第4章-斜截面抗剪计算

合集下载

《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算

《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算
则按构造要求配置箍筋,否则,按计算配置腹筋
计算剪力值的确定
《公路桥规》规定:取离支点中心线梁高一半处的剪力 设计值 V ;其中不少于60%由混凝土和箍筋共同承担; 不超过40%由弯起钢筋(按45º弯起)承担,并且用水平 线将剪力设计值包络图分割;
箍筋设计 假设箍筋直径和种类,箍筋间距为
箍筋可减小斜裂缝宽度,从而提高斜截面上的骨料咬力。
箍筋限制了纵向钢筋的竖向位移,阻止混凝土沿纵向 钢筋的撕裂,提高了纵向钢筋的销栓作用。
可见,箍筋对提高斜截面受剪承载力的作用是多方面的和 综合性的。
2、剪力传递机理(见下图)——桁架-拱模型:
拱I: 相当于上弦压杆 拱Ⅱ、拱Ⅲ: 相当于受压腹杆

是否通过 是
计算结束
§4.3 受弯构件的斜截面抗剪承载力
计算依据:以剪压破坏为基础 一般是采用限制截面最小尺寸防止发生斜压破坏; 限制箍筋最大间距和最小配箍率防止发生斜拉破坏
一、基本公式及适用条件 计算图式:
基本公式:(半经验半理论)
Vu Vc Vsv Vsb Vcs Vsb
抗剪能力:
斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗 压强度,受剪承载力比剪压破坏高。
破坏性质:属脆性破坏
除上述三种主要破坏形态外,有时还可能发生局部挤压 或纵向钢筋锚固等破坏。
四、有腹筋简支梁斜裂缝出现后的受力状态
无腹筋梁斜截面受剪承载力很低,且破坏时呈脆性。 故《公桥规》规定,一般的梁内都需设置腹筋。配置腹筋是 提高梁斜截面受剪承载力的有效方法。在配置腹筋时,一般 首先配置一定数量的箍筋,当箍筋用量较大时,则可同时配 置弯起钢筋。
V fcbh00
0. 0. 0. 0. 0.1

第4章-斜截面抗剪计算

第4章-斜截面抗剪计算
抗剪计算
第四章 受弯构件斜截面承载力计算
• 4.1 概述 • 4.2 无腹筋简支梁斜裂缝旳形成 • 4.3 无腹筋梁旳斜截面破坏形态 • 4.4 影响斜截面受剪承载力旳主要原因 • 4.5 斜截面受剪承载力计算 • 4.6 构造要求
1
抗剪计算
4.1 概 述
为了预防受弯构件发生斜截面破坏,应使构件有一种合理旳截面尺 寸,并配置必要旳箍筋。
将明显增大,成为单薄区域;
2、斜裂缝出现后与纵筋相交处E 点纵筋旳拉应力将忽然增大。
s
Ts As
V a As rh0
Mc As rh0
E 点纵筋应力 s 由 C 点旳弯矩 Mc 决定 MC M E 斜裂缝出现后 E 点纵筋旳拉应力将忽然增大。
斜截面破坏为脆性,设计中经过截面尺寸和配置腹筋防止 8
抗剪计算
为临界斜裂缝。临界斜裂缝出现后,梁还能继续增长荷载。最终,剩余
截面缩小,剪压区砼到达砼复合受力时强度而破坏。破坏处可看到诸多
平行旳短裂缝和砼碎渣。与斜拉破坏相比,剪压破坏时旳梁旳承载力较
高。
12
抗剪计算
4.3.2 无腹筋梁沿斜截面破坏旳主要形态
3、斜压破坏
λ<1(均布荷载作用下当跨高比 l / h <3)时发生,常发生斜压破坏。斜裂
点3
tp
最大,
cp
cp
450 tp
点1
点2: 位于受压区内,因为压应力 c 旳存在,主拉应力 tp
减小,而主压应力 cp 增大, tp 旳方向与梁轴线旳夹角不小于45。;
点3: 位于受拉区内,因为拉应力 t 旳存在,主拉应力 tp
增大,而主压应力 cp 减小, tp 旳方向与梁轴线旳夹角不大于45。; 4

第四章 第四节 斜截面受剪承载力计算公式及适用范围

第四章 第四节  斜截面受剪承载力计算公式及适用范围
一般受弯构件
V ≤ Vu = Vcs = 0.7 f t bh0 + 1.25 f yv Asv h0 s
集中荷载作用下的独立梁
Vcs = 1.75 f t bh0 A + f yv sv h0 λ + 1.0 s
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 有腹筋梁 2、同时配有箍筋和弯起钢筋
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 《规范》采用抗剪承载力试验下限值保证安全 无腹筋梁
V ≤ Vc = 0.7 β h f t bh0
β h = (800 / h0 )1 / 4
有腹筋梁
斜拉破坏 斜压破坏 剪压破坏
构造措施
计算控制
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 有腹筋梁 1、仅配有箍筋
下限值
最小配箍率
ρ sv =
Asv ≥ ρ sv,min bs
ρ sv,min = 0.24 f t / f yv
V ≤ Vu = Vcs + Vsb
Vsb = 0.8 f y Asb sin α s
第四节 斜截面受剪承载力计算公式及适用范围 二、适用范围 上限值
最小截面尺寸
hw / b ≤ 4
V ≤ 0.25β c f c bh0
V ≤ 0.2β c f c bh0
Hale Waihona Puke hw / b ≥ 6hw 4 < hw / b < 6 V ≤ 0.025(14 − )β c f c bh0 b

第四章 受弯构件斜截面受剪承载力

第四章  受弯构件斜截面受剪承载力

对于均布荷载作用下的简支梁:
l
1 x qlx qx 2 x M l 2 2 ( ) 1 l Vh0 ( ql qx)h 1 2 h0 0 2
跨高比
广义剪跨比
试验表明,对于承受均布荷载的梁,构件跨高比是影响 受剪承载力的主要因素,随着跨高比的增大,受剪承载力 降低。
斜压破坏 一般发生在剪跨比很小或剪跨比虽然 适中,但箍筋配置很多的情况 腹筋未达屈服,梁腹砼即到达抗压 强度发生斜压破坏,承载力取决于砼强 度及截面尺寸,再增加箍筋或弯筋对斜 截面受剪承载力的提高已不起作用。
发生条件
破坏特点
破坏类型
发生条件
无腹筋梁 有腹筋梁
破坏特点
破坏性质
备注
类似于少筋 破坏,设计 时应避免
斜截面破坏应力状态
正截面受弯承载力
KM≤Mu
斜截面受剪承载力KV≤Vu
§4.2 无腹筋梁斜截面的应力状态及破坏形态 无腹筋梁是指不配箍筋和弯起钢筋的梁。 斜裂缝出现后梁内应力状态
剪切破坏时隔离体上的作用力 外力:弯矩、剪力(外荷载 在斜截面AB上引起内力MA 、
VA)
内力:纵向钢筋拉力、砼剪 压面承担剪力与压力 骨料咬合力、纵筋的销栓力 VA
无腹筋梁斜截面受剪破坏形态
剪压破坏 发生条件
剪跨比适中时(一般1≤λ≤3),常发生剪压破 坏
随着荷载增大,先出现垂直裂缝和几根微 细的斜裂缝。荷载增大到一定程度时,其中一 根形成临界斜裂缝。这条裂缝逐渐向斜上方发 展,但仍保留一定受压区而不裂通,剪压区逐 渐减小,直到斜裂缝顶端的混凝土在剪应力和 压应力共同作用下被压碎而破坏。破坏过程比 斜拉破坏缓慢,破坏时的荷载明显高于斜裂缝 出现时的荷载。实质上是残余截面上混凝土的 主压应力超过了混凝土在压力和剪力共同作用 下的抗压强度。

混凝土结构设计原理-第四章斜截面受弯习题讲解学习

混凝土结构设计原理-第四章斜截面受弯习题讲解学习

第四章小结1、斜截面强度计算是钢筋混凝土结构的一个重要问题。

设计受弯构件时,必须同时解决正截面强度和斜截面强度的计算与构造问题。

2、梁沿斜截面破坏的主要形态有斜压、剪压和斜拉三种。

影响斜截面抗剪强度的主要因素有:剪跨比、混凝土强度、纵向受拉钢筋配筋率和箍筋数量及强度等。

3、斜截面抗剪强度的计算公式是以剪压破坏为基础建立的。

对于斜压和斜拉破坏,一般采用截面限制条件和构造措施予以避免。

斜截面抗剪强度的计算图式、基本计算公式和适用条件,斜截面抗剪设计和复核的方法及步骤。

4、斜截面强度有两个方面:一是斜截面抗剪强度,通过计算配置箍筋或配置箍筋和弯起钢筋来保证,一是斜截面抗弯强度,通过采用一定的构造措施来保证。

第四章 受弯构件斜截面承载力计算一、填空题:1、在钢筋混凝土受弯构件中,( ) 和 ( )称为腹筋或剪力钢筋。

2、影响受弯构件斜截面抗剪力的主要因素( ) 、( ) 、( )和( )。

3、受弯构件斜截面破坏的主要形态( )、( ) 和( )。

桥规抗剪承载力公式是以( )破坏形态的受力特征为基础建立的。

4、梁中箍筋的配箍率公式:( )。

5、纵筋的配筋率越大,受剪承载力越高,这是由于( )和( )。

6、梁式结构受拉主钢筋应有不少于( )根并不少于( )的受拉主钢筋通过支点。

7、支座中心向跨径方向长度在一倍梁高范围内,箍筋间距应不大于( )。

8、控制最小配箍率的目的( ),限制截面最小尺寸的目的( )。

9、影响有腹筋梁斜截面抗剪能力的主要因素有:( )、 ( ) 、 ( )、 ( ) 。

10、钢筋混凝土梁沿斜截面的主要破坏形态有斜压破坏、斜拉破坏和剪压破坏等。

在设计时,对于斜压和斜拉破坏,一般是采用( ) 和 ( ) 予以避免,对于常见的剪压破坏形态,梁的斜截面抗剪能力变化幅度较大,故必须进行斜截面抗剪承载力的计算。

《公路桥规》规定,对于配有腹筋的钢筋混凝土梁斜截面抗剪承载力的计算采用下属半经验半理论的公式:ssb sd sv sv k cu u d A f f f p bh V V θραααγsin )1075.0()6.02()1045.0(3,033210∑⨯++⨯=≤--11、对于已经设计好的等高度钢筋混凝土简支梁进行全梁承载能力校核,就是进一步检查梁沿长度上的截面的( )、 ( )和 ( 是否满足要求。

斜截面抗剪设计

斜截面抗剪设计

三、斜截面抗剪承载力复核
复核位置的确定
验算位置:
复核验算
Vu=Vcs+Vsb ≥γ0Vd (kN)
Vd——斜截面受压端的最大 剪力组合设计值 c ——斜截面水平投影长度
习题一
标准跨径16m简支梁,计算跨径15.5m,b=180mm,h0=1280mm。安全 等级二级。C30混凝土,HRB335钢筋。支点剪力设计值V0d=600.103kN, 跨中剪力设计值Vd,l/2=118.420kN,剪力递减坡度0.062153kN/mm。混凝土 和箍筋共同承担的剪力设计值,按80%取用(双肢Φ 10箍筋)。试进行 斜截面抗剪配筋设计。
弯起钢筋的抗剪承载力
fsd——弯起钢筋的抗拉设计强度(MPa); Asb——同一弯起平面的弯起钢筋截面积(mm2); θ——弯起钢筋与构件纵向轴线的夹角。
公式的适用范围
ftd——混凝土抗拉强度设计值 截面尺寸应满足式1,否则应加大截面尺寸或提高混凝土强度等级。 若符合式2,则不需要进行抗剪承载力计算,仅需配构造箍筋。
fcu,k=30MPa ftd=1.39MPa fsv=280MPa fsd=280MPa
构造配筋长度x
剪力分配 离支点h/2处的剪力设计值 混凝土和箍筋共同承担的剪力设计值 第一排弯起钢筋承担的剪力设计值
习题一答案
箍筋设计
A
箍筋间距取200mm
B
箍筋布置如下:自支点一倍梁高范围内,间距为100mm。 自一倍梁高长度至第三排斜钢筋下端处,间距为200mm。 其他梁段箍筋间距287mm。
Vcs
混凝土的抗剪能力Vc
箍筋的抗剪能力Vsv
弯起钢筋的抗剪能力Vsb 抗剪承载力 Vu=Vcs+Vsb ≥γ0Vd (kN)

受弯构件斜截面承载力计算

受弯构件斜截面承载力计算

第 1 页/共 2 页第四章 受弯构件斜截面承载力计算1、钢筋混凝土受弯构件沿斜截面破坏的形态有几种?各在什么情况下发生? 答:(1)斜拉破坏:在荷载作用下,梁的剪跨段产生由梁底竖向裂缝沿主压应力轨迹线向上延伸发展而成的斜裂缝。

其中有一条主要斜裂缝很快形成,并疾驰舒展至荷载垫板边缘而使梁体混凝土裂通,梁被撕裂成两部分而丧失承载力,同时,沿纵向钢筋往往陪同产生水平撕裂裂缝。

这种破坏发生骤然,破坏荷载等于或者略高于主要斜裂缝浮上时的荷载,破换面比较整洁,无混凝土压碎现象。

发生条件:在剪跨比比较大时。

(m >3)(2)斜压破坏:当剪跨比较小时,(m <1),首先是荷载作用点和支座之间浮上一条斜裂缝,然后浮上若干条大体相平行的斜裂缝,梁腹被分割成若干个倾斜的小柱体。

随着荷载增大,梁腹发生类似混凝土棱柱体被压坏的情况,破环时斜裂缝多而密,但没有主裂缝,所以称为斜压破坏。

(3)剪压破坏:随着荷载的增大,梁的剪弯区段内陆续浮上几条斜裂缝,其中一条发展成为临界斜裂缝。

临界斜裂缝浮上后,梁承受的荷载还能继续增强,而斜裂缝舒展至荷载垫板下,直到斜裂缝顶端(剪压区)的混凝土在正应力x σ,剪应力τ及荷载引起的竖向局部压应力y σ的共同作用下被压酥而破坏。

破坏处可见到无数平行的斜向断裂缝和混凝土碎渣。

发生条件:多见于剪跨比13≤≤m 的情况中。

2、名词解释:广义剪跨比、狭义剪跨比、理论充足利用点、理论不需要点、 弯矩包络图、抵御弯矩图 答:广义剪跨比:剪跨比是一个无量纲常数,用0Vh m M =来表示,此处M 和V 分离为剪弯区段中某个竖直截面的弯矩和剪力,0h 为截面有效高度,普通把m 的这个表达式称为“广义剪跨比”。

狭义剪跨比:例如图中CC ‵截面的剪跨比00h a h V m c c =M =,其中a 为扩散力作用点至简支梁最近的支座之间的距离,称为“剪跨”。

偶尔称0h a m =为“狭义剪跨比”。

抵御弯矩图:它又称材料图,就是沿梁长各个正截面按实际配置的总受拉钢筋面积能产生的抵御弯矩图,即表示各正截面所具有的抗弯承载力。

斜截面抗剪承载力计算的基本公式及适用条件

斜截面抗剪承载力计算的基本公式及适用条件
斜截面抗剪承载力计算
的基本公式及适用条件

01 钢筋混凝土梁沿斜截面破坏的避免措施
02 斜截面抗剪承载力计算的基本公式
03 斜截面抗剪承载力计算基本公式的适用条件
钢筋混凝土梁沿斜截面
破坏的避免措施
钢筋混凝土梁沿
斜截面破坏形态
a) 斜拉破坏
斜拉破坏
斜压破坏
剪压破坏
采用截面限制条件和一定的构造措施
进行斜截面抗剪承载力的计算
半理论公式:
= 1 2 3 (0.45 × 10
− 3
)ℎ
0
(2 + 0.6) , s + (0.75 × 10
混凝土和箍筋提供的
综合抗剪承载力V cs
− 3
)

෍ sin
弯起钢筋提供的抗剪
承载力V sb
注意:上述公式使用时必须按规定的单位代入数值,计算得到的斜截面抗剪承载力
b) 斜压破坏
c) 剪压破坏
斜截面抗剪承载力计算的基本公式
配有箍筋和弯起钢筋的钢筋混凝土梁发生剪压破坏时,抗剪承载力 由三部分组成:
剪压区混凝土抗剪力 、箍筋所能承受的剪力 和弯起钢筋所能承受的剪力。
Vu =V c +V sv +V sb
Vu =V cs +V sb
《公路桥规》对配有腹筋的钢筋混凝土梁斜截面抗剪承载力的计算采用下述半经验
= (0. 5 × 10
− 3
)
2 ℎ 0 ()
按构造要求配置箍筋的限制条件,是为了避免梁和板发生斜拉破坏。《公路桥规》
规定,若符合上式,梁和板不需要进行斜截面抗剪承载力的计算,仅按构造要求配
置箍筋即可。
1. 钢筋混凝土梁沿斜截面破坏的避免措施

斜截面抗剪计算

斜截面抗剪计算
10

4.3.2 无腹筋梁沿斜截面破坏的主要形态
剪 计

2、剪压破坏
1≤λ≤3 (均布荷载作用下当跨高比3< l / h <9) 发生。剪弯区下边缘
首先出现初始垂直裂缝,随荷载增加,这些初始垂直裂缝将大体上沿着
主压应力轨迹向集中荷载作用点处延伸。弯剪斜裂缝可能不止一条,当
荷载增大到某一数值时,在几条弯剪裂缝中将形成一条主要斜裂缝,称
为临界斜裂缝。临界斜裂缝出现后,梁还能继续增加荷载。最后,剩余
截面缩小,剪压区砼达到砼复合受力时强度而破坏。破坏处可看到很多
平行的短裂缝和砼碎渣。与斜拉破坏相比,剪压破坏时的梁的承载力较
高。
11

4.3.2 无腹筋梁沿斜截面破坏的主要形态
剪 计

3、斜压破坏
λ<1(均布荷载作用下当跨高比 l / h <3)时发生,常发生斜压破坏。斜裂
4.1 概 述
抗 剪


为了防止受弯构件发生斜截面破坏,应使构件有一个合理的截面尺
寸,并配置必要的箍筋。
抗剪钢筋:腹筋( Web reinforcement )
箍筋 弯起钢筋(斜筋)——纵筋弯起形成
实际工程钢筋砼梁内一般均需配置腹筋,但为了解梁内斜裂缝的形成,
需先研究无腹筋梁的受剪性能(beams without web reinforcement ) 1
4.3 无腹筋梁的斜截面破坏形态


4.3.1 剪跨比λ

剪跨比是截面所承受的弯矩与剪力的相对比值,反映了截面上弯曲正应
力和剪应力的相对比值。λ是一个能反映梁斜截面受剪承载力变化规律
和区分发生各种剪切破坏形态的重要参数。对于矩形截面

第4章 斜截面.

第4章 斜截面.
最小截面尺寸
hw / b 4
V 0.25 c f c bh0
V 0.2c f cbh0
(最大配箍条件)
hw / b 6
hw 4 hw / b 6 V 0.025 (14 ) c f cbh0 b
下限值
最小配箍率
Asv sv sv, min bs
V Vu Vcs Vsb
( 4 )若已知剪力设计值 V ,当 Vu/V≥1 ,则表示斜截面受 剪承载力满足要求。
第六节 纵向钢筋的截断和弯起
正截面受弯破坏 通过计算配置纵向受拉、受压钢筋来满足; 斜截面受剪破坏 通过计算或构造配置箍筋或弯起钢筋来满足; 斜截面受弯破坏 通过对纵向钢筋和箍筋的构造要求来满足。
斜截面受剪和受弯承载力综合考虑。
◆ 利用纵筋的弯起或截断,梁的抵抗弯矩的能力可 以因需要合理调整。
正截面受弯破坏---计算配置
优点:构造简单 纵向受力钢筋通常布置 缺点:不经济
解决办法:将部分钢筋在截面抗弯不需要处截断或弯 起作弯起钢筋抗剪。
一、材料抵抗弯矩图
1.荷载效应图(M 图):由荷载对梁的各个正截面产生的 弯矩设计值M所绘制的图形,称为荷载效应图,即M图。 2.材料抵抗弯矩图(MR 图):按照梁实配的纵向钢筋的数 量计算并画出的各截面所能抵抗的弯矩图形,称为材料抵 抗弯矩图,即MR图 。
1
混凝土被腹部斜裂缝 分割成若干个斜向短柱而 压坏,破坏是突然发生的。 多数发生在剪力大而弯矩 小的区段,以及梁腹板很 薄的T形截面或工字形截面 梁内。
斜截面承载力比较: 斜压 > 剪压 > 斜拉
三、有腹筋梁斜截面破坏的主要形态
配箍率:
Asv nAsv 1 sv bs bs

第四章受弯构件斜截面承载力计算

第四章受弯构件斜截面承载力计算
P 剪压破坏 shear compression failure
f
Teacher Chen Hong
⒊斜压破坏(<1)
主压应力的方向沿支座与 荷载作用点的连线。承载 力取决于混凝土的抗压强 度。
P
2019年10月14日星期一
斜压破坏 diagonal compression failure
f
Teacher Chen Hong
Teacher Chen Hong
2019年10月14日星期一
按每根(或每组)钢筋的的面积比例划分出各根(或各组) 钢筋的所提供的受弯承载力Mui,Mui可近似取
M ui

Asi As
Mu
Teacher Chen Hong
2019年10月14日星期一
根据M图的变化将钢筋弯起时需绘制Mu图,使得Mu图
Teacher Chen Hong
2019年10月14日星期一
板的斜截面承载力是满足要求的,所以斜截面承载力主要 是针对于梁和厚板而言的。 斜截面的受弯承载力是通过对纵筋和箍筋的构造要求来保 证的。而斜截面的受剪承载力是在梁具有一个合理截面的 基础上,通过配置腹筋(箍筋+弯起筋)来满足的。
Teacher Chen Hong
Teacher Chen Hong
3>、计算配置腹筋:
A、只配箍筋:
2019年10月14日星期一
确定n ? ? Asv1 ? Asv nAsv1
由 nAsv1 V 0.7 ftbh0 s 1.25 f yvh0nAsv1
s
1.25 f yvh0
V 0.07 ftbh0
2019年10月14日星期一
4-3 保证斜截面受弯承载力 的构造措施

混凝土结构第四章

混凝土结构第四章

二、斜截面受剪破坏的三种主要形态
斜拉破坏
剪压破坏
斜压破坏
4.2 斜截面受剪承载力计算
一、斜截面的受剪机理
梁的弯剪区段发生剪压破坏时,无腹筋梁斜截面上的抗 力有: ①剪压区混凝土承担的剪力Vc和压力C; ②骨料咬合力Va; ③纵向钢筋的销栓力Vd; ④纵向钢筋的拉力T。
一、斜截面的受剪机理
梁的弯剪区段发生剪压破坏时,有腹筋梁斜截面上除存 在上述抗力外,还有腹筋的抗剪承载力。 梁中配置腹筋,可有效地提高斜截面的受剪承载力。 (1) 腹筋的作用 斜裂缝出现以前,腹筋作用很小; 斜裂缝出现以后,腹筋作用增大。 斜截面上的剪力主要有: ① 腹筋直接受剪Vsv和Vsb; ② 腹筋限止斜裂缝的开展, Va Vsv 提高Vc; Tsb ③ 腹筋减小裂缝宽度,提高Va; T
第四章 受弯构件斜截面承载力计算
2.斜裂缝分类: (1)弯剪斜裂缝:在M和V的共同作用下,首先在梁的下部产 生垂直裂缝,然后斜向上延伸,是一种较为常见的裂缝。 特点:裂缝下宽上窄。 (2)腹剪斜裂缝:当梁承受的剪力较 大,或者梁腹部较薄时,首先在截面 中部出现斜裂缝,然后向上、向下 延伸。 特点:裂缝中间宽两头窄。
c
0
M u TZ Tsb Zsb Vsvi Z vi
i 1 n
Vc
C
Vsv
n——与临界斜裂缝相交的箍 筋根数。
T Vu
Vsb
Tsb
三、斜截面受剪承载力的计算公式
(2) 腹筋的作用 梁发生剪压破坏时,与临界斜裂缝相交的箍筋能达到屈服强 度。对弯起钢筋不一定屈服。 (3) 剪跨比的考虑 仅对承受集中荷载或以集中荷载为主的矩形截面独立梁考虑 剪跨比(=a/h0)的影响。其余情况不考虑。

梁斜截面受剪承载力计算

梁斜截面受剪承载力计算

a h0 2000 530 3.77>3,取 3
1.75 1.75 f t bh0 1.27 200 530 59000N<V=98.5kN 1 3 1
故需按计算配置箍筋
3. 计算箍筋数量
1.75 V f t bh0 3 Asv 98 . 5 10 59000 1 0.356 s f yv h0 210 530
(1)复核截面尺寸
梁的截面尺寸应满足式(4-14)~式(4-15)的要求,否则,应加 大截面尺寸或提高混凝土强度等级。
(2)确定是否需按计算配置箍筋
V 0.7 f t bh0 , 按构造
1.75 V f t bh0 , 按构造 1
(3)确定腹筋数量
Asv V 0.7 f t bh0 s 1.25 f yv h0
【例 4-1】 某办公楼矩形截面简支梁,截面尺寸 250mm×500mm,h0 =465mm,承受均布荷载作用, 以求得支座边缘剪力设计值为 185.85kN , 混凝土为 C25级,箍筋采用HPB235级钢筋,试确定箍筋数量。
【解】查表得fc =11.9N/mm2 ,ft =1.27N/mm2 , fyv=210N/mm2 ,βc =1.0
<V=185.85kN 需按计算配置箍筋。 3. 确定箍筋数量
Asv V 0.7 f t bh0 185.85 103 103346 .25 s 1.25 f yv h0 1.25 210 465
= 0.676mm2 /mm
按构造要求,箍筋直径不宜小于 6mm ,现选用 φ8 双 肢箍筋(Asv1 =50.3mm2 ),则箍筋间距
1.2la或1.2la+h0 20d或h0

斜截面抗剪(按新规)

斜截面抗剪(按新规)

普通钢筋混凝土斜截面抗剪验算根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第5.2.6-5.2.12条之规定计算一)、验算条件设计剪力V d :300KN 结构重要性系数r 01截面尺寸 b:520mm h:2500mm a:220mm h 0:2280mm 混凝土强度等级25MPaf sv 280MPa 弯起钢筋抗拉设计强度fsd280MPa二)、截面尺寸验算截面(矩形、T 形、I 字形)尺寸应符合下式:公式右侧计算值为:3023.28KN公式左侧截面最大剪力:300KN满足截面条件。

三)、是否按构造配筋验算验算公式:预应力提高系数1Mpa): 1.39公式右侧计算值为:823.992KN 板式受弯构件,容许限值提高25%后为:1029.99KN公式左侧截面最大剪力:300KN故不需进行斜截面配筋设计。

四)、斜截面内混凝土与箍筋共同的抗剪能力Vcs 箍筋直径d 16mm 箍筋枝数n6枝100mm 0.0232斜截面内纵向受拉主筋直径:28斜截面内纵向受拉主筋根数:5斜截面内纵向受拉主筋面积:3079mm 2纵向受拉主筋配筋率p0.2597>2.5时取p =2.5调整后的受拉主筋配筋率p 0.260斜截面内混凝土与箍筋共同的抗剪能力V cs (KN )11hk 五)、弯起普通钢筋的抗剪能力在一个弯起平面内弯起钢筋直径25在一个弯起平面内弯起钢筋根数15在一个弯起平面内弯起钢筋总截面面积A sb 7363.11cm 2弯起钢筋与构件纵向轴线的夹角45度角度为弧度0.785375弯起钢筋的抗剪能力Vsb (KN ):V sb =1093.340六)、配箍加弯起钢筋的共同抗剪能力=6002.898KN>设计剪力值=300KN故抗剪承载能力满足设计要求。

第四章 受弯构件斜截面受剪承载力计算

第四章 受弯构件斜截面受剪承载力计算

2主拉应力:tp第4章受弯构件的斜截面承载力教学要求:深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。

熟练掌握梁的斜截面受剪承载力计算。

理解梁内纵向钢筋弯起和截断的构造要求。

知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。

概述 在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜 截面受弯承载力两方面。

工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力 则是通过对纵向钢筋和箍筋的构造要求来保证的。

图4-1箍筋和弯起钢筋图4-2钢筋弯起处劈裂裂缝工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。

由于弯起钢筋承受的拉力比较大,且集 中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。

因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。

弯起钢筋的弯起角宜取45°或60°4.2斜裂缝、剪跨比及斜截面受剪破坏形态4.2.1腹剪斜裂缝与弯剪斜裂缝钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。

1 2 3 44.1架立钢筋箍筋 弯起钢筋劈裂裂縫图4-3主应力轨迹线这种由竖向裂缝发展而成的斜裂缝,称为弯 剪斜裂缝,这种裂缝下宽上细,是最常见的,如图 4-4(b)所示。

4.2.2剪跨比在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离 a 称为剪跨,剪跨 a与梁截面有效高度 h o 的比值,称为计算截面的剪跨比,简称剪跨比,用入表示,入=a/hoMb=—r主压应力cp主应力的作用方向与构件纵向轴线的夹角 2a 可按下式确定:tg2________ 丿 厂| _亠 ____ 一 ” ”ft图4-4 ⑻腹剪斜裂缝; 斜裂缝(b)弯剪斜裂缝V匸二4———•——二亠久 乂 勺叫 5'矶在剪跨比小的图4-6(a)中,在集中力到支座之间有虚线所示的主压应力迹线, 式传递的。

钢筋混凝土受弯构件斜截面抗剪承载力计算ppt课件

钢筋混凝土受弯构件斜截面抗剪承载力计算ppt课件

腹剪斜裂缝
沿主压应力迹线 产生腹部的斜裂 缝 土建工程系
1 2 1 3 1
τ σ σ σ τ
1>45°源自弯剪型2σ τ1 1 3
45°
1
<45°
(d) 腹剪型
土建工程系
三. 两个名词
剪跨比
a a
h0
M V
a
a-剪跨(剪力跨度)
土建工程系
M V h0
对 图 示 集 中 荷 载 作 用 的 简 支 梁 ,: 则 有 MV a a = = 剪 跨 a 与 截 面 有 效 高 度 h 之 比 。 0 V h h 0 V 0 h 0
◆ 但配置箍筋对斜裂缝开裂荷载没有影响,也不能提高斜压破坏的承载 力,即对小剪跨比情况,箍筋的上述作用很小;
对较大剪跨比情况,箍筋配置如果超过某一限值,则产生斜压破坏, 继续增加箍筋没有作用。
土建工程系
P
Vc
Va Vd
V 纵筋销栓作用 骨料咬合作用
土建工程系
二.破坏形态
影响有腹筋梁破坏形态的主要因素有剪跨比 和配箍率sv
P
斜拉破坏 f
土建工程系
二. 剪压破坏
剪跨比
1 3
时可能会发生。 P
剪压破坏
f
土建工程系
破坏特征
■ 弯剪斜裂缝不只一条,当荷载增加到某一值时,几条弯
剪裂缝形成一条主要的斜裂缝(临界斜裂缝) ■ 临界斜裂缝出现后,承载力没有很快丧失,荷载可以继 续增加,并出现其它斜裂缝。 ■ 最后,上端混凝土在剪应力和压应力的共同作用 下,达到混凝土的复合受力下的强度而破坏。 ■ 承载能力取决于混凝土的复合应力下(剪压)的强度。
钢筋混凝土受 弯构件斜截面 抗剪承载力计 算

第四章 受弯构件斜截面承载力计算

第四章 受弯构件斜截面承载力计算

一旦出现斜裂缝,与斜裂缝相交的箍筋应力立即达 到屈服强度,箍筋对斜裂缝发展的约束作用消失,随后
斜裂缝迅速延伸到梁的受压区边缘,构件裂为两部分而
破坏。
(2)、剪压破坏:
1)产生条件 箍筋适量,且剪跨比适中(λ =1~3)。 2)破坏特征
与临界斜裂缝相交的箍筋应力达到屈服强度,最后
剪压区混凝土在正应力和剪应力共同作用下达到极限状 态而压碎,斜截面承载力随sv及fyv的增大而增大。
––– 弯筋与梁纵轴的夹角,一般取45,
h 大于 800mm时取60
1、矩形截面梁受均布荷载作用或以均布荷载为主的 情况,T形、工形截面梁。(一般情况)
Asv V 0.7 f t bh0 1.25 f yvh0 0.8 Asb f ysin s
2、集中荷载作用下的矩形截面独立梁(包括多种荷载 作用,其中集中荷载对支座截面产生的剪力值占总 剪力值的75%以上的情况)。(特殊情况)
一般原则:采用半理论半经验的实用计算公式;仅讨
论剪压破坏的情况;
对于斜压破坏,采用限制截面尺寸的构造措施来
防止;对于斜拉破坏,采用最小配箍率的构造措施
来防止。
以下以剪压破坏为前提进行讨论。
混凝土
第 四 章
(1)斜截面受剪承载力的组成:
V=VC+ VS + Vb 见P48,式4-4
(2)与斜裂缝相交的箍筋和弯起钢筋基本能屈服;
第 四 章
混凝土
在剪弯区段截面的下边缘,主拉应力还是水平向 的。所以,在这些区段仍可能首先出一些较短的垂直 裂缝,然后延伸成斜裂缝,向集中荷载作用点发展, 这种由垂直裂缝引伸而成的斜裂缝的总体,称为弯剪 斜裂缝,这种裂缝上细下宽,是最常见的,如下图所 示。

斜截面抗剪

斜截面抗剪

5).仅对承受以集中防止为主的梁才考虑剪跨比l的影响.
2.计算公式
1).均布荷载下矩形,T形和I形截面简支梁斜截面受剪承载力(仅配箍筋)的
计算公式
Vu=Vcs=0.7ftbh0+1.25fyv(Asv/s)h0 式中 Asv=nAsv1 此处均布荷载包括作用有多种荷载,但其中集中荷载在计算截面所产生的
3).有弯起钢筋时梁的受剪承载力计算公式
Vu=Vcs+Vsb=
202V0s/b4/=240.8fyAsbsina
8
4).计算公式的适用范围
截面最小尺寸 V<=0.25bcfcbh0 当hw/b<=4时(厚腹梁,即一般梁) V<=0.20bcfcbh0 当hw/b>=6时(薄腹梁)
式中 V—剪力设计值 bc—混凝土强度影响系数,当混凝土强度等级不大于C50时,取bc=1.0; 当混凝土强度等级为C80时,取bc=0.8;中间内插.
量也是决定破坏类型的重要因素. 当l>3,且箍筋配置过少时,会发生斜拉破坏.若l>3,但箍筋配置适量时,会发 生
剪压破坏. 如果箍筋配置过多,在箍筋尚未屈服时,梁腹混凝土会因抗压能力不足而发生 斜
压破坏.对薄腹梁,即使剪跨比较大,也会发生斜压破坏. 对有腹筋梁来说,只要截面尺寸合适,箍筋配置适量,基本破坏形态为剪压破坏.
荷载作用点发展,裂缝上细下宽.
2020/4/24
2
二.剪跨比
剪跨—集中力到临近支座的距离a称为剪跨 剪跨比—剪跨a与梁截面有效高度的比值称为剪跨比.符号l,l=a/h0. 广义剪跨比-- l=M/(Vh0) 剪跨比l反映了截面上正应力s和剪应力t的相对比值,在一定程度上也反映 了截面上弯矩与剪力的相对比值.因此对斜截面受剪破坏形态和斜截面受剪 承载力有重要影响.

第四章 钢筋混凝土受弯构件斜截面承载力计算

第四章 钢筋混凝土受弯构件斜截面承载力计算

配箍率sv
Asv nAsv1 sv bs bs
A Asv——设置在同一截面内的箍筋截面面积; sv nAsv1 Asv1——单肢箍筋截面面积; n——箍筋肢数; s——箍筋沿梁轴向的间距; b——梁宽。
1、仅配箍筋时梁的受剪承载力计算公式:
(1)规范对承受一般荷载的矩形、T形和工形截面的受 弯构件(包括连续梁和约束梁)给出计算公式:
规范对集中荷载作用下(包括作用有多种荷载,且 集中荷载对支座截面或节点边缘所产生的剪力值占 总剪力值的75%以上的情况)的矩形截面独立梁(包 括连续梁和约束梁)给出了计算的公式:
Asv 0.2 Vcs f c bh0 1.25 f yv h0 1.5 s
——计算剪跨比, a / h0 a——集中荷载作用点至支座截面或节点边缘的距离。
<1.4时,取
=1.4;当 >3时,取 =3。
T形和工形截面梁按式(4-4)计算 。
1、仅配箍筋时梁的受剪承载力计算公式:
V
1
d
Vcs 所配的箍筋不能满足抗剪要求。
解决办法:
箍筋加密或加粗; 增大构件截面尺寸; 提高砼强度等级。 纵筋弯起成为斜筋或加焊斜筋;
纵筋可能弯起时,用弯起的纵筋抗剪可收到 较好的经济效果。
Vcs 0.07 f c bh0 1.25 f yv
Asv h0 s
fc—— 砼轴心抗压强度设计值; b —— 矩形截面的宽度 或T形、工形截面的腹板宽 度; h0 ——截面有效高度; fyv——箍筋抗拉强度设计值, 不大于310N/mm2。
试验表明,承受集中荷载为主的矩形截面梁,按式 (4-7) 计算不够安全。
(0.3 f c bh0 ) (0.2 f c bh0 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


4.3.2 无腹筋梁沿斜截面破坏的主要形态



破坏形态取决于剪跨比的大小,有斜拉、剪压和斜压三种破坏形态。
1、斜拉破坏
λ>3(均布荷载作用下当跨高比 l / h >9)发生。斜裂缝一出现,即很
快形成临界斜裂缝,并迅速延伸到集中荷载作用点处,破坏截面整齐 而无压碎痕迹。整个破坏过程急速而突然,破坏荷载与刚出现斜裂缝 时的荷载相当接近,破坏时梁的变形很小,并且往往只有一条斜裂缝, 破坏过程具有明显的脆性。
为临界斜裂缝。临界斜裂缝出现后,梁还能继续增加荷载。最后,剩余
截面缩小,剪压区砼达到砼复合受力时强度而破坏。破坏处可看到很多
平行的短裂缝和砼碎渣。与斜拉破坏相比,剪压破坏时的梁的承载力较
高。
12

4.3.2 无腹筋梁沿斜截面破坏的主要形态
剪 计

3、斜压破坏
λ<1(均布荷载作用下当跨高比 l / h <3)时发生,常发生斜压破坏。斜裂
截面,提高了砼骨料的咬合力,腹筋还阻止了纵筋的竖向位移,因
而消除了砼沿纵筋的撕裂破坏,也增强了纵筋的销栓作用。
25

抗剪承载力组成



Vc
Vu Vc Vsv Vsb Vs Vay
Vi
s
V Vs
Vsb
受剪承载力计算简图
Vc -剪压区砼承担的剪力; Vay Vsv-箍筋承担的剪力;
Vsb-弯筋承担的剪力的竖向部分; Vs -纵筋的销栓力总和; Vay-斜截面骨料咬合力的竖向部分;
点1: 位于形心轴处,正应力 为零,剪应力 最大,
点1
tp cp 与梁轴线成45。夹角;
450
cp
tp
点2: 位于受压区内,由于压应力 c 的存在,主拉应力 tp
减小,而主压应力 cp 增大, tp 的方向与梁轴线的夹角大于45。;
点3: 位于受拉区内,由于拉应力 t 的存在,主拉应力 tp
2 Vh0
Vh0
λ称为广义剪跨比,简称剪跨比。
9

4.3 无腹筋梁的斜截面破坏形态


对于集中荷载作用的简支梁,有

M1 VA a a
V1h0 VA h0 h0
a为集中荷载到相邻支座的距离,称为剪跨,a/h0称为计算剪跨比(注 意多个集中荷载作用时剪跨比计算不能应用上式)。
A
C
A
C
10
跨高比的增大,受剪承载力下降;但当跨高比 l / h >10以后,跨
高比对受剪承载力的影响则不显著。
19

4.4.1 剪跨比λ



当λ>3后,梁受剪承载力超于稳定, λ的影响已不明显,λ与Vu之间基 本上为一水平线。
VC
5.0
ftbh0
(0.6,5.0)
4.0
试验曲线
3.0 2.0
(1,2.7)
砼抗压强度。在λ和其他条件相同时,斜截面受剪承载力随砼强度
等级ƒt的提高而增大。二者大致是线性关系。
梁斜截面破坏的形态不同,混凝土强 度影响的程度也不同。
=1.0时为斜压破坏,直线的斜率较大;
=3.0时为斜拉破坏,直线的斜率较小;
1.0< <3.0时为剪压破坏,
其直线斜率介于上述二者之间。
21

纵筋在销栓力 Vd 的作用下可能产生劈裂裂缝,使销栓作用大大降低。
骨料的咬合力随斜裂缝的开展而逐渐减小;极限状态下 Vd 和 Vi
可以不予考虑。
Cc Ts Vc V Tsrh0 Va
7

4.2.1 斜裂缝形成后应力状态
剪 计
1.在斜裂缝出现前剪力由梁全截面承受,斜裂缝出现以后,剪力

V 由斜裂缝上端的剪压区承受,剪压区的剪应力 和压应力
缝首先在梁腹部出现,有若干根,并且大致相互平行。随荷载的增加斜 裂缝一端朝支座,另一端朝荷载作用点发展,梁腹部被这些斜裂缝分割 成若干个倾斜的受压柱体,梁最后是因为斜压柱体被压碎而破坏,故称 为斜压破坏。 除上述主要破坏形态外,还可能发生纵筋的锚固破坏或局部挤压破坏等 破坏形态。
13
4.3.3 有腹筋梁沿斜截面破坏的主要形态
27
抗 剪 计 算 结构设计的目的,不是要求正确估计梁的实际受剪承 载力,而是要求保证梁不发生斜载面破坏;可以根据试验 结果给出满足一定保证率的下包线公式,在设计时,只要 梁承受的剪力不超过按下包线公式计算的值,就可以保证 不发生斜载面破坏。
计 算 剪跨比 砼强度等级 配箍率 纵筋配筋率
16

4.4.1 剪跨比λ



1、对集中荷载作用下的无腹筋梁,剪跨比是影响破坏形态和受剪承载力最
主要的因素之一;随着剪跨比的增大,破坏形态发生显著变化,梁的受剪承
载力明显降低;小剪跨比时,发生斜压破坏,受剪承载力很高;中等剪跨比
时,发生剪压破坏,受剪承载力次之;大剪跨比时,发生斜拉破坏,受剪承
11

4.3.2 无腹筋梁沿斜截面破坏的主要形态
剪 计

2、剪压破坏
1≤λ≤3 (均布荷载作用下当跨高比3< l / h <9) 发生。剪弯区下边缘
首先出现初始垂直裂缝,随荷载增加,这些初始垂直裂缝将大体上沿着
主压应力轨迹向集中荷载作用点处延伸。弯剪斜裂缝可能不止一条,当
荷载增大到某一数值时,在几条弯剪裂缝中将形成一条主要斜裂缝,称
Vc 1.75 ftbh0 1.0
(2,1.3)
1.0
水平线
(3,0.7) 水平线
1.5 2 3 4
6
取偏下限(偏安全取值)值:
VC ftbh0
1.75 0.70( 1.0 0.44(
1.5) 3.0)
20

4.4.2 砼强度等级


斜拉破坏主要取决于砼抗拉强度,剪压破坏和斜压破坏主要取决于 算
第四章 受弯构件斜截面承载力计算
抗 剪


• 4.1 概述
• 4.2 无腹筋简支梁斜裂缝的形成
• 4.3 无腹筋梁的斜截面破坏形态
• 4.4 影响斜截面受剪承载力的主要因素
• 4.5 斜截面受剪承载力计算
• 4.6 构造要求
1
4.1 概 述
抗 剪


为了防止受弯构件发生斜截面破坏,应使构件有一个合理的截面尺
寸,并配置必要的箍筋。
抗剪钢筋:腹筋( Web reinforcement )
箍筋 弯起钢筋(斜筋)——纵筋弯起形成
实际工程钢筋砼梁内一般均需配置腹筋,但为了解梁内斜裂缝的形成,
需先研究无腹筋梁的受剪性能(beams without web reinforcement ) 2
4.2 无腹筋简支梁斜裂缝的形成
2)腹筋能限制斜裂缝的延伸和开展,增大剪压区的面积, 提高剪压区的抗剪能力;
3)腹筋还将提高斜裂缝交界面上的骨料咬合作用和摩 阻作用,延缓沿纵筋劈裂裂缝的发展,防止保护层的 突然撕裂,提高纵筋的销栓作用。(砼保护层薄,已 被撕裂)
配置腹筋可使梁的受剪承载力有较大提高。
14
4.3.3 有腹筋梁沿斜截面破坏的主要形态
将显著增大,成为薄弱区域;
2、斜裂缝出现后与纵筋相交处E 点纵筋的拉应力将突然增大。
s
Ts As
V a As rh0
Mc As rh0
E 点纵筋应力 s 由 C 点的弯矩 Mc 决定 MC ME 斜裂缝出现后 E 点纵筋的拉应力将突然增大。
斜截面破坏为脆性,设计中通过截面尺寸和配置腹筋避免 8

22
4.4.4 纵向钢筋配筋率
抗 剪


纵筋配箍率影响
增加纵筋配筋率将提高梁的受剪承截力,二者大致成线性关系。
纵筋屈服与粘结破坏前能抑制斜裂缝的开展和延伸,使剪压区砼的
面积增大,提高了剪压区承受的剪力。同时,纵筋数量增加,其销
栓作用也增大。
23

4.5 斜截面受剪承载力计算


4.5.1 剪力传递机理
载力很低;当剪跨比 >3以后,剪跨比对受剪承载力无显著的影响。
17

4.4.1 剪跨比λ



2、对有腹筋梁,在低配箍时剪跨比的影响较大,在中等配箍时剪跨比的
影响次之,在高配箍时剪跨比的影响较小。
有腹筋梁
18

4.4.1 剪跨比λ



3、均布荷载作用下跨高比 l / h 对梁的受剪承载力有较大影响,随着
2、对于剪压破坏,受剪承载力变化幅度较大,基本公式根据剪压 破坏形态的受力特征而建立。
斜截面所承受的剪力由三部分组成: Vu Vc Vsv Vsb
3、由于影响斜截面受剪承载力的因素较多,钢筋混凝土梁受剪机 理和计算的理论尚未完全建立起来;目前各国《规范》采用的受 剪承载力公式仍为半经验、半理论的公式。
增大,而主压应力 cp 减小, tp 的方向与梁轴线的夹角小于45。; 4
4.2.1 斜裂缝形成前应力状态
2、斜裂缝形态:
剪弯段 纯弯段
EB
剪弯段
C
弯剪型
抗 剪 计 算
腹剪型
E' B'
无腹筋简支梁
斜裂缝类型
当主拉应力和主压应力的组合超过混凝土在拉压应力状态下的强度时, 将出现斜裂缝。剪弯段受拉边先出现较小竖向裂缝,向上斜向发展,形成 弯剪斜裂缝,如果腹板较薄,将在中和轴附近出现腹剪斜裂缝,向梁底和梁 顶斜向发展。
忽略骨料咬合力和纵筋的销栓作用。
Vu Vc Vsv Vsb Vcs Vsb
Vcs Vc Vsv -仅配置箍筋梁的斜截面受剪承载力
相关文档
最新文档