人教版七年级数学上册复习笔记

合集下载

人教版七年级数学上册知识点总结和复习要点

人教版七年级数学上册知识点总结和复习要点

人教版七年级数学上册知识点总结和复习要点一、有理数1有理数的概念与分类概念:有理数是可以表示为两个整数的商的数,包括整数和分数。

分类:有理数可分为正有理数、零和负有理数。

其中,正有理数包括正整数和正分数;负有理数包括负整数和负分数。

2数轴的概念与性质概念:数轴是一条直线,在直线上规定了原点、正方向和单位长度。

性质:数轴上的点与实数一一对应,数轴上的点可以用来表示有理数。

3相反数与绝对值相反数:只有符号不同的两个数互为相反数。

绝对值:一个数在数轴上所对应点到原点的距离,叫做这个数的绝对值。

4有理数的加法与减法加法法则:同号相加,取相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

减法法则:减去一个数,等于加上这个数的相反数。

5有理数的乘法与除法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

除法法则:除以一个不等于零的数,等于乘这个数的倒数。

6有理数的乘方与科学记数法乘方:求n个相同因数的积的运算,叫做乘方。

科学记数法:把一个大于10的数记成a与10的n次幂相乘的形式,其中a是一个整数数位只有一位的数,这种记数法叫科学记数法。

二、整式的加减1整式的概念概念:单项式和多项式统称为整式。

2单项式概念:数与字母的积叫做单项式。

系数:单项式中的数字因数叫做单项式的系数。

次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3多项式概念:几个单项式的和叫做多项式。

项:在多项式中,每个单项式叫做多项式的项。

次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

4整式的加减法则:去括号、合并同类项。

三、一元一次方程1一元一次方程的概念概念:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

等式的性质性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

人教版七年级上册数学知识点(必背基础打印稿)

人教版七年级上册数学知识点(必背基础打印稿)

人教版七年级上册数学知识点(必背基础
打印稿)
本文档旨在帮助学生掌握人教版七年级上册数学的必背基础知
识点,以下是其中的重点内容:
1. 数的概念和整数运算
- 自然数的概念:自然数是以1为开始的整数序列,用N表示。

- 整数的概念:整数是正整数、零和负整数的统称,用Z表示。

- 整数的加法和减法运算规则:整数之间的加法和减法满足交
换律和结合律。

- 整数的乘法和除法运算规则:整数之间的乘法和除法满足交
换律和结合律。

2. 有理数
- 有理数的概念:有理数是可以表示为两个整数之商的数,包
括整数、分数和小数。

- 有理数的加法和减法运算规则:有理数之间的加法和减法满足交换律和结合律。

- 有理数的乘法和除法运算规则:有理数之间的乘法和除法满足交换律和结合律。

3. 分数
- 分数的概念:分数是一个整数与一个自然数的比值,可以表示为a/b的形式,其中a为分子,b为分母。

- 分数的加法和减法运算规则:分数之间的加法和减法需要先找到相同的分母,然后进行相应的运算。

- 分数的乘法和除法运算规则:分数之间的乘法和除法直接进行相应的运算。

4. 整数、分数和小数的大小比较
- 整数的大小比较规则:整数之间比较大小可以根据它们的绝对值进行判断。

- 分数和小数的大小比较规则:将分数和小数转化为带分子的整数进行比较。

5. 数轴
- 数轴的概念:数轴是用来表示数的一种方法,是将数与点在一条直线上对应起来。

- 数轴上的数的位置:数轴上的数从左到右依次增大。

以上是人教版七年级上册数学的必背基础知识点的简要介绍,希望能对学生的学习有所帮助。

新人教版七年级数学上册重要知识点汇总

新人教版七年级数学上册重要知识点汇总

新人教版七年级数学上册重要知识点汇总以下是新人教版七年级数学上册的重要知识点汇总:
1. 整数的概念和表示方法,正整数和负整数的比较
2. 整数的加法和减法运算,数轴上的加法和减法运算
3. 整数的乘法和除法运算,同号相乘除法的规律,异号相乘除法的规律
4. 分数的概念和表示方法,分数的大小比较
5. 分数的加法和减法运算,同分母的分数相加减,不同分母的分数相加减
6. 分数的乘法和除法运算,分数乘整数/分数,分数除以整数/分数
7. 小数的概念和表示方法,小数的大小比较
8. 小数的加法和减法运算,同数位的小数相加减
9. 小数的乘法和除法运算,小数乘整数/小数,小数除以整数/小数
10. 比例的概念和表示方法,比例的性质和运算,比例的倒数、倒数的比例
11. 百分数的概念和表示方法,百分数的大小比较,百分数的转化和计算
12. 简单利益的计算,利率的概念和表示方法,复利的计算
13. 平均数的概念和表示方法,算术平均数的计算
14. 数据的收集和整理,可以文章描述的数据和实际情况不符的数据
15. 数据的分组和统计,频数、频率、众数、中位数的计算
以上是新人教版七年级数学上册的重要知识点汇总,希望对你有帮助。

人教版七年级数学上册知识点整理(完整版)

人教版七年级数学上册知识点整理(完整版)

人教版七年级数学上册知识点整理(完整版)人教版七年级数学上册知识点整理(完整版)第一章有理数一、正数和负数(一)正数:大于0的数。

(二)0的意义1、0既不是正数,也不是负数,0是正数和负数的分界。

2、“0”不仅表示没有,还可以表示某种量的基准。

(三)负数:在正数前面加上符号“﹣”(负)的数。

(四)用正数和负数表示具有相反意义的量1、含义①具有相反意义②具有数量2、通常我们把其中一种意义的量规定为正,用正数表示,那么与它具有相反意义的量就可以用负数表示;例:若规定收入1000元记作+1000元,则支出300元记作-300元。

若规定前进10米记作+10米,则后退5米记作-5米。

注:用正数、负数表示具有相反意义的量时,究竟哪一种意义的量为正是可以任意选择的,但习惯上把“前进、上升、收入、盈利”等规定为正,而把“后退、下降、支出、亏损”等规定为负。

二、有理数(一)分类及有关概念1、根据有理数的定义分有理数整数正整数统称为整数(根据整数的奇偶性)奇数1、3、5、7、9……排列用整数和分数统称为有理数03、5、7、9、11……排列用2n+1负整数偶数(2n )分数(有限小数和无限循环小数也属于分数)正分数正分数和负分数统称分数负分数2、根据有理数的性质分有理数正有理数正整数正分数0负有理数负整数负分数3、数集:把一类数放在一起,就组成了一个集合,简称数集;每个集合最后的省略符号“”表示填入的数只是集合的一部分。

(二)数轴1、概念:规定了原点、正方向和单位长度的直线叫做数轴。

2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示;但数轴上的点不都表示有理数。

3、一般的,设a是一个正数,表示数a的点在原点的右边,与原点的距离为a个单位长度;表示数﹣a的点在原点的左侧,与原点的距离为a个单位长度。

(三)相反数1、概念:只有符号不同的两个数叫做相反数。

2、几何意义:在数轴上位于原点两侧且到原点距离相等的两个点所表示的数互为相反数。

人教版七年级数学上册全册知识点总结(精心整理版本)

人教版七年级数学上册全册知识点总结(精心整理版本)

第一章有理数1、正负数:正负数表示两种相反意义的量。

注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数。

(如:a 为负数,则-a 为正数。

a 为0,则-a 也为0)2、有理数:(1)整数和分数(包括有限小数和无限循环小数)统称有理数。

π是无限不循环的小数所以不是有理数;(2)分类:① ②(3)数学语言:自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2、数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线。

数轴上,从左往右数依次变大。

越往左越小,越往右越大。

3、相反数:(1)只有符号不同的两个数,叫做互为相反数;如5的相反数是-5,-5的相反数是5。

5和-5互为相反数。

一定要说谁是谁的相反数,⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数单独的一个数不能称为相反数。

0的相反数是0本身。

(2)注意:求一个数的相反数只要在这个数的前面添上“-”号即可。

如:a 的相反数是-a ;a-b 的相反数是-(a-b )= b-a ;a+b 的相反数是-(a+b)=-a-b ;a-b+c 的相反数是-(a-b+c)= -a+b-c 。

(3)互为相反数的两个数的和为0 。

a+b=0 ⇔ a 、b 互为相反数.(4)负负为什么会得正?正负数表示两种相反意义的量。

如:2的相反数是-2,-2的相反数是2,同时-2的相反数是-(-2),所以-(-2)= 2 。

即一个数的相反数的相反数等于本身。

4、绝对值:(1)意义:一个数在数轴上所对应的点到原点的距离。

数a 的绝对值,记作a 。

因距离不能为负数,所以任何数的绝对值都是非负数,即|a|≥0,非负性。

(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; 正数和0的绝对值都是它本身,负数的绝对值是它的相反数; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;5、有理数比大小:(1)正数永远比0大,负数永远比0小;正数都比负数大;(2)两个负数比较,绝对值大的反而小;(3)数轴上的两个数,右边的数总比左边的数大;(4)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

数学人教版七年级上册笔记

数学人教版七年级上册笔记

数学人教版七年级上册笔记第一章有理数1. 有理数的定义:能够表示为两个整数的比的数称为有理数。

包括整数、分数。

2. 数轴:一条直线,每一个点对应一个实数,反之亦然。

用于表示有理数和无理数。

3. 绝对值:一个数到0的距离叫做这个数的绝对值。

例如,|x| = a,当x ≥ 0时,a = x;当x < 0时,a = -x。

4. 有理数的四则运算:加、减、乘、除。

需要注意运算的顺序和运算的法则。

5. 有理数的乘方:将一个数自乘多次,用指数表示。

例如,a^n表示a自乘n次。

第二章整式的加减1. 单项式与多项式:由数字、字母通过有限次乘法得到的式子称为单项式;由有限个单项式通过加减得到的式子称为多项式。

2. 合并同类项:将多项式中相同或相似的项合并在一起。

3. 去括号法则:括号前是“+”号,直接去掉括号;括号前是“-”号,去掉括号后,括号内的各项都要变号。

4. 整式的加减:将同类项合并后,进行加减运算。

第三章一元一次方程1. 方程的基本概念:含有未知数的等式称为方程。

方程有解,是指方程中所有含未知数的项都能通过四则运算得出确定值。

2. 一元一次方程的标准形式:ax + b = 0 (其中a、b为常数且a≠0)。

一元一次方程只有一个解。

3. 解方程的方法:常用的方法有去分母、去括号、移项和合并同类项等。

最后求解出x的值。

4. 等式的性质:等式两边加上(或减去)同一个数,所得的结果仍是等式;等式两边乘(或除以)同一个不为0的数,所得的结果仍是等式。

5. 解方程的步骤:去分母、去括号、移项、合并同类项、化系数为1。

6. 实际问题与一元一次方程:通过实际问题建立一元一次方程,求解方程得出实际问题的答案。

新人教版七年级上册数学学习笔记总结

新人教版七年级上册数学学习笔记总结

新人教版七年级上册数学学习笔记总结
知识点总结
整数和绝对值
- 整数由正整数、零和负整数组成,可以表示数的大小和方向。

- 绝对值是一个数离零的距离,总是非负的。

分式
- 分式由分子和分母组成,分子表示份数,分母表示每份的大小。

- 分式可以表示除法运算。

- 分式的运算包括加减乘除。

二次根式
- 二次根式由一个数的平方根和系数组成。

- 二次根式可以进行加减乘除运算。

代数式
- 代数式由字母和数字通过运算符号组成,可以表示数与数之间的关系。

- 代数式可以进行各种运算。

直角三角形
- 直角三角形是一种特殊的三角形,其中一个角是直角(90度)。

- 直角三角形的属性包括斜边、直角边和斜边、直角边之间的关系。

重点题
1. 解方程:3x + 5 = 20
2. 化简分式:(6x^2 + 12x) / 3x
3. 计算二次根式:√(9 + 16)
4. 求解代数式的值:2a + 3b, 当a = 4, b = 2
5. 计算直角三角形的斜边长度:已知直角边长度分别为3和4
研究建议
- 定期复已学知识,巩固记忆。

- 主动思考问题,解决疑惑。

- 多做练题,加深理解和熟练运用。

- 合理分配时间,避免拖延研究。

研究心得
数学学习需要一定的耐心和坚持,通过不断的练习和思考,我逐渐理解了数学中的一些重要知识点,并能够进行基本的运算和解题。

希望在下学期的学习中能够继续进步。

人教版七年级数学上册复习笔记

人教版七年级数学上册复习笔记

人教版七年级数学上册复习笔记我们在复习七年级数学上册复习笔记要有水滴石穿的精神,这样才能够提高我们的数学复习效率。

这是店铺整理的七年级数学上册复习笔记,希望你能从中得到感悟!七年级数学复习笔记在数学上,我们很熟悉一个公式:“速度×时间=路程”,如把“路程”看成大家所能提升的分数,在时间相同的情况下,“速度”就可看成我们学习数学的“效率”。

那么,在最后的冲刺阶段,怎么提高效率?首先要了解数学中考卷是啥样的,做到有的放矢。

中考数学卷总题量是26题,其中选择题7题,每题3分,共21分;填空题10题,每题4分,共40分;解答题9题,共89分。

从以上数据不难看出,三道选择题、两道填空题就等于甚至超过后面一道大题的分数。

在接下来的时间里,平时选择填空题作答粗心的同学,此时要特别重视选择填空题,尽量不要丢分。

对于选择填空题的这61分,只要在平常作业中稍加重视,正确率就能得到提高。

各校在一模后的复习中,不少会根据学生情况,出一个选择、填空专题训练,此时要特别重视。

除了专题外,还可以通过重视每天数学作业中的选择填空题,尽量做到一次性全对,而不是会就行,这样也可以得到有效的训练。

接下来,我们来看整份试卷的难易情况:整份中考试卷中,容易题、中等题、难题的分值比为:7∶2∶1,即容易题约占105分,中等题约占30分,难题约占15分。

从试卷的难易情况可以看出,其实整份试卷的重点在容易题上。

容易题,都是一些涉及基础知识和基本技能的题目。

在考试中虽易做,但要保证全对还是有一些困难。

对于容易题,建议考生从基础知识与基本技能入手。

在最后近40天中,一旦发现自己对一些基础知识、基本技能较为模糊或生疏,就要立马搞清楚,才能消灭所谓的“粗心”。

在最后复习中,可把6本数学课本都带来学校,放于抽屉中,平常在上课和写作业中一有概念模糊的地方,就可以立马翻开瞧瞧。

对于中等题,要学会条件反射。

在最后阶段,不要无谓地拼命写题,要注意总结每类题目的解题规律。

人教版七年级上册数学知识点汇总

人教版七年级上册数学知识点汇总

第一章有理数1. 正数和负数•正数:大于0的数。

•负数:在正数前面加上符号“-”的数。

•0的意义:不仅表示没有,还可以表示某种量的基准。

•相反意义的量:用正数和负数表示具有相反意义的量,如收入与支出、前进与后退等。

2. 有理数的分类•整数:正整数、0、负整数。

•分数:正分数、负分数。

•有理数:整数和分数的统称。

3. 数轴•定义:规定了原点、正方向和单位长度的直线。

•点与有理数的关系:任意一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数。

4. 相反数•定义:只有符号不同的两个数。

•性质:任何一个数都有相反数,且只有一个;正数的相反数是负数,负数的相反数是正数;0的相反数是0。

5. 绝对值•定义:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数。

•性质:绝对值表示数轴上某点到原点的距离。

6. 有理数的大小比较•利用数轴:数轴上右边的数大于左边的数。

•利用法则:同为正数或负数时,绝对值大的数分别更大或更小;正数大于0,负数小于0。

7. 有理数的运算•加法:同号相加取同号,异号相加取绝对值较大数的符号并相减。

•减法:减去一个数等于加上这个数的相反数。

•乘法:同号得正,异号得负,并把绝对值相乘。

•除法:除以一个数等于乘以这个数的倒数。

•乘方:求几个相同因数的积的运算。

第二章整式的加减1. 用字母表示数•代数式:用字母和数通过有限次的加、减、乘、乘方运算得到的式子。

•单项式:数与字母的乘积组成的式子。

•多项式:几个单项式的和。

2. 整式的加减•去括号:括号前是正数,去括号后各项符号不变;括号前是负数,去括号后各项符号改变。

•合并同类项:把多项式中的同类项合并成一项。

第三章一元一次方程1. 定义•一元一次方程:只含有一个未知数,且未知数的次数是1的整式方程。

2. 标准形式•ax+b=0(其中a、b是已知数,且a≠0)。

3. 解法步骤•整理方程•去分母(如果有的话)•去括号•移项•合并同类项•系数化为1•检验解的正确性第四章图形的初步认识1. 直线、射线、线段•直线:没有端点,无限长,不可度量。

最新人教版七年级上册数学知识点归纳总结

最新人教版七年级上册数学知识点归纳总结

最新人教版七年级上册数学知识点归纳总

本文将总结最新人教版七年级上册数学的知识点,帮助同学们更好地掌握这些内容。

包括以下知识点:
1. 数的认识与整数
- 数的分类:自然数、整数、有理数
- 整数的绝对值和相反数
- 整数的比较和排序
- 整数的加减法运算
- 有理数的表示与计算
2. 分数与小数
- 分数的定义和性质
- 分数的简化和扩展
- 分数的加减法运算
- 小数的认识与读写
- 小数与分数的互换
3. 代数基础
- 代数式的定义和性质
- 代数式的加减运算
- 代数式的乘法运算
- 代数式的乘法公式
4. 方程与不等式
- 一元一次方程的基本概念
- 一元一次方程的解法与应用- 一元一次不等式的基本概念- 一元一次不等式的解法与应用- 解方程的方法总结
5. 数据的收集与整理
- 数据的收集方式
- 数据的整理和展示
- 图表的阅读和分析
- 数据的比较和推理
6. 几何初步
- 平面图形的认识和特征
- 平面图形的分类和性质
- 常见几何图形的面积计算
- 直线、射线与线段的认识
- 平行线与垂直线的关系
以上是最新人教版七年级上册数学的知识点总结,希望能帮助同学们更好地复习和掌握这些内容。

对于每个知识点,同学们可以通过练习题和实际例子来加深理解和应用。

祝大家学业进步!。

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

人教版七年级上册数学笔记

人教版七年级上册数学笔记

人教版七年级上册数学第二单元笔记一、知识点总结1.正数和负数(1)正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数,0既不是正数也不是负数。

(2)正数和负数的表示方法:正数前面常有一个符号“+”,通常可以省略不写;负数前面有一个符号“-”。

1.有理数(1)有理数的定义:整数和分数统称为有理数。

(2)有理数的分类:正有理数、0、负有理数。

1.数轴(1)数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

(2)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点来表示,反之,数轴上的所有的点都表示有理数。

1.相反数(1)相反数的定义:只有符号不同的两个数叫做互为相反数。

0的相反数是0。

(2)相反数的性质:若a、b互为相反数,则a+b=0。

反之,若a+b=0,则a、b互为相反数。

1.绝对值— 1 —(1)绝对值的定义:在数轴上表示一个数的点到原点的距离叫做这个数的绝对值。

记作“|a|”。

(2)绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

二、重要公式和定理1.有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数。

2.有理数的减法法则:减去一个数,等于加上这个数的相反数。

即:a-b=a+(-b)。

3.有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;零与任何数相乘都得零。

即:ab=|a||b|(当a、b同号时为正,异号时为负)。

4.有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。

即:a÷b=a×(1/b)(b≠0)。

两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

5.乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂。

在an中,a叫做底数,n叫做指数。

人教版七年级数学上册期末复习知识点总结

人教版七年级数学上册期末复习知识点总结

【最新】人教版七年级数学上册期末复习知识点总结人教版七年级数学上册期末复习知识点总结第一章:有理数一.有理数的根底知识〔1〕正数〔2〕负数〔3〕0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义.2.有理数的概念及分类整数和分数统称为有理数.有理数的分类如下:(1)按定义分类:(2)按性质符号分类:3.数轴标有原点.正方向和单位长度的直线叫作数轴.数轴有三要素:原点.正方向.单位长度.4.相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两个数,在数轴上位于原点的两那么,并且与原点的距离相等.概念剖析:(1)在数轴上离某点的距离等于a的点有两个.(2)如果数a和数b互为相反数,那么a+b=0;abb1(ab0)或a1(ab0);(3)求一个数的相反数,只要在这个数的前面加上〝〞即可;例如ab的相反数是ba;5.绝对值数轴上表示数a的点与原点的距离叫做数a的绝对值.〔1〕绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.〔2〕绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的a(a0)绝对值是它的相反数,可用字母a表示如下:a0(a0)a(a0)〔3〕两个负数比拟大小,绝对值大的反而小.概念剖析:①〝一个数的绝对值就是数轴上表示该数的点与原点的距离〞,而距离是非负,也就是说任何一个数的绝对值都是非负数,即a0.②互为相反数的两个数离原点的距离相等,也就是说互为相反数的两个数绝对值相等.二.有理数的运算1.有理数的加法2.有理数的减法:减去一个数等于加上这个数的相反数.3.有理数的乘法倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.注意:0没有倒数.4.有理数的除法:除以一个数,等于乘上这个数的倒数,0不能做除数.5.有理数的乘方〔1〕有理数的乘方:求几个相同因数a的积的运算叫做乘方,乘方的结果叫做幂.〔2〕正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数,0的任何非0次幂都是0,1的任何非0次幂都是1,1偶数次幂是1.1奇数次幂是1;概念剖析:①〝an〞所表示的意义是n个a相乘,不是n乘以a;②(a)nan.因为an表示n个a相乘,而(a)n表示n个a的相反数;③任何数的偶次幂都得非负数,即a2n0.知识窗口:所有的奇数可以表示为2n1或2n1;所有的偶数可以表示为2n.6.有理数的混合运算7.科学记数法〔1〕把一个大于10的数记成a10n的形式,其中a是整数位只有一位的数,这种记数方法叫做科学记数法.〔2〕与实际完全符合的数叫做准确数,与准确数接近的数叫做近似数.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.〔3〕一个数,从左边第一个不是0的数字起,到精确到的数位止〔最末尾一位〕,所得的数字,叫做这个数的有效数字.第二章:整式的加减1单项式由数与字母的积组成的代数式叫做单项式,其中数字因数叫做单项式的系数,所有字母因数的指数之和叫做单项式的次数.单独的一个数或字母也叫做单项式.2多项式几个多项式的和叫做多项式,其中.每个单项式都叫做多项式的项,不含字母的项叫做常数项,次数最高项的次数叫做该多项式的次数,每个单项式的系数都是多项式的系数;如果一个多项式有n项,且次数为m,那么我们称该多项式为m次n项式.二.代数式的计算1.同类项所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项.2.合并同类项把多项式中的同类项合并成一项叫做合并同类项,不是同类项不能合并.合并同类项法那么:〔1〕系数相加,所得结果作为系数;〔2〕字母和字母的指数不变.3.去括号去括号法那么:〔1〕括号前是〝+〞号,把括号和它前面的〝+〞号去掉后,原括号里各项符号都不改变;〔2〕括号前是〝〞号,把括号和它前面的〝〞号去掉后,原括号里各项的符号都要改变.4.整式的加减:整式的加减实质上就是合并同类项第三章:一元一次方程一.方程的有关概念在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.2.等式的根本性质〔1〕等式两边同时加上〔或减去〕同一个数或代数式,所得结果仍是等式.假设ab,那么acbc或acbc.〔2〕等式两边同时乘以〔或除以〕同一个数〔除数不能为0〕,所得结果仍是等式.假设ab,那么acbc或abcc;二.解方程1.解方程及解方程的解的含义求得方程的解的过程,叫做解方程.使方程的左.右两边的值相等的未知数的值,叫做方程的解.3.解一元一次方程的步骤〔1〕去分母:注意每一项都要乘分母的最小公倍数,分子是一个整体的时候用括号〔2〕去括号:注意括号外面的符号,括号外的系数要乘上括号内的每一项;〔3〕移项:项放到等号另外一边时,注意变号;〔4〕合并同类项;〔5〕系数化为1;二.列方程初步〔列代数式〕路程问题:路程=时间×速度速度=路程÷时间时间=路程÷速度平均速度=总路程÷总时间轮船航行问题:顺水航行的速度=静水速度+水流速度逆水航行的速度=静水速度水流速度工程问题:工作量=工作时间×工作效率工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率价格问题:总价=单价×数量单价=总价÷数量数量=总价÷单价利润问题:利润=售价本钱售价=利润+本钱本钱=售价利润数字问题:表示数字的方法:1a个10a十100a百1000a千10000a万〔其中a个.a十.a百.a千.a万表示个位.十位.百位.千位万位的数字〕.面积问题:记住特殊图形的面积公式,非特殊图形的面积可用〝面积分割补法〞.第四章:几何图形初步一几何图形从实物中抽象出的各种图形统称为几何图形.几何图形可分为立体图形和平面图形.二.点.线.面.体(1)点动成线.线动成面.面动成体;(2)体是由面组成.面与面相交成线.线与线相交成点;二.线段.射线.直线1.线段.射线.直线的表示方法〔1〕线段的表示方法有两种:一是用两个大写字母,二是用一个小写的英文字母.〔2〕射线的表示方法一种:用端点和射线上的另一个点来表示,端点字母要写在前面.〔3〕直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示.线段.射线.直线的联系:射线和线段都可以看成是直线的一局部.3.直线性质:过两点有且只有一条直线.简称两点确定一条直线.4.线段的比拟〔1〕叠合法;〔2〕度量法.5.线段性质:〝两点之间,线段最短〞.连接两点的线段的长度,叫做这两点的距离.6.线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点.假设C是线段AB的中点,那么:AC=BC=12AB或AB=2AC=2BC.二.角〔1〕角可以看成是由两条有共同端点的射线组成的图形.两条射线叫角的边,共同的端点叫角的顶点.〔2〕角还可以看成是一条射线绕着他的端点旋转所成的图形.2.角的表示方法:角用〝∠〞符号表示〔1〕分别用两条边上的两个点和顶点来表示.〔顶点必须在中间〕〔2〕在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角.〔3〕在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角.〔4〕直接用一个大写英文字母来表示.〔当顶点只有一个角时才可以用该方法〕3.角的度量:会用量角器来度量角的大小.4.角的单位:角的单位有度.分.秒,用°.′.″表示,角的单位是60进制与时间单位是类似的.度.分.秒的换算:1°=60′,1′=60″,1°=3600″.5.锐角.直角.钝角.平角.周角的概念和大小〔1〕平角:角的两边成一条直线时,这个角叫平角.〔2〕周角:角的一边旋转一周,与另一边重合时,这个角叫周角.〔3〕0°180度的角互为补角,同角或等角的补角相等.扩展阅读:七年级数学下册期末复习知识点总结七年级数学〔下册〕知识点总结任课教师:闫冠彬★必考▲重点√了解★复习重点:七至十单元测试卷相交线与平行线【知识点】√1.▲平面上不相重合的两条直线之间的位置关系为_______或________2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线.性质是对顶角相等.P3例;P82题;P97题;P352〔2〕;P353题3.两条直线相交所成的四个角中,如果有一个角为90度,那么称这两条直线互相垂直.其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足.4.垂直三要素:垂直关系,垂直记号,垂足5.做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可.6.做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线.AACBC7.垂直公理:过一点有且只有一条直线与直线垂直.8.垂线段最短;CB9.点到直线的距离:直线外一点到这条直线的垂线段的长度.10.两条直线被第三条直线所截:同位角F〔在两条直线的同一旁,第三条直线的同一侧〕,内错角Z〔在两条直线内部,位于第三条直线两侧〕,同旁内角U〔在两条直线内部,位于第三条直线同侧〕.P7例.练习111.平行公理:过直线外一点有且只有一条直线与直线平行.12.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.如果b//a,c//a,那么b//cP174题13.平行线的判定.P15例结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.P15练习;P177题;P368题.14.平行线的性质.P21练习1,2;P236题15.★命题:〝如果+题设,那么+结论.〞P22练习116.真.假命题P2411题;P3712题17.平移的性质P28归纳三角形和多边形1.三角形内角和定理★【重点题目】P763例:三角形三个内角之比为2:3:4,那么他们的度数分别为_____________2.构成三角形满足的条件:三角形两边之和大于第三边.判断方法:在△ABC中,a.b为两短边,c为长边,如果a+b>c那么能构成三角形,否那么〔a+bc〕不能构成三角形〔即三角形最短的两边之和大于最长的边〕【重点题目】P64例;P692,6;P7073.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差〔的绝对值〕【重点题目】三角形的两边分别为3和7,那么三角形的第三边的取值范围为_____________4.等面积法:三角形面积12底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,三角形同一个面积公式就有三个表示方法,任取其中两个写成连等〔可两边同时2消去12〕底高底高,知道其中三条线段就可求出第四条.例如:如图1,在直角△ABC中,ACB=900,CD是斜边AB上的高,那么有ACBCCDAB【重点题目】P708题A 例直角三角形的三边长分别为3.4.5,那么斜边上的高为_____________D5.等高法:高相等,底之间具有一定关系〔如成比例或相等〕【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,那么SABE=_____________CB图16.三角形的特性:三角形具有_____________【重点题目】P695题7.外角:【根底知识】什么是外角?外角定理及其推论【重点题目】P75例2P765.6.8题8.n边形的★内角和_____________★外角和_______√对角线条数为_____________【根底知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为_____________【重点题目】P83.P84练习1,2,3;P843,4,5,6;P904.5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角〔不重叠,无空隙〕.单一正多边形的镶嵌:镶嵌图形的每个内角能被3600整除:只有6个等边三角形〔600〕,4个正方形〔900〕,3个正六边形〔1200〕三种〔两种正多边形的〕混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌.【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形.n个正方形,那么m,n的值分别为多少?平面直角坐标系▲根本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点▲建系原那么:原点.正方向.横纵轴名称〔即_.y〕√语言描述:以…〔哪一点〕为原点,以…〔哪一条直线〕为_轴,以…〔哪一条直线〕为y轴建立直角坐标系▲根本概念:有顺序的两个数组成的数对称为〔有序数对〕【三大规律】1.平移规律★点的平移规律〔P51归纳〕例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,那么Q点的坐标为_____________图形的平移规律〔P52归纳〕重点题目:P53练习;P543.4题;P557题.2.对称规律▲关于_轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数关于原点对称,横.纵坐标同时取相反数例:P点的坐标为(5,7),那么P点〔1.〕关于_轴对称的点为_____________(2.)关于y轴的对称点为_____________〔3.〕关于原点的对称点为_____________3.位置规律★假设在平面直角坐标系上有一点P〔a,b〕y1.如果P点在第一象限,有a>0,b>0〔横.纵坐标都大于0〕第二象限第一象限2.如果P点在第二象限,有a0〔横坐标小于0,纵坐标大于0〕3.如果P点在第三象限,有a。

人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)七年级数学上册知识点总结第一章有理数1.1 正数和负数1.正数和负数的概念正数是比零大的数,负数是比零小的数,而0既不是正数,也不是负数。

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0.(例如,带正号的数不一定是正数,带负号的数也不一定是负数,例如+a和-a都有可能是正数或负数)②正数有时可以在前面加“+”,有时“+”省略不写。

省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,例如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴表示“没有”,例如教室里有个人,就是说教室里没有人;⑵是正数和负数的分界线,既不是正数,也不是负数。

⑶表示一个确切的量。

例如,℃以及有些题目中的基准,比如以海平面为基准,则米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、负整数统称为整数(和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

例如,π是无限不循环小数,不能写成分数形式,不是有理数。

有限小数和无限循环小数都可化成分数,都是有理数。

整数也能化成分数,也是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,例如-2、-4、-6、-8…也是偶数,-1、-3、-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数正有理数负整数正分数有理数有理数(不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数统称为非负整数(也叫自然数)②负整数统称为非正整数③正有理数统称为非负有理数④负有理数统称为非正有理数3.数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

人教版七年级上册数学笔记完整版

人教版七年级上册数学笔记完整版

人教版七年级上册数学笔记完整版一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

- 整数包括正整数、0、负整数。

例如:1,0,-5等。

- 分数包括有限小数和无限循环小数。

像0.5=(1)/(2),0.3̇=(1)/(3)等。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 数轴上的点与有理数一一对应(注意:每一个有理数都可以用数轴上的一个点来表示,但数轴上的点不都表示有理数,还可能表示无理数)。

- 利用数轴比较有理数的大小:在数轴上,右边的数总比左边的数大。

3. 相反数。

- 只有符号不同的两个数叫做互为相反数。

例如2和-2互为相反数,a的相反数是-a。

- 互为相反数的两个数的和为0,即a + (-a)=0。

- 在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等。

4. 绝对值。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即| a|=a(a>0) 0(a = 0) -a(a<0)- 绝对值的几何意义:一个数的绝对值就是这个数在数轴上所对应的点到原点的距离。

- 两个负数比较大小,绝对值大的反而小。

例如| -5| = 5,| -3| = 3,因为5>3,所以-5< - 3。

二、有理数的运算。

1. 有理数的加法。

- 同号两数相加,取相同的符号,并把绝对值相加。

例如3+5 = 8,(-2)+(-3)=-(2 + 3)=-5。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如5+(-3)=2,(-5)+3=-2。

- 一个数同0相加,仍得这个数。

2. 有理数的减法。

- 减去一个数,等于加上这个数的相反数。

即a - b=a+(-b)。

例如5-3 = 5+(-3)=2,5-(-3)=5+(+3)=8。

3. 有理数的乘法。

- 两数相乘,同号得正,异号得负,并把绝对值相乘。

新人教版七年级数学上册重点知识复习资料(全册)

新人教版七年级数学上册重点知识复习资料(全册)

新人教版七年级数学上册重点知识复习资
料(全册)
单元一:整数
- 整数的概念:整数由正整数、0和负整数组成。

- 整数的比较:比较整数大小时,先比较绝对值大小,再根据
正负确定大小关系。

- 整数的加法和减法:同号相加减取结果的绝对值,符号与原
值相同;异号相加减取结果的绝对值,符号与较大数相同。

- 整数的乘法和除法:同号相乘除结果为正,异号相乘除结果
为负。

单元二:分数
- 分数的概念:分数由分子和分母组成,表示真数、假数和零。

- 分数的相等:两个分数相等表示代表同一量的两个数。

- 分数的大小比较:分数大小比较可以通过求公共分母,比较
分子大小进行。

- 分数的加法和减法:分数加减法可以通过通分,然后对分子进行加减。

- 分数的乘法:分数乘法可以直接对分子和分母进行相乘。

- 分数的除法:分数除法可以先求倒数,再进行相乘。

单元三:代数式
- 代数式的概念:含有变量的数学式子称为代数式。

- 代数式的运算:代数式的运算包括加法、减法和乘法。

- 代数式的化简:对代数式进行合并同类项、提取公因式、运用分配律等方法进行化简。

...
(继续写下去,覆盖全册)。

人教版数学七年级上册知识点总结

人教版数学七年级上册知识点总结

人教版数学七年级上册知识点总结第一章有理数知识点总结正数: 大于0的数叫做正数。

1.概念负数: 在正数前面加上负号“—”的数叫做负数。

注: 0既不是正数也不是负数, 是正数和负数的分界线, 是整数, 一、正数和负数自然数, 有理数。

(不是带“—”号的数都是负数, 而是在正数前加“—”的数。

)2.意义: 在同一个问题上, 用正数和负数表示具有相反意义的量。

有理数: 整数和分数统称有理数。

1.概念整数: 正整数、0、负整数统称为整数。

分数: 正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注: 正数和零统称为非负数, 负数和零统称为非正数, 正整数和零统称为非负整数, 负整数和零统称为非正整数。

2.分类: 两种二、有理数⑴按正、负性质分类: ⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念: 规定了原点、正方向、单位长度的直线叫做数轴。

三要素: 原点、正方向、单位长度2.对应关系: 数轴上的点和有理数是一一对应的。

三、数轴比较大小: 在数轴上, 右边的数总比左边的数大。

3.应用求两点之间的距离: 两点在原点的同侧作减法, 在原点的两侧作加法。

(注意不带“+”“—”号)代数: 只有符号不同的两个数叫做相反数。

1.概念(0的相反数是0)几何: 在数轴上, 离原点的距离相等的两个点所表示的数叫做相反数。

2.性质: 若a与b互为相反数, 则a+b=0, 即a=-b;反之,若a+b=0, 则a与b互为相反数。

四、相反数两个符号: 符号相同是正数, 符号不同是负数。

3.多重符号的化简多个符号: 三个或三个以上的符号的化简, 看负号的个数, 当“—”号的个数是偶数个时, 结果取正号当“—”号的个数是奇数个时, 结果取负号1.概念: 乘积为1的两个数互为倒数。

(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数, 则a·b=1;反之, 若a·b=1, 则a与b互为倒数。

人教版七年级数学上册重要知识点笔记归纳

人教版七年级数学上册重要知识点笔记归纳

人教版七年级数学上册重要知识点笔记归纳1. 整数- 整数的概念:包括正整数、负整数、零等。

- 整数的大小比较:绝对值越大的整数,其值越小。

- 整数的加法:同号相加,异号相减,结果的符号取决于绝对值更大的整数。

- 整数的减法:转化为加法计算,正整数减去负整数等于正整数加上该负整数的绝对值。

2. 分数- 分数的概念:分数由分子和分母组成,表示部分与整体的关系。

- 分数的大小比较:分母相同的情况下,分子越大,分数越大。

- 分数的加法:通分后,分子相加,分母保持不变。

- 分数的减法:通分后,分子相减,分母保持不变。

- 分数的乘法:分子相乘,分母相乘。

- 分数的除法:将除法转化为乘法,分数除以一个数等于分子乘以这个数的倒数。

3. 小数- 小数的定义:小数是带有小数点及其后面数字的数。

- 小数的读法和写法:读小数时,先读整数部分,然后读小数点后面的数字,按位读读到末尾。

写小数时,先写整数部分,然后写小数点,最后写小数部分的数字。

4. 比例- 比例的定义:比例是两个相等的比的陈述。

- 比例的特点:比例的值不随各个同一比例的数的绝对大小而改变。

- 比例的性质:比例中的四个数(比例数)相乘等于常数k。

- 比例的计算:已知三个比例数中的任意两个数,可以求出第三个数。

5. 百分数- 百分数的概念:百分数是百分之一的分数,以百分号表示。

- 百分数的相互转化:将百分数转化为小数时,直接将百分号去掉,并除以100;将小数转化为百分数时,乘以100并加上百分号。

6. 代数式和方程式- 代数式的概念:用字母表示数的式子。

- 方程式的概念:含有一个或多个未知数的等式。

- 解方程式的方法:运用加减法、乘除法、移项等方法逐步化简方程式,找出未知数的值。

7. 几何图形- 平面几何图形:包括点、线、面等基本图形。

- 三角形:根据边长和角度分类,如等边三角形、等腰三角形等。

- 长方形和正方形:分别是四边形中的特殊情况。

- 圆和圆的相关量:圆心、半径、直径等。

数学人教版七年级上册笔记

数学人教版七年级上册笔记

数学人教版七年级上册笔记第一章:有理数1.有理数的概念有理数是整数和分数的统称,可以用带有符号的整数和分数表示,有理数包括正有理数、负有理数和零。

2.有理数的比较有理数比较的原则:两个有理数中,如果一个数减去另一个数得到的差是一个正数,则其中一个数比另一个数大;如果差是0,则两个数相等;如果差是一个负数,则其中一个数比另一个数小。

3.有理数的加法与减法有理数的加法和减法满足交换律、结合律和消去律。

4.有理数的乘法与除法有理数的乘法和除法满足交换律、结合律和消去律。

5.有理数的混合运算在有理数的混合运算中,先进行乘除法,再进行加减法,遵循“先乘除后加减”的原则。

第二章:代数式与方程式1.代数式的概念代数式是由数、字母和表示乘法的符号组成的式子,它可以用字母来表示一个数或者一个数的运算。

2.代数式的加减法相同字母的代数项可以进行加减法运算,结果是与字母的系数和字母相同的项。

3.代数式的乘法代数式的乘法用分配率来计算,得到的结果是各个代数项相应指数的乘积。

4.代数式的除法代数式的除法用分配率的倒数来计算,得到的结果是各个代数项相应指数的商。

5.代数式的混合运算代数式的混合运算遵循计算顺序从左到右的原则,先进行括号内的运算,再进行乘除法,最后进行加减法。

第三章:图形的认识1.几何图形的基本概念常见的几何图形有点、线、面。

点没有长度、宽度和高度;线有长度和方向,没有宽度和高度;面有长度、宽度和高度。

2.周长与面积周长是封闭曲线的长度,面积是平面图形的大小。

3.正方形与长方形的周长和面积正方形的周长等于4倍的边长,面积等于边长的平方;长方形的周长等于2倍的长加上2倍的宽,面积等于长乘以宽。

4.三角形的周长和面积三角形的周长等于三条边的长度之和,面积等于底边乘以高的一半。

5.平行四边形的周长和面积平行四边形的周长等于两个对边的长度之和乘以2,面积等于底边乘以高。

第四章:两条直线的位置关系1.相交线与平行线两条直线相交的情况有相交于一点、重合、平行、相交于两点四种情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册复习笔记
在数学上,我们很熟悉一个公式:“速度×时间=路程”,如把“路程”看成大家所
能提升的分数,在时间相同的情况下,“速度”就可看成我们学习数学的“效率”。

那么,在最后的冲刺阶段,怎么提高效率?
首先要了解数学中考卷是啥样的,做到有的放矢。

中考数学卷总题量是26题,其中
选择题7题,每题3分,共21分;填空题10题,每题4分,共40分;解答题9题,共89分。

从以上数据不难看出,三道选择题、两道填空题就等于甚至超过后面一道大题的分数。

在接下来的时间里,平时选择填空题作答粗心的同学,此时要特别重视选择填空题,尽量
不要丢分。

对于选择填空题的这61分,只要在平常作业中稍加重视,正确率就能得到提高。


校在一模后的复习中,不少会根据学生情况,出一个选择、填空专题训练,此时要特别重视。

除了专题外,还可以通过重视每天数学作业中的选择填空题,尽量做到一次性全对,
而不是会就行,这样也可以得到有效的训练。

接下来,我们来看整份试卷的难易情况:整份中考试卷中,容易题、中等题、难题的
分值比为:7∶2∶1,即容易题约占105分,中等题约占30分,难题约占15分。

从试卷的难易情况可以看出,其实整份试卷的重点在容易题上。

容易题,都是一些涉
及基础知识和基本技能的题目。

在考试中虽易做,但要保证全对还是有一些困难。

对于容易题,建议考生从基础知识与基本技能入手。

在最后近40天中,一旦发现自
己对一些基础知识、基本技能较为模糊或生疏,就要立马搞清楚,才能消灭所谓的“粗心”。

在最后复习中,可把6本数学课本都带来学校,放于抽屉中,平常在上课和写作业中
一有概念模糊的地方,就可以立马翻开瞧瞧。

对于中等题,要学会条件反射。

在最后阶段,不要无谓地拼命写题,要注意总结每类
题目的解题规律。

每一类中等题而言,大都有它固定的解题程序和技巧。

在最后阶段,要在老师的帮助下尽量自己总结出每一类题的解题程序和技巧。

把中等题变简单,减少自己的思考时间,避免不必要的错误。

而难题和中等题在最后
的训练中有着异曲同工之妙,即也是要多总结每类题的解题程序和技巧。

在最后阶段,对于课本知识还不够熟练的同学,有空还是要继续放在课后练习、习题和课本中例题的掌握上,必定事半功倍。

方法一:检查基本概念
一棵大树的精华就在于它的根基,大树的根部为整个树干和枝叶提供了充足的养分和补给,就像基本概念、法则、公式是同学们检查时最容易忽视的一样,因此大家一定要重视基本概念,为什么数学基本概念在大家学习数学的过程中占了那么重要的位置呢?因为很多时候同学们在解题时极易发生小错误而自己却检查数次也发现不了,所以,要想数学提分,那么做完试卷第一步,在检查基本题时,我们要仔细读题,回到概念的定义中去,对症下药。

方法二:对称检验
对称的条件势必导致结论的对称,利用这种对称原理可以对答案进行快速检验。

学习数学要多找方法,不仅要找到属于自己的学习方法,并且还要善于将复杂的事情简单化,从而达到高效学习的目的,这样才能快速进行数学提分。

方法三:不变量检验
某些数学问题在变化、变形过程中,其中有的量保持不变,如图形的平移、旋转、翻折时,图形的形状、大小不变,基本量也不变。

利用这种变化过程中的不变量,可以直接验证某些答案的正确性。

方法四:特殊情形检验
从普遍情况来看,想要在短期内实现数学提分不是一件容易的事情,在学习过程其中会遇到一些比较特殊的题型,其实,问题的特殊情况往往比一般情况更易解决,因此通过特殊值、特例来检验答案是非常快捷的方法。

方法五:答案逆推法
相信这种方法很多学生都会,在求出题目的答案后,可将答案重新代回题目中,检验题目的条件是否还成立。

但是这种方法一定要注意,要想想有没有可能存在多解的情形。

总而言之,要想提高检查的次数与效率,又想避免枯燥的重复,就需要一题多解去检验。

一道题,使用原来的方法去做,固然也能发现错误,但是人都是有惯性思维的,很容易就忽视了一些小的错误。

如果在检查时,我们都尽量去想一些新的方法,那样,一来可以检查答案的对错,二来可以减少机械性重复产生的枯燥感,三来思考新的解法也是锻炼思维的一种手段,四来能将试卷中的题的作用发挥到最大,可以说是一举多得的好措施。

此外,直接检查作为最基础的方法,要重视技巧直接检验法就是围绕原来的解题方法,针对求解的过程及相关结论进行核对、查校、验算。

为配合检查,首先应正确使用草稿纸。

建议大家将草稿纸叠出格痕,按顺序演算,并标上题号,方便检查对照。

其次,一定要细
心细心再细心,每一个细节都需要仔细推敲,而不能“想当然”,记住“最安全的地方有
时候也是最危险的地方”。

重视构建知识网络——宏观把握数学框架
要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。

因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平
行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会应用这些概念去解决
一些问题。

重视夯实数学双基——微观掌握知识技能
在复习过程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就
能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合信息,寻找解题途径、优化解题过程。

重视强化题组训练――感悟数学思想方法。

除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。

反思自己的思维过程,反思知识点和
解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。

而总结出它所用到的数学思
想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类
旁通。

逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问
题和提出问题。

重视建立“病例档案”——做到万无一失准备一本数学学习“病例卡”,把平时犯的
错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什
么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。

我们要在教师的指导
下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。

重视常用公式技巧――做到思维敏捷准确对经常使用的数学公式要理解来龙去脉,要
进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。

对今后继续学习
所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。

例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形
三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不
到的效果。

重视中考动向要求——勤练解题规范速度
要把握好目前的中考动向,特别是近年来上海的中考越来越注重解题过程的规范和解答过程的完整。

在此特别指出的是,有很多学生认为只要解出题目的答案就万事大吉了,其实只要是有过程的解答题,过程分比最后的答案要重要得多,不要会做而不得分。

重视掌握应试规律——提高考试成绩效率有关专家曾对高考落榜生和高考佼佼者特别是一些地区的高考“状元”进行过研究和调查,结果发现,他们的最大区别不是智力,而是应试中的心理状态。

也有人曾对影响考试成功的因素进行过调查,结果发现,排在第一位的是应试中的心态,第二位的是考前状况,第三位的是学习方法,我们最重视的记忆力却排在第17位。

事实上,侧重对考生素质和能力的考核已经是各类考试改革的大趋势,应试中的心态对应试的成功将日趋重要。

具有良好心理状态的考生,可以较好地预防考试焦虑,较好地运筹时间,减少应试中的心理损伤。

感谢您的阅读,祝您生活愉快。

相关文档
最新文档