2)=1n 2Cov(n ∑︁i =1ξ1i ,n ∑︁i =1ξ2i )=1n 2∑︁i,jCov(ξ1i ,ξ2j )=1n 2∑︁i Cov(ξ1i ,ξ2i)=ρσ1σ2n.并且¯ξ1,¯ξ2的相关系数为Cov(¯ξ1,¯ξ2√︀[D ¯ξ1][D ¯ξ2]=ρσ1σ2/n √︀(σ21/n )(σ22/n )=ρ.由以上结论可知¯η∼N (μ1,μ2,σ21/n,σ22/n,ρ),其密度函数为:n2πσ1σ2√︀1−ρ2exp {︂−n 2(1−ρ2)[︂(x −μ1)2σ21−2ρ(x −μ1)(y −μ2)σ1σ2+(y −mu 2)2σ22]︂}︂.5.17设母体的分布列为P (ξ=k )=1N ,k =1,2,···,N .现进行不放回抽样,¯ξ¯ξ为子样(ξ1,ξ2,···,ξn )的均值,试求E ¯ξ和D (¯ξ).解:由题意可知,母体中共有N 个个体,且取到每个个体的概率是一样的.从母体中不放回的抽样,第i 次抽到第k 个个体的概率为1/N .故ξi 也有分布列P (ξi =k )=1N ,k =1,2,···,N ,即和母体有相同的分布列.所以Eξi =1N ∑︀N k =1k =N +12,Eξ2i =1N ∑︀N k =1k 2=(N +1)(2N +1)6,Dξi =N 2−112.由于抽样是不放回抽样,所以ξi ,ξj 不是相互独立的.它们有联合分布列P (ξi =k,ξj =l )={︃1N (N −1),k =l,0,k =l 由此可知:Eξi ξj=1N (N −1)∑︁k =lkl =(N +1)(3N +2)12;Cov(ξi ,ξj )=Eξi Eξj −Eξi Eξj =−N +112.所以D(ξ1+ξ2+···+ξn)=n∑︁k=1Dξk+2∑︁1≤k<l≤nCov(ξk,ξl)=n N2−112−n(n−1)N+112=n(N+1)(N−n)12;D(¯ξ)=1n2D(n∑︁i=1ξi)=(N+1)(N−n)12n;E¯ξ=1nn∑︁i=1Eξi=N+12.5.18设母体ξ∼N(0,1),ξ1,ξ2,ξ3为取自该母体的一个子样,在子样空间中求子样到原点的距离小于1个概率.解:由于ξi,i=1,2,3独立同分布,和母体有相同的分布,故ξ1,ξ2,ξ3的联合密度函数为:p(x,y,z)=1(2π)3/2exp{︂−12(x2+y2+z2)}︂.因此子样到原点的距离小于1的概率为p=P(ξ21+ξ22+ξ23<1)=∫︁∫︁∫︁x2+y2+z2<11(2π)3/2exp{︂−12(x2+y2+z2)}︂dxdydz.做变换⎧⎪⎨⎪⎩x=r cosθ1,y=r sinθ1cosθ2, z=r sinθ1sinθ2.变化的雅克比行列式为ð(x,y,z)ð(r,θ1,θ2)=r sinθ1.所以P=(2π)−3/2∫︁π0sinθ1dθ1∫︁2πdθ2∫︁1r2exp{︂−12r2}︂=√︂2π∫︁1r2exp{−r22}dr=√︂2π[︂−r exp{−r22}⃒⃒1+∫︁1exp{−r22}dr]︂=√︂2π[︂∫︁1exp{−r22}dr−e−12]︂=√︂2π[︂√2π∫︁11√2πexp{−r22}dr−e−12]︂=√︂2π[︁√2π(Φ(1)−Φ(0))−e−12]︁=2Φ(1)−1−√︂2πe−12.其中Φ(x)是标准正态分布的分布函数.或者如下计算P.P=(2π)−3/2∫︁1−1[︂e−x22∫︁y2+z2<1−x2e−12(y2+z2)dydz]︂dx=(2π)−3/2∫︁1−1[︃e−x22∫︁2πdθ∫︁√1−x2re−12r2dr]︃dx=(2π)−1/2∫︁1−1[︂e−x22(︂−e−12r2⃒⃒⃒√1−x2)︂]︂dx=(2π)−1/2∫︁1−1e−12x2[1−e−12(1−x2)]dx=∫︁1−11√2πe−12x2dx−1√2π∫︁1−1e−12dx=2Φ(1)−1−√︂2πe−12≈0.1987.又或者利用χ2分布.注意到ξ21+ξ22+ξ23∼χ2(3),所以P =P (ξ21+ξ22+ξ23<1)=∫︁10123/2Γ(32)x 32−1e −x 2dx =1√2π∫︁10x 12e −x 2dx.在上述积分中做变换x =t 2,可以得到和前面相同的结果.5.19设(ξ1,ξ2,···,ξn )为取自正态母体N (μ,σ2)的子样,S 2n 为子样方差,分别求满足下列各式的最小n 值.(1).P (︂S 2nσ2≤1.5)︂≥0.95.(2).P (︂|S 2n −σ2|≤12Σ)︂≥0.8.解:注意到nS2n σ2∼χ2(n −1).(1).P (︂S 2n σ2≤1.5)︂=P (︂nS 2n σ2≤1.5n )︂≥0.95,故1.5n ≥χ20.95(n −1).1.5×20<χ20.95(19),而1.5×21>χ20.95(20),所以最小的n 是21.(2).P (︂|S 2n −σ2|≤12σ2)︂=P (︁⃒⃒⃒nS 2n σ2−n ⃒⃒⃒≤n 2)︁=P (︁n 2≤ns 2nσ2≤3n 2)︁.所以我们要找的n 为使得P (︂n 2≤ns 2n σ2≤3n 2)︂≥0.8的最小的n .用软件计算可知此最小的n 为13.5.20子样(ξ1,ξ2,ξ3)来自正态母体N (0,1),又η1=0.8ξ1+0.6ξ2,η2=√2(0.3ξ1−0.4ξ2−0.5ξ3),η3=√2(0.3ξ1−0.4ξ2+0.5ξ3),求(η1,η2,η3)的联合分布密度及η1,η2,η3的边际密度.解:ξ1,ξ2,ξ3相互独立,且都服从分布N (0,1),所以(ξ1,ξ2,ξ3)的联合分布是三维正态分布.其期望为(0,0,0),协方差矩阵为三阶单位矩阵I 3.记A =⎛⎜⎝0.80.600.3√2−0.4√2−0.5√20.3√2−0.4√20.5√2⎞⎟⎠,那么可知(η1,η2,η3)′=A (ξ1,ξ2,ξ3)′,即(η1,η2,η3)′是(ξ1,ξ2,ξ3)的线性变换,所以(η1,η2,η3)′也服从正态分布,其期望,协方差矩阵分别为:E ⎛⎜⎝η1η2η3⎞⎟⎠=A ⎛⎜⎝000⎞⎟⎠=0,Cov ⎛⎜⎝η1η2η3⎞⎟⎠AI 3A ′=I 3.由于η1,η2,η3的协方差矩阵是单位矩阵,故可知ηi ,ηj 的相关系数为0,所以η1,η2,η3相互独立.又Eηi =0,Dηi =1,所以ηi sin N (0,1).5.21若ξ1,ξ2,···,ξn 相互独立且服从正态分布,它们的数学期望相等,方差各为σ21,σ22,···,σ2n ,证明:u =∑︀n i =1ξiσ2i∑︀ni =11σ2i与v =n ∑︁i =1(︂ξi −u σi)︂2是相互独立的,且u 服从正态分布,v 服从自由度为n 的χ2分布.解:因为ξi ,i =1,2,···,n 有相同的数学期望,不妨用μ表示其共同的数学期望.令ηi =ξiσi,i =1,2,···,n ,那么η1,η2,···,ηn 相互独立,都服从正态分布,且Dηi =1,Eηi =a/σi ,i =1,···,n ,这样可知η=(η1,η2,···,ηn )′的协方差矩阵为n 阶单位矩阵I n .记C=√︃n∑︀i=11σ2i,令矩阵A是正交矩阵,且其第一行为(1σ1,1σ2,···,1σn)/C.设ζ=⎛⎜⎜⎜⎜⎝ζ1ζ2...ζn⎞⎟⎟⎟⎟⎠=Aη=A⎛⎜⎜⎜⎜⎝η1η2...ηn⎞⎟⎟⎟⎟⎠那么(ζ1,ζ2,···,ζn)′服从多元正态分布,且其协方差矩阵为Cov(ζ)=A Cov(η)A′=AI n A′=AA′=I n.ζ的数学期望为Eζ=AEη=A ⎛⎜⎜⎜⎜⎝aσ1aσ2...aσn⎞⎟⎟⎟⎟⎠=a⎛⎜⎜⎜⎜⎜⎜⎝n∑︀i=11σ2i...⎞⎟⎟⎟⎟⎟⎟⎠=⎛⎜⎜⎜⎜⎝aC2...⎞⎟⎟⎟⎟⎠.这意味着ζ1,ζ2,···,ζn相互独立,且ζ1∼N(aC2,1),ζ2∼N(0,1),i=2,3,···,n.由于矩阵A的第一行为(1σ1,1σ2,···,1σn)/C,所以ζ1=1C(η1/σ1+η2/σ2+···+ηn/σn)=1C(ξ1/σ21+ξ2/σ22+···+ξn/σ2n)=Cu.由此可知u=1C ζ1∼N(a,1C2),即N(a,(︀∑︀ni=1σ2i)︀.又v=n∑︁i=1(︂ξi−uσi)︂2=n∑︁i=1(ηi−uσi)2=n∑︁i=1η2i−2un∑︁i=1ηi/σi+u2n∑︁i=11σ2i=η′η−2u(C2u)+C2u2=η′η−C2u2 =η′η−ζ21.其中利用了∑︀ni=1ηi/σi=∑︀ni=1ξiσ2i=C2u,ζ1=Cu.因为A是正交矩阵,且ζ=Aη,所以ζ′ζ=η′A′Aη=η′η.这样可知v=ζ′ζ−ζ21=ζ22+ζ23+···+ζ2n.综合以上所述,我们已经知道ζ1,ζ2,···,ζn,相互独立,且ζi∼N(0,1),i=2,3,···,n,u∼N(a,1/C2).所以u=Cζ1与v=ζ22+ζ23+···+ζ2n相互独立,且v∼χ2(n−1).注:v的自由度是n−1,不是n.5.22设母体ξ服从正态分布N(μ,σ2),¯ξ,S2n分别为容量为n的子样均值和子样方差,又设ξn+1∼N(μ,σ2)且与ξ1,ξ2,···,ξn相互独立.试求统计量ξn+1−¯ξS n √︂n−1n+1的抽样分布.解:由定理5.4知¯ξ与S2n相互独立,¯ξ∼N(μ,σ2/n),nS2nσ2∼χ2(n−1).ξn+1与ξ1,ξ2,···,ξn相互独立,故¯ξ与¯ξ,S2n独立.且ξn+1−¯ξ∼N(0,σ2+σ2n),即ξn+1−¯ξ∼N(0,n+1nσ2).ξn+1,¯ξ都与S2n相互独立,那么ξn+1−¯ξ与S2n独立,因此ξn+1−¯ξ√n+1n σ2√︂nS2nσ2⧸︁(n−1)∼t(n−1),即ξn+1−¯ξS n√︂n−1n+1∼t(n−1).5.23(ξi,ηi),i=1,2,···,n是取自二元正态分布N(μ1,μ2,σ21,σ22,ρ)的子样.设¯ξ=1nn∑︀i=1ξi,¯η=1nn∑︀i=1ηi,S2ξ=1n∑︀ni=1(ξi−¯ξ)2,S2η=1n∑︀ni=1(ηi−¯η)2和r=∑︀ni=1(ξi−¯ξ)(ηi−¯η)√︁∑︀ni=1(ξi−¯ξ)2∑︀ni=1(ηi−¯η)2.试求统计量¯ξ−¯η−(μ1−μ2)√︁S2ξ+S2η−2rSξSη√n−1.的分布.解:一般的我们称1nn∑︁i=1(ξi−¯ξ)(ηi−¯η)为样本协方差.而把r=∑︀ni=1(ξi−¯ξ)(ηi−¯η)√︁∑︀ni=1(ξi−¯ξ)2∑︀ni=1(ηi−¯η)2=样本协方差√︁S2ξS2η为样本相关系数.设[ξ1,η1]′,[ξ2,η2]′,···,[ξn,ηn]′是从总体[ξ,η]′∼N(μ1,μ2,σ21,σ22,ρ)取到的子样.S2ξ+S2η−2rSξSη=1n(︃n∑︁i=1(ξi−¯ξ)2+n∑︁i=1(ηi−¯η)2−2n∑︁i=1(ξi−¯ξ)(ηi−¯η))︃=1nn∑︁i=1[︀(ξi−ηi)−(¯ξ−¯η)]︀2.令ζi=ξi−ηi,i=1,2,···,n.那么ζ1,ζ2,···,ζn就可以看做是从总体ξ−η∼N(μ1−μ2,σ21+σ22−2ρσ1σ2)的子样.并且这个新子样的子样均值和子样方差分别为:¯ζ=1nn∑︁i=1(ξi−ηi)=¯ξ−¯ηS2=1nn∑︁i=1(ζi−¯ζ)2=1nn∑︁i=1[︀(ξi−ηi)−(¯ξ−¯η)]︀2=S2ξ+S2η−2rSξSη.因此√n−1(¯ξ−¯η)−(μ1−μ2)√︁S2ξ+S2η−2rSξSη∼t(n−1).5.23-2解:(1)因为函数y=√x的反函数为x=y2,且dxdy=2y,所以η=√ξ的密度函数为pξ(y)=2pη(y2)|y|=⎧⎨⎩22n/2Γ(n/2)y×(y2)n2−1e−12y2=12n2−1Γ(n2)y n−1e−y22,y>0 0,y≤0(2).因为z=y√n的反函数为y=√nz,且dydz√n,所以ζ=ξ√n的密度为: pζ(z)=√npξ(√nz)=⎧⎨⎩n n22n/2−1Γ(n/2)z n−1e−nz22,z>00,z≤0(3)Eξ=E √η=∫︁∞√x12n/2Γ(n/2)x n2−1e−12x dx=2n+12Γ(n+12)2n2Γ(n2)=√2Γ(n+12)Γ(n2).Eξ2=Eη=nDξ=Eξ2−(Eξ)2=n−2(︂Γ(n+12Γ(n2))︂25.24设母体ξ以等概率取四个值0,1,2,3,现从中获得一个容量为3的子样,试分别求ξ(1)与ξ(3)的分布.解:(i).先求ξ(1)的分布(分布列).P(ξ(1)≥k)=P(min{ξ1,ξ2,ξ3}≥k)=P(ξi≥k,i=1,2,3)=3∏︁i=1P(ξi≥k)=3∏︁i=14−k4=(︂4−k4)︂3,k=0,1,2,3.P(ξ(1)=k)=P(ξ(1)≥k)−P(ξ(1)≥k+1)=(︂4−k4)︂3−(︂3−k4)︂3,k=0,1,2P(ξ(1)=3)=P(ξ(1)≥3)=(︂14)︂3=164.因此ξ(1)有如下分布列:ξ(1)0123P37641964764164(ii).再考虑ξ(3)的分布列.P(ξ(3)≤k)=P(max{ξ1,ξ2,ξ3}≤k)=P(ξi≤k,i=1,2,3)=3∏︁i=1P(ξi≤k)=3∏︁i=1k+14=(︂k+14)︂3,k=0,1,2,3P(ξ(3)=k)=P(ξ(3)≤k)−P(ξ(3)≤k−1)=(︂k+14)︂3−(︂k4)︂3,k=1,2,3P(ξ(3)=0)=P(ξ(3)≤0)=(︂14)︂3=164.因此ξ(3)有如下分布列:ξ(3)0123P164764196437645.25设母体ξ的密度函数为f(x)=3x2,0≤x≤1从中获得一个容量为5的子样ξ1,ξ2,···,ξ5,其次序统计量为ξ(1),ξ(2),···,ξ(5).(1).试分别求ξ(1)与ξ(5)的概率密度函数;(2).试证ξ(2)ξ(4)与ξ(4)相互独立.解:(1).母体有分布函数F(x)=⎧⎪⎨⎪⎩0,x≤0x3,0<x≤1,1,x>1.所以ξ(1)的概率密度函数f(1)(x),ξ(5)的概率密度函数f5(x)分别为:f(1)(x)={︃5[1−x3]4(3x2),0≤x≤1,0,else={︃15x2(1−x3)4,0≤x≤1,0,else.f(5)(x)={︃5(x3)4(3x2),0≤x≤10,else={︃15x14,0≤x≤1,0,else.(2).母体有分布函数F(x)=⎧⎪⎨⎪⎩0,x≤0x3,0<x≤1,1,x>1.因此ξ(2),ξ(4)的联合密度函数为g2,4(y,z)={︃5!9(2−1)!(4−2−1)!(5−4)!(y3)[z3−y3]4−2−1[1−z3]y2z2,0<y<z≤1.0,else={︃1080y5(z3−y3)(1−z3)z2,0<y<z≤1 0,else.令{︃U=ξ(2)/ξ(4)V=ξ(4)其对应的函数为:{︃u=y/z,v=z.其反函数为y=uv,z=v,其雅克比行列式为J=⃒⃒⃒⃒⃒v u01⃒⃒⃒⃒⃒=v.所以U,V的联合密度为pU,V (u,v)={︃1080(uv)5(v3−(uv)3)(1−v3)v2v,0<u<1,0<v<1,0,else.={︃1080v11(1−v3)u5(1−u3),0<u<1,0<v<1,0,else.U,V的联合密度函数是变量可分离的,故U,V相互独立.且U=ξ(2)/ξ(4)的密度函数为PU (u)={︃ku5(1−u3),0<u<10,else计算可知k=18.5.26设母体ξ服从韦布尔分布,其分布函数为F(x)=1−e−(xη)m,x>0,其中m>0为形状参数,η>0为尺度参数.从中获得子样ξ1,ξ2,···,ξn,证明μ=min(ξ1,ξ2,···,ξn)任服从韦布尔分布,并指出其形状参数和尺度参数.解:母体ξ的密度函数p(x)=F′(x)={︃mηmx m−1e−(xη)m,x>0 0,else.所以最小次序统计量μ=ξ(1)=min(ξ1,ξ2,···,ξn)的密度函数为:f(x)=n(1−F(x)]n−1p(x)=nmηmx m−1(︁e−(xη)m)︁n−1e−(xη)m=nmηmx m−1(︁e−n(xη)m)︁=m(cη)mx m−1(︁e−(x cη)m)︁其中c=n−1m.比较f(x)和母体的密度函数p(x)可知μ也服从韦布尔分布,其形状参数仍为m,尺度参数为ηm√n.5.27设某电子元件寿命服从参数为λ=0.0015的指数分布,其分布函数为:F(x)=1−e−λx,x>0.今从中随机抽取6个元件,测得其寿命分别为ξ1,ξ2,···,ξ6,试求下列事件的概率.(1).到800小时没有一个元件失效;(2).到300小时所有元件都失效.解:ξ1,ξ2,···,ξ6是子样,所以ξ1,ξ2,···,ξ6相互独立,且每个ξi都服从参数为λ的指数分布,所以(1).到800小时没有一个元件失效的概率为p1=P(ξ1>800,ξ2>800,···,ξ6>800)=6∏︁i=1P(ξi>800)=6∏︁i=1P(ξ<800)=6∏︁i=1[1−(1−e−800λ)]=[e−800λ]6=e−4800λ=e−7.2≈0.00075.(2).到300小时所有元件都失效的概率p2=P(ξ1<3000,ξ2<3000,···,ξ6<3000)=6∏︁i=1P(ξi<3000)=6∏︁i=1P(ξ<3000)=6∏︁i=1[1−e−3000λ)]=[1−e−3000λ]6=[1−e−4.5]6≈0.93517.5.28设母体ξ的密度函数为f(x)={︃6x(1−x),0<x<10,else由此母体中抽取一个子样(ξ1,ξ2,ξ3,ξ4,ξ5),又ξ(1)<ξ(2)<ξ(3)<ξ(4)<ξ(5)是子样的顺序统计量,求ξ(3)的密度函数.解:ξ的分布函数为F(x)=∫︁x6t(1−t)dt=x2(3−2x),(0<x<1),所以ξ(3)的密度函数为:g3(x)=5!2!2![F(x)]2[1−F(x)]2f(x)=5!2!2![x2(3−2x)]2[1−x2(3−2x)]2[6x(1−x)]=180x5(1−x)(3−2x)2(1−3x2+2x3)2,0<x<1.5.29母体ξ服从[0,1]上的均匀分布,(ξ1,ξ2,···,ξn)为取自该母体的子样,ηi=ξ(i)为次序统计量,求P(ηi> 12),i=1,2,3,4,5.解:ξ服从[,1]上的均匀分布R[0,1],所以ξ的分布函数为:F(x)=⎧⎪⎨⎪⎩x,0<x≤10,x≤01,x>1.因此第i个次序统计量ηi的概率密度函数为:g i(y)=⎧⎨⎩5!(i−1)!(5−i)!x i−1(1−x)5−i,0<y≤1 0,y≤0或者y>1故P(η1>1/2)=∫︁11/25(1−y)4dy=∫︁1/25t4dt=132P(η2>1/2)=∫︁11/220y(1−y)3dy=316P(η3>1/2)=∫︁11/230y2(1−y)2dy=12P(η4>1/2)=∫︁11/220y3(1−y)dy=1316=1−P(η2>1/2)P(η5>1/2)=∫︁11/25y4dy=3132=1−P(η1>1/2).5.30设(ξ1,ξ2)是取自具有指数分布母体的子样,其密度函数为:f(x)={︃e−x,x>00,else(ξ(1)<ξ(2)是次序统计量,求ξ(1)与η=ξ(1)+ξ(2)的联合密度函数.解:母体ξ服从参数为1的指数分布,其分布函数为F(x)=(1−e−x),x>0.因此ξ(1),ξ(2)的联合密度函数为:g1,2(x,y)=2e−x e−y,0<x<y.令U=ξ(1),V=ξ(1)+ξ(2).它对应的函数为u=x,v=x+y,其反函数为x=u,y=v−u,且雅克比行列式J=⃒⃒⃒⃒⃒ðxðuðxðvðyðuðyðv⃒⃒⃒⃒⃒=⃒⃒⃒⃒⃒10−11⃒⃒⃒⃒⃒=1.所以U,V的联合密度函数为pU,V(u,v)=2e−u e−(v−u),0<u<(v−u)=e−v,0<2u<v.5.31设母体ξ的分布函数F(x)是连续的,ξ(1),ξ(2),···,ξ(n)为取自此母体的子样的次序统计量,设ηi= F(ξ(i)),试证(1).η1≤η2≤···≤ηn,且ηi是来自均匀分布U(0,1)母体的次序统计量;(2).Eηi=in+1,D(ηi)=i(n+1−i)(n+1)2(n+2),1≤i≤n.(3).ηi和ηj的协方差矩阵为⎛⎜⎝a1(1−a1)n+2a1(1−a2)n+2a1(1−a2)n+2a2(1−a2)n+2⎞⎟⎠其中a i=in+1,a j=jn+1.证明:因为ξ(1),ξ(2),···,ξ(n)是取自母体ξ的子样的次序统计量,所以ξ(1)≤ξ(2)≤···≤ξ(n).又因为分布函数F(x)是单调不降的,所以F(ξ(1))≤F(ξ(2))≤···≤F(ξ(n))并且可看做是取自母体F(ξ)的子样的次序统计量.令C x=sup{t|F(t)≤t},0<x<1.由于F(x)是连续函数,其闭集的原像仍为闭集.而且F(x)单调不降,故可知F(C x)=x.这样可知:P(F(ξ)≤x)=P(ξ≤C x)=F(C x)=x,0<x<1.所以η=F(ξ)服从(0,1)上的均匀分布,所以η1,···,ηn可看做从(0,1)分布的母体上子样的次序统计量.(2).由(1)可知ηi有密度函数p(i)=⎧⎨⎩n!(i−1)!(n−i)![F(x)]i−1[1−F(x)]n−i,0<x<1, 0,else=⎧⎨⎩n!(i−1)!(n−i)!x i−1(1−x)n−i,0<x<1, 0,else即ηi服从beta分布Beta(i,n−i+1).注意到ηi的密度函数的形式,Eηi=∫︁1n!(i−1)!(n−i)!x i(1−x)n−i dx=n!(i−1)!(n−i)!i!(n−i)!(n+1)!∫︁1(n+1)![(i+1)−1]![(n+1)−(i+1)]!x(i+1)−1(1−x)(n+1)−(i+1)dx=n!(i−1)!(n−i)!i!(n−i)!(n+1)!=in+1.其中我们利用了(n+1)![(i+1)−1]![(n+1)−(i+1)]!x(i+1)−1(1−x)(n+1)−(i+1),0<x<1是子样容量为n+1时ηi+1的密度函数.用同样的方法可得:Eη2i=∫︁1n!(i−1)!(n−i)!x i+1(1−x)n−i dx=n!(i−1)!(n−i)!(i+1)!(n−i)!(n+2)!∫︁1(n+2)![(i+2)−1]![(n+2)−(i+2)]!x(i+2)−1(1−x)(n+2)−(i+2)dx=n!(i−1)!(n−i)!(i+1)!(n−i)!(n+2)!=i(i+1)(n+2)(n+1).其中我们利用了(n+2)![(i+2)−1]![(n+2)−(i+2)]!x(i+1)−1(1−x)(n+1)−(i+1),0<x<1是子样容量为n+2时ηi+2的密度函数.那么Dηi=Eη2i−(Eηi)2=i(n+1−i) (n+1)2(n+2).(3).不妨假定i<j.因为η1,···,ηn可看做(0,1)上均匀分布母体的子样的次序统计量.故ηi,ηj的联合密度函数为:g i,j(x,y)=n!(i−1)!(j−i−1)!(n−j)!x i−1(y−x)j−i−1(1−y)n−j,0<x<y<1.注意到E(ηiηj)=Eηi(ηj−ηi)+Eη2i.Eηi(ηj−ηi)=∫︁10∫︁1xn!(i−1)!(j−i−1)!(n−j)!x i(y−x)j−i(1−y)n−j dxdy=i(j−i)(n+2)(n+1)∫︁1∫︁1x(n+2)![(i+1)−1]![(j+2)−(i+1)−1]![(n+2)−(j+2)]!·x(i+1)−1(y−x)(j+2)−(i+1)−1(1−y)(n+2)−(j+2)dxdy=i(j−i)(n+2)(n+1),其中利用了(n+2)![(i+1)−1]![(j+2)−(i+1)−1]![(n+2)−(j+2)]!x(i+1)−1(y−x)(j+2)−(i+1)−1(1−y)(n+2)−(j+2),0<x<y<1是子样容量为n+2时,ηi+1和ηj+2的联合密度函数.所以进一步的可得Cov(ηi,ηj)=Eηiηj−(Eηi)(Eηj)=Eηi(ηj−ηi)+Eη2i−(Eηi)(Eηj)=i(j−i)(n+2)(n+1)+i(i+1)(n+2)(n+1)−ij(n+1)2=i(n+1−j)(n+2)(n+1)2=a1(1−a2n+2.从而可得ηi,ηj的协方差矩阵为Cov(ηi,ηj)=(︃Dηi Cov(ηi,ηj)Cov(ηj,ηi)Dηj)︃=⎛⎜⎝a1(1−a1)n+2a1(1−a2)n+2a1(1−a2)n+2a2(1−a2)n+2⎞⎟⎠.5.32设母体ξ∼N(0,1),从此母体获得一组子样观测值x1=0,x2=0.2,x3=0.25,x4=−0.3, x5=−0.1,x6=2,x7=0.15,x8=1,x9=−0.7,x10=−1.(1).求子样的经验分布函数F n(x).(2).计算x=0.15(即ξ(6))处E(F(ξ(6))),D(F(ξ(6)))解:(1).子样的经验分布函数为:F n(x)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩0,x≤−10.1,−1<x≤−0.70.2,−0.7<x≤−0.30.3,−0.3<x≤−0.10.4,−0.1<x≤00.5,0<x≤0.150.6,0.15<x≤0.20.7,0.2<x≤0.250.8,0.25<x≤10.9,1<x≤21,x>2(2).记F(x)为标准正态分布的分布函数,p(x)为标准正态分布的密度函数,那么ξ(6)的密度函数为:g6(x)=10!5!4!F5(x)[1−F(x)]4p(x),。
概率论与数理统计试题及答案 (2)
一.选择题(18分,每题3分)1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ))(A 独立; )(B 不独立; )(C 相容; )(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。
现任选4人,则4人血型全不相同的概率为: ( ))(A 0.0024; )(B 40024.0; )(C 0. 24; )(D 224.0.3. 设~),(Y X ⎩⎨⎧<+=.,0,1,/1),(22他其y x y x f π 则X 与Y 为 ( ))(A 独立同分布的随机变量; )(B 独立不同分布的随机变量;)(C 不独立同分布的随机变量;)(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数学期望与方差分别为 ( ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与.5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ))(A 32112110351ˆX X X ++=μ; )(B 3212949231ˆX X X ++=μ; )(C 3213216131ˆX X X ++=μ; )(D 32141254131ˆX X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10)(22212n Xini χμχ-=∑=,其拒域为(1.0=α) ( ))(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(205.02n χχ≥.二. 填空题(15分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为⎪⎪⎭⎫⎝⎛-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件 为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D . 5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则 概率 =≤-≤∑=)76.1)(37.0(222012012σσX XP ii .5. 设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 . 三. 计算题 (54分,每题9分)1.自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。
概率论与数理统计(协方差及相关系数、矩)
实验步骤: 实验步骤: (1) 整理数据如图 所示. 整理数据如图4-5所示 所示.
图4-5 整理数据
(2) 计算边缘概率 计算边缘概率P{X = xi}和P{Y = yj} 和 在单元格G2中输入公式 : 在单元格 中输入公式: = SUM(B2:F2), 并将 中输入公式 , 其复制到单元格区域G3:G6 其复制到单元格区域 在单元格B7中输入公式: 在单元格 中输入公式:=SUM(B2:B6),并将其 中输入公式 , 复制到单元格区域C7:F7 复制到单元格区域 (3) 计算期望 计算期望E(XY) 首先在单元格B9中输入公式: 首先在单元格 中输入公式: 中输入公式 =MMULT(B1:F1,B2:F6), ,
−
π
∫ πcos zdz = 0, ∫ πsin z cos zdz = 0
−
1 E ( XY ) = 2π
π
因而Cov(X,Y) = 0,ρXY = 0. , 因而 , . 不相关, 相关系数ρXY = 0,说明随机变量 与Y不相关, ,说明随机变量X与 不相关 但是, 所以X与 不独立 不独立. 但是,由于 X 2 + Y 2 = 1 ,所以 与Y不独立.
Cov ( X , Y ) = E ( XY ) − E ( X ) E (Y ) = 19 / 400,
所以
ρ XY =
Cov( X , Y ) 19 / 400 133 = = = 0.87 D( X ) D(Y ) 153 / 2800 153
4.3.2 相关系数 下面不加证明地给出相关系数的两条性质: 下面不加证明地给出相关系数的两条性质: (1) |ρXY | ≤ 1; ; 的充要条件是, (2) |ρXY | = 1的充要条件是,存在常数 ,b,使 的充要条件是 存在常数a, P{Y = aX + b} = 1. . 定义4.6 若ρXY = 0,称X与Y不相关.0 < ρXY ≤ 1,称 定义 , 与 不相关. , 不相关 X与Y正相关,– 1 ≤ ρXY < 0,称X与Y负相关. 正相关, 负相关. 与 正相关 , 与 负相关 事实上,相关系数 事实上 相关系数ρXY是X与Y线性关系强弱的一个 与 线性关系强弱的一个 度量,X与 的线性关系程度随着 的线性关系程度随着| 的减小而减弱, 度量 与Y的线性关系程度随着 ρXY|的减小而减弱 的减小而减弱 的线性关系最强, 时 与 的线性关系最强 当|ρXY| = 1时X与Y的线性关系最强, 的不存在线性关系, 当ρXY = 0时,意味 与Y的不存在线性关系,即X 时 意味X与 的不存在线性关系 不相关. 与Y不相关 不相关
概率论与数理统计习题集及答案
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: .(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: .(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=BA ,(4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回主目录
则: X Y ~ N (0,13) 2
第四章
随机变量的数字特征
1 1 的二维随机变量的相关系数分别为 和 ,它们的边缘密 3 3 度函数所对应的随机变量的数学期望都是零,方差都是1.
§5 矩
2 σ n n +1 = Γ π 2
n 2
其 中 Γ(t) = xt1ex dx.
0
∫
∞
利用 Γ 函数的性质: Γ (r + 1) = rΓ (r ) ,得
E Xn =
( )
2 σ
n 2 n 2
n 1 n 1 2 σ n n 1 n 3 n 3 Γ Γ = 2 2 2 2 2 π π
P126 作业: 3,5,7,10,11,12,13,17,18,20,21,22,24,25,27,30.
返回主目录
1 2 dt
y= 2 t,
1 1 2 t 2 dt
2 dy = t =2 2 n +∞ n 1 n 1 2σ n 2 EX = t 2 e t dt 2 2π 0
∫
=
n 22
σ
π
n + ∞ n +1 1 t 2 e t dt
∫
0
=
n 22
σ n n +1 Γ( ) 2 π
返回主目录
第四章
随机变量的数字特征
返回主目录
第四章
随机变量的数字特征
§5 矩
例2 (1) 设 X , Y 独立,X ~ N (1,4), Y ~ N ( 2,9),
求: X Y 的分布; 2
(2) ( X , Y ) ~ N (1,2;4,9;0.5)
求: X Y 的分布; 2 ( 解:1) E ( 2 X Y ) = 2 EX EY = 0 D ( 2 X Y ) = 4 DX + DY = 4 × 4 + 9 = 25 则: X Y ~ N (0,25) 2
1 f X ( x) f Y ( y ) = e 2π
x2 2
e
y2 2
1 = e 2π
x2 + y2 2
,பைடு நூலகம்
f ( x, y ) ≠ f X ( x) f Y ( y ). 所以 X 与 Y 不独立.
第四章
小
结
1 阐述了数学期望、方差的概念及背景,要掌握 它们的性质与计算,会求随机变量函数的数学 期望和方差。 2 要熟记两点分布、二项分布、泊松分布、均匀 分布、指数分布和正态分布的数学期望与方差。 3 给出了契比雪夫不等式,要会用契比雪夫不等式 作简单的概率估计。 4 引进了协方差、相关系数的概念,要掌握它们的 性质与计算。 5 要掌握二维正态随机变量的不相关与独立的等价 性。 6 给出了矩与协方差矩阵。
所以 EX 是一阶原点矩,DX 是二阶中心矩, 协方差 Cov(X,Y)是二阶混合中心矩。
返回主目录
第四章
随机变量的数字特征
§5 矩
例1
设随机变量 X ~ N 0, σ 2 ,试求 E X n .
(
)
( )
解:
X EX X 令:Y = = σ DX
所以,
+∞
则 Y ~ N (0, 1).
E X
( ) = σ E (Y ) = σ ∫ y f ( y )dy =
n n n
n n Y ∞
σ
n
+∞
2π
∞
∫y e
y2 n 2
dy
⑴.当 n 为奇数时,由于被积函 数是奇函数,所以 E X n = 0.
( )
返回主目录
第四章
n +∞
随机变量的数字特征
y2 n y e 2
( 2).当 n 为偶数时,由于被积函 数是偶函数,所以
EX
n
=
2
2σ
2π
∫
0
dy
y 令: = t , 则 2
第四章
随机变量的数字特征
§5 矩
§5 矩 1、定义 若 EX k 存 在 , 称 之 为 X 的 k 阶 原 点 矩 。
若 E ( X EX ) k 存 在 ,称 之 为 X 的 k 阶中 心 矩。 若 E ( X EX ) k (Y EY )l 存在,称之为 X 和 Y 的 k+l 阶混合中心矩。
第四章
∞
随机变量的数字特征
∞ ∞ 1 f X ( x) = ∫ f ( x, y )dy = ∫ 1 ( x, y )dy + ∫ 2 ( x, y )dy 2 ∞ ∞ ∞
同理,
x 1 x 1 1 2 e + e 2 = 2 2π 2π
2
2
=
1 2π
e
x2 2
;
f Y ( y) =
§5 矩 例3 设二维随机变量( X , Y )的密度函数为 1 f ( x, y ) = [1 ( x, y ) + 2 ( x, y )], 2 其中1 ( x, y )和 2 ( x, y )都是二维正态密度函数,且它们对应
(1) 求随机变量 X 和 Y 的密度函数 f X (x) 和 f Y ( y ), 及 X 和 Y 的相关系数 (2)问 X 和 Y 是否独立?为什么? 解 (1)由于二维正态密度函数的两个边缘密度都 是正态密度函数,因此有
1 1 1 = = 0. 2 3 3
(2)由题设
9 9 2 ( x 2 + xy + y 2 ) 16 ( x 2 2 xy + y 2 ) 3 3 f ( x, y ) = + e 16 3 e , 8π 2
第四章
随机变量的数字特征
9 9 2 ( x 2 + xy + y 2 ) 16 ( x 2 2 xy + y 2 ) 3 3 f ( x, y ) = + e 16 3 e , 8π 2
特别,若
E X
X ~ N (0, 1) , 则
( )
n
(n 1)!! n为偶数 = , n = 4时, EX 4 = 3. n为奇数 0
返回主目录
第四章
随机变量的数字特征
§5 矩
2、n维正态分布的性质
1) n 维随机变量 ( X 1 ,L , X n ) 服从 n 维正态分布 X 1 ,L , X n 的任意线性组合 l1 X 1 + L + ln X n 服从一维正态分布。
1 2π
e
x2 2
;
则 所以
X ~ N (0,1), Y ~ N (0,1), EX = EY = 0, DX = DY = 1.
随机变量 X 和 Y 的相关系数
第四章
随机变量的数字特征
§5 矩
ρ=
∞ ∞
∞ ∞
∫ ∫ xyf ( x, y)dxdy
∞ ∞ ∞ ∞ 1 = ∫ ∫ xy 1 ( x, y )dxdy + ∫ ∫ xy 2 ( x, y )dxdy 2 ∞∞ ∞ ∞
n
n 2
2 σ n n 1 n 3 1 1 = L Γ 2 2 2 2 π = 2 σn
n 2
π
(n 1)!! π = σ n (n 1)!!
2
n 2
返回主目录
第四章
随机变量的数字特征
§5 矩
因而,
E Xn
( )
σ n (n 1)!! n为偶数 = 0 n为奇数
其中,
1 3 5 L n n为奇数 n !!= 2 4 6 L n n为偶数
2) 若 ( X 1 ,L, X n ) 服从 n 维正态分布, Y1 ,L, Yn 是 X j ( j = 1,L, n) 的线性函数,则 (Y1 ,L, Yn ) 也服从正态分布。
3) 若 ( X 1 ,L, X n ) 服从 n 维正态分布,则 X 1 ,L, X n 相互独 立 X 1 ,L, X n 两两不相关。