高一数学集合之间的关系与运算知识精讲

合集下载

高中数学必修一,集合知识概念运算归纳总结

高中数学必修一,集合知识概念运算归纳总结

高中数学必修一,集合知识概念
运算归纳总结
集合的概念
一般地,把一些够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)。

构成集合的每个对象叫做这个集合的元素(或成员)。

集合的特征
1.确定性:作为一个集合的元素,必须的确定的。

给一个
集合,任何一个对象是不是这个集合的元素也是就确定
了。

1.互异性:对于一个给定的集合,集合中一定是不同的
(或说是互异的)。

集合中任何两个元素都是不同的对
象,相同的对象归入同一个集合时只能算作集合的一个
元素。

1.无序性:即集合中的元素无先后顺序,如:{1,2}、
{2,1}表示同一集合,注意{(1,2)}、{(2,1)}不是同一集合。

集合与元素的关系
集合的表示方法
列举法和描述法是表示集合的主要方法,列举法的优点在于元素很直观,描述发的有点在于性质很直观。

集合与集合的关系
这里我们要把符号分开这里包含和之前属于是不一样的。

高一数学上集合知识点归纳

高一数学上集合知识点归纳

高一数学上集合知识点归纳在数学学科中,集合是一个重要的概念,涉及到众多的知识点。

本文将对高一数学上的集合知识点进行归纳,帮助同学们更好地理解和掌握这一部分内容。

一、集合的概念和表示法集合是指把具有共同特征的事物归到一起而成的整体。

可以通过列举法、描述法、符号法等方式来表示一个集合。

集合中的元素是指属于该集合的事物。

二、集合间的关系1.子集关系:若集合A的每一个元素都是集合B的元素,则称A是B的子集,记作A⊆B。

同时,根据子集关系,还可以定义真子集和空集。

2.相等关系:若集合A包含了与集合B相同的元素,且集合B也包含了与集合A相同的元素,则称A等于B,记作A=B。

3.交集和并集:交集是指两个集合共同包含的元素组成的集合,记作A∩B;并集是指两个集合中所有元素组成的集合,记作A∪B。

还可以定义空集和全集的交集和并集。

4.补集:对于给定的一个全集U,集合A在全集U中除去自己的元素组成的集合称为A的补集,记作A'。

三、集合的运算1.求并集:将两个集合中的元素全部加起来,重复的元素只计算一次。

2.求交集:取两个集合中相同的元素。

3.求差集:求一个集合中不属于另一个集合的元素组成的集合。

4.集合的运算律:并集和交集具有交换律、结合律和分配律。

四、集合的表示方式和常用符号1.集合的列举法:通过列出集合中的元素来表示集合。

2.集合的描述法:通过描述集合中元素的特征来表示集合。

3.集合的符号法:通过使用集合符号表示集合,例如用大写字母表示集合,用大括号表示元素。

五、集合的常用性质和定理1.空集的性质:空集是任何集合的子集,且空集是唯一的。

2.集合的幂集:对于一个集合A,由A的所有子集组成的集合称为A的幂集,记作P(A)。

3.集合的基本运算律:并集和交集运算满足交换律、结合律和分配律。

4.集合的排列组合:通过排列和组合的方式,可以求解集合中元素的排列和组合数量。

综上所述,高一数学上的集合知识点包括集合的概念和表示法、集合间的关系、集合的运算以及集合的常用性质和定理等内容。

高一数学上册《集合之间的关系与运算》知识点人教B版

高一数学上册《集合之间的关系与运算》知识点人教B版

高一数学上册《集合之间的关系与运算》知识点人教B版高一数学上册《集合之间的关系与运算》知识点人教B版一.课标解读1.《普通高中数学课程》课程中明确指出"理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义."2.重点:子集的概念3.难点:元素与子集.属于与包含之间的区别.二.要点扫描1.子集的定义如果集合中的任意一个元素都是集合的元素,则集合是集合的子集.也说集合包含于集合,或集合包含集合,记作或(注意:任何一个集合是它本身的子集)2.空集的定义空集是任意一集合的子集,也就是说,对任意集合,都有.3.两集合相等如果,则等于,记作=;反之,如果=,则.4.真子集的定义如果,且中至少有一个元素不属于,那么集合是集合的真子集,记作.以上条件还可概括为:如果,且,则.(注意:空集是任何非空集合的真子集.)5.有限集合的子集个数个元素的集合有个子集;有个非空子集;有个真子集;有个非空真子集.6.维恩图这种图在数学上也称为文(TohnVenn,1834年~1923年英国逻辑学家)氏图.它仅仅起着说明各集合之间关系的示意图的作用(就像交通示意图只说明各车站之间的位置关系那样),因此,边界用直线还是曲线,乃实线还虚线都无关紧要,只要封闭并把有关元素或子集统统包在里边就行.决不能理解成圈内的每一点都是这个集合的元素(事实上,这个集合可能与点毫无关系);至于边界上的点是否属于这个集合,也都不必考虑. 三.知识精讲知识点1区分表示以空集,为元素的单元素集合,当把视为集合时,成立;当把视为元素时,也成立.表示元素,表示以为元素的单元素集合,不能混淆它们的含意.知识点2区分与表示元素与集合之间的关系,如:;表示集合与集合之间的关系,如等.四.典题解悟----------------------------------------------------基础在线----------------------------------------------------题型一]子集与真子集如果集合中的任意一个元素都是集合的元素,则集合是集合的子集.如果,且中至少有一个元素不属于,那么集合是集合的真子集.例1.满足的集合是什么?解析:由可知,集合必为非空集合;又由可知,此题即为求集合的所有非空子集。

高一数学集合知识点总结

高一数学集合知识点总结

高一数学集合知识点总结一、集合的概念集合是由若干个元素组成的整体,通常用大写字母表示,元素用小写字母表示,元素的个数为有限个或无限个。

例如,A={1,2,3}表示由1,2,3这3个元素组成的集合A。

二、集合的运算1.并集若A、B是两个集合,由所有属于A或属于B的元素组成的集合称为A与B的并集,记作A∪B。

例如,A={1,2,3},B={2,3,4},则A∪B={1,2,3,4}。

2.交集若A、B是两个集合,由所有既属于A又属于B的元素组成的集合称为A与B的交集,记作A∩B。

例如,A={1,2,3},B={2,3,4},则A∩B={2,3}。

3.差集若A、B是两个集合,由所有属于A但不属于B的元素组成的集合称为A与B的差集,记作A-B。

例如,A={1,2,3},B={2,3,4},则A-B={1}。

4.补集设U是一个集合,A是U的一个子集,由所有属于U而不属于A的元素组成的集合称为A在U中的补集,记作A’或U-A。

例如,U={1,2,3,4,5},A={1,2,3},则A’={4,5}。

5.集合的运算律(1)结合律:A∪(B∪C)=(A∪B)∪C,A∩(B∩C)=(A∩B)∩C(2)交换律:A∪B=B∪A,A∩B=B∩A(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)(4)对偶律:(A∪B)’=A’∩B’,(A∩B)’=A’∪B’三、集合的关系1.子集若A、B是两个集合,如果A的所有元素都属于B,则称A是B的子集,记作A⊆B。

特别地,任何集合都是它自身的子集。

例如,A={1,2,3},B={1,2,3,4},则A⊆B。

2.真子集若A是B的子集且A≠B,则称A是B的真子集,记作A⊂B。

例如,A={1,2,3},B={1,2,3,4},则A⊂B。

3.全集和空集若给定集合A,包含A的集合称为全集,通常用符号U表示;不包含任何元素的集合称为空集,通常用符号∅表示。

集合中的运算和关系

集合中的运算和关系

集合中的运算和关系集合是数学中的一个基本概念,它是由一些确定的、互不相同的对象构成的整体。

集合中的运算和关系是研究集合性质和结构的重要内容。

一、集合的运算集合的运算包括并集、交集、差集和补集等。

1.并集:设A、B是两个集合,它们的并集记为A∪B,表示A和B中所有元素的集合。

2.交集:设A、B是两个集合,它们的交集记为A∩B,表示同时属于A和B的元素的集合。

3.差集:设A、B是两个集合,它们的差集记为A-B,表示属于A但不属于B的元素的集合。

4.补集:设U是一个全集,A是U的一个子集,A的补集记为A’,表示U中不属于A的元素的集合。

二、集合的关系集合之间的关系主要包括包含关系、相等关系和不相交关系等。

1.包含关系:设A、B是两个集合,如果A中的所有元素都属于B,则称A包含于B,记为A⊆B。

如果A包含于B且B包含于A,则称A等于B,记为A=B。

2.相等关系:设A、B是两个集合,如果A包含于B且B包含于A,则称A等于B,记为A=B。

3.不相交关系:设A、B是两个集合,如果A和B没有共同的元素,则称A和B不相交,记为A∩B=∅。

三、集合的性质1.确定性:集合中的元素是确定的,不含有不确定性。

2.互异性:集合中的元素是互不相同的。

3.无序性:集合中的元素没有顺序。

四、集合运算的性质1.结合律:对于集合的并集、交集和差集运算,都满足结合律。

2.交换律:对于集合的并集、交集和差集运算,都满足交换律。

3.分配律:对于集合的并集和交集运算,满足分配律。

五、集合的关系的性质1.自反性:对于任意集合A,A包含于A。

2.对称性:对于任意集合A、B,如果A包含于B,则B包含于A。

3.传递性:对于任意集合A、B、C,如果A包含于B且B包含于C,则A包含于C。

以上是集合中的运算和关系的基本知识点,希望对你有所帮助。

习题及方法:1.习题:设集合A={1, 2, 3},集合B={2, 3, 4},求A∪B、A∩B、A-B、A’。

高一数学复习考点知识与题型专题讲解2--- 集合间的基本关系

高一数学复习考点知识与题型专题讲解2--- 集合间的基本关系

高一数学复习考点知识与题型专题讲解1.2集合间的基本关系【考点梳理】考点一子集、真子集、集合相等定义符号表示图形表示子集如果集合A中的任意一个元素都是集合B中的元素,就称集合A是集合B的子集A⊆B(或B⊇A)真子集如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集A B(或B A)集合相等如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等A=B考点二空集1.定义:不含任何元素的集合叫做空集,记为∅. 2.规定:空集是任何集合的子集.【题型归纳】题型一:子集、真子集的个数问题1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅ÜA ,则A ≠∅.其中正确的个数是( ) A .0B .1C .2D .3 2.已知集合20,x A x x N x -⎧⎫=≤∈⎨⎬⎩⎭,{}2,B x x x Z =≤∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1B .2C .4D .83.已知集合{}{}2|320,R ,|04,N A x x x x B x x x =-+=∈=<≤∈,则满足条件A C B ⊆⊆的集合C的个数为( ) A .1B .2C .3D .4题型二:根据集合包含关系求参数4.已知集合{}12M x a x a =-<<,(1,4)N =,且M N ⊆,则实数a 的取值范围是( )A .(,2]-∞B .(,0]-∞C .1(,]3-∞D .1,23⎡⎤⎢⎥⎣⎦5.已知集合{}{}|0=|12A x x a B x x =≤≤≤≤,,若B A ⊆,则实数a 的取值范围为( ) A .0a ≤B .01a ≤≤C .12a ≤≤D .2a ≥6.已知集合{}12A x x =≤≤,{}2,B y y x a x A ==+∈,若A B ⊆,则实数a 的取值范围为( )A .[]1,2B .[]2,1--C .[]22-,D .[]1,1-题型三:根据集合相等关系求参数7.设a ,R b ∈,集合 {}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则 b a -=( ) A .1B .1-C .2D .2-8.已知集合0a A a b b ⎧⎫=+⎨⎬⎩⎭,,,{}011B b =-,,,若A =B ,则a +2b =( ) A .-2B .2C .-1D .19.已知a R ∈,b R ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20212021a b +的值为( )A .2-B .1-C .1D .2题型四:与空集有的集合问题10.已知全集{}19U x x =-<<,{}1A x x a =<< ,A 是U 的子集.若A ≠∅,则a 的取值范围是( ) A .9a < B .9a ≤ C .9a ≥ D .19a <≤11.有下列命题:①mx 2+2x -1=0是一元二次方程;②抛物线y =ax 2+2x -1与x 轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.其中真命题有( )A .1个B .2个C .3个D .4个12.若集合{}2|210A x mx x =++≤≠∅,则实数m 的取值范围是( )A .1m £B .01m ≤≤C .01m <≤D .1m <【双基达标】一、单选题13.设A ={(x ,y )||x +1|+(y -2)2=0},B ={-1,2},则必有( ) A .B A ÜB .A B ÜC .A =B D .A ∩B =∅14.若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .A B ÜB .B A ÜC .A B =D .A B ≠15.已知2{|1}A x x ==,集合{|1}B x mx ==,若B A ⊆,则m 的取值个数为( ) A .0B .1C .2D .316.下列所给的关系式正确的个数是( ) ①0N ⊆;②Q π∈;③{}{},,,a a b c d ⊆;④R ∅∈. A .1B .2C .3D .417.已知a ∈R ,b ∈R ,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20202021a b +的值为( )A .2-B .1C .1-D .218.若集合|24M x x k k Z ππ⎧⎫==⋅-∈⎨⎬⎩⎭,,|42N x x k k Z ππ⎧⎫==⋅+∈⎨⎬⎩⎭,,则( )A .M =NB .M ⊆NC .N ⊆MD .没有包含关系 19.已知111A x x ⎧⎫=<-⎨⎬-⎩⎭,{}240B x x x m =--≥,若A B ⊆且A B ≠,则实数m 的取值范围是( ) A .0m ≥ B .3m ≤- C .30m -≤≤D .3m ≤-或0m ≥20.下列各组集合中,表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={3,2},N ={(3,2)}21.集合M =}|1,2nx x n Z ⎧=+∈⎨⎩,N =}1|,2x x m m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M22.已知集合{}2,3,1A =-,集合{}23,B m =.若B A ⊆,则实数m 的取值集合为( )A .{}1B .{}3C .{}1,1-D .{}3,3-【高分突破】一:单选题 23.集合6{|}6x N N x∈∈-的子集个数为( ) A .2B .4C .8D .1624.下列与集合{}1,2A =-相等的是( ) A .(){}1,2-B .()1,2-C .(){},1,2x y x y =-=D .{}220x x x --=25.定义集合A ★B ={,,}xx ab a A b B =∈∈∣,设{2,3},{1,2}A B ==,则集合A ★B 的非空真子集的个数为( ) A .12B .14C .15D .1626.已知集合1{|}6A x x k k Z ==+∈,,1{|}23m B x x m Z ==-∈,,1{|}26n C x x n Z ==+∈,,则集合A B C ,,的关系是( ) A .A CB 苘B .C AB 苘C .A C B =ÜD .A B C ==27.已知集合A ={x |x 2+px +q =x },B ={x |(x -1)2+p (x -1)+q =x +3},当A ={2}时,集合B =( ) A .{1}B .{1,2} C .{2,5}D .{1,5}28.已知集合13{|}A x x =-≤≤,301x B x x -⎧⎫=≤⎨⎬+⎩⎭,则用韦恩图表示它们之间的关系正确的是( )A .B .C .D .29.设集合{|10}P m m =-<≤,2{|440}Q m R mx mx =∈+-< 对任意实数x 恒成立,则下列关系中成立的是( ) A .P 是Q 的真子集 B .Q 是P 的真子集 C .P Q = D .P 与Q 无关30.已知S 1,S 2,S 3为非空集合,且S 1,S 2,S 3⊆Z ,对于1,2,3的任意一个排列i ,j ,k ,若x ∈S i ,y ∈S j ,则x -y ∈S k ,则下列说法正确的是( ) A .三个集合互不相等B .三个集合中至少有两个相等 C .三个集合全都相等D .以上说法均不对二、多选题31.已知集合{}12A x x =<<,{}232B x a x a =-<<-,下列说法正确的是( ) A .不存在实数a 使得A B = B .当4a =时,A B ⊆ C .当04a ≤≤时,B A ⊆ D .存在实数a 使得B A ⊆32.若集合P ={x |x 2+x ﹣6=0},S ={x |ax ﹣1=0},且S ⊆P ,则实数a 的可能取值为( )A .0B .13-C .4D .12 33.下列说法正确的有( )A .设{,2}M m =,{2,2}N m m =+,且M N =,则实数0m =;B .若∅是{}2,x x a a R ≤∈的真子集,则实数0a ≥;C .集合{}{}2320,10,P x x x Q x mx =-+==-=若P Q ⊇,则实数11,2m ⎧⎫∈⎨⎬⎩⎭;D .设集合}{2320A x ax x =-+=至多有一个元素,则{}908a a a ⎧⎫∈⋃≥⎨⎬⎩⎭;34.已知集合{}23180A x x x =∈--<R ,{}22270B x x ax a =∈++-<R ,则下列命题中正确的是( )A .若AB =,则3a =-B .若A B ⊆,则3a =-C .若B =∅,则6a ≤-或6a ≥D .若B A Ü时,则63a -<≤-或6a ≥ 35.下列四个命题中,假命题的是( ) A .{}0是空集 B .若a N ∈,则a N -∉C .集合{}2210x x x -+=中只有1个元素D .对所有实数a 、b ,方程0ax b +=恰有一个解36.已知集合{}220,A x ax x a a R =++=∈,若集合A 有且仅有两个子集,则a 的值是( )A .1B .1-C .0D .237.定义集合运算:{}()(),,A B zz x y x y x A y B ⊗==+⨯-∈∈∣,设{}2,3A =,{}1,2B =,则( ) A .当2x =,2y =时,1z =B .x 可取两个值,y 可取两个值,()()z x y x y =+⨯-有4个式子C .A B ⊗中有4个元素D .A B ⊗的真子集有7个三、填空题38.某单位共有员工85人,其中68人会骑车,62人会驾车,既会骑车也会驾车的人有57人,则既不会骑车也不会驾车的人有___________人.39.已知集合{34},{211}A xx B x m x m =-≤≤=-<<+∣∣,且B A ⊆,则实数m 的取值范围是___________.40.已知{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则方程()202120202202020-+-=a x a b x a 的解为____.41.已知集合{}1A x ax a R ==∈,,{}240B x x =-=,若A B ⊆,则所有a 的取值构成的集合为________. 42.已知集合212|,,{|1,}33n n A x x n Z B x x n Z +⎧⎫==∈==+∈⎨⎬⎩⎭,则集合A 、B 的关系为A ____(B 从“,,⊆⊇=”选择合适的符号填空).43.下列各组中的两个集合相等的有____________ (1)P ={x |x =2n ,n ∈Z },Q ={x |x =2(n +1),n ∈Z } (2)P ={x |x =2n -1,n ∈N +},Q ={x |x =2n +1,n ∈N +};(3)P ={x |x 2-x =0},Q ={x |x =1(1)2n+-,n ∈Z }.(4)P ={x |y =x +1},Q ={(x ,y )|y =x +1}四、解答题44.已知集合 {|05}A x x a =<-…,{|6}2a B x x =-<…. (1)若A B ⊆,求 a的取值范围;(2)若 B A ⊆,求 a 的取值范围; (3)集合A与 B能够相等?若能,求出 a 的值,若不能,请说明理由.45.含有三个实数的集合可表示为{a ,b a,1},也可表示为{a 2,a +b ,0}.求a +a 2+a 3+…+a 2011+a 2012的值.46.已知集合{|4}A x x a =-=,集合{}1,2,B b =(1)是否存在实数a ,使得对任意实数b 都有A B ⊆成立?若存在,求出对应的a 值;若不存在,说明理由.(2)若A B ⊆成立,写出所有实数对(),a b 构成的集合.47.已知集合1{|24}2x A x =<< ,{}B x x a =<,{}121C x m x m =-<<+. (1)若A B ⊆时,求实数a 的取值范围; (2)若C 是A 的子集,求实数m 的取值范围.48.设集合{}21,1,33A a a a =--+-,{}2210B x x x =-+=,(){}210C x x a x a =-++=.(1)讨论集合B 与C 的关系; (2)若0a <,且C A ⊆,求实数a 的值.【答案详解】1.B①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集. 故选:B . 2.D 解:2{|0,}{|02,}{1x A x x N x x x Nx-=≤∈=<≤∈=,2} {|2,}{|04,}{0B x x x Z x x x Z =≤∈=≤≤∈=,1,2,3,4},因为A C B ⊆⊆,所以C 中元素至少有1,2;至多为:0,1,2,3,4; 所以集合C 的个数即为集合{0,3,4}子集的个数:328=. 故选:D . 3.D【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|04,1,2,3,4B x x x =<≤∈=N .因为A C B ⊆⊆,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选:D .4.C【详解】因M N ⊆,而N φ⊆,所以M φ=时,即21a a ≤-,则13a ≤,此时M φ≠时,M N ⊆,则1123110242a a a a a a a ⎧>⎪-<⎧⎪⎪-≥⇒≤⎨⎨⎪⎪≤≤⎩⎪⎩,无解, 综上得13a ≤,即实数a 的取值范围是1(,]3-∞.故选:C5.D【详解】因为集合{}{}|0=|12A x x a B x x =≤≤≤≤,,B A ⊆,所以2a ≥.故选:D6.B【详解】由题意,集合[]1,2A =,可得{}[]2,2,4B y y x a x A a a ==+∈=++,因为A B ⊆,所以2142a a +≤⎧⎨+≥⎩,解得[]2,1a ∈--. 故选:B.7.C【详解】解:{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,注意到后面集合中有元素 0, 由于集合相等的意义得 0a b += 或 0a =.0b a≠,0a ∴≠, 0a b ∴+=,即 =-a b ,1b a=-, 1b ∴=,1a =-,2b a ∴-=.故选:C8.D【详解】由于A B =,所以 (1)11a b a b b+=⎧⎪⎨=-⎪⎩,结合集合A 元素的互异性可知此方程组无解.(2)11a b b a b+=-⎧⎪⎨=⎪⎩解得1213a b a b ==⇒+=. 故选:D9.B【详解】 因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭, 所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩, 当1a =时,不满足集合元素的互异性,故1a =-,0b =,即()2021202120212021101a b +=-+=-.故选:B.10.D【详解】由题意知,集合A ≠∅,所以1a >,又因为A 是U 的子集,故需9a ≤,所以a 的取值范围是19a <≤.故选:D11.A【详解】①错,当m =0时,不是一元二次方程;②错,Δ=4+4a ,并不一定大于或等于0;③正确;④错,空集是任何非空集合的真子集.故选:A.12.A【详解】若集合{}2|210A x mx x =++≤=∅,则不等式2210mx x ++>恒成立,当0m =时,不等式2210mx x ++>可化为210x +>,则12x >-,不满足题意;当0m ≠时,为使不等式2210mx x ++>恒成立,只需0440m m >⎧⎨∆=-<⎩,解得1m >, 综上集合{}2|210A x mx x =++≤=∅时,1m >;又集合{}2|210A x mx x =++≤≠∅,所以1m £.故选:A.13.D【详解】由于集合A 是点集而B 是数集,所以是两类集合,所以交集为空集,故选:D.14.C【详解】解析:设任意1x A ∈,则111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+,所以1x B ∈;当121,k n n Z =-∈时,1141(41)999x n n =-=-,所以1x B ∈. 所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈因为22412(2)1k k +=+,22412(21)1k k -=-+,且22k 表示所有的偶数,221k -表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数. 所以2x A ∈.所以B A ⊆故A B =.故选:C .15.D【详解】解:由题意知,集合{}11A =-,, 由于1mx =,∴当0m =时,B =∅,满足B A ⊆;当0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,由于B A ⊆,所以11m=或11m =-, 1m ∴=或1m =-, 0m ∴=或1或1-.即m 的取值个数为3,故选:D .16.A【详解】解:①0N ⊆,0为集合N 的一个元素,0N ∈,故①错误,②Q π∈,因为π为无理数,Q π∉,故②错误,③{}{}a a b c d ⊆,,,,因为集合{}a 是集合{}a b c d ,,,的子集,故③正确,④R ∅∈,因为∅为R 的子集,故④错误.17.B【详解】 b a,0a ∴≠ {}2,,1,,0b a a a ba ⎧⎫=+⎨⎬⎩⎭0b a ∴=,即0b =, {}{}2,0,1,,0a a a ∴=∴当21a a a ⎧=⎨=⎩时,1a =-或1a =, 当1a =时,即得集合{}1,0,1,不符合元素的互异性,故舍去,当21a a a =⎧⎨=⎩时,1a =,即得集合{}1,0,1,不符合元素的互异性,故舍去, 综上,1a =-,0b =()2020202020212021101∴+=-+=a b ,故选:B18.B 【详解】 ()()|21,,|2,44M x x k k Z N x x k k Z ππ⎧⎫⎧⎫==⋅-∈==⋅+∈⎨⎬⎨⎬⎩⎭⎩⎭, 21k -为奇数,2k +为整数,所以M N ⊆.故选:B19.B【详解】集合A 中,由111x <--得,当1x >时,11x <-+,0x <(舍);当1x <时,11x >-+,0x >,所以集合{}01A x x =<<;集合B 中,若1640m ∆=+≤,4m ≤-,则B R =,符合要求;若4m >-,根据二次函数对称轴为2x =,若A B ⊆,则140m --≥,3m ≤-,综上可得:3m ≤-20.B【详解】对于A :M ,N 都是点集,(2,3)与(3,2)是不同的点则M ,N 是不同的集合,故不符合; 对于B :M ,N 都是数集,都表示2,3两个数,是同一个集合,复合要求;对于C :M 是点集,表示直线1x y +=上所有的点,而N 是数集,表示函数1x y +=的值域,则M ,N 是不同的集合,故不符合;对于D :M 是数集,表示1,2两个数,N 是点集,则M ,N 是不同的集合,故不符合;故选:B .21.D由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选:D.22.C【详解】因为B A ⊆,所以21m =或22m =-因为22m =-无解,所以22m =-不成立,由21m =得1m =±,所以实数m 的取值集合为{}1,1-.故选:C.23.D6{|}{0,3,4,5}6x N N x∈∈=-, ∴6{|}6x N N x∈∈-的子集的个数为4216=. 故选:D.24.D解:∵{}{}2201,2x x x --==-,∴与集合{}1,2A =-相等的是{}220x x x --=.故选:D25.B【详解】{2,3,4,6}A B =å,所以集合A B å的非空真子集的个数为42214-=, 故选:B .26.C【详解】 解:集合1{|}26n C x x n Z ==+∈,,∴当()2n a a Z =∈时,211266a x a =+=+, 当()21n a a Z =+∈时,2112263a x a +=+=+, 又集合1{|}6A x x k k Z ==+∈,,A C ∴Ü, 集合1{|}23m B x x m Z ==-∈,,集合1{|}26n C x n Z ==+∈,,1112326m m --=+, 可得C B =,综上可得A C B =.Ü 故选:C .27.D由A ={x |x 2+px +q =x }={2}知,x 2+px +q =x 即()210x p x q +-+=有且只有一个实数解2x =,∴22+2p +q =2,且Δ=(p -1)2-4q =0.计算得出p =-3,q =4.则(x -1)2+p (x -1)+q =x +3可化为(x -1)2-3(x -1)+4=x +3; 即(x -1)2-4(x -1)=0;则x -1=0或x -1=4,计算得出x =1或x =5.所以集合B ={1,5}.故选:D .28.C【详解】 解:因为集合301x B x x -⎧⎫=≤⎨⎬+⎩⎭, 所以{|13}B x x =-<≤,又集合13{|}A x x =-≤≤,所以B A Ü,根据韦恩图可得选项C 正确,故选:C.29.A【详解】由题意,由2{|440Q m R mx mx =∈+-<对任意的x 恒成立},对m 分类:①当0m =时,40-<恒成立,②当0m <时,则2(4)4(4)0m m ∆=-⨯⨯-<,解得0m <,综上可得0m ≤,即{|0}Q m R m =∈≤,所以P 是Q 的真子集.故选:A .30.B解:若x ∈S i ,y ∈S j ,则y -x ∈S k ,从而(y -x )-y =-x ∈S i ,所以S i 中有非负元素,由i ,j ,k 的任意性可知三个集合中都有非负元素,若三个集合都没有0,则取S 1∪S 2∪S 3中最小的正整数a (由于三个集合中都有非负整数,所以这样的a 存在),不妨设a ∈S 1,取S 2∪S 3中的最小正整数b ,并不妨设b ∈S 2,这时b >a (否则b 不可能大于a ,只能等于a ,所以b -a =0∈S 3,矛盾),但是,这样就导致了0<b -a <b ,且b -a ∈S 3,这时与b 为S 2∪S 3中的最小正整数矛盾,∴三个集合中必有一个集合含有0.∵三个集合中有一个集合含有0,不妨设0∈S 1,则对任意x ∈S 2,有x -0=x ∈S 3,∴S 2包含于S 3,对于任意y ∈S 3,有y -0=y ∈S 2,∴S 3包含于S 2,则S 2=S 3,综上所述,这三个集合中必有两个集合相等, 故选:B .31.AD【详解】选项A :若集合A B =,则有231,22,a a -=⎧⎨-=⎩,因为此方程组无解,所以不存在实数a 使得集合A B =,故选项A 正确. 选项B :当4a =时,{}52B x x =<<=∅,不满足A B ⊆,故选项B 错误. 若B A ⊆,则①当B =∅时,有232a a -≥-,1a ≥;②当B ≠∅时,有1,231,22a a a <⎧⎪->⎨⎪-<⎩此方程组无实数解; 所以若B A ⊆,则有1a ≥,故选项C 错误,选项D 正确.故选:AD .32.ABD解:P ={x |x 2+x ﹣6=0}={﹣3,2},①S =∅,a =0;②S ≠∅,S ={x |x 1a =},1a =-3,a 13=-, 1a =2,a 12=; 综上可知:实数a 的可能取值组成的集合为{12,0,13-}.故选:ABD .33.ABD【详解】对于A ,因为M N =,故222m m m =+⎧⎨=⎩(无解舍去)或222m m m =⎧⎨=+⎩,故0m =,故A 正确. 对于B ,因为∅是{}2,x x a a R ≤∈的真子集,故{}2,x x a a R ≤∈为非空集合,故0a ≥,故B 正确.对于C ,{}1,2P =,若0m =,则Q =∅,满足Q P ⊆;若0m ≠,则1Q m ⎧⎫=⎨⎬⎩⎭,又Q P ⊆,故11m =或12m=即1m =或12m =,综上,0m =或1m =或12m =,故C 错误.对于D ,因为A 至多有一个元素,故0a =或0980a a ≠⎧⎨∆=-≤⎩, 所以{}908a a a ⎧⎫∈⋃≥⎨⎬⎩⎭,故D 正确. 故选:ABD.34.ABC【详解】{}36A x x =∈-<<R ,若A B =,则3a =-,且22718a -=-,故A 正确.3a =-时,A B =,故D 不正确.若A B ⊆,则()()2233270a a -+⋅-+-≤且2266270a a ++-≤,解得3a =-,故B 正确.当B =∅时,()224270a a --≤,解得6a ≤-或6a ≥,故C 正确. 故选:ABC .35.ABD【详解】对于A 选项,{}0不是空集,A 错;对于B 选项,当0a =时,则a N ∈且N a -∈,B 错;对于C 选项,{}{}22101x x x -+==,C 对;对于D 选项,取0a =,0b ≠,则方程0ax b +=无实解,D 错.故选:ABD.36.ABC【详解】由于集合A 有且仅有两个子集,则集合A 为单元素集合,即方程220ax x a ++=只有一根. ①当0a =时,方程为20x =,解得0x =,合乎题意;②当0a ≠时,对于方程220ax x a ++=,2440a ∆=-=,解得1a =±.综上所述,0a =或1a =±.故选:ABC.37.BD【详解】{}{}22,,=1,0,2A B z z x y x A y B ⊗==-∈∈∣,故A B ⊗中有3个元素,其真子集的个数为3217-=,故C 错误,D 正确. 当2x =,2y =时,0z =,故A 错误.x 可取两个值,y 可取两个值,()()z x y x y =+⨯-共有4个算式,分别为:()()()()2121,3131+-+-,()()()()3232,2222+-+-, 故B 正确.故选:BD .38.12设会骑车的人组合的集合为A ,会驾车的人组成的集合为B ,既会骑车也会驾车的人组成的集合为集合C ,易知A B C =,记card()A 表示集合A 中的元素个数,则有()()()()68625773card A B card A card B card A B =+-=+-=,所以既不会骑车也不会驾车的人为857312-=.故答案为:1239.[)1,-+∞解:分两种情况考虑:①若B 不为空集,可得:211m m -<+,解得:2m <,{},|34B A A x x ⊆=-≤≤,213m ∴-≥-且14m +≤,解得:13m -≤≤,②若B 为空集,符合题意,可得:211m m -≥+,解得:2m ≥.综上,实数m 的取值范围是1m ≥-.故答案为:[)1,-+∞.40.{}1,2-【详解】{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭若0a =,则b a 无意义,故有0,0b b a=∴=,此时有a a b =+,21a ∴=.1a ∴=-或1a =(舍去,因为,,1b a a ⎧⎫⎨⎬⎩⎭中不满足集合的互异性) 1,0a b ∴=-=代入()202120202202020a x a b x a -+-=得220x x +-=,方程的解集为{}1,2-.故答案为:{}1,2-41.102⎧⎫±⎨⎬⎩⎭, 【详解】{}2,2B =-.当0a =时,A =∅,满足A B ⊆.当0a ≠时,1|A x x a ⎧⎫==⎨⎬⎩⎭, 由于A B ⊆,所以1122a a =-⇒=-或1122a a =⇒=.综上所述,所有a 的取值构成的集合为102⎧⎫±⎨⎬⎩⎭,. 故答案为:102⎧⎫±⎨⎬⎩⎭, 42.=【详解】解:由集合A 得:1|(21),3A x x n n Z ⎧⎫==+∈⎨⎬⎩⎭,由集合B 得:1|(23),3B x x n n Z ⎧⎫==+∈⎨⎬⎩⎭,{|21x x n =+,}{|23n Z x x n ∈==+,}n Z ∈, A B ∴=,故答案为:=.43.(1)(3)(1)中集合P ,Q 都表示所有偶数组成的集合,有P =Q ;(2)中P 是由1,3,5,…所有正奇数组成的集合,Q 是由3,5,7,…所有大于1的正奇数组成的集合,1∉Q ,所以P ≠Q .(3)中P ={0,1},当n 为奇数时,x =1(1)2n +-=0,当n 为偶数时,x =1(1)2n +-=1,所以Q ={0,1},P =Q .(4)中集合,P Q 的研究对象不相同,所以P ≠Q . 故答案为:(1)(3).44.【详解】(1) 集合 {|05}{|5}A x x a x a x a =<-=<≤+…,{|6}2a B x x =-<…. A B ⊆,562a a a +⎧⎪∴⎨-⎪⎩……,解得 01a 剟,a ∴ 的取值范围是 []01,.(2)B A ⊆,当 B =∅ 时,62a-…,12a -…;当 B ≠∅ 即12a >-时,562a a a +⎧⎪⎨-⎪⎩……,解得 a ∈∅,a ∴ 的取值范围是 (]12∞--,.(3)A B = 时,562a a a+=⎧⎪⎨-=⎪⎩ 无解,∴ 集合 A 与 B 不能相等.45.0【详解】由题可知a ≠0,b =0,即{a ,0,1}={a 2,a ,0},所以a 2=1⇒a =±1, 当a =1时,集合为{1,1,0},不合题意,应舍去; 当a =-1时,集合为{-1,0,1},符合题意. 故a =-1,∴a +a 2+a 3+…+a 2011+a 2012=0.46【详解】解:(1)由题意,集合{|4}A x x a =-={}4,4a a =-+, 因为b 是任意实数,要使A B ⊆,必有4142a a -=⎧⎨+=⎩或4241a a -=⎧⎨+=⎩, 两个方程组都没有实数解,所以不存在满足条件的实数a . (2)由(1)知{}4,4A a a =-+,要使A B ⊆,则满足414a a b -=⎧⎨+=⎩或424a a b -=⎧⎨+=⎩或441a b a -=⎧⎨+=⎩或442a b a -=⎧⎨+=⎩, 解得59a b =⎧⎨=⎩或610a b =⎧⎨=⎩或37a b =-⎧⎨=-⎩或26a b =-⎧⎨=-⎩, 所以实数对(),a b 构成的集合为()()()(){}596103726----,,,,,,,. 47.(1)2a ≥;(2)2m ≤-或102m ≤≤.【详解】(1)依题意得12222x -<<,{}12A x x =-<<,因为A B ⊆,所以2a ≥; (2)因为C 是A 的子集,当C =∅时,有121m m -≥+,解得2m ≤-;当C ≠∅时,有12111212m m m m -<+⎧⎪-≤-⎨⎪+≤⎩,解得102m ≤≤; 综上所述得2m ≤-或102m ≤≤. 48.(1){}1,{|(1)()0}B C x x x a ==--=, 当1a =时,{}1B C ==;当1a ≠时,{}1,,C a B =是C 的真子集. (2)当0a <时,因为C A ⊆,所以{}1,a A ⊆. 当233a a a +-=时,解得1a =(舍去)或3a =-,此时{}1,3,2A =-,符合题意.当1a a --=时,解得12a =-,此时1171,,24A ⎧⎫=--⎨⎬⎩⎭符合题意. 综上,3a =-或12a =-.。

高一数学人必修课件集合间的基本关系

高一数学人必修课件集合间的基本关系

03
交集、并集及其运算规则
交合A且也属于集合B 的元素组成的集合,称为集合A与 集合B的交集,记作$A cap B$。
运算规则
$A cap B = { x | x in A text{ 且 } x in B }$。
举例
若$A = { 1, 2, 3 }$,$B = { 2, 3, 4 }$,则$A cap B = { 2, 3 }$。
补集与差集
对于任意集合$A$,有 $complement_{U}(complement_{U}A) = A$。
对于任意两个集合$A$和$B$,有 $complement_{U}(A - B) = complement_{U}A cup B$。
05
典型例题分析与解题思路
判断题:判断给定两个集合之间关系
示例
设集合A = {1, 2, 3},集合B = {1, 2, 3, 4, 5},则A是B的子集 ,记作A ⊆ B。
真子集概念与性质
真子集概念:如果集合A是集合B的子集 ,且A不等于B,那么称集合A是集合B的 真子集。
对于任意集合A,其本身的子集有2^n个 (n为A中元素的个数),其中真子集有 2^n - 1个。
感谢观看
并集定义及运算规则
并集定义
由所有属于集合A或属于集合B的 元素组成的集合,称为集合A与 集合B的并集,记作$A cup B$

运算规则
$A cup B = { x | x in A text{ 或 } x in B }$。
举例
若$A = { 1, 2, 3 }$,$B = { 2, 3, 4 }$,则$A cup B = { 1, 2, 3,
可数无穷大概念介绍
01 定义

集合的关系与运算规律

集合的关系与运算规律

集合的关系与运算规律介绍:集合是数学中一个重要的概念,用来表示一组具有共同属性的对象。

在集合理论中,集合之间有不同的关系和运算规律。

本文将介绍集合的关系(包括子集、超集、相等等)以及集合的运算规律(包括交集、并集、补集和差集等)。

一、集合的关系1. 子集关系:若集合A的所有元素都是集合B的元素,则称集合A 是集合B的子集。

用符号“A⊆B”表示。

例如,若A={1,2,3},B={1,2,3,4,5},则A是B的子集。

2. 超集关系:若集合B的所有元素都是集合A的元素,则称集合A 是集合B的超集。

用符号“A⊇B”表示。

例如,若A={1,2,3,4,5},B={1,2,3},则A是B的超集。

3. 真子集关系:若集合A是集合B的子集,并且集合A和集合B不相等,则称集合A是集合B的真子集。

用符号“A⊂B”表示。

例如,若A={1,2,3},B={1,2,3,4,5},则A是B的真子集。

4. 真超集关系:若集合A是集合B的超集,并且集合A和集合B不相等,则称集合A是集合B的真超集。

用符号“A⊃B”表示。

例如,若A={1,2,3,4,5},B={1,2,3},则A是B的真超集。

5. 相等关系:若集合A的所有元素都是集合B的元素,并且集合B的所有元素都是集合A的元素,则称集合A和集合B相等。

用符号“A=B”表示。

例如,若A={1,2,3},B={3,2,1},则A和B相等。

二、集合的运算规律1. 交集:集合A与集合B的交集,表示为A∩B,是同时属于集合A和集合B的元素组成的集合。

例如,若A={1,2,3},B={3,4,5},则A∩B={3}。

2. 并集:集合A与集合B的并集,表示为A∪B,是属于集合A或集合B的元素组成的集合。

例如,若A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。

3. 补集:给定全集U和集合A,集合A的补集,表示为A'或A^c,是所有不属于集合A的元素组成的集合。

集合的基本运算(精讲)(原卷版)--2023届初升高数学衔接专题讲义

集合的基本运算(精讲)(原卷版)--2023届初升高数学衔接专题讲义

2023年初高中衔接素养提升专题讲义第八讲集合的基本运算(精讲)(原卷版)【知识点透析】一、交集1、文字语言:对于两个给定的集合A ,B ,由属于A 又属于B 的所有元素构成的集合,叫做A ,B 的交集,记作A ∩B ,读作“A 交B ”2、符号语言:A ∩B ={x |x ∈A 且x ∈B }3、图形语言:阴影部分为A ∩B4、性质:A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅∩A =∅,如果A ⊆B ,则A ∩B =A5、解题思路:单个数字交集找相同,不等式的交集画数轴,不同集合高度画不同。

二、并集1、文字语言:对于两个给定的集合A ,B ,由两个集合的所有的元素组成的集合,叫做A 与B 的并集,记作A ∪B ,读作“A 并B ”2、符号语言:A ∪B ={x |x ∈A 或x ∈B }3、符号语言:阴影部分为A ∪B4、性质:A ∪B =B ∪A ,A ∪A =A ,A ∪∅=∅∪A =A ,如果A ⊆B ,则A ∪B =B .5、解题思路:两个集合所有元素集中在一起,但是重复元素只写一次,要满足集合中的互异性三、补集1、全集:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.记法:全集通常记作U .2、补集(1)文字语言:如果给定集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合,叫做A 在U 中的补集,记作A C U .(2)符号语言:}|{A x U x x A C U ∉∈=且(3)符号语言:(4)性质:A ∪∁U A =U ;A ∩∁U A =∅;∁U (∁U A )=A .【注意】并不是所有的全集都是用字母U 表示,也不是都是R,要看题目的。

四、利用交并补求参数范围的解题思路1、根据并集求参数范围:=⇒⊆ A B B A B ,若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 2、根据交集求参数范围:=⇒⊆ A B A A B若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 【知识点精讲】题型一并集、交集、补集的运算【例题1】(2022·浙江·杭十四中高一期中)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4,5S T ==,则S T ⋃=()A .{}3,5B .{}2,4C .{}1,2,3,4,5D .{}1,2,3,4,5,6【例题2】(2021春•山西大同期中)设集合{|1}A x x =<,{|22}B x x =-<<,则(A B = )A .{|21}x x -<<B .{|2}x x <C .{|22}x x -<<D .{|1}x x <【例题3】.(2022·江苏·高二期末)已知集合{}1,2A =,{}21,2B a a =-+,若{}1A B ⋂=,则实数a 的值为()A .0B .1C .2D .3【例题4】.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))已知集合{}21A x x =-<≤,{}0B x x a =<≤,若{|23}A B x x =-<≤ ,A B = ()A .{|20}x x -<<B .{|01}x x <≤C .{|13}x x <≤D .{|23}x x -<≤【例题5】.(2021·北京昌平区·高二期末)已知全集{0,1,2,3,4,5}U =,集合{0,1,2,3}A =,{3,4}B =,则()U A B = ð___________.【例题6】.(2022·四川南充高一课时检测)已知全集{}16A x x =≤≤,集合{}15B x x =<<,则A B =ð().A .{}5x x ≥B .{1x x ≤或}5x ≥C .{1x x =或}56x <≤D .{1x x =或}56x ≤≤【例题7】.41.(2021·陕西商洛市·镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.(1)若4m =,求A B ;(2)若A B =∅ ,求实数m 的取值范围.【变式1】.(2022·河北邢台高二期末)若集合{}|24M x x =-<≤,{}|46N x x =≤≤,则A .M N ⊆B .{}4M N =C .M N ⊇D .{}26|M N x x =-<< 【变式2】.(2022·江苏常州高三开学考试)设集合{}11A x x =-<<,{}220B x x x =-≤,则A B ⋃=()A .(]1,2-B .()1,2-C .[)0,1D .(]0,1【变式3】(2022·青海·海东市第一中学模拟预测(文))已知集合{}1,1,2M =-,{}2N x x x =∈=R ,则M N ⋃=()A .{}1B .{}1,0-C .{}1,0,1,2-D .{}1,0,2-【变式4】.(2022·浙江·三模)已知集合{}{}25,36P x x Q x x =≤<=≤<,则P Q = ()A .{}25x x ≤<B .{}26x x ≤<C .{}35x x ≤<D .{}36x x ≤<题型二并集、交集、补集综合运算及性质的应用【例题8】.(2022·河南洛阳高一课时检测)已知全集U ,集合{}1,3,5,7,9A =,{}2,4,6,8U C A =,{}1,4,6,8,9U C B =,则集合B =()A .{}1,5,7B .{}3,5,7,9C .{}2,3,5,7,9D .{}2,3,5,7【例题9】.(2022·重庆·西南大学附中模拟预测)已知集合{}|10A x ax =-=,{}*|14B x x =∈≤<N ,且A B B ⋃=,则实数a 的所有值构成的集合是()A .11,2⎧⎫⎨⎬⎩⎭B .11,23⎧⎫⎨⎬⎩⎭C .111,,23⎧⎫⎬⎭D .110,1,,23⎧⎫⎨⎬⎩⎭【例题10】.(湖北省“宜荆荆恩”2022-2023学年高三上学期起点考试)已知集合(,1][2,)A =-∞⋃+∞,{|11}B x a x a =-<<+,若A B =R ,则实数a 的取值范围为()A .(1,2)B .[1,2)C .(1,2]D .[1,2]【例题11】.(2022·云南昆明一中高一检测)已知A ,B 都是非空集合,(){}&A B x x A B =∈⋃且()x A B ∉ .若{}02A x x =<<,{}0B x x =≥,则&A B =()A .{}0x x ≥B .{}02x x <<C .{0x x =或}2x <-D .{0x x =或}2x ≥【例题12】.(2021·江苏高一专题练习)已知集合{}42A x x =-<<,{}110B x m x m m =--<<->,.(1)若A B B ⋃=,求实数m 的取值范围;(2)若A B ⋂≠∅,求实数m 的取值范围.【变式1】(2022·辽宁沈阳高一课前预习)集合{}2320A x x x =-+=,{}2220B x x ax =-+=,若A B A ⋃=,求实数a 的取值范围.【变式2】.(2023·浙江高二开学考试)已知R a ∈,设集合{}22210A x x ax a =-+-<,{}2B x x =>,(1)当2a =时,求集合A .(2)若R A B ⊆ð,求实数a 的取值范围.【变式3】.(2022·四川乐山市高一单元测试)已知集合{}211A x a x a =-<<+,{}01B x x =≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中任选一个作为已知条件,求A B ;(2)若R A B A ⋂=ð,求实数a 的取值范围.题型三Venn 图的应用【例题13】.(2021·贵州省思南中学高三月考(理))已知全集U =R ,集合{}23,A y y x x R ==+∈,{}24B x x =-<<,则图中阴影部分表示的集合为()A .[]2,3-B .()2,3-C .(]2,3-D .[)2,3-【例题14】.(2021·全国高三其他模拟)已知全集U x y ⎧⎫=∈=⎨⎩Z ,集合{}13M x x =∈-<Z ,{}4,2,0,1,5N =--,则下列Venn 图中阴影部分表示的集合为()A .{}0,1B .{}3,1,4-C .{}1,2,3-D .{}1,0,2,3-【例题15】.(2021·山东济南·高一期中)国庆期间,高一某班35名学生去电影院观看了《长津湖》、《我和我的父辈》这两部电影中的一部或两部.其中有23人观看了《长津湖》,有20人观看了《我和我的父辈》则同时观看了这两部电影的人数为()A .8B .10C .12D .15【变式】.(2021·广东·广州外国语学校高一检测)某公司共有50人,此次组织参加社会公益活动,其中参加A 项公益活动的有28人,参加B 项公益活动的有33人,且A ,B 两项公益活动都不参加的人数比都参加的人数的三分之一多1人,则只参加A 项不参加B 项的有()A .7人B .8人C .9人D .10人。

高一数学集合间的基本关系知识点详解

高一数学集合间的基本关系知识点详解

高一数学集合间的基本关系知识点详解高一的学生首先接触的就是集合间的知识点,下面店铺的小编将为大家带来高一数学关于集合间的基本关系的知识点的介绍,希望能够帮助到大家。

高一数学集合间的基本关系知识点集合知识点总结知识点包括集合的概念、集合元素的特性、集合的表示方法、常见的特殊集合、集合的分类和集合间的基本关系等知识点,除了集合的表示方法中的描述法较难理解,其它的都多是好理解的知识,只需加强记忆。

一、集合有关概念1、集合的含义2、集合中元素的三个特性:确定性、互异性、无序性。

整数集Z (包括负整数、零和正整数) (4)有理数集Q (5)实数集R6、集合的分类: (1)有限集;(2)无限集;(3)空集。

二、集合间的基本关系1、子集2、真子集3、空集集合考法集合是学习函数的基础知识,在段考和高考中是必考内容。

在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式出现,经常出现在选择填空题的前几小题,难度不大。

主要与函数和方程、不等式联合考查的集合的表示方法和集合间的基本关系。

误区提醒2、集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。

空集是任何集合的子集,是任何非空集合的真子集。

3、集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

4、集合的运算注意端点的取等问题。

最好是直接代入原题检验。

5、集合中的元素具有确定性、互异性和无序性三个特征,尤其是确定性和互异性。

在解题中,要注意把握与运用,例如在解答含有参数问题时,千万别忘了检验,否则很可能会因为不满足“互异性”而导致结论错误。

【典型例题】集合与集合的关系有“包含”与“不包含”,“相等”三种:1、子集概念:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含A,记作AB(或说A包含于B),也可记为BA(B包含A),此时说A是B的子集;A不是B的子集,记作AB,读作A不包含于B2、集合相等:对于集合A和B,如果集合A中的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,即集合A是集合B的子集,且集合B是集合A的子集,我么就说集合A和集合B相等,记作A=B3、真子集:对于集合A与B,如果AB并且A≠B,则集合A是集合B的真子集,记作,读作A真包含于B(B真包含A)集合间基本关系:性质1:(1)空集是任何集合的子集,即A;(2)空集是任何非空集合的真子集;(3)传递性:AB,BCAC;AB,BCAC;(4)AB,BAA=B。

高一数学知识讲学专题01 集合 集合间的关系 集合的运算(word档含答案解析)

高一数学知识讲学专题01 集合  集合间的关系  集合的运算(word档含答案解析)

专题一集合、集合与集合的关系、集合的运算知识精讲一知识结构图二.学法指导1.判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.2. 集合中的元素具有三个特性,求解与集合有关的字母参数值(范围)时,需借助集合中元素的互异性来检验所求参数是否符合要求.3.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识.4.利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需特别注意端点问题.5.求集合并集的两种基本方法:(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解.6.求集合交集的方法为:(1).定义法,(2)数形结合法.(2).若A,B是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.三.知识点贯通知识点1 元素与集合相关概念(1)集合中元素的特性:确定性、互异性和无序性.例1.考察下列每组对象,能构成集合的是()①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④知识点二元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.(3)常见的数集及表示符号例题2:已知集合A含有两个元素1和a2,若a∈A,求实数a的值.知识点三集合间的关系1.判断集合关系的方法.1观察法:一一列举观察.2元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.3数形结合法:利用数轴或Venn图.2.集合A中含有n个元素,则有(1)A的子集的个数有2n个.(2)A的非空子集的个数有2n-1个.(3)A的真子集的个数有2n-1个.(4)A的非空真子集的个数有2n-2个.3.空集是任何集合的子集,因此在解A⊆B(B≠∅)的含参数的问题时,要注意讨论A=∅和A≠∅两种情况,前者常被忽视,造成思考问题不全面.例题3 .已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.知识点四集合的运算1.由所有属于集合A或属于集合B的元素组成的集合叫A与B的并集,记作A∪B;符号表示为A∪B={x|x∈A或x∈B}2.并集的性质A∪B=B∪A,A∪A=A,A∪∅=A,A⊆A∪B.3.对于两个给定的集合A、B,由所有属于集合A且属于集合B的元素组成的集合叫A与B 的交集,记作A∩B。

高一数学集合之间的关系与运算知识精讲

高一数学集合之间的关系与运算知识精讲

高一数学集合之间的关系与运算【本讲主要内容】集合之间的关系与运算子集、全集、补集、交集、并集等概念,集合的运算性质。

【知识掌握】 【知识点精析】1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A注:B A ⊆有两种可能: (1)A 是B 的一部分;(2)A 与B 是同一集合。

(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。

(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。

记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。

注:空集是任何集合的子集。

Φ⊆A空集是任何非空集合的真子集。

Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集。

A A ⊆ 易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。

如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。

如Φ⊆{0}。

不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。

3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。

高中数学必修一《集合的含义及运算》知识梳理

高中数学必修一《集合的含义及运算》知识梳理

第一讲 集合的含义及运算知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质: 、 、 ;2.集合的三种表示方法: 、 、 ;重难点突破:1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性,在解题过程中最易被忽视,因此要对结果进行检验。

问题1.现有含3个元素的集合,既可以表示为1b a a⎧⎫⎨⎬⎩⎭,, ,也可以表示为{}20a a b +,,,则20112011a b += .2.集合的表示法(1)描述法要紧紧抓住代表元素以及它所具有的性质,如{}A=|2x x y =集合,{}B=|2x y y =,{}C=()|2x x y y =,等的差别,如果对集合中代表元素认识不清,将导致求解错误:问题:2.上述集合中A B ⋂= ;A C ⋂= ;(2)Venn 图是直观展示集合的很好方法,在解决抽象集合间元素的有关问题和集合的运算时常用,如前面证明含三种集合运算的运算性质。

3. 集合间的关系主要是理解子集、真子集的含义,并注意它们的区别,特别不要忘了空集与其他集合的关系哦!问题:3. 已知集合,试求集合的所有子集.注:一个重要结论:如果集合A 含有n 个元素,则A 的子集有 个,真子集有 个,非空子集有 个,非空真子集有 个。

4. 集合的运算较复杂的集合的运算问题主要是有关不等式的解集的运算,处理时常借助“数轴”来解决。

问题:4.已知集合U {|1|3|2},{|06}C U R A x x B x x AB ==≤-<=<≤=,,则() . 课堂练习:1. 定义集合运算:.设,则集合的所有元素之和为( )A .0;B .2;C .3;D .62. 已知集合A =-1,3,2-1,集合B =3,.若B A ,则实数= .3. 已知集合( )A. ;B. ;C. ;D.课后作业 (1)1.第二十九届夏季奥林匹克运动会于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( )A . B. C.ABC =I D. B C A =U2.定义集合运算:,设集合,,则集合的所有元素之和为3.设和是两个集合,定义集合,如果,,那么等于4.已知集合A ={a ,a +d ,a +2d},B ={a ,aq , },其中a ≠0,若A =B ,求q 的值热点考点题型探析8|6A x N N x⎧⎫=∈∈⎨⎬-⎩⎭A {}|,,AB z z xy x A y B *==∈∈{}{}1,2,0,2A B ==A B *{m }{2m }⊆m 221,1,9432x y x y M x N y ⎧⎫⎧⎫=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭则M N=Φ{})2,0(),0,3([]3,3-{}3,2B A ⊆C B ⊆{}B y x xy y x B ∈∈+==⊗A,,z A 22{}1,0A ={}3,2=B B ⊗A P Q =-Q P {}Q x P x x ∉∈且,|{}1log 3<=x x P {}1<=x x Q Q P -2aq考点一:集合的定义及其关系例1.(2010天津卷)设集合A={x||x-a|<1,x ∈R},B={x||x-b|>2,x ∈R},若A B ⊆,则实数a ,b 必满足( )A.|a+b|≤3B.|a+b|≥3C.|a-b|≤3D.|a-b|≥3例 2.数集{|(21)}X x x n n z π==+∈,与{|(41)}Y y y k k z π==±∈,之间的关系是( )A .X Y ;B .YX ; C .; D .考点二:集合的基本运算例3、(2009陕西卷文)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 人。

高一数学集合知识点总结

高一数学集合知识点总结

高一数学集合知识点总结一、集合的基本概念1. 集合是由元素组成的整体,元素是集合的构成要素。

2. 集合的表示方法:列举法和描述法。

3. 集合的基本运算:并集、交集、差集和补集。

二、集合的性质及运算规律1. 交换律:A∪B = B∪A,A∩B = B∩A。

2. 结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。

3. 分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) = (A∩B)∪(A∩C)。

4. 幂等律:A∪A = A,A∩A = A。

5. 吸收律:A∪(A∩B) = A,A∩(A∪B) = A。

6. 对偶律:(A∪B)' = A'∩B',(A∩B)' = A'∪B'。

三、集合的关系和判断1. 包含关系:子集和真子集。

- 子集:若集合A中的每个元素都属于集合B,则A是B的子集,记作A⊆B。

- 真子集:若A是B的子集且A≠B,则A是B的真子集,记作A⊂B。

2. 相等关系:两个集合A和B相等,当且仅当A是B的子集且B是A的子集,记作A=B。

3. 元素关系:属于和不属于。

- 属于:若元素a是集合A的元素,则记作a∈A。

- 不属于:若元素a不是集合A的元素,则记作a∉A。

4. 判断问题:- 空集:空集是任何集合的子集。

- 空集的子集:空集是任何集合的子集。

- 空集与非空集的关系:空集不是任何非空集的子集。

四、集合的应用1. 集合的应用于元素的归类和分类问题。

2. 集合的应用于概率问题,如事件的集合、样本空间等。

3. 集合的应用于数学推理和证明,如集合的运算规律的证明。

五、常见问题及解答1. 如何用集合表示一个范围?- 使用描述法:例如,表示大于1小于10的整数集合可以表示为{x | 1 < x < 10}。

2. 如何求两个集合的并集、交集、差集和补集?- 并集:将两个集合中的元素合并在一起,并去除重复的元素。

高一数学上册《集合之间的关系与运算》知识点人教B版

高一数学上册《集合之间的关系与运算》知识点人教B版

高一数学上册《会合之间的关系与运算》知识点人教 B 版一. 课标解读. 《一般高中数学课程》课程中明确指出" 理解会合之间包括与相等的含义, 能辨别给定会合的子集; 在详细情境中, 认识全集与空集的含义."2.重点 : 子集的观点3.难点 : 元素与子集 . 属于与包括之间的差别 .二. 重点扫描. 子集的定义假如会合中的随意一个元素都是会合的元素, 则会合是会合的子集 . 也说会合包括于会合, 或会合包括会合, 记作或2.空集的定义空集是随意一会合的子集, 也就是说 , 对随意会合 , 都有 .3.两会合相等假如, 则等于 , 记作 =; 反之, 假如=, 则.4.真子集的定义假如 , 且中起码有一个元素不属于 , 那么会合是会合的真子集 , 记作 . 以上条件还可归纳为 : 假如 , 且, 则 .5.有限会合的子集个数个元素的会合有个子集; 有个非空子集; 有个真子集 ; 有个非空真子集 .6.维恩图这种图在数学上也称为文氏图 . 它只是起着说明各会合之间关系的表示图的作用 , 所以 , 界限用直线仍是曲线 , 乃实线还虚线都没关紧急 , 只需关闭并把相关元素或子集通通包在里边就行 . 决不可以理解成圈内的每一点都是这个会合的元素; 至于界限上的点能否属于这个会合 , 也都不用考虑 .三.知识精讲知识点 1 划分表示以空集 , 为元素的单元素会合 , 当把视为会合时 , 成立;当把视为元素时 , 也建立 . 表示元素 , 表示认为元素的单元素会合 , 不可以混杂它们的含意 .知识点 2 划分与表示元素与会合之间的关系, 如:;表示会合与会合之间的关系, 如等.四. 典题解悟----------------------------------------------------基础在线----------------------------------------------------[ 题型一 ] 子集与真子集假如会合中的随意一个元素都是会合的元素, 则会合是会合的子集 . 假如 , 且中起码有一个元素不属于 , 那么会合是会合的真子集 .例 1. 知足的会合是什么?分析 : 由可知 , 会合必为非空会合; 又由可知 , 本题即为求会合的全部非空子集。

1.2集合间的基本关系-2024-2025学年高一数学必修第一册+课件(人教A版2019)

1.2集合间的基本关系-2024-2025学年高一数学必修第一册+课件(人教A版2019)
当a=-3时,A={-4,-7,9},B={-8,4,9},且A∩B={9},符合题意.
(2)
集合

{a}
{a,b}
{a,b,c}
集合的子集

⌀,{a}
⌀,{a},{b},{a,b}
⌀,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
子集的个数
1
2
4
8
由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是2 ?真子集的个数
及非空真子集的个数是2 -2.
确定集合的子集、真子集
设A={x(x-16)(x+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集?
解:由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1
或x=4.
故集合A={-4,-1,4}.由0个元素构成的子集为∅;
由1个元素构成的子集为{-4},{-1},{4};
由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};
由3个元素构成的子集为{-4,-1,4}.
因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{4,-1,4}.
真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.
知识讲解
2.填空
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B
的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作
A=B.
也就是说,若A⊆B,且B⊆A,则A=B.
3.做一做

高中数学集合的关系与运算规律解析

高中数学集合的关系与运算规律解析

高中数学集合的关系与运算规律解析在高中数学中,集合是一个非常重要的概念,它是数学中最基本的概念之一。

集合不仅在数学中有广泛的应用,也在其他学科中发挥着重要的作用。

理解和掌握集合的关系与运算规律对于高中数学的学习至关重要。

本文将通过具体的题目举例,分析集合的关系与运算规律,帮助高中学生和他们的父母更好地理解和应用集合概念。

一、集合的关系1. 包含关系包含关系是最基本的集合关系之一。

当一个集合的所有元素都是另一个集合的元素时,我们说前一个集合包含于后一个集合。

例如,设集合A={1, 2, 3},集合B={1, 2, 3, 4, 5},则A包含于B,记作A⊆B。

2. 相等关系当两个集合的元素完全相同时,我们说这两个集合相等。

例如,设集合A={1, 2, 3},集合B={3, 2, 1},则A=B。

3. 交集关系交集关系是指两个集合中共同存在的元素构成的集合。

例如,设集合A={1, 2, 3},集合B={3, 4, 5},则A与B的交集为{3},记作A∩B={3}。

4. 并集关系并集关系是指两个集合中所有元素的集合。

例如,设集合A={1, 2, 3},集合B={3, 4, 5},则A与B的并集为{1, 2, 3, 4, 5},记作A∪B={1, 2, 3, 4, 5}。

通过以上例子,我们可以看出集合的关系是通过元素的包含、相等、交集和并集来确定的。

掌握这些关系对于解决集合运算问题至关重要。

二、集合的运算规律1. 交换律交换律是指集合的交集和并集在交换集合的位置后结果不变。

即对于任意集合A和B,有A∩B=B∩A,A∪B=B∪A。

例如,设集合A={1, 2, 3},集合B={3, 4, 5},则A∩B={3},B∩A={3},A∪B={1, 2, 3, 4, 5},B∪A={1, 2, 3, 4, 5}。

2. 结合律结合律是指集合的交集和并集在满足结合律的情况下,可以改变括号的位置。

即对于任意集合A、B和C,有(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)。

高一数学必修一集合知识点及例题讲解

高一数学必修一集合知识点及例题讲解

高一数学必修一集合知识点及例题讲解高一是数学学习的关键阶段,而集合作为数学基础中的基础,对于后续数学知识的学习具有重大意义。

本文将针对高一数学必修一中的集合知识点进行梳理,并通过例题讲解,帮助大家更好地理解和掌握这部分内容。

一、集合的基本概念1.集合的定义:集合是由一些确定的、互不相同的对象构成的整体。

2.集合的表示方法:列举法、描述法、图形法等。

3.集合的元素:集合中的每一个对象称为元素,用小写字母表示。

4.集合的基数:集合中元素的个数称为集合的基数。

5.集合间的关系:包含、相等、不相交。

6.集合的运算:并集、交集、补集。

二、集合的表示方法及例题1.列举法:将集合中的元素全部列举出来。

例题:用列举法表示集合A={x|x是小于10的自然数,且是3的倍数}。

解答:A={3, 6, 9}。

2.描述法:用性质、规律等描述集合。

例题:用描述法表示集合B={x|x是正整数,且x的平方根是整数}。

解答:B={x|x=n^2,n为正整数}。

3.图形法:用图形表示集合。

例题:用图形法表示集合C={(x,y)|x^2+y^2=1}。

解答:C表示单位圆上的所有点。

三、集合的运算及例题1.并集:两个集合A和B的并集,记作A∪B,表示A和B中所有元素组成的集合。

例题:设A={1, 2, 3},B={3, 4, 5},求A∪B。

解答:A∪B={1, 2, 3, 4, 5}。

2.交集:两个集合A和B的交集,记作A∩B,表示A和B中共有的元素组成的集合。

例题:设A={1, 2, 3},B={3, 4, 5},求A∩B。

解答:A∩B={3}。

3.补集:在全集U中,集合A的补集,记作A,表示不属于A的所有元素组成的集合。

例题:设U={1, 2, 3, 4, 5},A={1, 2, 3},求A。

解答:A={4, 5}。

通过以上集合知识点及例题讲解,相信大家对集合的概念、表示方法和运算有了更深入的理解。

高一集合运算定律知识点

高一集合运算定律知识点

高一集合运算定律知识点集合是数学中一个基础而重要的概念,而集合运算是指对集合中的元素进行一些特定的操作,例如交集、并集、差集等。

在高一数学学习中,我们将会接触到一些关于集合运算的定律,这些定律能够帮助我们更好地理解和应用集合运算。

接下来,我们将介绍高一集合运算定律的几个主要知识点。

一、交换律交换律是指对于集合的并集和交集操作,元素的顺序不影响最终的结果。

换句话说,无论交换并集或者交集的操作顺序,最后得到的结果都是相同的。

例如,对于集合A和B来说,有:A∪B = B∪AA∩B = B∩A这意味着,无论是先对A和B求并集,还是先求交集,最终得到的结果都是相同的。

二、结合律结合律是指对于多个集合的并集和交集操作,元素的分组方式不影响最终的结果。

换句话说,无论是先对哪两个集合求并集或者交集,最后得到的结果都是相同的。

例如,对于集合A、B和C来说,有:(A∪B)∪C = A∪(B∪C)(A∩B)∩C = A∩(B∩C)这意味着,无论我们选择怎样的分组方式,最后得到的结果是相同的。

三、分配律分配律是指集合的并集和交集操作之间存在着一种分配关系。

具体来说,分配律是将两个集合的运算通过一个第三个集合进行连接的一种方式。

例如,对于集合A、B和C来说,有:A∪(B∩C) = (A∪B)∩(A∪C)A∩(B∪C) = (A∩B)∪(A∩C)这意味着,我们可以通过一个集合的并集或者交集来分解另外两个集合的运算,或者通过一个集合的并集或者交集来连接另外两个集合的运算。

四、对偶律对偶律是指集合的补集之间的关系。

对于集合A和B来说,如果A是B的一个补集,那么B也是A的一个补集。

例如,对于集合A和B来说,有:A' = BB' = A这意味着,如果某个集合是另一个集合的补集,那么这两个集合也是对方的补集。

五、德摩根定律德摩根定律是指集合的补集与交集、并集之间的关系。

具体来说,德摩根定律表明,两个集合之间的补集等于它们交集、并集的补集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学集合之间的关系与运算【本讲主要内容】集合之间的关系与运算子集、全集、补集、交集、并集等概念,集合的运算性质。

【知识掌握】 【知识点精析】1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A 注:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合。

(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。

(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。

记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。

注:空集是任何集合的子集。

Φ⊆A 空集是任何非空集合的真子集。

Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集。

A A ⊆易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。

如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。

如Φ⊆{0}。

不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。

3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。

记作A B (读作“A 交B ”),即A B ={x|x ∈A ,且x ∈B }。

5. 并集:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

记作:A B(读作“A并B”)6. 交集、并集的性质:(1)A A=A A Φ=Φ,A B=B A A B⊆A,A B⊆B(2)A A=A A Φ=A A B=B A A B⊇A,A B⊇B7. 德摩根律:(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u(A B)8. 容斥原理:一般地,把有限集A的元素个数记作card(A)。

对于两个有限集A,B,有card(A∪B)=card(A)+card(B)-card(A∩B)。

【解题方法指导】例1. (1)写出N,Z,Q,R的包含关系,并用文氏图表示。

(2)判断下列写法是否正确A⊆④A A①Φ⊆A ②Φ A ③A解:(1)N⊂Z⊂Q⊂R(2)①正确;②错误,因为A可能是空集;③正确;④错误例2. 已知集合A、B是全集U={1,2,3,4,5,6,7,8,9}的子集,A∩B={2},(C U A)∩(C U B)={1,9},(C U A)∩B={4,6,8},求A、B。

分析:作出文氏图,利用数形结合法求解本题。

解:由图可得A={2,3,5,7},B={2,4,6,8}。

例3. 已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0}。

若∅A ∩B,且A∩C=∅,求a的值。

解:∵B={x|(x-3)(x-2)=0}={3,2},C={x|(x+4)(x-2)=0}={-4,2},又∵∅A∩B,∴A∩B≠∅。

又∵A∩C=∅,∴可知-4∉A,2∉A,3∈A。

∴由9-3a +a 2-19=0, 解得a =5或a =-2。

①当a =5时,A ={2,3},此时A ∩C ={2}≠∅,矛盾, ∴a ≠5;②当a =-2时,A ={-5,3},此时A ∩C =∅, A ∩B ={3}≠∅,符合条件。

综上①②知a =-2。

评注:求出a 值后要注意代回题中检验,否则可能会出现错误的结果。

例4. 解关于x 的不等式x 2-(a +a1)x +1<0(a ≠0)。

分析:解含字母参数的不等式,要注意对字母参数进行合理的分类讨论,既不能遗漏,也不能重复。

解:原不等式化为(x -a )(x -a1)<0, ∴相应方程的根为a 、a1。

当a >a 1,即-1<a <0或a >1时,解集为{x |a 1<x <a }。

当a =a 1,即a =±1时,解集为∅。

当a <a 1,即0<a <1或a <-1时,解集为{x |a <x <a1}。

综上,当-1<a <0或a >1时,解集为{x |a1<x <a };当a =±1时,解集为∅;当0<a <1或a <-1时,解集是{x |a1<x <a }。

评注:解含字母参数的不等式时,要弄清为何要分类讨论、分类讨论的标准是什么、如何分类讨论三个问题。

【考点突破】【考点指要】重点考查集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用文氏图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。

另外,以集合语言与集合思想为载体,考查函数的定义域、函数的值域、方程、不等式、曲线间的相交问题。

高考命题以考查概念和计算为主,题型主要是选择题、填空题,以本节的知识作为工具和其它知识结合起来综合命题的可能性相对大一些。

高考所占比重5分。

【典型例题分析】例5. (1)(05’苏,1)设集合A={1,2},B={1,2,3},C={2,3,4},则=C )B A ( ( )A. {1,2,3}B. {1,2,4}C. {2,3,4}D. {1,2,3,4} 答案:D解析:}21{B A ,= }4321{C )B A (,,,=点评:本题考查了集合间的关系(交、并),属简单题,几乎每年都有一个选择题。

(2)(’05哈东辽II ,1)已知A={0,1},}A x 1y x |y {B 22∈=+=,,则A 与B 的关系为( )A. A=BB.B A ≠⊂C. B A ≠⊃D. B A ⊇答案:B评析:}011{}011y |y {B ,,,,-=-==,故选B 。

点评:本题考查对数集的认识及两个集合之间的包含关系。

(3)(’06江苏,7)若A 、B 、C 为三个集合,A ∪B =B ∩C ,则一定有( ) A. AC B. CA C. A ≠C D. A =Ø解析:∵B (A ∪B ),(B ∩C )B ,∴(B ∩C )B(A ∪B )而A ∪B =B ∩C∴A ∪B =B ∩C =B 于是A B ,BC∴AC 。

故选A(4)(’06上海,1)已知集合A =﹛-1,3,2m -1﹜,集合B ={3,m 2},若A B ,则实数m =解析:若AB ,则m 2=2m -1,解得m =1,当m =1时,A =﹛-1,3,1﹜,B ={3,1}满足AB ,所以取m =1。

(5)(’05湖南十校,13)某班有50名学生报名参加两项比赛,参加A 项的有30人,参加B 项的有33人,且A 、B 都不参加的同学比A 、B 都参加的同学的三分之一多一人,则只参加A 项,没有参加B 项的学生有 人。

解析:设A 、B 都参加的有x 人,都不参加的有y 人,则30-x +x +33-x +y =50y =31x +1解得x =21,只参加A 项,没有参加B 项的学生有30-21=9人,故填9。

例6. (1999上海,17)设集合A ={x ||x -a |<2},B ={x |212+-x x <1},若A ⊆B ,求实数a 的取值范围。

解:由|x -a |<2,得a -2<x <a +2,所以A ={x |a -2<x <a +2}。

由212+-x x <1,得23+-x x <0,即-2<x <3,所以B ={x |-2<x <3}。

因为A ⊆B ,所以⎩⎨⎧≤+-≥-3222a a ,于是0≤a ≤1。

评述:这是一道研究集合的包含关系与解不等式相结合的综合性题目。

主要考查集合的概念及运算,解绝对值不等式、分式不等式和不等式组的基本方法。

在解题过程中要注意利用不等式的解集在数轴上的表示方法。

体现了数形结合的思想方法。

【综合测试】一. 选择题(本大题共6小题,每小题5分,共30分)1. 设集合U ={1,2,3,4,5},A ={1,2,3},B ={2,5},则A ∩(C U B )等于( ) A. {2} B. {2,3} C. {3} D. {1,3}2. 已知M ={x |x1<1},N ={y |y =x 2},则M ∩N 等于( ) A. ∅ B. {x |x >1}C. {x |x <0}D. {x |x <0或x >1}3. (2002全国文6,理5)设集合M ={x |x =412+k ,k ∈Z },N ={x |x =214+k ,k ∈Z },则( ) A. M =NB. M NC. M ND. M ∩N =∅4. (1997上海,1)设全集是实数集R ,M ={x |x ≤1+2,x ∈R },N ={1,2,3,4},则C R M ∩N 等于( )A. {4}B. {3,4}C. {2,3,4}D. {1,2,3,4}5. (1995全国理,1)已知I 为全集,集合M 、N I ,若M ∩N =N ,则( ) A. C I M ⊇C I N B. M C I N C. C I M ⊆C I N D. M ⊇C I N6. 设全集I ={0,1,2,3,4},集合A ={0,1,2,3},集合B ={2,3,4},则C I A ∪C I B 等于( )A. {0}B. {0,1}C. {0,1,4}D. {0,1,2,3,4}二. 填空题:(本题共4小题,每小题5分,共20分)7. (2003上海春,5)已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是_____。

8. 已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N =_______。

9. (1997全国,1改编)设集合M ={x |0≤x <2},集合N ={x |x 2-2x -3<0},集合M ∩N等于 。

相关文档
最新文档