继电器驱动电路原理及注意事项

合集下载

时间继电器的用法

时间继电器的用法

时间继电器的用法时间继电器是一种能够控制电路中电器装置运行时间的装置,它能够在设定的时间内控制电器的启动和停止。

时间继电器广泛应用于工业控制、电力系统、安防系统以及家用电器等领域。

本文将介绍时间继电器的原理、用途、安装方法以及注意事项,帮助读者更好地了解和使用时间继电器。

一、时间继电器的原理时间继电器是依靠一组特殊的电子电路和计时装置来实现对电器设备的控制。

其原理是利用控制电源和计时装置来控制开关触点的通断,从而实现对电器设备的启动和停止。

时间继电器通常由计时模块、控制模块和输出模块组成,计时模块负责设定时间参数,控制模块负责根据时间参数控制开关状态,输出模块则负责驱动被控制的电器设备。

二、时间继电器的用途1. 工业控制:在工业自动化生产线上,时间继电器可以用来控制设备的启动和停止时间,实现生产过程的自动化。

2. 电力系统:时间继电器可以用来控制电力系统中的开关设备,如定时开关、定时报警等功能。

3. 安防系统:在安防监控系统中,时间继电器可以用来控制摄像头、警报器等设备的启动和停止,定时录像、定时报警等功能。

4. 家用电器:一些家用电器如洗衣机、烘干机等也会配备时间继电器,以实现定时启动和停止的功能。

三、时间继电器的安装方法1. 首先确定时间继电器的工作电压和电流参数,选择合适的安装位置。

2. 将时间继电器的控制电路与被控制设备的电路连接,通常需要连接控制电源、输入信号、输出信号等线路。

3. 对时间继电器进行电源接线和调试,设置相应的参数,确认工作正常后进行固定安装。

四、时间继电器的注意事项1. 在安装和使用时间继电器时,需要严格按照产品说明书的要求进行操作,避免因操作不当导致设备故障或安全事故。

2. 定期对时间继电器进行维护检查,保持设备的正常运行状态。

3. 如果时间继电器工作异常或有故障现象,应及时停止使用并寻求专业人士进行维修。

在使用时间继电器时,用户应了解其原理和使用方法,合理设置工作参数,正确安装,并根据需要进行维护保养,确保时间继电器的正常运行,为各项工作提供准确可靠的时间控制。

继电器的工作原理和特性及作用!

继电器的工作原理和特性及作用!

继电器的工作原理和特性及作用!工作原理和特性当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。

可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。

具有动作快、工作稳定、使用寿命长、体积小等优点。

广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。

继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。

故在电路中起着自动调节、安全保护、转换电路等作用。

继电器目前已广泛应用于计算机外围接口设备、恒温系统、调温、电炉加温控制、电机控制、数控机械,遥控系统、工业自动化装置;信号灯、调光、闪烁器、照明舞台灯光控制系统;仪器仪表、医疗器械、复印机、自动洗衣机;自动消防,保安系统,以及作为电网功率因素补偿的电力电容的切换开关等等,另外在化工、煤矿等需防爆、防潮、防腐蚀场合中都有大量使用。

继电器的作用继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中,是最重要的控制元件之一。

....继电器一般都有能反映一定输入变量(如电流、电压、功率、阻抗、频率、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分之间,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。

....作为控制元件,概括起来,继电器有如下几种作用:.....1) 扩大控制范围。

例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。

.....2) 放大。

例如,灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。

.....3) 综合信号。

例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。

继电器使用说明

继电器使用说明

第一节 继电器原理知识一、继电器的定义继电器是一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化的自动控制器件。

继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中,是最重要的控制元件之一。

继电器一般都有能反映一定输入变量(如电流、电压、功率、阻抗、频率、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分之间,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。

作为控制元件,概括起来,继电器有如下几种作用:1)扩大控制范围。

例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。

2)放大。

例如,灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。

3)综合信号。

例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。

4)自动、遥控、监测。

例如,自动装置上的继电器与其他电器一起,可以组成程序控制线路,从而实现自动化运行。

二、继电器的工作原理如图所示,当控制电路中的开关K闭合时,电磁铁便具有磁性,将衔铁吸下,使继电器触点接触,与触点相连接的电源电路便接通;当控制开关K断开时,电磁铁的磁性被撤消,继电器触点弹开,电源电路亦随之断开。

三、继电器的继电特性继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值x x,继电器的输出信号立刻从y=0跳跃到y=y m,即常开触点从断到通。

一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。

当输入量x从某一大于x x值下降到x f,继电器开始释放,常开触点断开(如图1)。

我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。

释放值x f与动作值x x的比值叫做反馈系数,即K f= x f /x x触点上输出的控制功率P c与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=P C/P0第二节.继电器的分类继电器的分类方法较多,可以按作用原理、外形尺寸、保护特征、触点负载产品用途等分类。

继电器的工作原理和作用

继电器的工作原理和作用

继电器的工作原理简介当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。

可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。

具有动作快、工作稳定、使用寿命长、体积小等优点。

广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。

1、电磁继电器的工作原理和特性 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。

只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。

当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。

这样吸合、释放,从而达到了在电路中的导通、切断的目的。

对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。

继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断到通。

一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。

当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。

我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。

释放值xf与动作值xx的比值叫做反馈系数,即 Kf= xf /xx 触点上输出的控制功率Pc与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=PC/P02、热敏干簧继电器的工作原理和特性 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。

它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。

热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。

恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。

8050和8550 单片机低电平驱动12v继电器电路

8050和8550 单片机低电平驱动12v继电器电路

8050和8550 单片机低电平驱动12v继电器电路【原创版】目录1.8050 和 8550 单片机的概述2.低电平驱动 12V 继电器电路的原理3.8050 和 8550 单片机在低电平驱动 12V 继电器电路中的应用4.实例电路介绍5.注意事项正文一、8050 和 8550 单片机的概述8050 和 8550 是两种常见的单片机,它们分别属于 MCS-51 和MCS-52 系列。

这两种单片机都具有丰富的外设资源和可编程 I/O 口,适用于各种自动控制和智能化系统中。

二、低电平驱动 12V 继电器电路的原理低电平驱动12V继电器电路是一种利用单片机的某个I/O口输出低电平信号,从而控制12V继电器开关的电路。

在这种电路中,单片机的I/O 口需要能够输出低于12V的电压,以使继电器正常工作。

三、8050 和 8550 单片机在低电平驱动 12V 继电器电路中的应用在低电平驱动 12V 继电器电路中,8050 和 8550 单片机可以通过编程设置某个 I/O 口为低电平输出,从而实现对 12V 继电器的控制。

具体的编程方法可以根据具体的应用场景和需求进行调整。

四、实例电路介绍以下是一个简单的 8050 单片机低电平驱动 12V 继电器电路的实例:在这个电路中,8050 单片机的 P1.0 端口被设置为低电平输出,通过上拉电阻 R1 和 R2,可以将 P1.0 端口的电平保持在 0V 左右。

当P1.0 端口输出低电平时,继电器 J1 将被触发,从而使得继电器 J2 和J3 也得以触发。

五、注意事项在设计和使用低电平驱动 12V 继电器电路时,需要注意以下几点:1.单片机的I/O口输出电压必须低于12V,以保证继电器的正常工作。

2.为了避免误操作,应当在电路中加入保护电阻,以限制电流。

3.在使用过程中,应当注意继电器的负载能力,以避免超过其额定负载。

继电器驱动电路原理

继电器驱动电路原理

继电器驱动电路原理一、继电器的基本概念继电器是一种电气控制装置,它具有接通、断开和转换电路的功能。

继电器主要由线圈、铁芯、触点等部分组成。

二、继电器的工作原理当线圈中通入一定的电流时,线圈就会产生磁场,使得铁芯被吸引,触点闭合;当线圈中断开电流时,磁场消失,铁芯恢复原状,触点断开。

三、继电器驱动电路的分类1. 直流驱动电路:适用于直流继电器。

2. 交流驱动电路:适用于交流继电器。

四、直流驱动电路1. 常闭型直流驱动电路常闭型直流驱动电路中,当输入信号为高时(+5V),三极管导通,线圈接通;当输入信号为低时(0V),三极管截止,线圈断开。

在这种情况下,输出信号为低。

2. 常开型直流驱动电路常开型直流驱动电路中,当输入信号为高时(+5V),三极管截止,线圈断开;当输入信号为低时(0V),三极管导通,线圈接通。

在这种情况下,输出信号为高。

五、交流驱动电路1. 交流电源直接驱动交流电源直接驱动中,当输入信号为高时,线圈接通;当输入信号为低时,线圈断开。

在这种情况下,输出信号与输入信号一致。

2. 变压器驱动变压器驱动中,通过变压器将交流电源的电压降低到合适的值后加到继电器线圈上。

在这种情况下,输出信号与输入信号一致。

3. 二极管反并联驱动二极管反并联驱动中,在继电器线圈上串联一个二极管和一个正向偏置二极管,在输入高电平时,正向偏置二极管导通,使得继电器线圈接通;在输入低电平时,反向偏置二极管导通,使得继电器线圈断开。

在这种情况下,输出信号与输入信号一致。

六、总结继电器是一种常用的控制装置,在实际应用中需要使用相应的驱动电路来控制其工作。

根据不同类型的继电器和实际应用需求,可以选择不同类型的驱动电路。

在设计驱动电路时,需要考虑到输入信号的电平、继电器线圈的额定电压和额定电流等因素,以确保驱动电路能够正常工作。

继电器电路工作原理

继电器电路工作原理

继电器电路工作原理
继电器电路工作原理是通过电流的控制来完成开关动作。

它主要由线圈(激励回路)、电动机、触点和辅助触点等部分组成。

当电流通过线圈时,线圈会产生磁场。

磁场的产生使得铁芯磁化,吸引电动机的铁芯,从而带动电动机进行机械运动。

电动机的机械运动又会由塔杆等机械结构带动触点的动作。

当继电器处于未通电状态时,触点处于常闭(NC)状态,两
个触点相互连接,电流可以通过。

当继电器通电时,线圈产生磁场,电动机的机械运动会使得触点发生动作,触点从常闭状态切换到常开(NO)状态,断开电流通路。

继电器的工作原理是基于电磁感应的原理。

当线圈通电时产生磁场,磁场的作用力使得电动机运动,从而控制触点的开关状态,实现电路的通断。

继电器电路在电力系统、自动化控制等领域有着广泛的应用。

它可以起到隔离电路、放大信号、控制电路等作用。

在自动化系统中,继电器电路常常作为中间控制设备使用,根据输入信号的变化来控制输出信号的状态。

通过继电器电路可以实现多个电路之间的相互切换和联锁控制,提高电路的可靠性和稳定性。

总结起来,继电器电路的工作原理是利用电磁感应原理,通过控制线圈的电流来操纵电动机运动,从而实现触点的开关动作。

继电器电路广泛应用于电力系统和自动化控制中,起到隔离电路、放大信号、控制电路等作用。

继电器术语解释及使用注意事项

继电器术语解释及使用注意事项

继电器术语解释及使用注意事项一、继电器及其主要作用继电器一般都有反映一定输入变量(如电流、电压、功率、阻抗、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。

继电器为当输入量(或激励量)满足某些规定条件时,能在一个或多个电气输出电路中生产预定跃变的一种器件。

注意:1)继电器这个术语应限于在其输入电路与输出电路之间具有单一继电器功能的继电器元件。

2)继电器这个术语,包括为完成其规定动作所必须的所有组成部分。

3)为了用于保护和自动控制,应加上一个说明继电功能的名称,以便对继电器定性。

继电器主要有以下几种作用:1)扩大控制围。

例如:多组触点继电器当输入量满足某些规定条件时,可以换接、开断、接通多组电路。

2)放大作用。

用一个很微小的输入量,可以控制很大功率的电路。

3)自动、遥控、监测。

例如:自动装置上的继电器与其他电路一起,可以组成程序控制电路,从而实现自动运行。

4)综合信号。

例如:当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。

二、继电器分类1、按继电器的作用原理或结构特征分类,如表1所示:12、按继电器触点负载分类,如表2所示。

2注:表中只给出一种直流阻性负载数值,其它负载由产品技术条件按相应的换算关系确定。

3、按继电器的外形尺寸分类,如表3所示。

3注:对于密封或封闭式继电器,外形尺寸为继电器本体三个相互垂直方向的最大尺寸,不包括安装件、引出端、压筋、压边、翻边和密封焊点的尺寸。

4、按继电器的防护特征分类,如表4所示:4三、 继电器型号命名和标专方法。

1、继电器的型号命名,一般由各制造厂根据各自特点各自命名,一般由产品主型号,短划线及部分特征符号组成。

2、“元则”继电器之订货标记由以下符号组成。

例:①②③④⑤⑥①、产品型号④、线圈电额定电压:03:直流3伏 05:直流5伏②、密封形式: 06:直流6伏 09:直流9伏无:敞开型 12:直流12伏 24:直流24伏防尘罩型(外壳、基座胶水固定) 48:直流48伏S :标准密封型⑤、线圈功耗D:标准灵敏度③、动片刀数L :高灵敏度 1:单刀子⑥、触点形式2:双刀无:转换型3:三刀M:常开型4:四刀B:常闭型※标准密封型,通常透气孔未密封;若继电器需高液位清洗,请告知制造厂,透气孔须密封,方可正常使用。

继电器工作原理及作用概要

继电器工作原理及作用概要

继电器工作原理及作用概要继电器是一种常用的电气控制装置,其工作原理基于电磁吸引力和机械传动的原理,能够实现电路的开关控制。

继电器的作用主要是用来放大信号、实现电路的分离和保护、控制大电流设备等。

下面将对继电器的工作原理和作用进行详细的介绍。

一、继电器的工作原理继电器主要由电磁线圈、触点和机械驱动装置组成。

当线圈通电时,会在铁芯上产生磁场,该磁场可以吸引触点闭合或断开。

利用这种原理,继电器可以实现不同电路之间的电气连接或分离。

其工作原理如下:1.电磁吸引力:当继电器的线圈通电时,会在铁芯上产生磁场。

此时,触点上的活动铁片会受到磁力的作用,而闭合或断开。

2.机械传动:当触点上的活动铁片受到磁力作用时,会通过机械传动机构将运动转化为力度,在触点上产生闭合或断开的动作。

3.增益作用:由于线圈通电后产生的磁场能使触点上的活动铁片发生强烈的吸引力,因此继电器可以放大电流和电压信号。

由上述原理可知,继电器主要根据控制信号的输入来使触点闭合或断开,从而实现对电路的控制。

二、继电器的作用继电器具有多种作用,主要包括以下几点:1.开关控制:继电器可以实现对电路的开关控制。

通过线圈的通电或断电,继电器能够控制触点的闭合或断开,从而实现对电路的通断控制。

2.信号放大:继电器的线圈可以将微弱的控制信号进行放大,使得继电器能够控制较大电流和电压的设备。

这样可以实现远距离的信号传输和控制。

3.电路分离和保护:继电器可以将不同电路之间进行分离,保证各电路之间的安全性。

当继电器的触点闭合时,可以将高压电路与低压电路进行分离,这样可以保护低压电路免受高压电路的干扰和损坏。

4.控制大电流设备:继电器能够承受较大的电流和电压,因此可以用来控制大功率设备,如电机、压缩机、空调等。

通过继电器的控制,可以实现对这些设备的启停和转向等操作。

5.逻辑运算和时间延迟:继电器可以根据不同控制要求进行逻辑运算和时间延迟。

通过联接多个继电器,可以实现逻辑运算模块的功能,如与门、或门、非门等。

继电器驱动电路设计要点

继电器驱动电路设计要点

毕业设计(论文)题目:继电器驱动电路设计系:专业班级:学生:指导教师:20XX年X月内蒙古电子信息职业技术学院毕业设计〔论文〕继电器驱动电路设计继电器驱动电路设计摘要近年来,随着电子信息产业的快速发展,继电器已经渗入到生活的各个领域,它是很难找到哪些领域没有继电器的痕迹。

继电器,广泛应用于家电,通讯,汽车,仪器仪表,机械设备,航空航天自动化和控制领域。

最近的统计数据显示,继电器已经成为不可缺少的开关控制器件。

本设计研究继电器的驱动原理,并据此设计出继电器驱动电路。

关键词:继电器驱动电路目录第1章绪论 (3)1.1项目背景 (3)1.2 红外遥控的发展 (3)1.3 项目背景和建设意义 ............................................... 错误!未定义书签。

第二章几种常用红外遥控器协议 (8)2.1 NEC 协议 (8)2.2 Nokia NRC1协议 ........................................................ 错误!未定义书签。

2.3 Philips RC-5 协议 ....................................................... 错误!未定义书签。

2.4 ITT协议.................................................................... 错误!未定义书签。

2.5 Sharp协议................................................................. 错误!未定义书签。

第三章红外遥控发射电路 (8)3.1 HT6221芯片介绍..................................................... 错误!未定义书签。

继电器驱动电路原理详解与说明

继电器驱动电路原理详解与说明

硬件部分一、电路原理图原理图说明:1.Q1:9013.NPN 低频放大 50V 0.5A 0.625W 。

2.D1:1N4148 . 75V 150mA钳位二极管(为增强可靠性,也可考虑用耐压值更高的IN4007),继电器的线圈和二极管并联连接,如果没有此二极管,则会发生大的反冲电压,耐压低的晶体管就会破损。

另外,此反冲电压会给周边的电子电路带来很大的电磁放射噪声。

3.R2:4.7K,R3:10K(指导阻值,R2与R3在也可用2.2K)。

4.RL1:继电器(常用的有欧姆龙,宏发10A 和5A的继电器),10A的继电器我们常用的较好品牌的继电器是欧姆龙 G5RL-1A 和宏发 JQX-14FF 。

5.R1:1W/120R C1:0.1Uf/AC安规电容。

R1,C1组成RC吸收电路。

当继电器输出控制压缩机这类220V感性负载的时候,电机起停时会产生瞬间较大电流串扰,此处增加RC吸收电路,放在继电器旁,可有效抑制这种干扰。

二、硬件电路端口说明及负载说明1. 硬件电路端口说明:控制电路连接芯片输出I/O口,由芯片给出高电平或低电平来控制继电器输入回路,一旦继电器线圈两端有电压,线圈中流过电流,由于电磁效应,从而引起输出端吸合,输出导通,压缩机和加热器等负载通电开始运转。

2.负载说明:目前,冰箱上用继电器控制的大电流负载,主要有压缩机,加热器,以及制冰机上的电机等。

可根据负载电流的大小来选择继电器。

目前,冰箱上用压缩机功率不尽相同,但是10A继电器基本上能满足所有压缩机负载的需求,在应用压缩机这样的感性负载的时候,需增加RC吸收电路,其他例如加热器等可不加。

例如在应用加热器等较小负载时,可将RL1换成5A的继电器,RC吸收电路可不加,电路其余部分都相同。

三、电路工作原理说明1.电路作用继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。

继电器驱动电路 (2)

继电器驱动电路 (2)

继电器驱动电路1. 引言继电器是一种常用的电子元件,用于在电路中实现信号的开关控制。

然而,继电器通常需要使用较大的电流来驱动,而许多电子设备输出的信号电流较小,无法直接驱动继电器。

因此,需要设计一个继电器驱动电路,将小电流信号放大为足够大的电流,以便驱动继电器。

本文将介绍一种常用的继电器驱动电路,并详细说明其工作原理和电路设计过程。

2. 继电器驱动电路工作原理继电器驱动电路的基本原理是利用一个电流放大器放大输入信号电流,以达到足够大的电流来驱动继电器。

这种电流放大器通常是一个晶体管,根据输入信号的电流大小,控制晶体管的工作状态,进而控制继电器的通断。

继电器驱动电路的工作过程可以分为以下几个步骤:1.当输入信号端的电流为零时,晶体管处于截止状态,继电器不通电。

2.当输入信号端的电流增大到一定阈值时,晶体管开始导通,流过继电器的电流开始增大,继电器开始通电。

3.当输入信号端的电流降低到一定阈值以下时,晶体管开始截止,继电器断电。

1通过控制输入信号的电流大小,可以控制继电器的通断状态。

3. 继电器驱动电路设计3.1. 电流放大器选择在设计继电器驱动电路时,需要选择合适的电流放大器来放大输入信号的电流。

常用的电流放大器包括晶体管、运放等。

在选择电流放大器时,需要考虑以下几个因素:•最大电流放大倍数:选取具有足够大的放大倍数的电流放大器,以确保输入信号的电流可以被放大为足够大的电流来驱动继电器。

•工作电压范围:选择与输入信号电压匹配的电流放大器,以保证输入信号可以有效地驱动电流放大器。

•频率响应:考虑输入信号的频率范围,选择具有足够宽的频率响应范围的电流放大器,以确保输入信号可以被准确放大。

3.2. 继电器选择在设计继电器驱动电路时,还需要选择合适的继电器。

选择继电器时,需要考虑以下几个因素:•最大电流:根据所需驱动的电流大小,选择具有足够大的最大电流承受能力的继电器。

•动作电压:根据所需的驱动电压,选择与之匹配的继电器。

继电器驱动电路的原理和注意事项

继电器驱动电路的原理和注意事项

继电器驱动电路的原理和注意事项
 继电器驱动电流一般需要20-40mA或更大,线圈电阻100-200欧姆,因
此要加驱动电路。

那幺继电器的驱动电路的原理和注意事项有哪些?
1. 晶体管用来驱动继电器,必须将晶体管的发射极接地。

 具体电路如下:
 NPN晶体管PNP晶体管
 NPN晶体管驱动时:当晶体管T1基极被输入高电平时,晶体管饱和导通,集电极变为低电平,因此继电器线圈通电,触点RL1吸合。

 当晶体管T1基极被输入低电平时,晶体管截止,继电器线圈断电,触点RL1断开。

 PNP晶体管驱动电路目前没有采用,因此在这里不作介绍。

继电器控制原理

继电器控制原理

继电器控制原理继电器是一种电器开关,它常被用于控制电源的开关、电机启停、照明系统、温控系统等。

在这些应用中,继电器作为控制电路的开关、保护电路和信号扩展器使用。

在这篇文章中,我们将详细介绍继电器控制原理。

一、继电器的结构及工作原理继电器主要由磁路系统和电气系统两部分构成。

其磁路系统由固定铁心、动铁心和线圈组成。

电气系统由恢复弹簧、触点等零件组成。

继电器的工作原理是利用线圈中通电产生的磁场,使动铁心受到吸引,使触点闭合或者断开,从而实现开关控制的目的。

继电器的控制电路一般分为两种类型:直流控制和交流控制。

1.直流控制在直流控制电路中,继电器的线圈与直流电源相连,当线圈中通电时,就会在磁心周围产生一个磁场,吸引动铁心向线圈方向运动,从而使触点闭合。

当线圈熄灭时,动铁心就会恢复到初始状态,使得触点分开。

在直流控制电路中,需要使用恢复弹簧来保证动铁心和触点的运动正常,并防止振荡等故障。

直流控制电路的优点是线路结构简单,易于实现。

由于直流电源具有稳定的电压和电流,因此继电器的控制精度和可靠性相对较高。

由于线圈只能工作在一定电压范围内,因此需要选择适合的直流电源,否则会影响继电器的正常工作。

在交流控制电路中,继电器的线圈与交流电源相连,因此当线圈中通电时,就会在磁心周围产生一个来回变化的磁场。

但由于线圈中电流的方向变化,动铁心会不停地来回运动,使得触点也会不停地闭合和分开。

这会导致继电器的寿命缩短,因此需要在触点上添加一个限流电阻来进行保护。

交流控制电路的优点是可以使用交流电源进行控制,因此具有广泛的应用范围。

但在交流电源的控制下,继电器会频繁振荡,容易受到电源干扰,从而使得控制精度和可靠性下降。

三、继电器的特性及用途继电器的特性是指继电器的制造商在设计和生产时所考虑的因素,包括动作时间、释放时间、额定电压和额定电流等。

这些参数可以根据应用场景的需要进行调整,从而满足不同的控制要求。

继电器的用途非常广泛,可以用于家用电器、照明系统、长距离信号传输、电机控制、电磁阀控制等多种应用场景。

继电器工作的基本原理是什么

继电器工作的基本原理是什么

继电器工作的基本原理是什么
继电器是一种电器控制设备,常用于控制大电流或高电压的电路。

它的基本原理是利用电磁感应的原理来控制一个或多个开关,实现电路的通断控制。

继电器主要由线圈、铁芯、触点和外壳等部分组成。

线圈和铁芯
继电器的线圈通常由绝缘导线绕成,当通过线圈通以电流时,产生的磁场会使得铁芯成为磁体。

铁芯的磁性能使得它能够更好地导磁,增强磁场效果。

触点
继电器的触点一般分为常开触点和常闭触点。

常开触点在继电器通电时闭合,常闭触点在继电器通电时断开。

当继电器的线圈受到电流时,触点会由于受到磁场的影响而改变开闭状态。

工作原理
继电器的工作原理主要是线圈受到电流产生磁场,磁场作用于铁芯,使得铁芯在吸引或排斥的作用下,触点发生相应的开合动作。

这样就可以控制继电器的触点状态,从而实现对电路的通断控制。

继电器在电路中的应用十分广泛,常见于自动控制系统、保护系统、机电设备等领域。

总结
继电器的工作原理是基于电磁感应的原理,通过线圈产生磁场,驱动铁芯和触点的运动,实现对电路的控制。

了解继电器的基本原理有助于我们更好地应用和理解其在各类电路系统中的作用和功能。

npn三极管和pnp三极管驱动继电器原理_概述及解释说明

npn三极管和pnp三极管驱动继电器原理_概述及解释说明

npn三极管和pnp三极管驱动继电器原理概述及解释说明1. 引言1.1 概述NPN三极管和PNP三极管是常见的电子元件,它们在电路中广泛应用于继电器的驱动。

本文将对NPN三极管和PNP三极管驱动继电器原理进行概述和解释。

首先介绍两种三极管的基本原理,然后探讨它们与继电器的连接方式以及各自的优势和应用场景。

接下来将比较两者之间的区别并提供选择合适驱动方案的方法。

最后从总结已有研究成果出发,展望未来对这两种驱动方案的进一步研究与应用。

1.2 文章结构本文分为五个部分。

首先是引言部分,概述了本文关于NPN三极管和PNP三极管驱动继电器原理的内容以及文章结构。

第二部分将详细介绍NPN三极管驱动继电器原理,包括其基本原理、连接方法以及优势和应用场景。

第三部分则描述了PNP三极管驱动继电器的相同内容。

在第四部分中,我们将比较两种驱动方案之间的区别,并给出选择合适方案的方法。

最后,第五部分总结了NPN三极管和PNP三极管驱动继电器的原理和应用,并展望了未来对这两种方案的研究与应用。

1.3 目的本文旨在全面介绍和解释NPN三极管和PNP三极管驱动继电器的原理、优势与应用场景,并帮助读者了解两种驱动方案之间的区别并选择合适的驱动方案。

通过对已有研究成果进行总结,本文还将展望未来对这两种方案进一步研究与应用的可能性。

通过阅读本文,读者将获得关于NPN三极管和PNP三极管驱动继电器原理更深入的了解,同时也能为实际应用中做出明智的选择提供参考。

2. NPN三极管驱动继电器原理:2.1 NPN三极管基本原理:NPN三极管是一种常用的双面效应晶体管,由有源区、基区和集电区组成。

在NPN三极管中,有源区为n型材料,基区为夹在其中的p型材料,而集电区则是n型材料。

当在NPN三极管的基极加上正向电压时,就会形成足够的电子激发,使得位于有源区内的n型电子流进入p型基极。

这导致整个器件从开路状态变为导通状态。

2.2 NPN三极管与继电器连接方法:使用NPN三极管驱动继电器时,可以将继电器的控制端(也称为触发端)连接到NPN三极管的发射端。

单片机控制继电器驱动原理实例详解

单片机控制继电器驱动原理实例详解

单片机控制继电器驱动原理实例详解一、继电器驱动这是典型的继电器驱动电路图,这样的图在网络上随处可以搜到,并且标准教科书上一般也是这样的电路图。

单片机是一个弱电器件,一般情况下它们大都工作在5V甚至更低.驱动电流在mA级以下.而要把它用于一些大功率场合,比如控制电动机,显然是不行的.所以,就要有一个环节来衔接,这个环节就是所谓的"功率驱动".继电器驱动就是一个典型的、简单的功率驱动环节.在这里,继电器驱动含有两个意思:一是对继电器进行驱动,因为继电器本身对于单片机来说就是一个功率器件;还有就是继电器去驱动其他负载,比如继电器可以驱动中间继电器,可以直接驱动接触器,所以,继电器驱动就是单片机与其他大功率负载接口.这个很重要,因为,一直让电气工程师(指的是那些没有学习过相应的电子技术的)感到迷惑不解的是: 一个小小的芯片,怎么会有如此强大的威力来控制像电动机这样强大的东西?二、怎么样理解这个电路图?要理解这个电路,其实也比较容易.那么请您按照我的思路来,应该没有问题:首先的,里面的三极管很重要.三极管是电子电路里很重要的一个元件.怎么样理解三极管呢?简单的来说三极管有两个作用一个是放大作用,一个是开关作用;严格来讲开关作用是放大作用的极限情况,不过没关系,把两者分开,更便于理解它的工作原理;在这里,我们只了解它跟本电路有关的开关作用,首先把三极管想成一个水龙头,上面的Vcc就是水池,继电器是一个水轮机,下面的GND是比水池低的任何一点.刚才说过,三极管就是水龙头,它的把手就是那个带有电阻的引脚,现在,单片机的某一个需要控制这个继电器电路的输出引脚就是一只“手”,当单片机的这个引脚输出低电平的时候,就像“手”在打开三极管“水龙头”,水就从上往下流,继电器“水轮机”就开始转起来了;反之,如果是输出高电平,“手”就开始关“水龙头"”,继电器“水轮机”因为没有水流下来,就会停止.这就是三极管的开关作用。

继电器原理特性与继电驱动电路设计技巧

继电器原理特性与继电驱动电路设计技巧

继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。

故在电路中起着自动调节、安全保护、转换电路等作用。

继电器的继电特性继电器的输入信号 x 从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃y=ym,即常开触点从断到通。

一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。

当输入量x从某一大于xx 值下降到xf,继电器开始释放,常开触点断开。

我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。

一、继电器(relay)的工作原理和特性1、电磁继电器的工作原理和特性电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。

只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。

当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。

这样吸合、释放,从而达到了在电路中的导通、切断的目的。

对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。

2、电路原理继电器是一种当输入量变化到某一定值时,其触头(或电路)即接通或分断交直流小容量控制回路。

由永久磁铁保持释放状态,加上工作电压后,电磁感应使衔铁与永久磁铁产生吸引和排斥力矩,产生向下的运动,最后达到吸合状态。

3、晶体管驱动驱动电路当晶体管用来驱动继电器时,推荐用NPN三极管。

具体电路如下:当输入高电平时,晶体管T1饱和导通,继电器线圈通电,触点吸合。

当输入低电平时,晶体管T1截止,继电器线圈断电,触点断开。

电路中各元器件的作用:晶体管T1为控制开关;电阻R1主要起限流作用,降低晶体管T1功耗;电阻R2使晶体管T1可靠截止;二极管D1反向续流,为三极管由导通转向关断时为继电器线圈中的提供泄放通路,并将其电压箝位在+12V上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

继电器驱动电路原理及注意事项默认分类2008-09-22 11:04:21 阅读1762 评论0 字号:大中小继电器驱动电路原理及注意事项家用空调器电控板上的12V直流继电器,是采用集成电路2003驱动,当2003输出脚不够用时才会用晶体管驱动,下面分别介绍这两种驱动电路。

1、集成电路2003电路原理图左图1~7是信号输入(IN),10~16是输出信号(OUT),8和9是集成电路电源。

右图是集成块内部原理图。

1.1 工作原理简介根据集成电路驱动器2003的输入输出特性,有人把它简称叫“驱动器”“反向器”“放大器”等,现在常用型号为:TD62003AP。

当2003输入端为高电平时,对应的输出口输出低电平,继电器线圈通电,继电器触点吸合;当2003输入端为低电平时,继电器线圈断电,继电器触点断开;在2003内部已集成起反向续流作用的二极管,因此可直接用它驱动继电器。

1.2检修判断2003好坏的方法非常简单,用万用表直流档分别测量其输入和输出端电压,如果输入端1~7是低电平(0V),输出端10~16必然是高电平(12V);反之,如果输入端1~7是高电平(5V),输出端10~16必然是低电平(0V);否则,驱动器已坏。

测试条件:1.待机;2.开机。

测试方法:将万用表调至20V直流档,负表笔接电控板地线(7812稳压块散热片),正表笔分别轻触2003各脚。

2. 晶体管驱动电路当晶体管用来驱动继电器时,必须将晶体管的发射极接地。

具体电路如下:2.1工作原理简介NPN晶体管驱动时:当晶体管T1基极被输入高电平时,晶体管饱和导通,集电极变为低电平,因此继电器线圈通电,触点RL1吸合。

当晶体管T1基极被输入低电平时,晶体管截止,继电器线圈断电,触点RL1断开。

PNP晶体管驱动电路目前没有采用,因此在这里不作介绍。

2.1 电路中各元器件的作用:晶体管T1可视为控制开关,一般选取VCBO≈VCEO≥24V,放大倍数β一般选择在120~240之间。

电阻R1主要起限流作用,降低晶体管T1功耗,阻值为2 KΩ。

电阻R2使晶体管T1可靠截止,阻值为5.1KΩ。

二极管D1反向续流,抑制浪涌,一般选1N4148即可能带动继电器工作的CMOS集成块在人们的习惯中,总认为CMOS集成块不能直接带动继电器工作,但实验证明,部分CMOS集成块不仅能直接带动继电器工作,而且工作稳定可靠。

实验中所用继电器的型号为JRC5M-DC12V微型密封继电器(其线圈电阻为750Ω)。

现将CD4066 CMOS集成块带动继电器的工作原理分析如下:CD4066是四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。

当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1相同。

电路中,继电器线圈两端均反相并联了一只二极管,它是用于保护集成块的,切不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。

并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。

低电压下继电器的吸合措施常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。

因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。

工作原理:如图所示。

V1为单结晶体管BT33C,它与R1、R2、R3和C1组成一个张弛式振荡器,SCR为单向可控硅,按下启动按钮AN1后,电路通电,因为SCR无触发电压,所以不导通,继电器J不动作,电源通过R4和VD1给电容C2迅速充电至接近电源电压(Vcc-VD1压降)。

同时,电源经R1给电容C1充电。

数秒后,C1上电压充到V1的触发电压,C1立即通过V1放电,在R3上形成一个正脉冲,该脉冲一路加到V2基极,使V2迅速饱和导通,V2集电极也即电容C2正极近于接地。

由于此时C2上充有上正下负的正极性电压,所以C2负极也即J线圈一端呈负电位。

R3上的正脉冲另一路经VD2、C3去触发可控硅导通,SCR阴极也即J线圈另一端接近电源电压。

这时,J线圈实际上承受约两倍的电源电压,所以J1-1闭合,松开AN1后,J1-1自保。

J1-2将V1、V2供电切断,继电器在接近电源电压下工作。

图中,AN2为停止按钮,按下AN2,J失电释放,J1-1断开,整个控制电路失电。

制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。

V2、C1、C3的耐压视电源电压的高低选取。

C2耐压最好不低于电源电压的两倍。

继电器的三种附加电路继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。

继电器的附加电路主要有如下三种形式:1.继电器串联RC电路:电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。

当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。

原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。

电源稳定之后电容C不起作用,电阻R起限流作用。

2.继电器并联RC电路:电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。

3.继电器并联二极管电路:电路形式见图3,主要是为了保护晶体管等驱动元器件。

当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源电压叠加后加在VT的c、e两极间,会使晶体管击穿,并联上二极管后,即可将线圈的自感电动势钳位于二极管的正向导通电压,此值硅管约0.7V,锗管约0.2V,从而避免击穿晶体管等驱动元器件。

并联二极管时一定要注意二极管的极性不可接反,否则容易损坏晶体管等驱动元器件。

继电器的正确使用1、继电器额定工作电压的选择继电器额定工作电压是继电器最主要的一项技术参数。

在使用继电器时,应该首先考虑所在电路(即继电器线圈所在的电路)的工作电压,继电器的额定工作电压应等于所在电路的工作电压。

一般所在电路的工作电压是继电器额定工作电压的0.86。

注意所在电路的工件电压千万不能超过继电器额定工作电压,否则继电器线圈容易烧毁。

另外,有些集成电路,例如NE555电路是可以直接驱动继电器工作的,而有些集成电路,例如COMS电路输出电流小,需要加一级晶体管放大电路方可驱动继电器,这就应考虑晶体管输出电流应大于继电器的额定工作电流。

2、触点负载的选择触点负载是指触点的承受能力。

继电器的触点在转换时可承受一定的电压和电流。

所以在使用继电器时,应考虑加在触点上的电压和通过触点的电流不能超过该继电器的触点负载能力。

例如,有一继电器的触点负载为28V(DC)×10A,表明该继电器触点只能工作在直流电压为28V的电路上,触点电流为10A,超过28V或10A,会影响继电器正常使用,甚至烧毁触点。

3、继电器线圈电源的选择这是指继电器线圈使用的是直流电(DC)还是交流电(AC)。

通常,初学者在进行电子制作活动中,都是采用电子线路,而电子线路往往采用直流电源供电,所以必须是采用线圈是直流电压的继电器。

无电感式模拟继电器本文介绍一种无电感式模拟继电器,其电路原理如下图所示。

图中,220V电源经负载RL、R1、D1~D4、ZD1,为Q4、Q3在正负半周轮流提供偏置;同时经R3、D5~D8为光电耦合器Q1提供电源。

当前级TTL电路输出高电平信号时,光电耦合器在市电正半周内导通,于是在R5两端产生压降,触发SCR导通,负载RL得电工作。

整个电路的功能如同一只继电器,但不会产生反向感应电压,也就避免了负载被高反压击穿损坏的可能。

C1、R6为脉冲吸收元件,R3起限流作用。

为避免RL为感性负载时,可控硅的电压与光电耦合器电源产生的90°相位,该电路中光电耦合器的电源取自SCR的阳极而不直接取自市电电源。

继电器电路小改进继电器常安装在电器设备的内部,其工作状态不直观,可如下图改进。

在线圈两端接发光二极管VD1,当控制电压为正时,三极管导通,继电器J吸合,同时发光二极管被点亮,表明继电器线圈已加上电源。

发光二极管可装在外壳显眼之处。

24V继电器的驱动电路7推荐说明:VCC是5V。

继电器串联RC电路:这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。

当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。

电源稳定之后电容C不起作用,电阻R起限流作用。

基极和发射极的电阻的作用是:在没有正向偏置电压的情况下,保证基极的电压为零,防止三极管的受外部的干扰而误导通,其实就是为了保证可靠性。

具体的阻值的大小倒不绝对,10K、100K都可以的,只是起到下拉的作用,电流非常很小的。

此继电器驱动电路已经验证通过,开和关状态良好,实际应用中最好把5V、24V两组直流电源的地分开,再配合光藕实现真正的隔离效果。

但由于项目要求,继电器的切换速度跟不上,已经取消次此切换方案。

此驱动大家可以参考下用在实际的设计中。

相关文档
最新文档