材料力学扭转
材料力学-第三章扭转
![材料力学-第三章扭转](https://img.taocdn.com/s3/m/1c264210a300a6c30c229f5f.png)
3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学-扭转
![材料力学-扭转](https://img.taocdn.com/s3/m/1d54a870f46527d3240ce0bb.png)
从圆轴中取一微小的正六面体(单元体), 其对称两面上的剪应力构成一个力偶,因此 另两个对称面上也必存在转向相反的、由 剪应力构成的力偶。由此得出, 剪应力互等定理: 两个相互垂直的截面上,在其相交处的 剪应力成对存在,且其数值相等而符号相反, 指向或背离交线。 剪应力符号规定: 使单元体产生顺时针方向转动趋势时的剪应力为正 使单元体产生反时针方向转动趋势时的剪应力为负
§7-4 圆轴扭转时的强度计算
要使圆轴杆件扭转时不致产生破坏,应满足各横截面上的最 大剪应力小于材料的许用剪应力,而最大剪应力发生在扭矩最大 的横截面上的边缘处。设圆周半径为R,则圆轴扭转的强度条件 为:
τmax
T = R ≤ [τ ] Ip
Wp =
Ip R
把与截面尺寸和形状有关的参量归到一个参量,令 T 则有:
T ρ ρ 由此,圆轴扭转时横截面上半径为 处的剪应力为:τ ρ = Ip 4、极惯性矩 I 的计算 p πD 4
dϕ T = dX GI p
I p = ∫ ρ dA
2 A
直径为D的实心轴圆截面: I p = 空心轴圆环截面:I p =
π (D 4 − d 4 )
32
32
例:一轴AB传递的功率为Nk=7.5kw, 转速n=360r/min,轴的AC段为实心圆截面, CB段为空心圆截面,如图。已知D=3cm, d=2cm.试计算AC段横截面边缘处的剪应力 以及CB段横截面上外边缘和内边缘处的剪应力。计算扭矩、惯性矩、应力
Wp
≤ [τ ]
Wp
, 称为抗扭截面系数
Wp = 0.2D3
实心圆:
许用剪应力的确定:料 [τ ] = (0.5 ~ 0.6)[σ] 塑 材 : 性 一般取 脆 材 :τ ] = (0.8 ~1.0)[σ] 性 料 [
材料力学第3章扭转
![材料力学第3章扭转](https://img.taocdn.com/s3/m/a4a925b9afaad1f34693daef5ef7ba0d4a736d80.png)
试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
材料力学第四章 扭转
![材料力学第四章 扭转](https://img.taocdn.com/s3/m/2706bfd7c1c708a1284a4464.png)
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
材料力学课件扭转
![材料力学课件扭转](https://img.taocdn.com/s3/m/80d341bc6394dd88d0d233d4b14e852458fb3909.png)
用率。所以空心轴的重量比实心轴轻。
但应注意过薄的圆筒受扭时容易发生皱折,
还要注意加上成本和构造上的要求等因素。
§3-5 扭转变形 扭转刚度计算
Ⅰ. 扭转时的变形
等直圆杆的扭转变形可用两个横截面的相对扭
转角(相对角位移) 来度量。
Me
AD BC
Me
由前已得到的扭转角沿杆长的变化率(亦称单 位长度扭转角)为 d T 可知,杆的相距 l
Wp1
πd13 16
,
Wp2
πD23 16
14
1,max
T1 Wp1
Me Wp1
16Me πd13
2,max
T2 Wp2
Me Wp2
16Me
πD23 1 4
2. 求D2/d1和二轴重量之比。
由1,max=2,max,并将 =0.8代入得
D2 d1
3
1 1 0.84
1.194
因为两轴的长度l 和材料密度 分别相同,所
斜截面 ef (如图)上的应力。
分离体上作用力的平衡方程为
F 0,
d A d Acos sin d Asin cos 0
F 0,
d A d Acos cos d Asin sin 0
利用 = ',经整理得
sin 2 , cos 2
sin 2 , cos 2
T
AdA.r0
2 0
r0
2td
r02t2
d
T
2r0 2t
薄壁圆筒横截面上的切应力计算式
二、关于切应力的若干重要性质
1、剪切虎克定律
为扭转角 r0 l
l
做薄壁圆筒的扭转试验可得
r0 即
材料力学第3章扭转
![材料力学第3章扭转](https://img.taocdn.com/s3/m/3291925b312b3169a451a449.png)
τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
材料力学 第4章_扭转
![材料力学 第4章_扭转](https://img.taocdn.com/s3/m/3c98b189b0717fd5360cdc8a.png)
d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
材料力学 第三章 扭 转
![材料力学 第三章 扭 转](https://img.taocdn.com/s3/m/3b198212c281e53a5802ff5d.png)
T2
T1
d
T3
Mx1=0.5kN· m
Mx2 =0.32kN· m lAB=300mm G=80GPa d=50mm
B
T2
φAB
lAB
A T1
lAC d φAC
C T3
B
lAB
A
lAC
C
M x1l AB j AB = GI P 500 0.3 = 9 80 10 0.054 32
r O
Mx
几何分析
变 形 应变分布
物理关系
应力分布
平面假定 静力学方程
应力公式
1. 变形几何关系
周线
a b c d
T
周线
a c d
γ
T
φ
b
纵线
dx
纵线
dx
a
c
a
γ
c c' d d'
b
d
b
(1)变形后所有圆周线的大小、形状和间距均不变,绕杆轴线相对转动。 (2)所有的纵线都转过了同一角度g。
T
周线
A
dρ
ρ o
ρ2dA
∫ 0ρ2·2πρdρ =
π d = 32
4
d/2
d
3 Ip π d Wp = r = 16
2. 空心圆截面
π D 4 - π d 4 π D 4(1-α4) Ip= 32 32 = 32 α=d/D
ρ o
dρ
π D3 Wp = 16 (1-α4)
d D
3.薄壁圆环截面
I P = 2r0
故该轴满足切应力强度要求。
二、刚度计算 等直圆杆扭转的刚度条件为
θ max = Mxmax ≤[θ] GI
材料力学:第5章:扭转
![材料力学:第5章:扭转](https://img.taocdn.com/s3/m/dc2a31f29e3143323968935a.png)
d
dx d
在外表面上
d dx
d r dx
2. 物理关系 根据剪切胡克定律, 当剪应力不超过材料 的剪切比例极限时
G
剪应力方向垂直于半径
d G dx
3.静力学关系
dA
dA T
A
o
dA
d G dx dA T A d 2 G dA T dx A
2
I p dA 极惯性矩
d T 则 dx G I p
A
令 I p dA
2 A
d G T T G G Ip Ip dx
d T dx G I p
W = m 2 n
(1) = (2) 得 N×1000× 60 = m 2 n
(2)
N m 9549 n
N ─ kW n ─ rpm m ─ N m N ─ PS n ─ rpm m ─ N m
N m 7024 n
§5-2 扭矩和扭矩图
Ip
极惯性矩:
32 4 4 4 (D d ) D 4 (1 ) 空心圆: I p 32 32 抗扭截面模量: 3 d 实心圆: Wt 16 3 D 4 (1 ) 空心圆: Wt 16
实心圆: I p
d
4
二、圆轴扭转时的变形
d T d x GI p T d dx GI p
d
T dx GI p l
Tl 若T const,则 GIp
Nl l EA
圆轴扭转时的强度条件和刚度条件
强度条件:
刚度条件:
材料力学扭转
![材料力学扭转](https://img.taocdn.com/s3/m/9c67271bc281e53a5802ff38.png)
Wt
Ip R
max
抗扭截面系数
T Wt
公式适用 条件
1.等直圆杆—只有横截面不变的圆轴,才满足 平面假设的要求。
2.最大切应力低于剪切比例极限—满足胡克定 律的要求。
如何计算截面极 惯性矩和抗扭截 面系数?
§3.4 圆轴扭转时的应力
计算截面极惯性矩和 抗扭截面系数
T
实 心 轴
D/2 ρ O
M eB M eC 4.78kN.m
M eA 15.9kN.m
2.利用截面法计算各段内的扭转
MeB MeC 2 MeA MeD
CA段:
假设T2为正,由平衡方程
T2 M eB M eC 0
B C
2
A
D
MeB
MeC
T2 M eB M eC 9.56kN.m
结果为负,说明T2为负值扭矩。
同理,可以求得距圆心为ρ处的切应变为
d dx
2.物理关系
横截面上任意点的切应变与该点到圆 心的距离ρ成正比。
由剪切胡克定律求得横截面上距圆心 为ρ处的切应力为
G
d G dx
横截面上任意点的切 应力与该点到圆心的 距离ρ成正比。
图 3.10
由切应力互等定理可知,在纵向截面和横截面上,沿半径方向的 切应力分布情况如图3.10所示。
扭转图—当作用于轴上的外力偶多于两个时,为了表示各横截
面上扭矩沿轴线变化的情况,在图中以横轴表示横截面的位置 ,纵轴表示相应截面上的扭矩,这种图线称为扭矩图。
实例:一传动轴如图所示,其转速 n = 300 r/min ,主动轮A
输入的功率为PA = 500 kW 。若不计轴承摩擦所耗的功率,三 个从动轮输出的功率分别为PB = PC = 150 kW及PD = 200 kW。 试做扭矩图。
材料力学 第三章 扭转
![材料力学 第三章 扭转](https://img.taocdn.com/s3/m/5c0b71eaf111f18582d05a8a.png)
为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p
材料力学课件 第四章扭转
![材料力学课件 第四章扭转](https://img.taocdn.com/s3/m/4e71259ff605cc1755270722192e453611665b51.png)
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?
材料力学扭转
![材料力学扭转](https://img.taocdn.com/s3/m/40326740cd1755270722192e453610661fd95a43.png)
材料力学扭转材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,而扭转则是材料力学中非常重要的一种变形形式。
在工程实践中,我们经常会遇到各种扭转现象,比如轴承、螺纹、螺栓等零部件的扭转变形。
因此,了解材料力学中的扭转现象对于工程设计和实际应用具有重要意义。
首先,我们来看一下什么是扭转。
扭转是指材料在外力作用下沿着一定轴线发生的旋转变形。
在扭转过程中,材料内部会受到剪切应力的作用,从而导致材料发生扭转变形。
扭转变形不仅会影响材料的外观和尺寸,还会对材料的力学性能产生影响。
在材料力学中,我们通常用剪切模量来描述材料的扭转性能。
剪切模量是指材料在扭转过程中所表现出的抗扭转能力。
剪切模量越大,材料的抗扭转能力就越强,反之则越弱。
因此,在工程设计中,我们需要根据材料的剪切模量来选择合适的材料,以满足工程的扭转性能要求。
除了剪切模量,材料的断裂韧性也是影响材料扭转性能的重要因素。
断裂韧性是指材料在扭转过程中抵抗断裂的能力。
材料的断裂韧性越大,其扭转性能就越好,能够更好地抵抗扭转变形和破坏。
因此,在工程设计中,我们还需要考虑材料的断裂韧性,以确保材料在扭转过程中不会发生过早的断裂。
此外,材料的微观结构也会对其扭转性能产生影响。
晶粒的大小、形状以及晶界的性质都会影响材料的扭转性能。
一般来说,晶粒越细小,晶界越强化,材料的扭转性能就会越好。
因此,在材料的制备过程中,我们需要通过控制材料的微观结构来提高其扭转性能。
总的来说,材料力学中的扭转现象是工程设计中不可忽视的重要问题。
了解材料的扭转性能,选择合适的材料,并通过控制材料的微观结构来提高其扭转性能,对于保证工程零部件的稳定性和可靠性具有重要意义。
希望本文能够对大家对材料力学中的扭转问题有所帮助。
材料力学扭转
![材料力学扭转](https://img.taocdn.com/s3/m/6e73435b3b3567ec102d8a44.png)
dx
c
x
它们组成的力偶,其矩为
(dxdy )dz
z
(dxdy )dz
y
此力偶矩与前一力偶矩
dy
d
a
b
( dy dz) dx 数量相等而转向相反,从而可得 z
dx
c
x
剪应力互等定理:
单元体两个相互垂直平面上
a
dy
y
b
d
的剪应力同时存在,且大小
相等,都指相(或背离)该
y
程中,认为上,下两面上的外
a
'
d
x
力将不作功。只有右侧面的外 力 (dydz) 对相应的位移 dx 作
z
b dx
dx
了功。
当材料在线弹性范围内内工作时,
y
上述力与位移成正比,因此,单
元体上外力所作的功为
1 2 1 2
z a
'
d
x
dW
( dydz)( dx)
( dxdydz)
M GI
e P
r
o
dA
M I
e p
上式为圆轴在扭转时横截面上任一点处的剪应力计算公式
M I
e p
式中:Me 为横截面上的扭矩; 为求应力的点到圆心的距离:
I p A dA
2
称为横截面对圆心的 极惯性矩
说明:
M n I
p
max
Mn
材料力学扭转知识点总结
![材料力学扭转知识点总结](https://img.taocdn.com/s3/m/86ea1cfa09a1284ac850ad02de80d4d8d15a012a.png)
材料力学扭转知识点总结1. 概述材料力学是研究材料的力学性能和行为的一门学科,而扭转则是指在材料中施加扭矩力的作用。
材料力学扭转是材料力学中重要的一个分支,涉及到材料的变形、强度、破坏等方面的内容。
本文将对材料力学扭转的主要知识点进行总结。
2. 扭转应力扭转应力是材料在扭转加载下产生的应力。
与拉伸、压缩应力相比,扭转应力呈圆柱对称分布,沿着截面的半径方向逐渐减小,最大应力出现在材料的表面。
扭转应力的大小与施加的扭矩、材料断面的形状和尺寸有关。
3. 扭转变形扭转加载下,材料会产生扭转变形。
扭转变形主要表现为材料的轴线在垂直截面上的位移,称为扭转角。
扭转角的大小与施加的扭矩、材料的几何形状和材料的性质有关。
当材料的弹性变形超过一定范围时,会发生塑性变形,导致材料的破坏。
4. 扭转刚度扭转刚度是指材料对扭转加载的抵抗能力。
扭转刚度可以由杨氏模量计算得出,与材料的剪切模量相关。
较高的扭转刚度意味着材料在扭转加载下能够保持较小的变形,具有较好的强度和刚度。
5. 扭转强度扭转强度是指材料在扭转加载下破坏的能力。
与拉伸强度、压缩强度类似,扭转强度也是一个材料的重要指标,用来评估材料在扭转加载下的耐用性能。
6. 扭转应力-应变关系材料在扭转加载下的应力-应变关系可以描述材料在扭转过程中的力学行为。
对于线弹性材料而言,扭转应力与扭转角之间呈线性关系,称为胜肽方程。
扭转应力-应变关系可用来预测材料的扭转刚度、扭转变形等力学性能。
7. 扭转实验扭转实验是研究材料力学扭转性能的重要手段。
通过在材料上施加一定的扭矩载荷,并测量相应的应变和变形,可以获取材料的扭转应力-应变关系、扭转刚度等信息。
扭转实验可以通过机械试验机、扭转试验机等设备进行。
8. 扭转设计与应用在工程实践中,材料力学扭转的理论和实验成果被广泛应用于各种设计和制造中。
例如,扭杆、螺旋弹簧、传动轴等都是在扭转加载下工作的零件,需要考虑材料的扭转强度、刚度等特性。
材料力学(扭转)
![材料力学(扭转)](https://img.taocdn.com/s3/m/c91019280812a21614791711cc7931b765ce7bdb.png)
τ
dy
τ
τ´
c
t
z
dx d
3 剪切胡克定律
τ =τ′
当τ ≤τp ,切应力与切应变成正比关系
τ = G ⋅γ
剪切弹性模量
26
§3–4 等直圆杆扭转时的应力和变形
一 等直圆杆横截面应力
①变形几何方面 ②物理关系方面 ③静力学方面
27
无数薄壁圆筒
表
里
28
等直圆杆扭转实验观察: 1. 平截面假设; 2. 轴向无伸缩; 3. 纵向线变形后仍平行。
P P
二 受力特点 构件两端受到两个在垂直于轴线 平面内的力偶作用,两力偶大小 相等,转向相反。
3
三 变形特点 各横截面绕轴线发生相对转动 即:任意两截面间有相对的角位移 — 扭转角
扭转角(ϕAB):B截面绕轴线相对A截面转动的角位移。 切应变(γ):直角的改变量。
ϕAB
A
O B
A
γ
O
B
M
M
4
四轴 工程中以扭转为主要变形的构件。如:机器中的传动轴、 石油钻机中的钻杆等。
γ =ϕ⋅RL
l
2 剪切胡克定律
τT
当τ ≤τp ,切应力与切应变成正比关系
τ = G ⋅γ
剪切弹性模量 Pa
ϕγ
21
剪切弹性模量、弹性模量和泊松比是表明材料弹性性质的三个 常数。对各向同性材料,这三个弹性常数之间存在下列关系
G= E
2(1 + ν )
22
一 受力特点 构件两端受到两个在垂直于轴线平面内的力偶作用,两力偶 大小相等,转向相反。
24
三 薄壁圆筒的扭转 1 实验结论 ① 无轴向正应力 ② 无径向正应力 ③ 切应力环向均布 ④ 切应力径向均布
材料力学第3章-扭转
![材料力学第3章-扭转](https://img.taocdn.com/s3/m/7717626aaf45b307e87197cf.png)
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
材料力学扭转
![材料力学扭转](https://img.taocdn.com/s3/m/79f52c81f021dd36a32d7375a417866fb94ac041.png)
材料力学扭转材料力学中的扭转是指在材料上施加一个力矩,使其绕一个轴进行转动的现象。
扭转在工程领域中广泛应用,例如在机械设计、结构设计以及材料测试等方面。
材料力学中的扭转主要涉及到弹性力学和塑性力学两个方面。
在弹性力学中,当材料受到扭矩时,它会发生弯曲变形以及剪切变形。
而在塑性力学中,材料会发生塑性流动,产生塑性变形。
在材料力学中,对于扭转的研究主要关注以下几个方面:1. 扭转角度:扭转角度是指材料在扭转过程中绕轴旋转的角度。
扭转角度通常以弧度为单位进行计量。
2. 扭转力矩:扭转力矩是作用在材料上的力矩,它使材料发生扭转。
扭转力矩的大小与施加的力及材料的形状及性质有关。
3. 扭转应变:材料在扭转过程中会发生弯曲变形和剪切变形,从而导致产生应变。
扭转应变是指材料在扭转过程中产生的应变。
4. 扭转刚度:扭转刚度是指材料抵抗扭转变形的能力。
材料的扭转刚度与其形状、尺寸以及材料的性质密切相关。
对于材料力学中的扭转现象,研究者可以通过实验和数值模拟来进行研究。
实验可以通过应用一定的扭转力矩使试样产生扭转,然后测量扭转角度和应变等参数来分析材料的扭转性能。
数值模拟可以通过建立数学模型和使用计算机进行仿真来研究材料的扭转行为。
在工程实际应用中,对于扭转现象的研究对于设计和优化机械结构以及预测和评估材料的强度和可靠性有重要意义。
通过研究材料的扭转行为,工程师可以合理设计和选择材料,从而确保结构的稳定性和安全性。
综上所述,材料力学中的扭转是指在材料上施加一个力矩,使其绕一个轴进行转动的现象。
材料的扭转行为涉及到弹性力学和塑性力学方面的研究,对于工程实践中的结构设计和材料选择具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 扭转的概念和实例 3.2 外力偶矩的计算 扭矩和扭矩图 3.3 纯剪切 3.4 圆轴扭转时的应力 3.5 圆轴扭转时的变形
第3章 扭转
【基本内容】
一、外力偶矩的计算 扭矩和扭矩图 二、纯剪切的概念,薄壁圆筒扭转时的切应力 三、切应力互等定理 四、圆轴扭转的强度条件 五、圆轴扭转的刚度条件
1 r (r:为平均半径)
10
一、薄壁圆筒切应力
圆筒沿轴线方向尺寸没变——
Me
横截面上没有正应力
圆筒沿径向方向尺寸没变——
横截面径向切应力为零
圆筒横截面沿轴线有相对转动——
横截面切应力方向与半径垂直
由Mx 0
有Me 2rr
Me 2r 2
pq
pq
l
A' A B
B'
Me
A AB'
o
r
B'
二、切应力互等定理
截面上扭矩为T时.最大剪应力为 。若截面
上A点距外周边的距离为0.1D.则A点的剪应力 是( )
3.5 圆轴扭转时的变形
扭转变形的标志是两个横截面间绕轴线的
相对转角
dxd
G
T
Ip
Tl GI p
GI p 称为圆轴的抗扭刚度
刚度要求:单位扭转角不能超过允许值[ ' ] 单位 (/m)
'max T 180 [']
1
2
3
mB
(a)
T1
mB
(b)
(c)
mC
T2
T3
mD
T135N0m 350 1 350 2
1146 3
446
T270N0m
T3 4 4N6m
3)绘制扭矩图
B
C
A
D
1
2
3
T(Nm)
446
x
350 700
跟踪训练
1.受扭圆轴如图所示,1一1.2-2横截面上的 扭矩分别是( ).
3m 3m
2m
3.3 纯剪切
例3.1 轴的转速为n =300r/min,主动轮A输入功率为
PA=36kW,从动轮B、C、D的输出功率分别为PB=PC=11kW, PD=14kW,试做轴的扭矩图。
解:1)计算外力偶矩
B
C
A
D
mA
9549PA n
9549 36 1146(Nm) 300
mB
mC
9549PB n
9549 11 350(Nm) 300
Ip
D 4
32
Ip
(D4
32
d4)
D 3
Wt 16
W t 16D(D4d4)
跟踪训练
2.实心受扭圆轴在弹性变形时,横截面上剪应力 的分布图是( ),图中T为扭矩。
跟踪训练
3.空心受扭圆轴在弹性变形时,横截面上剪应力 的分布图是( ),图中T为扭矩。
T A
T B
T C
T D
跟踪训练
4.空心圆轴的内径为d,外径为D, D=2d。当横
Tρ Ip
强度条件的应用
max
Tmax Wt
[]
刚度条件的应用
'maxGTIp
180
[']
作业:3.1(b,c)
3.5 3.11
l为圆筒的长度
Mቤተ መጻሕፍቲ ባይዱ
r
四、剪切胡克定律
扭转实验表明,切应力低于材料的剪切比例 极限时,扭转角与扭转力偶矩成正比,可以 得到:
G
这就是剪切胡克定律。其中G为材料的剪切 模量。
剪切模量、弹性模量,泊松比三个弹性常量 满足以下关系:
G E
2(1 )
3.4 圆轴扭转时的应力
一、平面假设
圆周扭转变形前的横截面变形后仍为平 面, 形状和大小不变,半径仍保持为直线;且相邻 两截面间的距离不变。
由此求出外力偶矩的计算公式:
Me
9549
P n
(N
m)
P——轴传递的功率kw n——轴的转速r/min
Me——作用在轴上的力偶矩N m
二、扭矩和扭矩图
1.截面法求内力
n
Mx 0
T Me 0 T Me
n
Me
Me
“ T ”称为横截面
x
上的扭矩
T
2.扭矩的符号规定:
按右手螺旋法则,T矢量背离截面为正,指向截面为 负(或矢量与截面外法线方向一致为正,反之为负)
得 '
y
上式表明:在单元体相互垂直
的两个平面上,切应力成对存 t
'
在且数值相等,两者都垂直于
两平面的交线,其方向则共同 dy
指向或共同背离该交线,这就
'
x
是切应力互等定理。
z dx
在单元体上、下、左、右四个侧面上只有切应力, 没有正应力的情况称为纯剪切。
三、切应变
pq
Me
r l
pq
l
其中,为两端面横截面的 扭相 转对 角
【重点和难点】
重点:外力偶矩的计算,扭矩图的作法,圆轴扭转时 强度条件和刚度条件的应用
难点:横截面上切应力的推导
3.1 扭转的概念和实例
一、工程实例
二、受力特点 杆件的两端作用两个大小相等、方向相反、 且作用平面垂直于杆件轴线的力偶。
三、变形特点 杆件的任意横截面绕杆件轴线发生相对 转动。
扭转变形的零件,通常为轴类零件,横截面大 都是圆形的,所以本章主要介绍圆轴扭转。
3.2 外力偶矩的计算 扭矩和扭矩图
直接计算
3.2 外力偶矩的计算 扭矩和扭矩图
一、外力偶矩
作用于轴上的外力偶矩往往是由轴所传递 的功率和轴的转速来计算的。
已知:传动轴功率p(kw)
转速n(r/min),
Me
求: 外力偶矩Me
传动轴每秒输入功:WP10(N 0m 0)
力偶每秒完成做功:WMe26n0(Nm)
3
1
2
解:1.计算外力偶矩
m1
m2
0.3m
m 1 95p n 14 995 1 0 4 .7.8 5 9 5 3 36 .3 9 N m
m3
0.4m
m 39
5p 34 995 2 4 .99 8 1N 5m 5
n
1.8 53
M x 0m 2 m 1 m 3 1.3 N 9 m 4
2.做扭矩图
T A dA(1)
2.剪切胡克定律 G (2)
3.变形几何关系
dxd(3) Me
由(1)(2)(3)式得
T
Ip
x dx
dA
x
γ d R
等圆截面直杆扭转横截面上切应力的计算公式
Me
τρ
Tρ Ip
x
其中T——为横截面扭矩
Ip —— 称为横截面对圆心的极惯性矩
——求应力的点到圆心的距离。
IpA
3.根据强度条件确定直径
maxTW mtax1T 6Dm3ax[]
D31T [6 m ]a x31 4 61 015605 m2.7 2mm 319.3
4.根据刚度条件确定直径
194.3 2
'maxT G mpa Ix 180 3 G T 2 D m 4a x 18[0 m']1
D 4
32Tmax180
80109 15(5300.4103)4
32
9.75103rad
1
2
m1
m2
0.3m
T(Nm)
39.3
0.4m
3
m3
13 12 23 1.85103 9.75103
7.9103rad
x
155
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
Me
9549
P n
(N
m)
2.圆轴扭转切应力公式的建立
τρ
mD
9549PD n
9549 14 446(Nm) 300
2)截面法求扭矩(扭矩按正方向设)
由平衡方程 Mx 0依次有 350 1
350 2
11463
446
T1 mB 0 T1 350N m
T2 mB mC 0 T2 700N m
T3 mD 0 T3 446N m
B
C
A
D
o
x
γ
平面假设推论:
(1)相邻两截面间的距离不变→ 横截面上无正应力. (2)横截面大小和形状不变,只是绕轴线作了相对转动
→ 径向无正应力 (3)纵向线倾斜→ 横截面上有切应力,且垂直于半径.
(4)各纵向线均倾斜了同一微小角度
→ 同一圆周上的切应力均匀分布.
o
x
γ
二、等圆截面直杆扭转横截面上切应力的建立 1.静力关系
3.扭矩图 表示扭矩沿轴线各截面上的变化情况。
目 ①扭矩变化规律; 的 ②|T|max值及其截面位置
强度计算(危险截面)。
注意 用截面法求扭矩时,建议均假设各截面扭矩T为正, 如果由平衡方程得到T为正,则说明是正的扭矩,如 果为负,则是负的扭矩。在画轴的扭矩图,正的扭
矩画在x轴上方,负的扭矩画在x轴下方。
1. 用相邻的两个横截面
Me
和两个过轴线的纵向
面,从圆筒中取出微
单元体。y
dy
x
z dx
r
x
y
两侧面的切应力数值相等,
方向相反,组成一个力矩为
'
(dy)dx的力偶。
为保持平衡,上下两个 dy
x
侧面必有切应力组成力偶与
'
之相平衡。( 'dx)dy