高中物理动量守恒

合集下载

高中物理动量守恒定律重要知识点

高中物理动量守恒定律重要知识点

高中物理动量守恒定律重要知识点1、内容:相互作用的物体,如果不受外力或所受外力的合力为零,它们的总动量保持不变,即作用前的总动量与作用后的总动量相等.动量守恒定律适用的条件①系统不受外力或所受合外力为零.②当内力远大于外力时.③某一方向不受外力或所受合外力为零,或该方向上内力远大于外力时,该方向的动量守恒.3、常见的表达式①p/=p,其中p/、p分别表示系统的末动量和初动量,表示系统作用前的总动量等于作用后的总动量。

②Δp=0 ,表示系统总动量的增量等于零。

③Δp1=-Δp2,其中Δp1、Δp2分别表示系统内两个物体初、末动量的变化量,表示两个物体组成的系统,各自动量的增量大小相等、方向相反。

(4)注意点:① 研究对象:几个相互作用的物体组成的系统(如:碰撞)。

② 矢量性:以上表达式是矢量表达式,列式前应先规定正方向;③ 同一性(即所用速度都是相对同一参考系、同一时刻而言的)④ 条件:系统不受外力,或受合外力为0。

要正确区分内力和外力;条件的延伸:a.当F内>>F外时,系统动量可视为守恒;(如爆炸问题。

)b.若系统受到的合外力不为零,但在某个方向上的合外力为零,则这个方向的动量守恒。

高中物理动量定理应用用动量定理解释生活中的现象[例 1] 竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。

[解析] 纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿着纸条抽出的方向.不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变.在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示.根据动量定理有:μmgt=mv。

如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。

高中物理动量守恒定律重要知识点

高中物理动量守恒定律重要知识点

高中物理动量守恒定律重要知识点1、内容:相互作用的物体,如果不受外力或所受外力的合力为零,它们的总动量保持不变,即作用前的总动量与作用后的总动量相等.动量守恒定律适用的条件①系统不受外力或所受合外力为零.②当内力远大于外力时.③某一方向不受外力或所受合外力为零,或该方向上内力远大于外力时,该方向的动量守恒.3、常见的表达式①p/=p,其中p/、p分别表示系统的末动量和初动量,表示系统作用前的总动量等于作用后的总动量。

②p=0 ,表示系统总动量的增量等于零。

③p1=-p2,其中p1、p2分别表示系统内两个物体初、末动量的变化量,表示两个物体组成的系统,各自动量的增量大小相等、方向相反。

(4)注意点:① 研究对象:几个相互作用的物体组成的系统(如:碰撞)。

② 矢量性:以上表达式是矢量表达式,列式前应先规定正方向;③ 同一性(即所用速度都是相对同一参考系、同一时刻而言的)④ 条件:系统不受外力,或受合外力为0。

要正确区分内力和外力;条件的延伸:a.当F内F外时,系统动量可视为守恒;(如爆炸问题。

)b.若系统受到的合外力不为零,但在某个方向上的合外力为零,则这个方向的动量守恒。

高中物理动量定理应用用动量定理解释生活中的现象[例 1] 竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出说明理由。

[解析] 纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力mg作用,方向沿着纸条抽出的方向.不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变.在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为mgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示.根据动量定理有:mgt=mv。

如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。

高中物理动量守恒(经典)

高中物理动量守恒(经典)

动量定理.动量守恒【重要知识点】 1.弹性碰撞特点:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则有动量守恒:221101v m v m v m += 碰撞前后动能不变:222212111210121v mv m v m += 所以012121v v m m m m +-=022211v v m m m +=(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论]①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <<m 2时,v 1≈-v 0,v 2≈O (速度反向) ③当m l >m 2时,v 1>0,v 2>0(同向运动) ④当m l <m 2时,v 1<O ,v 2>0(反向运动)⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动)、 2.非弹性碰撞特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能的损失:)()(22221211212222121121'+'-+=∆v m v m v m v m E3.完全非弹性碰撞特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v动能损失:221212222121121)()(v m m v m v mE k +-+=∆【训练题】1.竖直上抛一质量为m 的小球,经t 秒小球重新回到抛出点,若取向上为正方向,那么小球的动量变化为 [ ]A. -mgtB.mgtC.0D.-1/2mgt2.质量为m 的物体做竖直上抛运动,从开始抛出到落回抛出点用时间为t ,空气阻力大小恒为f 。

规定向下为正方向,在这过程中物体动量的变化量为 [ ]A .(mg+f)tB .mgtC .(mg-f)tD .以上结果全不对 3.质量为m 的物体,在受到与运动方向一致的外力F 的作用下,经过时间t 后物体的动量由mv1增大到mv2,若力和作用时间改为,都由mv1开始,下面说法中正确的是 [ ] A .在力2F 作用下,经过2t 时间,动量增到4mv2 B .在力2F 作用下,经过2t 时间,动量增到4mv1 C .在力F 作用下,经过2t 时间,动量增到2mv2-mv1 D .在力F 作用下,经过2t 时间,动量增到2mv24.一质量为m 的小球,从高为H 的地方自由落下,与水平地面碰撞后向上弹起。

高中物理三大守恒定律

高中物理三大守恒定律

高中物理三大守恒定律
高中物理三大守恒定律是物理学中最基本的定律之一,它们是能量守恒定律、动量守恒定律和角动量守恒定律。

这三大定律在解决物理问题和预测物理现象中发挥着重要的作用。

能量守恒定律指出,在一个封闭系统中,能量总量保持不变,只能从一种形式转换为另一种形式。

这意味着能量不能被创造或摧毁,而只能从一个形式转移到另一个形式。

例如,当一个物体沿着斜面滚动时,它的重力势能将转化为动能。

动量守恒定律描述了在一个封闭系统中,物体的总动量保持不变。

动量是物体的质量和速度的乘积。

这意味着,在一个封闭系统中,任何一个物体的运动都会影响其他物体的运动。

例如,当一个火箭发射的推进气体逸出时,火箭会向相反方向移动。

角动量守恒定律指出,在一个封闭系统中,物体的总角动量保持不变。

角动量是物体的质量、速度和距离的乘积。

这意味着,一个物体的自身旋转或者两个物体之间的旋转都会对系统总角动量产生影响。

例如,当一个滑轮被拉起时,绳子向上拉动滑轮,因此滑轮本身也开始旋转。

这三大守恒定律为理解和解释物理现象提供了基础,也为工程应用提供了指南。

它们的应用范围涵盖了从微观粒子到宏大宇宙的所有物理系统。

- 1 -。

高中物理:动量守恒定律

高中物理:动量守恒定律

高中物理:动量守恒定律【知识点的认识】1.内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律.2.表达式:(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)△p1=﹣△p2,相互作用的两个物体动量的增量等大反向.(4)△p=0,系统总动量的增量为零.3.动量守恒定律的适用条件(1)不受外力或所受外力的合力为零.不能认为系统内每个物体所受的合外力都为零,更不能认为系统处于平衡状态.(2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力.(3)如果系统在某一方向上所受外力的合力为零,则在这一方向上动量守恒.【命题方向】题型一:动量守恒的判断例子:如图所示,A、B两物体的质量比m A:m B=3:2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有()A.A、B系统动量守恒B.A、B、C系统动量守恒C.小车向左运动D.小车向右运动分析:在整个过程中三个物体组成的系统合外力为零,系统的动量守恒.分析小车的受力情况,判断其运动情况.解答:A、B,由题意,地面光滑,所以A、B和弹簧、小车组成的系统受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,由于m A:m B=3:2,A、B所受的摩擦力大小不等,所以A、B组成的系统合外力不为零,动量不守恒.故A错误.B正确;C、D由于A、B两木块的质量之比为m1:m2=3:2,由摩擦力公式f=μN=μmg知,A对小车向左的滑动摩擦力大于B对小车向右的滑动摩擦力,在A、B相对小车停止运动之前,小车的合力所受的合外力向左,会向左运动,故C正确,D错误.故选:BC.点评:本题关键掌握系统动量守恒定律的适用条件:合外力为零,并能通过分析受力,判断是否系统的动量是否守恒,题目较为简单!题型二:动量守恒的应用例子:如图所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ.最初木板静止,A、B两木块同时以方向水平向右的初速度v0和2v0在木板上滑动,木板足够长,A、B始终未滑离木板.求:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;(2)木块A在整个过程中的最小速度.分析:(1)A、B两木块同时水平向右滑动后,木块A先做匀减速直线运动,当木块A与木板C的速度相等后,A、C相对静止一起在C摩擦力的作用下做匀加速直线运动;木块B 一直做匀减速直线运动,直到三个物体速度相同.根据三个物体组成的系统动量守恒求出最终共同的速度,对B由牛顿第二定律和运动学公式或动能定理求解发生的位移;(2)当木块A与木板C的速度相等时,木块A的速度最小,根据系统的动量守恒求解A 在整个过程中的最小速度,或根据牛顿第二定律分别研究A、C,求出加速度,根据速度公式,由速度相等条件求出时间,再求解木块A在整个过程中的最小速度.解答:(1)木块A先做匀减速直线运动,后做匀加速直线运动;木块B一直做匀减速直线运动;木板C做两段加速度不同的匀加速直线运动,直到A、B、C三者的速度相等为止,设为v1.对A、B、C三者组成的系统,由动量守恒定律得:mv0+2mv0=(m+m+3m)v1解得:v1=0.6v0木块B滑动的加速度为:a=μg,所发生的位移:x==(2)A与C速度相等时,速度最小,此过程A和B减少的速度相等,有:mv0+2mv0=(m+3m)v A+mv Bv0﹣v A=2v0﹣v B解得:v A=0.4v0答:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移是;(2)木块A在整个过程中的最小速度是0.4v0.点评:本题是木块在木板上滑动的类型,分析物体的运动过程是解题基础,其次要把握物理过程所遵守的规律,这种类型常常根据动量守恒和能量守恒结合处理.题型三:动量守恒的临界问题如图所示,光滑的水平面上有一个质量为M=2m的凸型滑块,它的一个侧面是与水平面相切的光滑曲面,滑块的高度为h=0.3m.质量为m的小球,以水平速度v0在水平面上迎着光滑曲面冲向滑块.试分析计算v0应满足什么条件小球才能越过滑块.(取g=1Om/s2)分析:小球越到滑块最高点速度水平向右,以滑块和和小球组成的系统为研究对象;根据动量守恒和过程系统机械能守恒列出等式;根据题意要越过滑块,应有v1>v2,我们解决问题时取的是临界状态求解.解答:设小球越过滑块最高点的速度为v1,此时滑块的速度为v2,根据动量守恒得:mv0=mv1+2mv2此过程系统机械能守恒,根据机械能守恒得:mv02=mv12+2mv22+mgh小球要越过滑块,应有v1>v2,至少也要有v1=v2,设v1=v2=v,上述两式变为mv0=(m+2m)vmv02>(m+2m)v2+mgh解得v0>3m/s答:小球要越过滑块,初速度应满足v0>3m/s.点评:应用动量守恒定律时要清楚研究的对象和守恒条件.把动量守恒和能量守恒结合起来列出等式求解是常见的问题.题型四:动量与能量的综合例子:如图所示,光滑水平面上放置质量均为M=2kg的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过两车连接处时,感应开关使两车自动分离,分离时对两车及滑块的瞬时速度没有影响),甲车上表面光滑,乙车上表面与滑块P之问的动摩擦因数μ=0.5,一根轻质弹簧固定在甲车的左端,质量为m=1kg的滑块P(可视为质点)与弹簧的右端接触但不相连,用一根细线拴在甲车左端和滑块P之间使弹簧处于压缩状态,此时弹簧的弹性势能E0=10J,弹簧原长小于甲车长度,整个系统处于静止状态.现剪断细线,滑块P滑上乙车后最终未滑离乙车,g取10m/s2.求:(1)滑块P滑上乙车前的瞬时速度的大小;(2)滑块P滑上乙车后相对乙车滑行的距离.分析:(1)因地面光滑,所以滑块P在甲车上滑动的过程中,符合动量守恒的条件,同时除了弹簧的弹力做功之外,没有其他的力做功,所以机械能也是守恒的,分别应用动量守恒和机械能守恒列式求解,可得出滑块P滑上乙时的瞬时速度.(2)滑块P滑上乙车时,甲乙两车脱离,滑块和乙车做成了系统,经对其受力分析,合外力为零,动量守恒,可求出滑块和乙车的最终共同速度,由能量的转化和守恒可知,系统减少的机械能转化为了内能,即为摩擦力与相对位移的乘积.从而可求出相对位移,即滑块P 在乙车上滑行的距离.解答:(1)设滑块P滑上乙车前的速度为v,以整体为研究对象,作用的过程中动量和机械能都守恒,选向右的方向为正,应用动量守恒和能量关系有:mv1﹣2Mv2=0…①E0=m+…②①②两式联立解得:v1=4m/s v2=1m/s(2)以滑块和乙车为研究对象,选向右的方向为正,在此动过程中,由动量守恒定律得:mv1﹣Mv2=(m+M)v共…③由能量守恒定律得:μmgL=+﹣(M+m)…④③④联立并代入得:L=m答:(1)滑块P滑上乙时的瞬时速度的大小为4m/s.(2)滑块P滑上乙车后最终未滑离乙车,滑块P在乙车上滑行的距离为m.点评:本题考察了动量守恒.机械能守恒和能量的转化与守恒.应用动量守恒定律解题要注意“四性”,①系统性.②矢量性.③同时性.机械能守恒的条件是只有重力(或弹簧的弹力)做功,并只发生动能和势能的转化.【解题方法点拨】1.应用动量守恒定律的解题步骤:(1)明确研究对象(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒);(3)规定正方向,确定初末状态动量;(4)由动量守恒定律列式求解;(5)必要时进行讨论.2.解决动量守恒中的临界问题应把握以下两点:(1)寻找临界状态:题设情境中看是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件:在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.正确把握以上两点是求解这类问题的关键.3.综合应用动量观点和能量观点4.动量观点和能量观点:这两个观点研究的是物体或系统运动变化所经历的过程中状态的改变,不对过程变化的细节作深入的研究,而只关心运动状态变化的结果及引起变化的原因,简单地说,只要求知道过程的始末状态动量、动能和力在过程中所做的功,即可对问题求解.5.利用动量观点和能量观点解题应注意下列问题:(1)动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是标量表达式,无分量表达式.(2)动量守恒定律和能量守恒定律,是自然界中最普遍的规律,它们研究的是物体系,在力学中解题时必须注意动量守恒条件及机械能守恒条件.在应用这两个规律时,当确定了研究对象及运动状态的变化过程后,根据问题的已知条件和求解的未知量,选择研究的两个状态列方程求解.(3)中学阶段凡可用力和运动解决的问题,若用动量观点或能量观点求解,一般比用力和运动的观点简便.。

高中物理选必一第一章动量守恒定律(1动量2动量定理)

高中物理选必一第一章动量守恒定律(1动量2动量定理)

第一章动量守恒定律第1节动量知识点一、动量(1)定义:物体质量和速度的乘积,用字母p 表示,p =m v .(2)动量的矢量性:动量既有大小,又有方向,是矢量.动量的方向与速度的方向一致,运算遵循矢量运算法则.(3)单位:国际单位是千克·米每秒,符号是kg·m/s.(4)动量具有相对性:选取不同的参考系,同一物体的速度可能不同,物体的动量也就不同,即动量具有相对性.通常在不说明参考系的情况下,物体的动量是指相对地面的动量.知识点二、动量与速度、动能的区别和联系动量与速度动量与动能区别①动量在描述物体运动方面更进一步,更能体现运动物体的作用效果②速度描述物体运动的快慢和方向①动量是矢量,从运动物体的作用效果方面描述物体的状态②动能是标量,从能量的角度描述物体的状态联系①动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度方向相同,且p =mv ②动量和动能都是描述物体运动状态的物理量,且p =2mE k 或E k =p 22m知识点三、动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差,即Δp =p ′-p(2)动量的变化量Δp 也是矢量,其方向与速度的改变量Δv 相同.(3)因为p =m v 是矢量,只要m 的大小、v 的大小和v 的方向三者中任何一个发生了变化,动量p 就发生变化.(4)动量变化量Δp 的计算①当物体做直线运动时,只需选定正方向,与正方向相同的动量取正,反之取负.若Δp 是正值,就说明Δp 的方向与所选正方向相同;若Δp 是负值,则说明Δp 的方向与所选正方向相反.②当初、末状态动量不在一条直线上时,可按平行四边形定则求Δp 的大小和方向.典例分析一、对动量和动量增量的理解例1关于动量变化,下列说法正确的是()A .做直线运动的物体速度增大时,动量的增量Δp 的方向与运动方向相同B .做直线运动的物体,速度减小时,动量增量Δp 的方向与运动方向相反C .物体的速度大小不变时,动量的增量Δp 为零D .物体做平抛运动时,动量的增量一定不为零二、动量变化量的计算例2羽毛球是速度最快的球类运动之一,林丹扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,林丹将球以342km/h的速度反向击回.设羽毛球质量为5g,试求:(1)林丹击球过程中羽毛球的动量变化量.(2)在林丹的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题一对动量及动量变化的理解例3关于动量的变化,下列说法正确的是()A.做直线运动的物体速度增大时,动量的增量Δp的方向与运动方向相同B.做直线运动的物体速度减小时,动量的增量Δp的方向与运动方向相反C.物体的速度大小不变时,动量的增量Δp为零D.物体做曲线运动时,动量的增量一定不为零专题二对动量及动量变化的计算例4羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,运动员将球以342km/h的速度反向击回.设羽毛球的质量为5g,试求(1)运动员击球过程中羽毛球的动量变化量.(2)在运动员的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题三碰撞中的动量变化例5质量为0.1kg的小球从1.25m高处自由落下,与地面碰撞后反弹回0.8m高处.取竖直向下为正方向,且g =10m/s2.求:(1)小球与地面碰前瞬间的动量;(2)球与地面碰撞过程中动量的变化.第2节动量定理知识点一、冲量(1)概念:力与力的作用时间的乘积叫做力的冲量.(2)定义式:I=Ft.(3)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大.(4)单位:在国际单位制中,冲量的单位是牛·秒,符号为N·s.知识点二、冲量的理解(1)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(2)冲量是矢量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和,若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.(3)冲量是过程量,它是力在一段时间内的积累,它取决于力和时间这两个因素.所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.知识点三、冲量的计算(1)恒力的冲量:公式I=Ft适用于计算某个恒力的冲量,这时冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致.若力为同一方向均匀变化的力,该力的冲量可以用平均力计算,若力为一般变力则不能直接计算冲量.(2)变力的冲量①变力的冲量通常可利用动量定理I=Δp求解.②可用图象法计算如图所示变力冲量,若某一力方向恒定不变,那么在F-t图象中,图中阴影部分的面积就表示力在时间Δt=t2-t1内的冲量.知识点四、冲量与功(1)联系:冲量和功都是力作用过程的积累,是过程量.(2)区别:冲量是矢量,是力在时间上的积累,具有绝对性;功是标量,是力在位移上的积累,有相对性.知识点四、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.这个关系叫做动量定理.2.表达式:I=Δp或Ft=m v′-m v.3.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,它说明合外力的冲量跟物体动量变化量不仅大小相等,而且方向相同.(3)动量的变化率和动量的变化量由动量定理可得出F=p′-pt,它说明动量的变化率决定于物体所受的合外力.而由动量定理I=Δp可知动量的变化量取决于合外力的冲量,它不仅与物体的受力有关,还与力的作用时间有关.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,不论作用力是恒力还是变力,不论几个力的作用时间是相同还是不同都适用.4.动量定理的应用(1)定性分析有关现象由F=Δpt可知:①Δp一定时,t越小,F越大;t越大,F越小.②Δp越大,而t越小,F越大.③Δp越小,而t越大,F越小.(2)应用动量定理解决问题的一般步骤①审题,确定研究对象:对谁、对哪一个过程.②对物体进行受力分析,分析力在过程中的冲量,或合力在过程中的冲量.③抓住过程的初、末状态,选定参考方向,对初、末状态的动量大小、方向进行描述.④根据动量定理,列出动量定理的数学表达式.⑤写清各物理量之间关系的补充表达式.⑥求解方程组,并分析作答.典例分析一、冲量的理解例1如图所示,质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力的冲量各是多大?二、平均冲量的计算例2如图所示,质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反弹的最大高度为h2=0.2m,从小球下落到反弹到最高点经历的时间为Δt=0.6s,g取10m/s2.求:小球撞击地面过程中,球对地面的平均压力F的大小.三、合力冲量的计算例3质量为1.0kg的小球从20m高处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触时2)()间为1.0s,在接触时间内小球受到的合力的冲量大小为(空气阻力不计,g=10m/sA.10N·s B.20N·s C.30N·s D.40N·s四、冲量的综合应用例4用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g取10m/s2)(3)比较(1)和(2),讨论是否要计铁锤的重力。

高中物理必修三 讲义 16 A动量守恒定律及应用 基础版

高中物理必修三 讲义 16 A动量守恒定律及应用 基础版

动量守恒定律及应用考点一动量守恒定律的理解和基本应用1.内容如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.2.表达式(1)p=p′或m1v1+m2v2=m1v1′+m2v2′.系统相互作用前的总动量等于相互作用后的总动量.(2)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.技巧点拨应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程).(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒).(3)规定正方向,确定初、末状态动量.(4)由动量守恒定律列出方程.(5)代入数据,求出结果,必要时讨论说明.例题精练1.如图1所示,将一光滑的半圆槽置于光滑水平面上,槽的左侧紧靠在墙壁上.现让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则下列结论中正确的是()图1A.小球在半圆槽内运动的全过程中,只有重力对它做功B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒C .小球自半圆槽B 点向C 点运动的过程中,小球与半圆槽在水平方向动量守恒D .小球离开C 点以后,将做竖直上抛运动2.(多选)如图2所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A ,同时给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离B 板,在小木块A 做加速运动的时间内,木板速度大小可能是( )图2A .2.1 m/sB .2.4 m/sC .2.8 m/sD .3.0 m/s3.(多选)某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图3所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移随时间变化关系.已知相互作用时间极短,由图象给出的信息可知( )图3A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为5∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16考点二 动量守恒定律的临界问题1.当小物块到达最高点时,两物体速度相同.2.弹簧最短或最长时,两物体速度相同,此时弹簧弹性势能最大.3.两物体刚好不相撞,两物体速度相同.4.滑块恰好不滑出长木板,滑块滑到长木板末端时与长木板速度相同.例题精练4.如图4所示,光滑悬空轨道上静止一质量为3m的小车A,用一段不可伸长的轻质细绳悬挂一质量为2m的木块B.一质量为m的子弹以水平速度v0射入木块(时间极短),在以后的运动过程中,细绳离开竖直方向的最大角度小于90°,试求:(不计空气阻力,重力加速度为g)图4(1)子弹射入木块B时产生的热量;(2)木块B能摆起的最大高度;(3)小车A运动过程的最大速度大小.综合练习一.选择题(共10小题)1.(和平区校级期中)如图所示,质量为m2的小车上有一半圆形的光滑槽,一质量为m1的小球置于槽内,共同以速度v0沿水平面运动,并与一个原来静止的小车m3对接,则对接后瞬间,小车的速度大小为()A.B.C.D.以上答案均不对2.(邳州市校级期中)A、B两球沿一直线发生正碰,如图所示的x﹣t图像记录了两球碰撞前后的运动情况,图中的a、b分别为碰撞前A、B两球的x﹣t图线。

高二物理动量守恒知识点

高二物理动量守恒知识点

高二物理动量守恒知识点动量守恒是物理学科的重要学问点,高二学生需要学会把握相关内容,下面是学习啦我给大家带来的高二物理动量守恒学问点,希望对你有关怀。

高二物理动量守恒学问点1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P=mv。

单位是。

动量是矢量,其方向就是瞬时速度的方向。

因为速度是相对的,所以动量也是相对的。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

动量守恒定律根据实际状况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要留意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个特殊短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短临时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必需是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此"系统总动量'是指系统中全部物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的状况。

有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力重量为零,那么在这个方向上系统总动量的重量是守恒的。

⑥动量守恒定律有广泛的应用范围。

只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不管是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

系统内部各物体相互作用时,不管具有相同或相反的运动方向;在相互作用时不管是否直接接触;在相互作用后不管是粘在一起,还是分裂成碎块,动量守恒定律也都适用。

3、动量与动能、动量守恒定律与机械能守恒定律的比较。

动量与动能的比较:①动量是矢量, 动能是标量。

高中物理动量守恒定律知识点总结

高中物理动量守恒定律知识点总结

中学物理动量守恒定律学问点总结中学物理动量守恒定律是中学物理的重点和难点,那么有哪些学问点是必需驾驭的呢?以下是为您整理关于中学物理动量守恒定律学问点相关资料,希望对您有所帮助。

中学物理动量守恒定律学问点(一)一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。

(碰撞、爆炸、反冲)留意:内力的冲量对系统动量是否守恒没有影响,但可变更系统内物体的动量。

内力的冲量是系统内物体间动量传递的缘由,而外力的冲量是变更系统总动量的缘由。

2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。

必需留意区分总动量守恒与某一方向动量守恒。

二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。

2、弹性碰撞:动量守恒,碰撞前后动能相等。

特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A 的速度)3、一般碰撞:有完整的压缩阶段,只有部分复原阶段,动量守恒,动能减小。

4、人船模型两个原来静止的物体(人和船)发生相互作用时,不受(其它)外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(留意:几何关系)中学物理动量守恒定律学问点(二)冲量与动量(物体的受力与动量的变更)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F确定}4.动量定理:I=p或Ft=mvtmvo {p:动量变更p=mvtmvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p也可以是m1v1+m2v2=m1v1+m2v26.弹性碰撞:p=0;Ek=0 {即系统的动量和动能均守恒}7.非弹性碰撞p=0;0EKEKm {EK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞p=0;EK=EKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1=(m1-m2)v1/(m1+m2) v2=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相(对子)弹相对长木块的位移}中学(物理(学习(方法)))要重视试验物理学是一门以试验为基础的科学,很多物理概念、物理规律都是从自然现象的试验中(总结)出来的。

高中物理动量守恒定律

高中物理动量守恒定律
第十六章动量守恒定律
一、概念复习
1、动量:p = mv
2、冲量:I=F·t
3、动量定理:即 p ′ — p=I
4、动量守恒定律 如果一个系统不受外力,或者所受外力之和为零 (两个物体)m1v1+m2v2=m1v/1+m2v/2
动量守恒定律成立的三个条件:
(1) 系统不受外力或者所受外力之和为零 (2) 若系统所受合外力不为零,但在内力远大于外
m2 m2
V0
m1
m2
V1ˊ
V2ˊ
V2
2m1 m1 m2
V0
m1
m2
碰撞问题的解应同时遵守三个原则:
(1)系统动量守恒的原则:P′=P (2)空间可行性原则
(63. )反不冲违运背动能:量一守个恒静的止原的则物体:在EK内′≤力E作K 用下分裂为两个部分,
一部分向某个方向运动,另一部分必然向相反的方向运动。这个
现象叫做反冲。
二、应用动量定理或动量守恒定律 解题的一般步骤
• 1.选取研究对象和系统,确定物理过程(是解 题关键所在),根据是否满足动量守恒的条件选 择用动量守恒定律还是动量定理; 2.选取正方向(或建立坐标系)和参考系(一 般以地面为参考系); 3.写出初末状态的动量(注意:一般以相对地面 速度),或应用动量定理时的冲量;
例7、带有1/4光滑圆弧轨道质量为M的滑车静止于光
滑水平面上,如图示,一质量为m的小球以速度v0水 平冲上滑车,当小球上行再返回并脱离滑车时,以下
说法正确的是: ( B C D )
A.小球一定水平向左作平抛运动
B.小球可能水平向左作平抛运动
v0
C.小球可能作自由落体运动
m
M
D.小球可能水平向右作平抛运动

高中物理第08章动量守恒 动量守恒定律应用 四种常见模型

高中物理第08章动量守恒 动量守恒定律应用 四种常见模型

高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。

④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。

不同时刻的动量不能相加。

(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。

02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。

高中物理(动量守恒定律)

高中物理(动量守恒定律)

高中物理(动量守恒定律)动量守恒定律:后总前总p p =或p p '=或'+'=+22112211v m v m v m v m一、研究对象:两个或两个以上物体组成的系统。

二、特点:满足动量守恒的物理过程常常是物体间短暂时间内相互作用的过程。

三、性质:(1)矢量性:表达式'+'=+22112211v m v m v m v m 中守恒式两边不仅大小相等,且方向相同,等式两边总动量是系统内所有物体动量矢量和。

一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。

(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。

(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。

(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).四、条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。

(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。

(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。

五、碰撞:指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,故通常可认为发生碰撞的物体系统动量守恒。

按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分。

六、分类:(1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。

例如:钢球、玻璃球、微观粒子间的碰撞。

【0=∆p ;0=∆k E 】'22'112211v m v m v m v m +=+2'222'1122221121212121v m v m v m v m +=+()2112122'12m m v m m v m v +-+=()2121211'22m m v m m v m v +-+=(2)一般非弹性碰撞——碰撞结束后,形变部分消失,碰撞前后系统总动量相等,动能有部分损失。

高中物理必备知识点:动量守恒定律及其应用总结

高中物理必备知识点:动量守恒定律及其应用总结

高中物理必备知识点:动量守恒定律及其应用总结第二课时动量守恒定律及其应用第一关:基本关与高考前景基础知识一、动量守恒定律知识解释(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)数学表达式①p=p′.也就是说,系统相互作用前的总动量P等于相互作用后的总动量P',如果有两个相互作用的物体,通常写为:m1v1+m2v2=m1v1'+m2v2'② δp=p′-p=0。

即系统总动量的增量为零.③δp1=-δp2.也就是说,相互作用系统中的物体被分成两部分,其中一部分动量的增量等于另一部分动量的增量,且方向相反(3)动量守恒定律成立的条件内力不会改变系统的总动量,而外力可以改变系统的总动量。

在以下三种情况下,可以使用动量守恒定律:①系统不受外力或所受外力的矢量和为零.② 系统上的外力远小于系统的内力。

例如,在碰撞或爆炸的瞬间,外力可以忽略③系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒(分动量守恒).灵活的学习和应用1.如图所示,a、b两物体的质量ma>mb,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车c上后,a、b、c均处于静止状态.若地面光滑,则在细绳被剪断后,a、b从c上未滑离之前,a、b在c上向相反方向滑动过程中()a、如果a、B和C之间的摩擦力相同,由a和B组成的系统的动量守恒,由a、B和C组成的系统的动量也守恒b.若a、b与c之间的摩擦力大小不相同,则a、b组成的系统动量不守恒,a、b、c组成的系统动量也不守恒c、如果a、B和c之间的摩擦力不同,由a和B组成的系统的动量不守恒,但由a、B和c组成的系统的动量守恒d.以上说法均不对分析:当两个物体a和B形成一个系统时,弹簧力是内力,a、B和C之间的摩擦力是外力。

当a、B和C之间的摩擦力相反时,由a和B组成的系统的合力为零,动量守恒;当a、B和C之间的摩擦力不相等时,由a和B组成的系统上的组合外力不为零,对于由a、B和C组成的系统,动量不守恒,因为弹簧的弹性力以及a和B和C之间的摩擦力都是内力,无论a和B之间的摩擦力,B和C是否相等,由a、B和C组成的系统的合力为零,动量守恒,因此选项a和C是正确的,选项B和D是错误的答案:ac注:(1)动量守恒的条件是系统不受外力或组合外力为零。

人教版高中物理选择性必修第1册 1.3 动量守恒定律

人教版高中物理选择性必修第1册 1.3 动量守恒定律

系统动量守恒吗?在哪个方向上动量是守恒的?
再见
守恒?


练1.(多选)两位同学穿旱冰鞋,面对面站立不动,互推后向相
反的方向运动,不计摩擦阻力,下列判断正确的是( BD )
A.互推后两位同学各自的动量增加,总动量也增加
B.互推后两位同学动量大小相等,方向相反
C.分离时质量大的同学的速度大一些
D.分离时质量大的同学的速度小一些
0 = 11 + 22
m1v1
v=
m1 + m2
代入数值,得 v= 0.9 m/s
x
问题5:处理课本例题,归纳如何动量守恒定律进行解题?
一枚在
例题2
m2
m1
v
解析
空中飞行的火箭,质
量为m,在某点的速
向右为正方向
x
度为v,方向水平,
0
p = mv
火箭炸裂前的总动量为
燃料即将耗尽。火箭
p = m1v1 + ( m - m1 )v2
合在一起继续运动,
求货车碰撞后的运动
速度。
解析
m1
v
0
m2
沿碰撞前货车运动的方向建立坐标轴,有
v1 = 2 m/s 设两车结合后的速度为v 。
两车碰撞前的总动量为 p = m1v1
两车碰撞后的总动量为 p = ( m1 + m2 )v
由动量守恒定律可得: m1v1 = ( m1 + m2 )v
所以
问题7:整理思路,想想我们这一节课学习了什么?
1、定律内容:一个系统不受外力或所受外力之和为零,这个
系统的总动量保持不变。
2、公式表达:m1v1+m2v2=m1v1′+m2v2′

【高中物理】动量守恒定律+课件+高二上学期物理人教版(2019)选择性必修第一册

【高中物理】动量守恒定律+课件+高二上学期物理人教版(2019)选择性必修第一册

解:以v方向为正方向
mv = m1v1 + (m - m1 )v2
m1
m2
解出
v2
=
mv m1v1 m m1
v1为负值,分母为正值,则 v2为正值,即剩余部分沿原方向运动
总结提升
用动量守恒定律解题的步骤
速滑接力比赛
斯诺克比赛
正负电子对撞实验
宇宙大爆炸
冰壶比赛
第 11 页
生活场景 的应用
原子核裂变反应
如图,一个木箱原来静止在光滑水平面上,木 箱内粗糙的底板上放着一个小木块。木箱和小 木块都具有一定的质量。现使木箱获得一个向 右的初速度v0,则( )
A.小木块和木箱最终都将静止 B.小木块最终将相对木箱静止,二者一起向右运动 C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动 D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起 向左运动
第一章 动量守恒定律
1.3 动量守恒定律
一、动量守恒定律——理论推导:动量定理
m2
m1
m2 m1
m2
m1
F2
A
B
F1
A
B
F2Δt m2v2 m2v
F1Δt m1v1 m1v
F1 F2
m1v1 - m1v1 - (m2v2 - m2v2 )
m1v1 + m2v2 m1v1 + m2v2
(多选)如图,光滑的水平面上有一质量为M=4kg的长木板,长木板 的左端放置一质量m=1 kg的小物块,木板与物块间的动摩擦因数 μ=0.2,现使木板与物块以相等的速率 v₀= 1m/s 分别向左、向右运 动,两者相对静止时物块恰好滑到木板的右端,g 取10m/s².则下

高中物理--动量守恒定律

高中物理--动量守恒定律
4.普适性:它不仅适用于两个物体所组成的系统; 也适用于多个物体组成的系统,不仅适用于宏观 物体组成的系统,也适用于微观粒子组成的系统.
题型探究
题型1 动量大小的计算及方向的判断
【例1】一个物体的质量为2 kg ,此物体竖直落下,以
10 m/s的速度碰到水泥地面上,随后又以8 m/s的速
度被反弹起.若取竖直向上为正方向,则小球与地面
5.如图2所示, 木块A静置在光滑的水平面上,其曲面
部分MN光滑,水平部分NP粗糙,现有一物体
B自M点由静止下滑,设NP足够长,则下列说法中
正确的是
( BC )
图2 A.A、B最终以同一速度(不为零) B.A、B C.A先做加速运动, D.A先做加速运动,后做匀速运动 解析 系统在水平方向上不受外力,所以系统在水
2.同时性:动量是一个瞬时量,动量守恒指的是系统任 一瞬时的动量守恒,列方程m1v1+m2v2=m1v1′+m2v2′ 时,等号左侧是作用前(或某一时刻)各物体的动量和, 等号右侧的是作用后(或另一时刻)各物体的动量和, 不同时刻的动量不能相加.
3.相对性:由于动量大小与参考系的选取有关,因此 应用动量守恒定律时,应注意各物体的速度必须 是相对于地面的速度.
1.当物体的速度大小不变,方向变化时,动量一定改
变,动能却不变,如匀速圆周运动.
2.在谈及动量时,必须明确是物体在哪个时刻或哪
个状态所具有的动量. 3.物体动量的变化率 p 等于它所受的力,这是牛
t
顿第二定律的另一种表达形式.
热点二、应用动量守恒定律解题时要注意“四性”
1.矢量性:对于作用前后物体的运动方向都在同一直线 上的问题,应选取统一的正方向,凡是与选取正方向 相同的动量为正,相反为负.若方向未知,可设为与正 方向相同列动量守恒方程,通过解得结果的正负判定 未知量的方向.

高中物理课件:动 量 守 恒 定 律

高中物理课件:动 量 守 恒 定 律

B.4 J
C.5 J
D.6 J
8、在冰壶比赛中,某队员利用红壶去碰撞对方的蓝壶,两者在大本营中心 发生对心碰撞如图(a)所示,碰撞前后两壶运动的v—t图线如图(b)中实 线所示,其中红壶碰撞前后的图线平行,两冰壶质量相等,则( )
A.两壶发生了弹性碰撞 B.碰后蓝壶速度为0.8m/s C.碰后蓝壶移动的距离为2.4m D.碰后红壶所受摩擦力小于蓝壶所受摩擦力
5、两球A、B在光滑水平面上沿同一直线、同一方向运动,mA=1 kg,mB=2 kg,vA=6 m/s,vB=2 m/s。当A追上B并发生碰撞后, 两球A、B速度的可能值是( ) A.vA′=3 m/s,vB′=4 m/s B.vA′=5 m/s,vB′=2.5 m/s C.vA′=2 m/s,vB′=4 m/s D.vA′=-4 m/s,vB′=7 m/s
模型四 “滑块—木板”类模型
12、(2018·海南卷) [多选]如图(a)有一长木板静止于光滑水平桌面上, t=0时,小物块以速度v0滑到长木板上,图(b)为物块与木板运动的v—t 图像,图中t1、v0、v1已知。重力加速度大小为g。由此可求得( )
A.木板的长度 B.物块与木板的质量之比 C.物块与木板之间的动摩擦因数 D.从t=0开始到t1时刻,木板获得的动能
动量守恒定律
一、动量守恒定律的理解和基本应用
1、如图所示,A、B两物体的质量之比为mA:mB=1:2,它们原本静 止在平板车C上,A、B两物体间有一根被压缩了的水平轻质弹簧,A、 B两物体与平板车上表面间的动摩擦因数相同,水平地面光滑。当弹簧 突然释放后,A、B两物体被弹开(A、B两物体始终不滑出平板车), 则有( ) A.A、B系统动量守恒 B.A、B、C及弹簧组成的系统机械能守恒 C.小车C先向左运动后向右运动 D.小车C一直向右运动直到静止

高中动量守恒知识点总结

高中动量守恒知识点总结

高中动量守恒知识点总结一、动量的概念和计算动量是描述物体运动状态的一种物理量,它是物体质量和速度的乘积。

动量的定义可以用公式表示为:p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。

动量的单位是千克·米/秒(kg·m/s)。

在物理学中,动量是一个矢量量,考虑到其方向,通常用有向线段表示。

在实际问题中,我们可以利用动量的定义和计算方法来解决物体运动过程中的一些问题,比如计算碰撞中物体的速度变化、求解物体的力的作用时间等等。

二、动量守恒定律动量守恒定律指的是在一个封闭系统中,如果没有外力作用,该系统的动量总量在一段时间内保持不变。

也就是说,如果系统内部发生了相互作用,使得某些物体的动量发生了变化,那么这些变化的动量之和必须等于其他物体动量变化的负值,从而使得整个系统的动量总量保持不变。

动量守恒定律的数学表达式为:Σpi=Σpf,即系统在初态和末态的动量之和相等,其中Σpi 表示初态的动量之和,Σpf表示末态的动量之和。

动量守恒定律适用于很多物理现象的描述,比如弹性碰撞、完全非弹性碰撞、爆炸等等。

下面我们来分别讨论这些情况下的动量守恒定律的应用。

1. 弹性碰撞在弹性碰撞中,两个物体相互碰撞后会发生弹性形变,并且碰后两物体之间的相对速度方向和大小会发生变化,但整个碰撞过程中系统的动量总量不发生改变。

即系统在碰撞前后的总动量保持不变。

例如,如果一个质量为m1的小球以速度v1与一个质量为m2的小球以速度v2发生弹性碰撞,那么碰撞后两球的速度分别为v'1和v'2,根据动量守恒定律有:m1v1+m2v2=m1v'1+m2v'2。

2. 完全非弹性碰撞在完全非弹性碰撞中,碰撞发生后两个物体会粘在一起,形成一个整体,整个碰撞过程中动量总量也是守恒的。

在这种情况下,碰撞后整体的速度就是碰撞前两个物体速度的加权平均。

例如,如果一个质量为m1的小球以速度v1与一个质量为m2的小球以速度v2发生完全非弹性碰撞,那么碰撞后整体的速度v'可以表示为:v'=(m1v1+m2v2)/(m1+m2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量定理.动量守恒【重要知识点】 1.弹性碰撞特点:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则有动量守恒:221101v m v m v m += 碰撞前后动能不变:222212111210121v mv m v m += 所以012121v v m m m m +-=022211v v m m m +=(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论]①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <<m 2时,v 1≈-v 0,v 2≈O (速度反向) ③当m l >m 2时,v 1>0,v 2>0(同向运动) ④当m l <m 2时,v 1<O ,v 2>0(反向运动)⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动)、 2.非弹性碰撞特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能的损失:)()(22221211212222121121'+'-+=∆v m v m v m v m E3.完全非弹性碰撞特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v动能损失:221212222121121)()(v m m v m v mE k +-+=∆【训练题】1.竖直上抛一质量为m 的小球,经t 秒小球重新回到抛出点,若取向上为正方向,那么小球的动量变化为 [ ]A. -mgtB.mgtC.0D.-1/2mgt2.质量为m 的物体做竖直上抛运动,从开始抛出到落回抛出点用时间为t ,空气阻力大小恒为f 。

规定向下为正方向,在这过程中物体动量的变化量为 [ ]A .(mg+f)tB .mgtC .(mg-f)tD .以上结果全不对 3.质量为m 的物体,在受到与运动方向一致的外力F 的作用下,经过时间t 后物体的动量由mv1增大到mv2,若力和作用时间改为,都由mv1开始,下面说法中正确的是 [ ] A .在力2F 作用下,经过2t 时间,动量增到4mv2 B .在力2F 作用下,经过2t 时间,动量增到4mv1 C .在力F 作用下,经过2t 时间,动量增到2mv2-mv1 D .在力F 作用下,经过2t 时间,动量增到2mv24.一质量为m 的小球,从高为H 的地方自由落下,与水平地面碰撞后向上弹起。

设碰撞时间为t 并为定值,则在碰撞过程中,小球对地面的平均冲力与跳起高度的关系是 [ ]A.跳起的最大高度h越大,平均冲力就越大B.跳起的最大高度h越大,平均冲力就越小C.平均冲力的大小与跳起的最大高度h无关D.若跳起的最大高度h一定,则平均冲力与小球质量正比5. 甲、乙两球在水平光滑轨道上沿同一直线同向运动,已知它们的动量分别为P甲=5kg·m/s P乙=7kg·m/s, 甲从后面追上乙并发生碰撞,碰后乙的动量变为10 kg·m/s,则两球的质量m甲与m乙的关系可能是A.m乙=m甲B.m乙=2m甲C.m乙=4m甲D.m乙=6m甲6.如图2所示,固定斜面上除AB段粗糙外,其余部分是光滑的,物块与AB段间的动摩擦因数处处相同。

当物块从斜面顶端滑下后,经过A点的速度与经过C点的速度相等,且AB=BC。

已知物块通过AB段和BC段所用时间分别是t1和t2,动量变化量分别是Δp1和Δp2,则 [ ] A.t1=t2,Δp1=Δp2 B.t1>t2,Δp1=Δp2C.t1>t2,Δp1<Δp2 D.t1=t2,Δp1=-Δp27.匀速向东行驶的小车上有两球分别向东、向西同时抛出,抛出时两球的动量大小相等,则[ ]A.球抛出后,小车的速度不变B.球抛出后,小车的速度增加C.球抛出后,小车的速度减小D.向西抛出之球的动量变化比向东抛出之球的动量变化大8.水平抛出在空中飞行的物体,不考虑空气阻力,则 [ ]A.在相等的时间间隔内动量的变化相同B.在任何时间内,动量变化的方向都是竖直方向C.在任何对间内,动量对时间的变化率恒定D.在刚抛出物体的瞬间,动量对时间的变化率为零9.如图3所示、质量为m的小球以速度v0水平抛出,恰好与倾角为30°的斜面垂直碰撞,其弹回的速度大小与抛出时相等,则小球与斜面碰撞中受到的冲量大小是(设小球与斜面做用时间很短) [ ]A.3mv0B.2mv0C.mv0D.2mv010.某地强风的风速是20m/s,空气的密度是ρ=1.3kg/m3。

一风力发电机的有效受风面积为S=20m2,如果风通过风力发电机后风速减为12m/s,且该风力发电机的效率为η=80%,则该风力发电机的电功率多大?11.如图11所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ。

最初木板静止,A、B 两木块同时以方向水平向右的初速度V0和2V0在木板上滑动,木板足够长, A、B始终未滑离木板。

求:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;(2)木块A在整个过程中的最小速度。

V0 2V0A BC图1112.如图12所示,在一光滑的水平面上有两块相同的木板B 和C 。

重物A (A 视质点)位于B 的右端,A 、B 、C 的质量相等。

现A 和B 以同一速度滑向静止的C ,B 与C 发生正碰。

碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力。

已知A 滑到C 的右端面未掉下。

试问:从B 、C 发生正碰到A 刚移动到C 右端期间,C 所走过的距离是C 板长度的多少倍?13.如图13所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的1/4圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上。

现有滑块A 以初速V 0从右端滑上B ,并以1/2 V 0滑离B ,确好能到达C 的最高点。

A 、B 、C 的质量均为m ,试求:(1)木板B 上表面的动摩擦因素μ;(2)1/4圆弧槽C 的半径R ;(3)当A 滑离C 时,C 的速度。

14.如图所示,将质量均为m 厚度不计的两物块A 、B 用轻质弹簧相连接,只用手托着B 物块于H 高处,A 在弹簧弹力的作用下处于静止,将弹簧锁定.现由静止释放A 、B ,B 物块着地时解除弹簧锁定,且B 物块的速度立即变为0,在随后的过程中当弹簧恢复到原长时A 物块运动的速度为υ0,且B 物块恰能离开地面但不继续上升.已知弹簧具有相同形变量时弹性势能也相同. (1)B 物块着地后,A 向上运动过程中合外力为0时的速度υ1;(2)B 物块着地到B 物块恰能离开地面但不继续上升的过程中,A 物块运动的位移Δx ;(3)第二次用手拿着A 、B 两物块,使得弹簧竖直并处于原长状态,此时物块B 离地面的距离也为H ,然后由静止同时释放A 、B ,B 物块着地后速度同样立即变为0.求第二次释放A 、B 后,B 刚要离地时A 的速度υ2.15.如图所示,质量为m =1kg 的滑块,以υ0=5m/s 的水平初速度滑上静止在光滑水平面的平板小车,若小车质量M =4kg ,平板小车长L =3.6m ,滑块在平板小车上滑移1s 后相对小车静止.求:(g 取9.8m/s 2)(1)滑块与平板小车之间的滑动摩擦系数μ;(2)若要滑块不滑离小车,滑块的初速度不能超过多少?AB C 图12 图13 A V 0 B C HA B AB16.如图所示,质量均为M 的木块B A 、并排放在光滑水平面上,A 上固定一根轻质细杆,轻杆上端的小钉(质量不计)O 上系一长度为L 的细线,细线的另一端系一质量为m 的小球C ,现将C 球的细线拉至水平,由静止释放,求: (1)两木块刚分离时,C B A 、、速度各为多大?(2)两木块分离后,悬挂小球的细线与竖直方向的最大夹角多少?17.如图所示,两个质量均为4m 的小球A 和B 由轻弹簧连接,置于光滑水平面上.一颗质量为m 子弹,以水平速度v 0射入A 球,并在极短时间内嵌在其中.求:在运动过程中 (1)什么时候弹簧的弹性势能最大,最大值是多少? (2)A 球的最小速度和B 球的最大速度.18.质量为M =4.0kg 的平板小车静止在光滑的水平面上,如图所示,当t =0时,两个质量分别为m A =2kg 、m B =1kg 的小物体A 、B 都以大小为v 0=7m/s 。

方向相反的水平速度,同时从小车板面上的左右两端相向滑动。

到它们在小车上停止滑动时,没有相碰,A 、B 与车间的动摩擦因素μ=0.2,取g =10m/s 2,求:(1)A 在车上刚停止滑动时,A 和车的速度大小(2)A 、B 在车上都停止滑动时车的速度及此时车运动了多长时间。

(3)在给出的坐标系中画出小车运动的速度——时间图象。

A B v 0 v 0 2.0v /ms -1t /s0.51.5O t/sv/m.s -11 2 345 1 219.如图甲所示,小车B 静止在光滑水平上,一个质量为m 的铁块A (可视为质点),以水平速度v 0=4.0m/s 滑上小车B 的左端,然后与小车右挡板碰撞,最后恰好滑到小车的中点,已知3=mM,小车车面长L =1m 。

设A 与挡板碰撞无机械能损失,碰撞时间可忽略不计,g 取10m/s 2,求:(1)A 、B 最后速度的大小;(2)铁块A 与小车B 之间的动摩擦因数;(3)铁块A 与小车B 的挡板相碰撞前后小车B 的速度,并在图乙坐标中画出A 、B 相对滑动过程中小车B 相对地面的速度v -t 图线。

20.如图所示,水平传送带AB 足够长,质量为M =1kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动(传送带的速度恒定),木块与传送带的摩擦因数μ=05.,当木块运动到最左端A 点时,一颗质量为m =20g 的子弹,以v 0=300m/s 的水平向右的速度,正对射入木块并穿出,穿出速度v =50m/s ,设子弹射穿木块的时间极短,(g 取10m/s 2)求: (1)木块遭射击后远离A 的最大距离;(2)木块遭击后在传送带上向左运动所经历的时间。

21.在光滑的水平面上,静止放置着直径相同的小球A 和B ,它们的质量分别为m 和3m ,两球之间的距离为L .现用一大小为F 的水平恒力始终作用到A 球上,A 球从静止开始向着B 球方向运动,如图所示.设A 球与B 球相碰的时间极短、碰撞过程没有机械能损失,碰撞后两球仍在同一直线上运动.求:(1)A 球第一次碰撞B 球之前瞬间的速度. (2)A 球到第二次碰撞B 球之前,A 球通过的总路程S .22.如图所示,光滑轨道的DP 段为水平直轨道,PQ 段为A BM m L L FA m BAB CQOR半径是R的竖直半圆轨道,半圆轨道的下端与水平轨道的右端相切于P点.一轻质弹簧两端分别固定质量为2m的小球A和质量为m的小球B,质量为m的小球C靠在B球的右侧.现用外力作用在A和C上,弹簧被压缩(弹簧仍在弹性限度内),这时三个小球均静止于距离P端足够远的水平轨道上.若撤去外力,C球恰好可运动到轨道的最高点Q.已知重力加速度为g,求撤去外力前的瞬间,弹簧的弹性势能E是多大?23.如图所示,A、B两物体与一轻质弹簧相连,静止在地面上.有一个小物体C从距A物体h高度处由静止释放,当下落至与A相碰后立即粘在一起向下运动,以后不再分开,当A和C运动到最高点时,物体B对地面恰好无压力.设A、B、C三物体的质量均为m,弹簧的劲度系数为k,不计空气阻力,且弹簧始终处于弹性限度内.若弹簧的弹性势能由劲度系数和形变量决定,求C物体下落时的高度h.24.质量为M=3kg的平板车放在光滑的水平面上,在平板车的最左端有一小物块(可视为质点),物块的质量为m=1kg,小车左端上方如图所示固定着一障碍物A,初始时,平板车与物块一起以水平速度v0=2m/s向左运动,当物块运动到障碍物A处时与A发生无机械能损失的碰撞,而小车继续向左运动,取重力加速度g=10m/s2.⑴设平板车足够长,求物块与障碍物第一次碰撞后,物块与平板车所能获得的共同速度;⑵设平板车足够长,物块与障碍物第一次碰撞后,物块向右运动对地所能达到的最大距离是s=0.4m,求物块与A第一次碰撞后到第二次碰撞前相对小车滑动的距离.。

相关文档
最新文档