计算应力强度因子
计算应力强度因子
基于ANSYS的断裂参数的计算本文介绍了断裂参数的计算理论,并使用ANSYS进展了实例计算。
通过计算说明了ANSYS可以用于计算断裂问题并且可以取得很好的计算结果。
1 引言断裂事故在重型机械中是比拟常见的,我国每年因断裂造成的损失十分巨大。
一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。
另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。
因此,有必要对含裂纹构件的断裂参量进展评定,如应力强度因了和J积分。
确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。
对于工程上常见的受复杂载荷并包含不规如此裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。
本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。
2 断裂参量数值模拟的理论根底对于线弹性材料裂纹尖端的应力场和应变场可以表述为:其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。
图1 裂纹尖端的极坐标系应力强度因子和能量释放率的关系:G=K/E" (3)其中:G为能量释放率。
平面应变:E"=E/(1-v2)平面应力:E=E"3 求解断裂力学问题断裂分析包括应力分析和计算断裂力学的参数。
应力分析是标准的ANSYS线弹性或非线性弹性问题分析。
因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。
如图2所示,图中给出了二维和三维裂纹的术语和表示方法。
图2 二维和三维裂纹的结构示意图3.1 裂纹尖端区域的建模裂纹尖端的应力和变形场通常具有很高的梯度值。
场值得准确度取决于材料,几何和其他因素。
为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。
对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。
应力强度因子的计算
第二章应力强度因子的计算K--应力、位移场的度量=K的计算很重要,计算K值的几种方法:1. 数学分析法:复变函数法、积分变换;2. 近似计算法:边界配置法、有限元法;3. 实验标定法:柔度标定法;4. 实验应力分析法:光弹性法.§ 2-1 三种基本裂纹应力强度因子的计算、无限大板I型裂纹应力强度因子的计算K] =lim ■ 2px桩Z I计算K的基本公式,适用于型裂纹X? 01. 在“无限大”平板中具有长度为2a的穿透板厚的裂纹表面上,距离x = _b处各作用一对集中力p.y;「x 二ReZ i - y Im Z I;「y 二ReZ i y Im Z Ixy =_yReZ l选取复变解析函数:2 pz a2b2二(z2_b2)边界条件:a. zb. zca,出去z = ±b处裂纹为自由表面上c.如切出xy坐标系内的第一象限的薄平板,在x轴所在截面上内力总和为p2 p (匕 +a) Ja 2+孑二[(a)2-b 2] ; (2a)2p 、、 a二(a 2-b 2)2. 在无限大平板中,具有长度为2a 的穿透板厚的裂纹表面上,在距离x= _印的 范围内受均布载荷q 作用.yb.11yqn____ r~Kq 1旺x------ ►J 2 a利用叠加原理:a2q\a i . ---------------- dxo _ / 2 2、二(a -x )令x=acos : a 2-x 2= acosv , dx = acos 二当整个表面受均布载荷时,c -• a. =K i = 2^-s in3. 受二向均布拉力作用的无限大平板,在x 轴上有一系列长度为2a ,间距为2b的裂纹.以新坐标表示:K i微段 > 集中力qdx > dK i2q烏 dx 护(a 2_x 2)-K isin 4(J)广;)竺吗=a cos^二0, -a ::: x ::: a, -a 二2b ::: x ::: a 二2b 在区间内;-y =°,,xy =c.所有裂纹前端;匚y.匚单个裂纹时又Z应为2b的周期函数采用新坐标:=z-an ..-sin ( a) 2b当© t 0时,sin 二© =厶Jcos 厶© =12b 2b 2b迟JL乜JL JL乜= sin——( a) =sin—— cos一a cos一sin — a 2b2b 2b 2b 2b边界条件是周期的:a. z —二二xb.在所有裂纹内部应力为零.y~2 2z - a-sin2b二a、2(Sin" %2b 仙2b)JI u 31ji.二 a 二 sin - 2b 1 -a . -a ——cos ——sin — 2b 2b 2b =;「2b tan a \ 2b—a, 2b tan :aYn a2b2a 1若裂纹间距离比裂纹本身尺寸大很多(兰乞丄)可不考虑相互作用,按单个裂纹2b 5计算•二、无限大平板n>m 型裂纹问题应力强度因子的计算1. u 型裂纹应力强度因子的普遍表达形式(无限大板):心计吋(人尹2. 无限大平板中的周期性的裂纹,且在无限远的边界上处于平板面内的纯剪切 力作用.JT JT cos a sin a 2b 2b2bfTTfTTfTTfTTHTfTTfTT.. 2 ■22 2[sin (a)] = ( ) cos a 2 cos a sin a (sin a) 2b2b 2b 2b 2b 2b2b•2::.2[%(a)] -(sin2b a)JI=2 -2bn Jicos asin a2b 2b:二 sin2b—2/ ?.a .二 acos ——sin2b 2b2b 修正系数,大于1,表示其他裂纹存在对K ]的影响.二a 2 药)心=帆 J 2 兀©Z (©) = i V^a J^tan 舒3.川型裂纹应力强度因子的普遍表达形式(无限大板):4.周期性裂纹:sin二z 2b n : …sin ( a) 2bZ()二訓n 2?+a)]2-伽訝H Z 2伽亦)一伽§ 2-2 深埋裂纹的应力强度因子的计算1950年,格林和斯内登分析了弹性物体的深埋的椭圆形裂纹邻域内的应力 和应变,得到椭圆表面上任意点,沿y 方向的张开位移为:2 2 1x z . 2 y =y 0(1 2 2)a c2(1 -」2);「a 其中:yo =(丘丿.-为第二类椭圆积分•有Ji | 2 2=o 2、1-c;asin 2d 「(于仁东书丿匹 a^2 二 2[sin 2「(-)2cos 2] d (王铎书丿 0c1962年,lrwin 利用上述结果计算在这种情况下的应力强度因子xz2 2 2 2 2N 二 Qcos : ,x ,-『sin :2 2 X i 乙-2~~2acacc 2sin 2「a 2cos 2假设:椭圆形裂纹扩展时,其失径「的增值r 与「成正比.边缘上任一点p (x ,z ),有:x j (「r)sin 炉=(1 f^?sin 》=(1 f)x iz = r)cos 即=(1 f )z 1=■ p (x ;z), p (M,Z i )均在 y=0 的平面内.— ,:2 ・2-2 24 2 2・2 ・2=c x a z (i f)ac a c=新的裂纹面仍为椭圆•长轴c =(i • f)c ,短轴a '=(i • f)a .=y 向位移2 2原有裂纹面:二 二,上)2=ia c y o2 2扩展后裂纹面:笃•务•(工)2=i a c y o以x'x i , z'z,代入=原有裂纹面的边缘y 向位移y ,有原裂纹面y o2(i 」2)二 a2(i-」2)ri f)aE=(i f)y oc 2片2a 2zj 二 a 2c 2sin 2「亠 a 2cos2 :2 2 2 2 2 2「-(1-2门笃一(1一2门刍=1一笃一乌2f (笃吕)ac a ca c=2f二 y 2=2fy °2=2f (1 f )2y o 2L 2fy 。
应力强度因子的一般表达式和用途
应力强度因子的一般表达式和用途原题号:6假定某一物体内一个长度为a 2的小裂纹处于一个拉应力作用下,应力方向垂直于裂纹表面。
x 方向是预计的裂纹发展线,y 方向为垂直于裂纹方向。
r 、θ坐标系在x 、y 坐标平面内,它的原点在裂纹前缘。
如果假定材料是二维线弹性各向同性连续体,则裂纹尖端附近(r <<a )的应力(全部厚度的平均值)为:=− −= +=23cos 2cos 2sin 223sin 2sin 12cos 223sin 2sin 12cos 20θθθπτσθθθπσθθθπσr K rK rK I xy x I x Iy (2.1) 式中,I K 是参数“应力强度因子”;下角标I 表明是把裂纹表面直接拉开的应力系统,即张开型裂纹。
除张开型的裂纹变形之外,还有两种不同的形式,滑开型裂纹变形(II 型)和撕开型变形(III 型)(如图2.1)。
对于一条穿过物体的裂纹而言,裂纹的扩展通常用整个裂纹的平均应力来进行研究,而不考虑在厚度中心的断裂可能是张开型,而接近表面则可能是剪切型的这种事实、习惯上,对于这种混合型的断裂,整个有效应力强度因子是用K 来标明的,没有加下角标。
图2.1 裂纹表面位移的基本形式 对于一般的平面应力和平面应变状态,K 值的一般表达式为:a Y K πσ= (2.2)(c) I 型 (b) II 型(a) III 型式中σ——应力;a ——裂纹尺寸;Y ——应力强度因子修正系数,为裂纹形状和所考虑的有裂纹物体的函数,参考文献[1]对Y 值的计算公式进行了归纳。
K 是建立在线弹性断裂力学基础上的,它研究的是理想弹性体的低应力脆性断裂问题,其主要对象是高强度低韧性钢,这种材料认为其断裂没有塑性变形。
但实际一般钢结构在裂纹尖端或多或少存在塑性变形区(屈服区),塑性区的形状和尺寸因材料性质、几何形状和应力状态等因素而异。
当屈服区小于裂纹尺寸,称为小范围屈服。
研究表明对裂纹尖端的塑性区进行修正,小范围屈服的裂纹体仍可应用线弹性断裂力学。
应力强度因子的计算.doc
第二章 应力强度因子的计算K --应力、位移场的度量⇒K 的计算很重要,计算K 值的几种方法: 1.数学分析法:复变函数法、积分变换; 2.近似计算法:边界配置法、有限元法; 3.实验标定法:柔度标定法; 4.实验应力分析法:光弹性法.§2-1 三种基本裂纹应力强度因子的计算一、无限大板Ⅰ型裂纹应力强度因子的计算K Z ξ→=→ⅠⅠ计算K 的基本公式,适用于Ⅱ、Ⅲ型裂纹.1.在“无限大”平板中具有长度为2a 的穿透板厚的裂纹表面上,距离x b =±处各作用一对集中力p .Re Im x Z y Z σ'=-ⅠⅠRe Im y Z y Z σ'=+ⅠⅠRe xy y Z τ'=-Ⅰ选取复变解析函数:222()Z z b π=- 边界条件:a.,0x y xy z σστ→∞===.b.,z a <出去z b =±处裂纹为自由表面上0,0y xy στ==。
c.如切出xy 坐标系内的第一象限的薄平板,在x 轴所在截面上内力总和为p 。
y '以新坐标表示:Z=⇒lim()K Zξξ→==Ⅰ2.在无限大平板中,具有长度为2a的穿透板厚的裂纹表面上,在距离1x a=±的范围内受均布载荷q作用.利用叠加原理:微段→集中力qdx→dK=Ⅰ⇒K=⎰Ⅰ令cos cosx a aθθ==,cosdx a dθθ=⇒111sin()1cos22(cosaa aaaK daθθθ--==Ⅰ当整个表面受均布载荷时,1a a→.⇒12()aaK-==Ⅰ3.受二向均布拉力作用的无限大平板,在x轴上有一系列长度为2a,间距为2b 的裂纹.边界条件是周期的: a. ,y x z σσσ→∞==.b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内0,0y xy στ==c.所有裂纹前端y σσ> 单个裂纹时Z =又Z 应为2b 的周期函数⇒sinzZ πσ=采用新坐标:z a ξ=-⇒sin()a Z πσξ+=当0ξ→时,sin,cos1222bbbπππξξξ==⇒sin()sincos cos sin22222a a a bbbbbπππππξξξ+=+σcossin222a a bbbπππξ=+2222[sin()]()cos 2cos sin(sin)2222222a a a a a bbbbbb bπππππππξξξ+=++22[sin()](sin )2cos sin22222a a a a bbbbbπππππξξ⇒+-=sinaZ ξπσ→⇒=sinlim aK ξπσ→⇒===Ⅰ=取w M =修正系数,大于1,表示其他裂纹存在对K Ⅰ的影响. 若裂纹间距离比裂纹本身尺寸大很多(2125a b ≤)可不考虑相互作用,按单个裂纹计算.二、无限大平板Ⅱ、Ⅲ型裂纹问题应力强度因子的计算 1.Ⅱ型裂纹应力强度因子的普遍表达形式(无限大板):lim (K Z ξξ→=Ⅱ2.无限大平板中的周期性的裂纹,且在无限远的边界上处于平板面内的纯剪切力作用.τsin()zZ z πτ=sin()()a Z πτξξ+=lim ()K ξξ→⇒==Ⅱ3.Ⅲ型裂纹应力强度因子的普遍表达形式(无限大板):lim ()K ξξ→=Ⅲ4.周期性裂纹:K =§2-2 深埋裂纹的应力强度因子的计算1950年,格林和斯内登分析了弹性物体的深埋的椭圆形裂纹邻域内的应力和应变,得到椭圆表面上任意点,沿y 方向的张开位移为:1222022(1)x z y y a c=--其中:202(1)ay E μσ-=Γ.Γ为第二类椭圆积分.有φϕ= (于仁东书) 1222220[sin ()cos ]a d cπϕϕϕ=+⎰(王铎书)1962年,Irwin 利用上述结果计算在这种情况下的应力强度因子σ原裂纹面11cos ,sin z x ρϕρϕ==又222222221111221x z c x a z a c a c+=⇒+= ⇒ρ=假设:椭圆形裂纹扩展时,其失径ρ的增值r 与ρ成正比.r f ρ= (f 远小于1)r f ρ⇒==边缘上任一点(,)p x z ''',有:1()sin (1)sin (1)x r f f x ρϕρϕ'=+=+=+1()cos (1)z r f z ρϕ'=+=+11(,),(,)p x z p x z '''⇒均在0y =的平面内. 222242222(1)c x a z f a c a c ''''''⇒+=+=⇒新的裂纹面仍为椭圆.长轴(1)c f c '=+,短轴(1)a f a '=+. ⇒y 向位移22002(1)2(1)(1)(1)a f a y f y E E μσμσϕϕ'--+'===+原有裂纹面:222220()1x z ya c y ++=扩展后裂纹面:222220()1x z y a c y '''++='''以1x x '=,1z z '=,代入⇒原有裂纹面的边缘y 向位移y ',有2222211112222222011(1)(1)x z x z y y a c f a f c'=-+=--'''++。
应力强度因子的数值计算方法
应力强度因子的数值计算方法应力强度因子是用来描述裂纹尖端应力场的重要参数,它在研究裂纹扩展、断裂行为等问题中具有重要的应用价值。
本文将介绍应力强度因子的数值计算方法,包括解析方法和数值方法。
一、解析方法解析方法是指通过求解弹性力学方程,得到应力场的解析表达式,进而计算应力强度因子。
常见的解析方法有:1. 爱尔兰函数法:该方法适用于轴对称问题,通过引入爱尔兰函数,将弹性力学方程转化为常微分方程,进而得到应力强度因子的解析表达式。
2. 奇异积分法:该方法适用于不规则裂纹形状或复杂载荷情况。
通过奇异积分的性质,将应力场分解为奇异和非奇异两部分,进而得到应力强度因子的解析表达式。
3. 线性弹性断裂力学方法:该方法通过建立合适的应力强度因子与裂纹尺寸之间的关系,利用裂纹尖端应力场的奇异性,通过分析弹性力学方程的边界条件,得到应力强度因子的解析表达式。
二、数值方法数值方法是指通过数值计算的方式,求解弹性力学方程,得到应力场的数值解,从而计算应力强度因子。
常见的数值方法有:1. 有限元法:有限元法是一种广泛应用的数值方法,通过将结构离散为有限个单元,建立节点间的关系,利用数值方法求解离散方程组,得到应力场的数值解,进而计算应力强度因子。
2. 边界元法:边界元法是一种基于边界积分方程的数值方法,通过将边界上的应力场表示为边界积分方程的形式,利用数值方法对积分方程进行离散求解,得到应力场的数值解,进而计算应力强度因子。
3. 区域积分法:区域积分法是一种基于区域积分方程的数值方法,通过将应力场表示为积分方程的形式,利用数值方法对积分方程进行离散求解,得到应力场的数值解,进而计算应力强度因子。
以上介绍了应力强度因子的数值计算方法,包括解析方法和数值方法。
解析方法适用于问题简单、载荷条件规则的情况,可以得到解析表达式并具有较高的精度;数值方法适用于问题复杂、载荷条件不规则的情况,通过数值计算可以得到应力场的数值解,并利用数值解计算应力强度因子。
dyna 应力强度因子
dyna 应力强度因子Dyna 应力强度因子应力强度因子是研究材料断裂行为和疲劳寿命的重要参数之一。
在动态加载下,应力强度因子的计算对于分析材料的疲劳寿命和断裂行为具有重要意义。
本文将重点介绍Dyna 应力强度因子的概念、计算方法以及其在工程实践中的应用。
一、概念Dyna 应力强度因子是指在动态加载条件下,应力场中应力的局部最大值与裂纹尖端处的应力强度之比。
它是描述材料断裂行为的重要参数,可以用于预测材料的断裂韧性和疲劳寿命。
二、计算方法计算Dyna 应力强度因子的方法有多种,常用的方法包括应力分析法、能量法和位移法等。
其中,应力分析法是最常用的计算方法之一。
该方法基于弹性理论,通过对裂纹周围应力场的分析,计算得到裂纹尖端处的应力强度因子。
三、应用Dyna 应力强度因子在工程实践中有着广泛的应用。
首先,它可以用于评估材料的断裂韧性。
通过计算Dyna 应力强度因子,可以得到材料在不同加载条件下的断裂韧性参数,进而评估材料的断裂性能。
其次,Dyna 应力强度因子还可以用于预测材料的疲劳寿命。
根据Dyna 应力强度因子和材料的疲劳裂纹扩展速率,可以预测材料在不同加载条件下的疲劳寿命。
此外,Dyna 应力强度因子还可以用于优化工程设计。
通过对Dyna 应力强度因子的计算和分析,可以得到不同结构参数对应的应力分布情况,从而优化工程设计,提高结构的安全性和可靠性。
总结:Dyna 应力强度因子是研究材料断裂行为和疲劳寿命的重要参数,它可以用于评估材料的断裂韧性、预测材料的疲劳寿命以及优化工程设计。
在工程实践中,通过计算和分析Dyna 应力强度因子,可以得到材料在不同加载条件下的断裂性能和疲劳寿命,为工程设计提供科学依据。
因此,研究Dyna 应力强度因子的计算方法和应用具有重要意义。
使用ABAQUS计算应力强度因子
------------------------------------------------------------------------------------------------------- 如何使用ABAQUS计算应力强度因子Simwefanhj(fanhjhj@)2011.9.9------------------------------------------------------------------------------------------------------- 问题描述:以无限大平板含有一贯穿裂纹为例,裂纹长度为10mm(2a),在远场受双向均布拉应力σ=100N/mm2。
按解析解,此I型裂纹计算出的应力=396.23(N.mm-3/2)强度因子πσaK=I以下为使用ABAQUS6.10的计算该问题的过程。
第一步:进入part模块①建立平板part(2D Planar;Deformation;shell),平板的尺寸相对于裂纹足够大,本例的尺寸为100×50(mm)。
②使用Partation Face:sketch工具,将part分隔成如图1形式。
图1第二步:进入property模块①建立弹性材料;②截面选择平面问题的solid,homogeneous;③赋予截面。
第三步:进入Assembly模块不详述。
需注意的是:实体的类型(instance type)选择independent。
第四步:进入mesh模块除小圈内使用CPS6单元外,其它位置使用CPS8单元离散(图2)。
裂纹尖端的奇异在interaction模块中(图4)考虑。
图2第五步:进入interaction模块①指定裂纹special/creak/assign seam,选中示意图3中的黄色线,done!②生成裂纹crack 1,special/crack/create,name:crack 1,type: contour integral.当提示选择裂纹前端时,选则示意图的红圈区域,当提示裂纹尖端区域时选择红圈的圆心,用向量q表示裂纹扩展方向(示意图3绿色箭头)。
应力强度因子的求解方法的综述
应力强度因子的求解方法的综述摘要:应力强度因子是结构断裂分析中的重要物理量,计算应力强度因子的方法主要有数学分析法、有限元法、边界配置法以及光弹性法。
本文分别介绍了上述几种方法求解的原理和过程,并概述了近几年来求解应力强度因子的新方法,广义参数有限元法,利用G*积分理论求解,单元初始应力法,区间分析方法,扩展有限元法,蒙特卡罗方法,样条虚边界元法,无网格—直接位移法,半解析有限元法等。
关键词:断裂力学;应力强度因子;断裂损伤;Solution Methods for Stress Intensity Factor of Fracture MechanicsShuanglin LU(HUANGSHI Power Survey&Design Ltd.)Abstract: The solution methods for stress intensity factor of fracture mechanics was reviewed, which include mathematical analysis method, finite element method, boundary collocation method and photo elastic method. The principles and processes of those methods were introduced, and the characteristics of each method were also simply analyzed in this paper.Key words: fracture mechanics; stress intensity factors0 引言断裂力学的基础理论最初起源于1920年Griffith的研究工作[1]。
Griffith在研究玻璃、陶瓷等脆性材料的断裂现象时,认为裂纹的存在及传播是造成断裂的原因。
裂纹 应力强度因子
裂纹应力强度因子裂纹是工程材料中常见的缺陷之一,它们对材料的强度和可靠性产生重要影响。
而应力强度因子是评估裂纹尖端应力分布的一种重要参数。
本文将从裂纹的定义、分类以及应力强度因子的计算方法等方面进行讨论。
一、裂纹的定义与分类裂纹是指材料内部或表面的断裂缺陷,它通常是由于外部应力或内部缺陷引起的。
裂纹可以分为表面裂纹和内部裂纹两种类型。
1. 表面裂纹:表面裂纹是指紧靠着材料表面的裂纹,常见的表面裂纹有划痕、剥落等。
表面裂纹的应力强度因子可以通过复杂的弹性力学公式进行计算,但本文不做深入讨论。
2. 内部裂纹:内部裂纹是指位于材料内部的裂纹,它们通常是由于材料制备过程中的缺陷或外部应力作用导致的。
内部裂纹可以进一步分为静态裂纹和疲劳裂纹两类。
静态裂纹是指在静态载荷作用下形成的裂纹,它们的扩展速率相对较慢。
而疲劳裂纹是指在循环载荷作用下形成的裂纹,它们的扩展速率相对较快。
二、应力强度因子的定义与计算应力强度因子是评估裂纹尖端应力分布的重要参数,它可以用来预测裂纹扩展的速率和方向。
应力强度因子的定义如下:应力强度因子K是一个与裂纹尖端应力状态有关的无量纲常数,它可以通过应力分析或试验测量得到。
在弹性力学中,对于平面应力问题,应力强度因子可以通过以下公式计算得到:K = σ√(πa)其中,σ是裂纹尖端的应力,a是裂纹的长度。
三、应力强度因子的应用应力强度因子的计算对于评估材料的疲劳寿命和可靠性非常重要。
通过计算裂纹尖端处的应力强度因子,可以预测裂纹在不同载荷条件下的扩展速率和方向,从而为材料的设计和使用提供参考依据。
应力强度因子还可以用于评估结构中的裂纹扩展行为。
通过测量裂纹尖端处的应力强度因子,可以及时发现结构中的裂纹扩展情况,从而采取相应的措施进行修复或更换。
四、应力强度因子的影响因素应力强度因子除了与裂纹尺寸和应力有关外,还受到材料的性质、载荷条件以及环境因素的影响。
1. 材料性质:不同材料的应力强度因子与裂纹尺寸和应力的关系不同。
微分求积单元法计算应力强度因子
l l
+
一
~
加筋圆柱曲板 的稳定性 问题[ Zog 9 hn 应用类似分单元的概念 , 1 。 提出 了多 域微分求积 法解材 料不连续 的弹性平 面应力 问题_, 雄华等 首次将 】吴 0 1 微分求 积法结合 区域分裂法 形成 了微分求积 区域分裂 法对裂缝问题进 行 了求 解_1 l 也采用分单元 的思想 , I J 研究的是一个数 学意义上不 连续的 问题 。 由于平 面问题仅涉及二 阶偏微分方程 , 边界条件处理不需要采用 多 自由度 , 本文将直接从 弹性力 学平 面问题基本位移控制方 程出发 , 建 立平 面应力板单元 ,首次采用微分 求积单元法来分析线 弹性 断裂力学 问题 , 以拓展微分求积法 的应用范 围。 先计算 出裂尖附近位移场和应力 场, 然后通过裂尖应力强度 因子与位移 的关系直接求解应力强度因子。
的节点划分 。 G G 1 微分求积平面应 力矩形板单元 . 2 考虑 弹性力学平面应力 问题 ,在直 角坐标 系下其 位移法基本微分 方程 ( 体力不计 ) 为旧
G V
N-X) (= ,, Ⅳ) - 1 j l …, 2
G V
() 6
a a 一 一
+
一
一
∑ ( ,…Ⅳ l,,) 2
ANSYS积分法和节点位移法求解应力强度因子附命令流
K I = √2π K II = √2π 其中: G为剪切模量;
G ∆v 1 + κ √r G ∆u 1 + κ √r
κ为材料常数,对于平面应力问题,取
3−������ 1+������
;
∆u为裂纹面在某点处的水平相对位移; ∆v为裂纹面在某点处的垂直相对位移。
图 1-6
位移法图解
根据断裂力学对于三种裂纹的定义,当∆v>0 时,K I 为正,裂纹上下面相对 位移为顺时针为正,即顺时针时,∆u>0,K II 为正;反之为负。理论上,当取上 下裂纹面同一位置的点,当该点趋向于裂尖时,结果更精确,本算例取奇异单元 上 1/4 处的节点的位移进行计算,计算模型同上。 首先,先对有限元模型进行求解,然后进入到后处理层,求出在局部坐标系 系下,所处裂纹上下面的奇异单元上 1/4 处节点的水平及竖直位移 ux,uy,然后 求出裂纹面的相对位移∆u、∆v,最后代入上式即可。 计算结果如图 1-7 所示:KI=223.84Mpa*(mm)1/2,KII=217.63Mpa*(mm)1/2。 计算误差分别为:3.1%、0.25%。
FINISH /CLEAR /TITIE,INTERACTIVE INTEGRATION METHOD BY IDUTER-ANSYS /PREP7 /RGB,INDEX,100,100,100, 0 /RGB,INDEX, 80, 80, 80,13 /RGB,INDEX, 60, 60, 60,14 /RGB,INDEX, 0, 0, 0,15 /REPLOT !------------------!UNIFIED UNIT(N,MM) PI=ACOS(-1) *SET,H,80 *SET,W,50 *SET,A,0.12*W *SET,BETA,90-45 *SET,ALPH,(90-BETA)*PI/180 *SET,SIGMA,100 R1=1 R2=2 R3=3 !THE HEIGHT OF MODEL !THE WEIGHT OF MODEL !HALF LENGTH OF THE ANGLED CRACK !THE INCLINED ANGLE OF CRACK ! RADIAN SYSTEM !SIGMA !FIRST ROW OF ELEMENT RADIUS !THIRD ROW OF ELEMENT RADIUS !SIXTH ROW OF ELEMENT RADIUS
ansys计算应力强度因子
本文使用ANSYS13.0中的互动积分法(Interaction Integrals )计算了三维贯穿裂纹的应力强度因子,计算结果表明该方法计算可靠,为计算更复杂的三维裂纹提供了一种途径。
据一些工业化国家统计,因材料和结构的破坏所造成的损失占国民经济生产总值的8% -12%多。
破坏事故所造成的人员伤亡的损失更不可估量。
我国作为一个发展中国家,在这方面的情况比西方发达国家更严重。
因此无论是为了减少破坏事故的损失还是研发满足现代工业所需要的新材料,都要求对材料的破断过程有科学的、全面的、定量化的认识。
三维裂纹作为工程中常见的裂纹形式,早在六十年代初就有不少研究者开始研究,到现在已有大量的文献资料论及这一问题,出现了一些有特点的分析方法。
工程上常见的表面裂纹的断裂分析,由于其实质是三维问题,也几乎同时开始被人们所关注。
三维裂纹问题的危害极大,断裂造成了大量的灾难性事故发生,这使得断裂力学在机械工程、海洋工程、核工程,特别是今天的航空航天工程中受到更广泛的重视和深入研究。
因此对含三维裂纹结构断裂特性尤其对三维裂纹体的应力强度因子的研究有重要的现实意义。
本文使用ANSYS成功的计算了三维贯穿裂纹的应力强度因子,为计算三维裂纹提供了一种便捷方式。
1.模型的建立图1 三维贯穿裂纹模型本文三维裂纹模型长度为L,高度为H,宽度为W,裂纹半长为a,裂纹位于模型的中心部位。
几何参数见表1。
模型的为线弹性材料,其弹性模量为2.1E11Pa,泊松比为0.3。
模型的边界条件为:底端固定,顶端承受拉应力σ为2E6Pa。
表1 模型的几何参数本文采用二维奇异单元PLANE183建立二维的裂纹模型,然后通过拉伸并使用三维奇异单元SOLID186来建立三维贯穿裂纹模型。
图2-图5给出了二维裂纹模型和三维裂纹模型。
在13.0中对应力强度因子的计算增加了一种计算方法即互动积分法(Interaction Integral s ),这种方法与计算J积分的主域积分法类似。
应力强度因子的计算.
以1x x '=, 1z z '=,代入⇒原有裂纹面的边缘y向位移y ',有
22222
11112222222
011(1 (1 x z x z y y a c f a f c
'=-+=--'''++
222222
1111112222221(12 (12 12( x z x z x z f f f a c a c a c
r f ρ= (f远小于
1
r
f ρ
⇒=
=
边缘上任一点(, p x z ''',有:
1(sin (1 sin (1 x r f f x ρϕρϕ'=+=+=+
1(cos (1 z r f z ρϕ'=+=+
11(, , (, p x z p x z '''⇒均在0y =的平面内. 222242222(1 c x a z f a c a c ''''''⇒+=+=
a. , 0x y xy z σστ→∞===.
b. , z a <出去z b =±处裂纹为自由表面上0, 0y xy στ==。
c.如切出xy坐标系内的第一象限的薄平板,在x轴所在截面上内力总和为p。
y '
以新坐标表示:
Z =
⇒( K Z ξ→==
Ⅰ
2.在无限大平板中,具有长度为2a的穿透板厚的裂纹表面上,在距离1x a =±的范围内受均布载荷q作用.
⇒新的裂纹面仍为椭圆.长轴(1 c f c '=+,短轴(1 a f a '=+. ⇒y向位移
应力强度因子的计算
应力强度因子的计算应力强度因子(Stress Intensity Factor)是应用于裂纹尖端的一个参数,用于描述裂纹尖端应力场的强度和分布情况,是计算裂纹扩展速率和破裂韧性的重要参数。
本文将详细介绍应力强度因子的计算方法。
一、引言在构件中存在裂纹时,应力场的分布将发生变化,通常存在一个应力集中区域,即裂纹尖端。
在裂纹尖端附近,裂纹两侧的应力强度具有很大的梯度,因此需要引入应力强度因子来准确描述和分析裂纹尖端的应力状态。
二、应力强度因子的定义应力强度因子可以描述裂纹尖端应力场的强度和分布情况。
对于模式I或拉应力模式下的裂纹,应力强度因子K是一个标量,具有长度的物理意义。
对于一种给定的应力场,应力强度因子K与应力强度因子K对应的应力场是相似的。
此外,由于应力强度因子K的引入,裂纹尖端附近的应力场能够用一个等效应力来代替,从而使裂纹尖端的破坏准则能够使用等效应力来描述。
三、常用的计算方法1.解析方法解析方法是通过对裂纹尖端附近应力场的数学分析,推导出裂纹尖端的应力强度因子。
常用的方法有:格里菲斯公式、韦尔奇定理、赵万江公式等。
这些方法通常需要对裂纹尖端应力场进行严格的数学推导和分析,适用于简单几何形状的裂纹。
2.应力分析方法应力分析方法是通过有限元分析、边界元分析等数值方法,对裂纹附近的应力场进行数值模拟,进而计算应力强度因子。
通过数值模拟可以得到更为复杂的几何形状下的应力强度因子。
通常需要使用计算机软件进行模拟和计算。
3.基于实验的方法基于实验的方法是通过实验测定裂纹尖端的应力强度因子,从而得到一种实验估算的方法。
常用的实验方法有高约束比压缩试验法、断口法、几何函数法等。
与解析方法和数值方法相比,实验方法具有直接、可靠、全面的优点,但通常对实验设备和技术要求较高。
四、应力强度因子的应用应力强度因子的计算在材料科学、工程结构分析和破坏力学等领域具有广泛的应用价值。
它可用于计算裂纹扩展速率、破断韧性、疲劳寿命等。
应力强度因子的数值计算方法
应力强度因子的数值计算方法引言一、理论计算方法1.弹性理论解法弹性理论解法是应力强度因子计算中最常用的一种方法。
它假设材料是弹性线性的,并忽略了材料的塑性变形。
常用的解法有Westergaard解和Westergaard-Hankel解。
2.能量解法能量解法是一种基于弹性力学的解法,通过计算裂纹尖端处的应力场能量和应变能量来计算应力强度因子。
常用的解法有Line-spring法和Irwin法。
3.有限元法有限元法是一种数值计算方法,通过将复杂的问题离散化为多个小区域,并在每个小区域上建立适当的数学模型进行计算。
通过求解离散化的方程组,可以得到裂纹尖端处的应力强度因子。
有限元法可以处理各种复杂的边界条件和几何形状的问题,并且可以考虑非线性和塑性变形。
这使得它成为计算应力强度因子的一种重要方法。
二、实验计算方法实验计算方法主要是通过设计和进行试验来测量裂纹尖端区域的应力和应变场,然后根据测量数据计算应力强度因子。
常用的方法有:1.发光全场法发光全场法是一种全场应变测量技术,通过在被测结构表面涂覆一层发光材料,然后利用高速摄像机记录结构在加载过程中的应变分布。
通过分析图像数据,可以得到裂纹尖端区域的应力和应变场,进而计算应力强度因子。
2.特征裂纹法特征裂纹法是一种利用疲劳试验得到应力强度因子的方法。
通过在试样上开几何形状确定的裂纹,然后在加载过程中观察裂纹的扩展行为,通过测量裂纹长度和加载荷载的关系,可以计算应力强度因子。
3.数值模拟法数值模拟法是一种将实验和数值计算相结合的方法。
通过建立几何和材料特性相似的数值模型,并在模型中模拟加载过程,可以得到裂纹尖端区域的应力和应变场,进而计算应力强度因子。
三、应力强度因子的应用1.疲劳断裂评估基于应力强度因子的计算结果,可以对工程结构在疲劳载荷下的断裂寿命进行评估和预测。
这对于提高结构的可靠性和安全性具有重要意义。
2.材料断裂韧性评定3.裂纹扩展行为研究通过分析应力强度因子的变化规律,可以研究裂纹在不同加载条件下的扩展行为,揭示断裂的机理和规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于ANSYS的断裂参数的计算本文介绍了断裂参数的计算理论,并使用ANSYS进行了实例计算。
通过计算说明了ANSYS可以用于计算断裂问题并且可以取得很好的计算结果。
1 引言断裂事故在重型机械中是比较常见的,我国每年因断裂造成的损失十分巨大。
一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。
另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。
因此,有必要对含裂纹构件的断裂参量进行评定,如应力强度因了和J积分。
确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。
对于工程上常见的受复杂载荷并包含不规则裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。
本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。
2 断裂参量数值模拟的理论基础对于线弹性材料裂纹尖端的应力场和应变场可以表述为:其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。
图1 裂纹尖端的极坐标系应力强度因子和能量释放率的关系:G=K/E" (3)其中:G为能量释放率。
平面应变:E"=E/(1-v2)平面应力:E=E"3 求解断裂力学问题断裂分析包括应力分析和计算断裂力学的参数。
应力分析是标准的ANSYS线弹性或非线性弹性问题分析。
因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。
如图2所示,图中给出了二维和三维裂纹的术语和表示方法。
图2 二维和三维裂纹的结构示意图3.1 裂纹尖端区域的建模裂纹尖端的应力和变形场通常具有很高的梯度值。
场值得精确度取决于材料,几何和其他因素。
为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。
对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。
在裂纹尖端应力和应变是奇异的,并且随1/变化而变化。
为了产生裂纹尖端应力和应变的奇异性,裂纹尖端的划分网格应该具有以下特征:·裂纹面一定要是一致的。
·围绕裂纹尖端或裂纹前缘的单元一定是二次单元,并且他的中间节点在四分之一边处。
这样的单元也称作为奇异单元。
图3 计算裂纹的常用单元如图所示,即为满足要求的奇异单元。
3.2 如何建立二维线弹性断裂模型对于二维断裂问题,推荐使用PLANE183,他是一个8结点二次实体单元。
围绕裂纹尖端第一行单元一定要是奇异的。
具体解释参见图3,利用前处理命令KSCON(Main Menu> Preprocessor> Meshing> Size Cntrls> Concentrat KPs> Create),这个命令会给围绕关键点划分单元,这个命令特别适用分析断裂力学问题。
它可以在裂纹尖端自动产生奇异单元。
并且可以利用命令可以控制围绕裂纹尖端第一排单元的半径,和圆周方向上单元的数量。
图4 二维断裂问题的模型示例图4给出了利用KSCON.产生的裂纹尖端奇异单元例。
要尽量的利用模型的对称性。
为了得到较好的结果,围绕裂纹尖端的第一行单元的半径至少是裂纹半长的1/8。
在圆周方向,推荐每隔30或44度放置一个等腰三角形。
3.3 计算应力强度因子利用后处理中KCALC命令计算混合型应力强度因子KⅠ,KⅡ和KⅢ。
(Main Menu>General Postproc> Nodal Calcs> Stress Int Factr)。
这个命令只能用于计算线弹性均匀各向同性材料的裂纹区域。
为了使用KCALC必须按照以下步骤:1、定义裂纹尖端或裂纹前缘局部坐标系X轴一定要平行于裂纹面。
(3D中垂直于裂纹前缘)并且y轴垂直于裂纹面。
图2给出了示意。
注意--当使用 KCALC 命令时,坐标系必须是激活的模型坐标系[CSYS]和结果坐标系[RSYS]。
Utility Menu> WorkPlane> Local Coordinate Systems> Create Local CS> At Specified Loc2、定义沿着裂纹面的路径定义沿裂纹面的路径,应以裂纹尖端作为路径的第一点。
对于半个裂纹模型而言,沿裂纹面需有两个附加点,这两个点都沿裂缝面;对于整体裂纹模型,则应包括两个裂纹面,共需四个附加点,两个点沿一个裂纹面,其他两个点沿另一个裂纹面。
命令:PATH,PPATHGUI:Main Menu>General Postproc>Path Operations>Define Path3、计算应力强度因子KCALC命令中的KPLAN域用于指定模型是平面应变或平面应力。
除了薄板的分析,在裂纹尖端附近或其渐近位置,其应力一般是考虑为平面应变。
KCSYM 域用来指定半裂纹模型是否具有对称边界条件、反对称边界条件或是整体裂纹模型。
4 计算实例本文采用平板作为计算实例,材料为线弹性,板的厚度为0.003m,板长0.05m,板宽0.01m,弹性模量:2E11Pa,泊松比为0.3。
图5 裂纹尖端的有限元网格图6 模型的边界条件裂纹尖端采用plane183奇异单元,来划分裂纹尖端网格,如图5所示。
图6给出了模型的边界条件:平板的两端承受1e7pa的拉应力。
图7 裂纹尖端的等效应力云图图8 裂纹尖端的应力强度因子图7给出了裂纹尖端的等效应力云图,通过计算结果可知裂纹面的应力为低应力区,裂纹尖端存在应力集中。
图8给出了裂纹强度因子的计算结果,这个结果与理论值相比满足误差要求。
5 结论通过以上分析和计算可以得到以下结论:(1)ANSYS提供了断裂计算的能力,并且可以提供较准确的计算结果(2)ANSYS的裂纹奇异单元可以很好的反映出裂纹尖端的奇异性。
第8章 ANSYS 12.0结构断裂分析及实例详解本章容提要:本章主要介绍结构断裂分析的基本过程和工程应用实例。
.通过对实例进行具体、详细的分析求解,使读者熟悉断裂问题分析的基本方法和基本步骤,并为读者提供了典型的断裂问题的求解思路。
8.1 结构断裂分析基本过程8.1.1 概述1.断裂力学定义结构和零部件中都存在微观裂纹和缺陷,这些裂纹和缺陷往往会导致灾难性的后果。
断裂力学的工程应用领域就是针对这些裂纹或缺陷的扩展,建立一个明确的概念。
断裂力学是研究受载结构中裂纹的扩展过程,并对相关的实验结果进行验证。
通常是通过计算裂纹区域的断裂参数来进行预测的,如应力强度因子,它能估算裂纹扩展的速率。
一般情况下,裂纹的扩展程度是随着作用在构件上的循环载荷次数而增加的。
例如,飞机机舱中裂纹的扩展过程与机舱的加压和减压过程密切相关。
此外,环境条件(如温度、大围的辐射)都会影响材料的断裂性能。
2.典型断裂参数典型的断裂参数如下:1)伴随着3种基本断裂模型的应力强度因子(K I、K II、K III),如图8.1所示。
2)J积分,它定义为与积分路径无关的线积分,能度量裂纹尖端附近奇异的应力与应变强度。
3)能量释放率,它反映裂纹开或闭合时消耗功的大小。
8.1.2 结构断裂分析过程求解断裂力学问题的步骤,是先进行弹性分析或弹塑性静力分析,然后再用特殊的后处理命令,或宏命令计算所需的断裂参数,有关弹性分析或弹塑性静力分析的具体过程可参阅第3章的结构线性静力分析和第5章的非线性分析基本过程。
下面详细讨论两个主要的处理断裂力学的过程:裂纹区域的模拟和计算断裂参数。
1.裂纹区域的模拟在断裂模型中最重要的区域是围绕裂纹边缘的部位,通常将2D模型的裂纹尖端作为裂纹的边缘,将3D模型的裂纹前缘作为裂纹的边缘,如图8.2所示。
在线弹性问题中,裂纹尖端或裂纹前缘附近某点的位移随r1/2的变化而变化,r是裂纹尖端到该点的距离。
裂纹尖端处的应力和应变是奇异的,随r1/2变化,因此围绕裂纹尖端的有限元单元应是二项式的奇异单元,即把单元边上的中点放到1/4边上。
(1)2D断裂模型适用于2D断裂模型的单元,是PLANE183,8节点四边形单元或6节点三角形单元,围绕裂纹尖端的第一行单元必须具有奇异性,ANSYS采用KSCON命令指定单元围绕关键点分割排列,自动产生奇异单元。
Command:KSCONGUI:Main Menu︱Preprocessor︱Meshing︱Size Cntrls︱Concentrat KPs︱Create该命令还具有控制单元第一行的半径、控制周围单元数目等功能。
图8.3是采用该命令产生的断裂模型。
在创建2D断裂模型的过程中应注意以下问题:1)尽可能利用对称条件,在许多条件下根据对称(如图8.4a所示)或反对称条件(如图8.4b所示),只需模拟裂纹区域的一半。
2)为获得理想的计算结果,围绕裂纹尖端的单元第一行,其半径应该是1/8裂纹长度或更小。
裂纹周围的单元角度应在30°~40°之间。
3)裂纹尖端的单元不能有畸变,最好选择等腰三角形。
(2)3D断裂模型三维模型推荐使用单元类型为SOLID95,20节点块体单元,围绕裂纹前缘的第一行单元应为奇异单元。
这种单元是模型生成的,是将KLPO面合并成KO线。
产生三维断裂模型要比二维模型复杂,命令KSCON不能用于三维模型。
在建模时必须确定裂纹前缘是沿着单元的K边。
三维模型划分网格时应注意以下问题:1)推荐使用的单元尺寸与二维模型一样,单元边上节点应在边的1/4处。
2)所有裂纹边都应是直线。
3)对曲线裂纹沿裂纹前缘的大小取决于局部曲率的数值,大致使裂纹前缘中每个单元只有15°~30°的角度。
2.计算断裂参数在静态分析完成之后,就可以使用通用后处理器POST1来计算断裂参数,如应力强度因子、J积分、能量释放率。
(1)应力强度因子用POST1中的KCALC命令计算复合型断裂中的应力强度因子K I、K II、K III。
该命令仅适用于在裂纹区域附近具有各向同性材料的线弹性问题。
使用KCALC命令的步骤如下:1)定义描述裂纹尖端的局部坐标系。
要求X坐标轴平行于裂纹面,Y坐标轴垂直于裂纹面。
Command:LOCAL(CLOCAL、CS、CSKP)GUI:Utility Menu︱WorkPlane︱Local Coordinate Systems︱Create Local CS︱At Specified Loc2)定义沿裂纹面的路径。
应以裂纹尖端作为路径的第1点,对于半个裂纹模型而言,沿裂纹面需再定义2个附加点,对于整体模型而言,需再定义4个附加点,其中2个点沿一个裂纹面,另外2个点沿另一个裂纹附加面。
Command:PATH,PPATHGUI:Main Menu︱General Postproc︱Path Operations︱Define Path3)计算裂纹尖端应力强度因子。