运算放大器的测量和仿真

合集下载

运算放大器的设计与仿真-安超群

运算放大器的设计与仿真-安超群

9、电源稳定性的判断,可以采用“巴克豪森判据”,即一个稳定的负反馈系 统需要满足的条件是在环路增益为 1时,反馈信号的相位变化小于180deg ;或当 反馈信号相位变化达到180deg 时,环路增益小于1。其数学表达式如下:
一个系统开环传递函数如果在右半平面存在极点,则系统是不稳定的。如果 只存在左半平面极点和零点,那么需要进一步在波特图中分析系统稳定性。
四、应用于DC-DC中的误差放大器
参考资料
模拟CMOS集成电路设计。毕查德.拉扎维。 模拟集成电路设计与仿真。何乐年。 CMOS模拟集成电路设计。P.E.Allen. 下载资料: CMOS运放性能参数仿真规范。 运放稳定性。 Frequency response.
谢 谢!
一、运放基础知识
? 几种常见的运放结构 ? 负反馈的基本原理 ? 运放性能指标参数
1.运放的基本结构
套筒式
折叠式
两级运放
2.负反馈基本原理
H(S)称为开环传输函数 Y(S)/X(S)称为闭环传输函数
T定义为环路增 益
增益误差是实际闭环增益与理想值偏差的百分数
例:图中的电路被设计成额定增益为 10,即1+R1/R2=10。要 求增益误差为1%,确定开环增益的最小值。
判断如下系统是否稳定?
两级运放的补偿 问题:为什么两级运放需要补偿?
密勒补偿原理:
控制零点的密勒补偿
测试原理图如下所示:
环路稳定性测试
环路增益,开环增益,闭环增益的关系? 零极点的联系?
闭合速度稳定性检查法
如何估计零极点?
实例环路稳定性分析
开环 环路
闭环
由图可知,开环 GBW 必须小于闭环 的零点,才能保证环路的稳定性。

集成运算放大器应用实验报告

集成运算放大器应用实验报告

I1=1mA I2=0.6mA I=1.6mA If=1.6mA V1=5V V2=3V V0=-8V 2.根据电路元件值,计算 I 1 , I 2 , I 及 I f 。 I1=V1/R3=1mA I2=V2/R4=0.6mA I=I1+I2=1.6mA If=I=1.6mA 3.根据步骤 2 的电流计算值,计算输出电压 V0。另外,用 V1 和 V2 计算 V0。 V0=-IfRf=-8V V0=-(V1+V2)=-8V 4.在 EWB 平台上建立如图 7-3 所示的实验电路,仪器按图设置。单击仿真开关运行动 态分析。在坐标纸上画出输入及输出波形,并记录直流输出偏移电压。
V1 R1பைடு நூலகம்
由于运放反相输入端虚地,因此加法器的输出电压 Vo 为反馈电阻 Rf 两端电压的负值, 即 对于图 7-3 和图 7-4 所示的电路,输出电压为
四、实验步骤
1.在 EWB 平台上建立如图 7-2 所示的实验电路,万用表按图设置。单击仿真开关运行 电路分析。记录 I1 , I 2 , I , I f ,V1 ,V2 及 V0 。
9.根据电路元件值,用 V1 和 V2 计算输出电压 V0。V0=-V1=-1V
五、思考与分析
1.在步骤 1 中电流 I1,I2,I 及 If 的测量值与计算值比较,情况如何? 完全一样 2.在步骤 1 中输出电压 V0 的测量值与计算值比较,情况如何?为什么 V0 为负值? 完全一样,运放接入的是负极 3.在步骤 1,3 中,输出电压与输入电压之间有何关系? 输出是所有输入电压和的相反数 4.在步骤 5 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 5.在步骤 7 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 6.在步骤 8 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数

Pretel DXP 运算放大器电气参数仿真

Pretel DXP 运算放大器电气参数仿真

电子线路设计实验报告
电信学院
Pretel DXP 运算放大器电气参数仿真
姓名:f雷诺
班级:snow
学号:高手
一.实验一电路图:
实验结果:
二.实验2的任务1:失调电压的测试
输入失调电压:输入电压为零时,将输出电压除以电压增益
输入失调电压公式为:v0=R1*U01/(R1+Rf) {输出电压为U01}
实验电路图:
V1=0V
仿真结果:
根据公式得此时的输入失调电压为:1mv
图形分析:
三.输入失调电流的protel dxp 仿真
输入失调电流Iio 是指当输入信号为零时,运放的两个输入端的基极偏置电流之差。

Iio = |IB1-IB2|
输入失调电流的大小反映了运放内部差动输入级两个晶体管ß的失配度,由于IB1 ,IB2 本身的数值已很小(微安级),因此它们的差值通常不是直接测量的,测试电路分两步:
闭合开关,在低输入电阻下测出U01,就是上边这个仿真。

2 断开开关,既以下的仿真,接入电阻,由于电阻大,流经它们的输入电流的差异,将变成输入电压的差异。

Ii0=|IB1-IB2|=|Uo2-Uo1|*R1/((R1+RF)*RB))
实验电路图:
仿真设置:
仿真结果:
由公式得:
输入失调电流Iio=0.044uA
四.短路输出电流仿真
在输出级加一个1欧的电阻,则输出电压既短路输出电流实验电路图:
仿真结果:
实验电路的元器件清单:
元器件型号元器件个数阻值为51的电阻R1 2
阻值为5.1K的电阻R2 2
LM741H 1
VSRC 3。

模拟电子技术基础实验预习报告-集成运算放大器基本应用Multisim仿真

模拟电子技术基础实验预习报告-集成运算放大器基本应用Multisim仿真

模拟电子技术基础实验预习——集成运算放大器基本应用Multisim仿真实验目的:1.加深对集成运算放大器的基本特性的理解;2.掌握集成运算放大器的基本使用方法;3.熟悉集成运算放大器在基本运算电路中的应用和电路的设计方法;4.掌握集成运算放大器的安装和测试方法。

实验内容:1.反相比例运算电路U i /V U O /V A’UF =U O /U i (实测)A UF =1+R F /R 1(理论)E=(A’UF -A UF )/A UF+0.5-1.499-2.99830+1-2.999-2.99930U i (t)=0.25sin2000πtVU O (t)=-0.74sin2000πtV-2.96031.3%2.同向比例放大运算电路U i /V U O /V A’UF =U O /U i (实测)A UF =1+R F /R 1(理论)E=(A’UF -A UF )/A UF-0.5-1.999 3.99840+0.52.0014.00240U i (t)=0.25sin2000πtVU O (t)=-1.00sin2000πtV4.0004U i1/V U i2/V U o/V(实测)U o/V(理论)12-2.999-32-1-0.999-1-1-2 3.00134.减法运算电路U i1/V U i2/V U o/V(实测)U o/V(理论)12 1.000121-0.999-1积分运算电路无反馈电阻有反馈电阻输入信号u i输出信号u oU p-p /VT/ms U i4.001U o无反馈电阻8.291有反馈电阻7.361波形波形输入信号u i 输出信号u o。

【免费下载】二阶运算放大器设计与仿真

【免费下载】二阶运算放大器设计与仿真

目录第一章绪论 (1)1.1、模拟集成电路概述 (1)1.1.1、模拟集成电路的设计特点 (1)1.2、模拟集成电路设计流程 (1)第二章二阶运算放大器 (3)2.1、运算放大器概述 (3)2.1.1、运算放大器的工作原理 (3)2.2、运算放大器的分类 (5)2.2.1、运算放大器的主要参数 (5)第三章二阶运算放大器仿真分析 (6)3.1、画电路图 (6)3.2、二阶运算放大器仿真分析 (7)第四章实训总结 (12)参考文献 (13)第一章绪论1.1、模拟集成电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。

集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。

集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。

1.1.1、模拟集成电路的设计特点几何尺寸是设计的重要部分;通常涉及模数混合电路;模拟占20%、数字占80%的芯片面积;模拟需要80%的设计时间;模拟设计主要在电路级;成功的设计:2/3取决于模拟,1/3取决于数字。

1.2、模拟集成电路设计流程设计输入:以电路图或HDL语言的形式形成电路文件;输入的文件经过编译后,可以形成对电路逻辑模型的标准描述。

逻辑仿真(功能仿真):对如上形成的逻辑描述加入输入测试信号,检查输出信号师傅哦满足设计要求;再此没有考虑任何时间关系,只是检测逻辑是否有错。

系统分割(设计综合):采用特定的设计方法分解实现电路模型,得到电路实际采用的逻辑单元及其相互连接形式;在GA设计时,电路会分割为2-3输入的逻辑单元,在FPGA设计中,分割为4输入逻辑单元,而采用CPLD设计时,则分割为更大的逻辑单元。

运放交流增益测量方法

运放交流增益测量方法

运放交流增益测量方法
测量运算放大器(简称运放)的交流增益通常涉及使用辅助运放环路法,这是因为该方法可以提供精确稳定的测试结果。

具体测量方法如下:
1. 使用辅助运放环路法:这种方法通过构建一个包含待测运放和辅助运放的测试电路来实现。

辅助运放不需要有比待测运放更好的性能,但其直流开环增益最好能达到106或更高。

2. 构建测试电路:测试电路应该能够将大部分测量误差降至最低,支持精确测量直流和交流参数。

电路中使用对称电源,即使对于“单电源”运放也是如此,因为系统的地以电源的中间电压为参考。

3. 进行仿真测试:除了实际搭建电路进行测量外,还可以通过运算放大器的仿真来进行交流小信号仿真,包括开环增益、带宽、相位裕度等参数的测试。

4. 选择测试方法:在测量运放的环路时,可以选择Rosenstark 方法或Middlebrook方法。

Rosenstark方法需要在受控源的位置断开测试环路,并确保测试源使环路工作在线性范围内。

综上所述,测量运放的交流增益需要精心设计测试电路并选择合适的测试方法,以确保测量结果的准确性和稳定性。

在实际操作中,可能还需要根据具体的运放型号和测试条件进行适当的调整和优化。

集成运算放大器Multisim仿真

集成运算放大器Multisim仿真

集成运算放大器Multisim仿真
Multisim是一款集成仿真软件,可以用来创建、测试和设计各种电子电路。

它可以为复杂的系统提供模拟、仿真和分析功能。

它还具有强大的图形界面,可以帮助用户快速编写代码,并且可以自动化复杂任务。

Multisim也可以对运算放大器进行仿真。

例如,用户可以使用Multisim 来设计一个具有特定输入和输出的运算放大器。

Multisim 还可以用来检查运算放大器在特定情况下的性能,从而帮助用户找到最佳的设计方案。

另外,Multisim也可以用来模拟不同的环境,以便查看运算放大器的表现情况。

电路模电实验之运算放大器实验报告

电路模电实验之运算放大器实验报告

目录1实验目的2 2实验原理23实验设计33.1实验I基础型实验 (3)3.1.11、电压跟随器——检测运放是否正常 (3)3.1.2反相比例运算放大器电压放大特性 (3)3.2实验II设计型实验 (4)3.2.1减法器的设计 (4)4实验预习仿真44.1电压跟随器——检测运放是否正常 (4)4.2反相比例运算放大器电压放大特性 (5)4.3减法器设计 (6)5数据处理7 6实验总结9 7思考题9 8实验讨论91实验目的•深刻理解集成放大器工作在线性工作区时,遵循的两条基本原则——虚短、虚断•熟悉集成运算放大器的线性应用。

•掌握比例运算等电路、训练设计运放电路的能力。

2实验原理集成运算放大器是一种高电压放大倍数的多级直耦放大电路,在深度负反馈条件下,集成运放工作在线性工作区,它遵循两条基本原则:1.虚短:U i=U−−U+≈02.虚断:I N≈I p≈0(非线性区也成立)用途:广泛应用于各种信号的运算处理、测量以及信号的产生、变换等电路中。

图1:运算放大器符号3实验设计3.1实验I基础型实验3.1.11、电压跟随器——检测运放是否正常3.1.2反相比例运算放大器电压放大特性3.2实验II设计型实验3.2.1减法器的设计1.自行设计运放电路,要求实现u0=2u i2−u i12.将u i分别设置为以下两组信号,验证电路是否满足要求4实验预习仿真4.1电压跟随器——检测运放是否正常图2:Multisim接线图3:Multisim结果4.2反相比例运算放大器电压放大特性图4:Multisim 接线图5:Multisim 结果U i (V )理论值(V )实测值(V )U N U P U O U O U iU N U P U O U O U i-0.300310455.314µV 564.134µV 3.012V 10.040.3-310563.904µV489.999µV-2.987V9.964.3减法器设计设计如图所示:表3:验证结果波形频率u i u0直流0u i1=1V,u i2=2V3.04V正弦波500Hz u i1=1V,u i2=2V2.98V5数据处理表1U i(V)理论值(V)实测值(V)U N U P U O U OU iU N U P U O U OU i-0.3003100.1mV0.2mV 3.66V12.20.300-310-0.1mV0-3.65V12.16表2波形频率u i u0直流0u i1=1V,u i2=2V 3.00V正弦波500Hz u i1=1V,u i2=2V 3.24V1.完成表1,并绘制基础型实验的运放的电压传输特性;2.列出基础型实验中U i和U o理论关系式,并和仿真数据、实际数据比较;•电压跟随器u i=u o仿真数据中u i=u o,实验数据u i=1.00V,u o=1.04V,在误差允许范围内,所以等式也成立。

【东南大学模电实验】实验七运算放大器及应用电路

【东南大学模电实验】实验七运算放大器及应用电路

实验七运算放大器及应用电路实验目的:1.认识运放的基本特性,通过仿真测试了解运放的基本参数,学会根据实际情况选择运放2.了解由运放构成的基本电路,并掌握分析方法。

实验内容:一、仿真实验。

1.运放基本参数电压传输特性如图,用DC Sweep给出LM358P线性工作区输入电压范围,根据线性区特性估算该运放的直流电压增益A vd0.DC Sweep仿真结果:A vd0=V(3)/V3=dy/dx=99.599k将扫描电压范围设为-500μV~500μV,当斜率为99.5987k时,测得线性工作区输入电压范围为-14.369V~12.9402V。

思考:A.当输入差模电压为0时,输出电压为多少?若要求输出电压为0,如何施加输入信号?为什么?输入差模电压为0时,输出电压为-3.3536V。

若要求输出电压为0,应将输入电压V3置为33.604μV。

B.观察运放输出电压的最高和最低电压,结合LM358P内部原理图所示电路分析该仿真结果的合理性。

最低电压:-14.369V,最高电压:12.9402V。

最低电压的绝对值大于最高电压的绝对值。

IN+可对OUT下边的PNP管射级电流造成影响。

IN+在很小的正电位时,输出为0,这导致了最低电压的绝对值大于最高电压的绝对值。

输入失调电压根据下图所示电路,仿真得到LM358P的输入失调电压V IO。

R1=1kΩ,R2=10Ω,进行直流工作点仿真,并完成表1R1=10kΩ,R2=100Ω,进行直流工作点仿真,并完成表2R1=100kΩ,R2=1kΩ,进行直流工作点仿真,并完成表3表1V3(μV) V4(μV) V5(μV) V5-V4(μV) -V3/(-R1/R2)(μV) -3416.60 -33.6312 0 33.6312 -34.16687表2V3(μV) V4(μV) V5(μV) V5-V4(μV) -V3/(-R1/R2)(μV) -3596.2 -33.6325 0 33.6325 -35.962表3V3(μV) V4(μV) V5(μV) V5-V4(μV) -V3/(-R1/R2)(μV) -5388.47 -33.6148 0 33.6148 -53.8847根据上述仿真结果,给出运放的输入失调电压V IO。

模电实验2集成运算放大器仿真

模电实验2集成运算放大器仿真

附录
1、电压跟随器
2、上图为Vi=3V、RL=2KΩ时仿真所得数据V0=3V;改变RL,V0不变;改变Vi, 始终有V0=Vi。

3、反相放大电路
4、上图为反相放大电路, 其中输入电压Vi=0.1V, 输出电压V0=-1V。

改变Vi, 当Vi分别为
0.2V,0.3V,0.4V,0.5V时, V0分别为-2V,-3V,-4V,-5V.由此可得AV=V0/Vi=-10.
5、同向输入放大电路
6、上图为同相放大电路, 其中输入电压Vi=0.1V, 输出电压V0=1.1V。

改变Vi, 当Vi分别为
0.2V,0.3V,0.4V,0.5V时, V0分别为2.2V,3.3V,4.4 V,5.5V.由此可得AV=V0/Vi=11.
7、电压比较器
电路图:
(1)当输入电压Vi=50mv(峰值)f=1000Hz的正弦电压时, 输出波形如下:
(2)将Vi降至1Hz, 在输出端以两只反向并接的发光二极管代替负载RL, 输出波形如下图:
8、运放组合
上图为仪用放大器, 由图可知, V1=0.1V,V2=0.2V时, V0=1V;类似的, 改变V1,V2;使V1=0.3,V2=0.2,仿真结果V0=-1V.。

电子工程基础实验-基本的集成运算放大器Multisim仿真

电子工程基础实验-基本的集成运算放大器Multisim仿真

电子工程基础实验
——基本的集成运算放大器Multisim仿真
实验目的:
1.研究集成运算放大器在比例放大、相加以及积分电路中的工作原理及功能;
2.掌握集成运算放大器构成基本的模拟信号运算电路。

实验原理:
集成运算放大器是一种高性能的多级直接耦合放大电路,只要在输入、输出端之间加接不同的电路或网络,即可实现不同的功能。

1.理想运算放大器
满足下列条件的运算放大器称为理想运算放大器:开环电压增益Au、输入电阻Ri、共模抑制比均为∞;输出电阻Ro、输入电流、失调与漂温均为零等。

运算放大器工作在线性区时,输出电压接近于正、负电源电压。

2.基本运算电路
(1)比例放大器
(2)加减法器
(3)积分与微分器
实验内容:
(1)反相比例放大器
(2)同相比例放大器
(3)电压跟随器
(1)加法器
(2)减法器
(1)积分器
(2)微分器
设计实验
运用运放,设计一个电路,使其输出如下图所示的波形(y=6+4sin1000t)。

运算放大器参数的基本仿真方法示例

运算放大器参数的基本仿真方法示例

运算放大器参数的基本仿真方法示例(2nd edition)刘泰源,LTC1733 GROUPROOM 237,SOC DESIGN CENTRE目的:仿真一个两级的运放,熟悉模拟电路仿真软件的使用。

采用软件:workview ,hspice 2005.03工艺库的说明:采用韩国MagnaChip 0.5umCMOS工艺库对所采用电路描述:首先在workview中生成一个两级的运算放大器,并导出网表,第一级是差分的输入放大器,其作用是放大差模信号,抑制共模信号,第二级是一个共源放大器,提供更大的增益。

在第一级里,m1、m2为差动输入管,m5提供由基准电压产生的偏置电流,m3、m4两管是一对电流镜,保证m3,m4两管为两个输入端提供相等的电流。

第二级m8是负载管,m7是倒相器的输入管。

主要仿真的运算放大器特性:增益,增益带宽,建立时间,摆率,ICMR,CMRR,PSRR,输出摆幅,失调电压 运放电路结构图:图1运放电路静态工作点的调节在整个模拟电路的设计中是非常重要的,因为不同功能的模块对器件的工作状态有不同的要求,在电路设计初期确定下的管子的工作状态就在这个阶段与以实现。

实现的语句在hspice里面是.op语句。

这个语句会在仿真生成的.lis文件里面形成一个关于管子工作状态的理解,查找.lis文件中的region关键字,就能找到各个管子工作点的列表。

静态工作点的调节:采用的方法,先设计第一级的的工作点,再设计第二级的工作点。

第一级工作点设计要求五个管子都工作在饱和区,并且保证电路的对称,在vcc,in1,in2和bias上要加上适当的偏置电压。

我设定的bias为 1.5v,in1=in2=2.5v,这个时候要注意调节各管子的宽长比使管子达到饱和,如果m3,m4是线形区,则应该调节减小m3,m4的宽长比,同时通过增加m5的宽长比增大偏置电流,如果m5处于线形区,则应该采取与上面所说的相反的方法,如果输入管处于线形区,要考虑输入的偏置电压是否合适,同时折中上面的调节方法。

用运算放大器组成万用表的设计 实验仿真

用运算放大器组成万用表的设计 实验仿真

用运算放大器组成万用表的设计实验仿真
本文通过使用运算放大器组成万用表的实验仿真,分析万用表的工作原理和主要功能,以供初学者参考。

一、万用表的原理
万用表是一种多功能的工具,它可以实现仿真测量,电路测量,现场测试和实验仿真
等多种用途。

其核心原理即为使用运算放大器来实现,主要原理是利用了运算放大器的功能,使用电压或电流的形式来控制现场的电路的形式,将电气信号的输入转换为对电路的
控制。

二、使用运算放大器组成万用表的实验仿真
(1)实验仿真装置
本次实验所使用的运算放大器为LM741,它是一款单片集成芯片,它具有全差分输入、超低功耗、双路增益、低失真率、高速输入和输出。

实验仿真装置包括常用模块如:示波器、电压稳定电源、变压器等。

(2)实验仿真步骤
1. 首先,将LM741运算放大器与实验仿真装置连接,检查运算放大器的特性和参数,确保系统的可靠性;
2. 将示波器与运算放大器连接,测量电压和电流,以观察输入信号的分布;
3. 串联电压稳定电源与运算放大器,调整电压稳定电源输出电压,以观察放大器输
出的特性以及输出信号的分布;
4. 调整变压器,利用调节器调整输出电流,观察系统的可靠性;
5. 将所有模块与电路连接,调整变量,完成该实验仿真。

三、总结
通过以上实验仿真,可以看出,使用运算放大器作为核心原理构成的万用表可以有效
实现实验仿真及测量电路等多种应用,是一种非常实用的测试仪器。

但同时,也应注意设
置实验仿真装置的参数,以及充分使用实验仿真环境的多种设备,以保证实验学习和操作
的正确性与可靠性。

两级CMOS运算放大器的设计与spectrum仿真

两级CMOS运算放大器的设计与spectrum仿真

LAB2 两级CMOS 运算放大器的设计V SSvoutiref图 1两级CMOS 运算放大器一:基本目标:参照《CMOS 模拟集成电路设计第二版》p223.例6.3-1设计一个CMOS 两级放大器,满足以下指标:5000/(74)v A V V db = 2.5DD V V = 2.5SS V V =-5GB MHz = 10L C pF = 10/SR V s μ>out V V ±范围=2 1~2ICMR V =- 2diss P mW ≤相位裕度:60为什么要使用两级放大器,两级放大器的优点:单级放大器输出对管产生的小信号电流直接流过输出阻抗,因此单级电路增益被抑制在输出对管的跨导与输出阻抗的乘积。

在单级放大器中,增益是与输出摆幅是相矛盾的。

要想得到大的增益我们可以采用共源共栅结构来极大地提高输出阻抗的值,但是共源共栅结构中堆叠的MOS 管不可避免地减少了输出电压的范围。

因为多一层管子就要至少多增加一个管子的过驱动电压。

这样在共源共栅结构的增益与输出电压范围相矛盾。

为了缓解这种矛盾引进了两级运放,在两极运放中将这两点各在不同级实现。

如本文讨论的两级运放,大的增益靠第一级与第二级相级联而组成,而大的输出电压范围靠第二级这个共源放大器来获得。

表1 典型的无缓冲CMOS 运算放大器特性二:两级放大电路的电路分析:图1中有多个电流镜结构,M5,M8组成电流镜,流过M1的电流与流过M2电流1,23,45/2d d d I I I ==,同时M3,M4组成电流镜结构,如果M3和M4管对称,那么相同的结构使得在x ,y 两点的电压在Vin 的共模输入范围内不随着Vin 的变化而变化,为第二极放大器提供了恒定的电压和电流。

图1所示,Cc 为引入的米勒补偿电容。

表2 0.5m μ工艺库提供的模型参数表3 一些常用的物理常数利用表2、表3中的参数/OX ox ox C t ε=0oxK C μ'=计算得到2110/NK A V μ'≅ 262/PK A V μ'≅ 第一级差分放大器的电压增益为:1124m v ds ds g A g g -=+ (1)第二极共源放大器的电压增益为6267m v ds ds g A g g -=+ (2)所以二级放大器的总的电压增益为16261224675246672()()m m m m v v v ds ds ds ds g g g g A A A g g g g I I λλλλ===++++ (3)相位裕量有111121180tan ()tan ()tan ()60M GB GB GB p p z ---Φ=±---=要求60°的相位裕量,假设RHP 零点高于10GB 以上11102tan ()tan ()tan (0.1)120v GBA p ---++= 102tan ()24.3GBp -= 所以2 2.2p GB ≥ 即622.2()m m L cg gC C > 由于要求60的相位裕量,所以626210()10m m m m c cg gg g C C >⇒> 可得到 2.20.2210Lc L C C C >==2.2pF 因此由补偿电容最小值2.2pF ,为了获得足够的相位裕量我们可以选定Cc=3pF 考虑共模输入范围:在最大输入情况下,考虑M1处在饱和区,有3131(max)(max)DD SG n IC n TN IC DD SG TN V V V V V V V V V V --≥--⇒≤-+ (4)在最小输入情况下,考虑M5处在饱和区,有1515(min)(min)IC SS GS Dsat IC SS GS Dsat V V V V V V V V --≥⇒≤++ (5)而电路的一些基本指标有11m v Cg p A C =-(6) 62m Lg p C =-(7) 61m Cg z C =(8) 1m Cg GB C =(9) CMR:正的CMR in31()()DD T T V V V +(最大)=V 最大最小 (10)负的CMR in15()()SS T DS V V V ++(最小)=V 最大饱和(12)由电路的压摆率5d CI SR C =得到 5d I =(3*10-12)()10*106)=30μA(为了一定的裕度,我们取40iref A μ=。

实验三、运算放大器参数测量与基本应用

实验三、运算放大器参数测量与基本应用

实验三、运算放大器参数测量及基本应用一、实验目的1.认识运算放大器的基本特性,通过仿真和测试了解运放基本参数,理解参数的物理含义,学会根据实际需求选择运放;2.掌握由运放构成的基本电路和分析方法;3.熟悉仿真软件Multisim的使用,掌握基于软件的电路设计和仿真分析方法;4.熟悉便携式虚拟仿真实验平台,掌握利用其进行实验的使用方法。

二、实验预习1. 复习运放的理想化条件,了解集成运算放大器的主要技术指标和含义;2. 复习运放应用的各种基本电路结构;3. 熟悉运放LM358L(因multisim元器件库中没有LM358L,所以仿真用LM358J来做,而实际电路用LM358L,它们DIP封装引脚排列是一样的)的性能参数及管脚布局,管脚布局如图3.1所示,并根据图3.2所示的内部原理图理解电路结构和工作原理。

图3.1 LM358L管脚LM358J为单片集成的双运放,采用DIP-8封装,INPUT1(-)为第一个运放的反相端输入,INPUT1(+)为同相端输入,OUTPUT1为输出,第二个运放命名原则相同。

Vcc为正电源输入端,V EE/GND可以接地,也可以接负电压。

双电源(±1.5-±16V)。

图3.2 LM358J内部原理图LM358L主要由输入差分对放大器、单端放大器、推挽输出级以及偏置电路构成。

三、实验设备便携式虚拟仿真实验平台(PocketLab、元器件)。

四、实验内容(一)仿真实验1. 运放基本参数仿真测量(用LM358J 代替LM358L) (1) 电压传输特性根据图3.3所示电路,采用正负电源供电,运放反相端接地,同相端接直流电压源V 3,在-150μV~150μV 范围内扫描V 3电压,步进1μV ,得到运放输出电压(节点3)随输入电压V 3的变化曲线,即运放电压传输特性,根据仿真结果给出LM358J 线性工作区输入电压范围,根据线性区特性估算该运放的直流电压增益A vd 。

集成运算放大器的测试

集成运算放大器的测试

集成运算放大器的测试1. 简介集成运算放大器(Integrated Circuit Operational Amplifier,简称IC Op-Amp)是一种基础电路模块,广泛应用于模拟电子电路中。

在实际电路设计中,对IC Op-Amp的测试是十分重要的,可以保障电路的正常运行和性能。

本文将介绍IC Op-Amp测试中的要点和方法。

2. 设备和工具在进行IC Op-Amp测试前,需要准备下列设备和工具:1.待测试IC Op-Amp2.可调直流电源3.双踪示波器4.函数信号发生器5.电阻箱6.多用万用表7.接线、夹子、连接线等3. DC参数测试在实际电路中,IC Op-Amp通常会处理各种不同幅值和频率的输入信号,因此对其进行DC参数测试就显得十分重要。

下面是DC参数测试的步骤:1.连接示波器和电源:将双踪示波器的通道1连接到待测试IC Op-Amp的输出端,通道2连接到输入端。

同时,将可调直流电源的正极连接到IC Op-Amp的VCC引脚,负极连接到VEE引脚。

2.测量输入偏移电压:将函数信号发生器的输出连接到ICOp-Amp的正输入端,输入为0V。

使用万用表测量IC Op-Amp的输出电压,并与0V比较。

得到的输出电压即为输入偏移电压。

如果偏移电压较大,会影响电路的稳定性。

3.调整输入偏移电压:使用电阻箱或仿真工具,调整引脚上的电压,直到输入偏移电压为0。

这一步是十分重要的,因为输入偏移电压为0时,IC Op-Amp的基准电平与输入信号相等,不会产生误差。

4.测量输入偏移电流:使用多用万用表测量IC Op-Amp的两个输入端之间的电流。

由于IC Op-Amp有一个高阻输入,因此输入偏移电流一般十分小,一般不会影响电路。

5.温度漂移测试:在常温和高温(如:100°C)两种情况下接通电源,然后测量输入偏移电压。

输入偏移电压的变化即为温度漂移。

温度漂移也会对电路的稳定性产生影响,应当予以注意。

集成运放同相放大器的带宽测量(设计与仿真)实验报告

集成运放同相放大器的带宽测量(设计与仿真)实验报告

集成运放同相放大器的带宽测量(设计与仿真)实验报告一、实验目的1、熟悉放大器幅频特性的测量方法。

2、掌握集成运算放大器的带宽与电压放大倍数的关系。

3、了解掌握Proteus 软件的基本操作与应用。

二、实验线路及原理1、实验原理(1)同相放大器同相放大器又称同相比例运算放大器,其基本形式如图2.1所示。

输入信号U i 经R 2加至集成运放的同相端。

R f 为反馈电阻,输出电压经R f 及R 1组成的分压电路,取R 1上的分压作为反馈信号加至运放的反相输入端,形成了深度的电压串联负反馈。

R 2为平衡电阻,其值为R 2=R 1//R f 。

电压放大倍数为R R U U A f i uf 101+==。

输出电压与输入电压相位相同,大小成比例关系。

比例系数(即电压放大倍数)等于1+R f /R 1,与运放本身的参数无关。

图2.1 同相放大器 图2.2 某放大电路的幅频特性(2)基本概念 1)带宽运放的带宽是表示运放能够处理交流小信号的能力。

运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真。

图2.2所示为某放大电路的幅频响应,中间一段是平坦的,即增益保持不变,称为中频区(也称通带区)。

在f L 和f H 两点增益分别下降3dB ,而在低于f L 和高于f H 的两个区域,增益随频率远离这两点而下降。

在输入信号幅值保持不变的条件下,增益下降3dB 的频率点,其输出功率约等于中频区输出功率的一半,通常称为半功率点。

一般把幅频响应的高、低两个半功率点间的频率定义为放大电路的带宽或通频带,即BW=f H -f L 。

式中f H 是频率响应的高端半功率点,也称为上限频率,而f L 则称为下限频率。

通常有f L <<f H ,故有BW≈f H 。

2)单位增益带宽运放的闭环增益为1倍条件下,将一个频率可变恒幅正弦小信号输入到运放的输入端,随着输入信号频率不断变大,输出信号增益将不断减小,当从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)时,所对应的信号频率乘以闭环放大倍数1所得的增益带宽积。

实验课7 全差分运放的仿真方法

实验课7   全差分运放的仿真方法

CMOS模拟集成电路实验报告实验课7 全差分运放的仿真方法目标:1、了解全差分运放的各项指标2、掌握全差分运放各项指标的仿真方法,对全差分运放的各指标进行仿真,给出各指标的仿真结果。

本次实验课使用的全差分运放首先分析此电路图,全差分运算放大器是一种具有差分输入,差分输出结构的运算放大器。

其相对于单端输出的放大器具有一些优势:因为当前的工艺尺寸在减少,所以供电的电源电压越来越小,所以在供电电压很小的情况下,单端输出很难理想工作,为了电路有很大的信号摆幅,采用类似上图的全差分运算放大器,其主要由主放大器和共模反馈环路组成。

1、开环增益的仿真得到的仿真图为1.开环增益:首先开环增益计算方法是低频工作时(<200Hz) ,运放开环放大倍数;通过仿真图截点可知增益为73.3db。

2.增益带宽积:随着频率的增大,A0会开始下降,A0下降至0dB 时的频率即为GBW,所以截取其对应增益为0的点即可得到其增益带宽积为1.03GB。

3.相位裕度:其计算方法为增益为0的时候对应的VP的纵坐标,如图即为-118,则其相位裕度为-118+180=62,而为保证运放工作的稳定性,当增益下降到0dB 时,相位的移动应小于180 度,一般取余量应大于60度,即相位的移动应小于120 度;所以得到的符合要求。

在做以上仿真的时候,关键步骤在于设定VCMFB,为了得到大的增益,并且使相位裕度符合要求,一直在不停地改变VCMFB,最初只是0.93,0.94,0.95的变化,后来发现增益还是远远不能满足要求,只有精确到小数点后4为到5位才能得到大增益。

2.CMRR 的仿真分析此题可得共模抑制比定义为差分增益和共模增益的比值,它反映了一个放大器对于共模信号和共模噪声的抑制能力。

因此需要仿真共模增益和差分增益。

可以利用两个放大器,一个连成共模放大,一个连成差模放大,用图1仿真差分增益图1用图2仿真共模增益图2将两个仿真写在一个sp文件中可以得到如下结果:相角仿真因为CMRR 的相角为=Vp(V op,Von)-Vp(V o p)黄色的为Vp(Vo p),红色的为Vp(V op,Von),两者相减,得到CMRR 的相角的仿真图为,其中蓝线为CMRR的相角仿真图,其它两条为上面的线,将它们放在一起对比:CMRR的幅度仿真其CMRR 的幅值为=Vdb(V op,V on)-Vdb(V op),蓝线为Vdb(V op,V on),粉线为Vdb(V op),两者相减得到绿线,即为CMRR的幅值特性曲线截取其在100HZ之前的增益值可得低频时增益为49.1db。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算放大器的测量和仿真1.概述仿真是运放设计的一项重要内容,运放的仿真与运放的应用环境是不可分割的,在仿真之前一定要首先确定运放的实际负载,包括电阻、电容负载,还应包括电流源负载,只有负载确定之后,仿真出的结果才是有意义的:不同的应用场合对运放的性能指标要求也不一样,并不需要在任何时候都要将运放的所有指标都进行仿真,所以,在仿真之前要明确应该要仿真运放的哪几项指标,哪几项指标是可以不仿真的。

在仿真时,要对不同的指标分别建立仿真电路,这样有利于电路的检查;DC、AC分析是获得电路某一性能指标信息的一种手段,它需要一些相关的条件来支持,当我们忽略了某一条件或根本没有弄清还有哪些条件时,DC、AC分析的结果就可能与实际情况不一致,导致错误的发生。

瞬态仿真则是反映出电路工作的现象,只有瞬态仿真通过,才能说明电路具备了相应的能力。

如:我们在仿真运放的频率特性时,所设计的仿真电路是建立在输入源的输出电阻为零(或很小,几百ohm以下)的基础之上,此时仿真出的运放稳定性很好,但如果实际电路前级的输出电阻不为零(此时应考虑运放输入级的寄生电容),这时,在做实际电路的瞬态仿真时,会发现输出有较大的过冲,瞬态仿真必不可少!而且,每一个AC、DC分析结果都可以用瞬态仿真加以验证。

以下仿真电路,只画出了电阻、电容负载,没有给出电流源负载,在进行电路的仿真时,要根据实际情况,酌情考虑电流源负载的影响(实际上电路动态工作时,一定有输出电流)。

一般情况下,电阻、电容负载是相对于共模电压的(不是GND),不会引入静态电流,但在某些场合,如输出驱动电路,其电阻负载是对地的,此时会引入静态电流,这些东西在实际仿真时都是要考虑的。

运算放大器的测量和仿真类别包括:开环增益、开环频率响应(包括相位裕度)、输入失调电压、共模增益、电源抑制比、共模输入输出范围、开环输出电阻和瞬态响应(包括摆率)。

AC相当于小信号仿真,步骤是先进行直流工作点仿真再进行小信号仿真,对于直流电源相当于短路DC可以仿真工作点,范围等相当于现实物理模型的仿真,接近真实情况表1 MOS运算放大器技术指标总表2.概述总体电路:Symbol:3.双端输入、单端输出运放性能参数仿真规范3.1 直流参数仿真3.11 失调电压(voltage offset )的仿真差分放大器性能一个重要的方面就是所能检测到的最小直流和交流差模电压。

放大器的不匹配效应和温漂都在输出端产生了难以区分的直流差模电压。

同样不匹配的温漂会使非零的共模输入—差模输出和非零的差模输入—共模输出增益增大,非零的Acm-dm对于放大器尤为重要,因为它将共模输入电压转换为差模输出电压,但在下一级说过有人要的时候,却被当做差模电压信号。

只有在输入失调电压和输入失调电流都存的是情况下,失调模型才是正确的。

如在输入端加一个内阻为零的理想电压源,输入的失调电流对于放大器的输出就没有任何影响,输入失调电压需要模拟不匹配的影响;如果在输入端加载一个内阻无限的理想电流源的话,输入的失调电压对于放大器的输出时没有任何影响的,输入失调电流源需要模拟不匹配的影响。

这两个参量往往是温度和共模输入的函数。

共射对中失调的主要原因在于晶体管积极宽度、基极掺杂层和集电极掺杂层的不匹配,发射极有效面积不匹配,集电极负载电阻的不匹配。

在MOS管中,因为输入阻抗无穷大,所以不存在输入失调电流,只有输入失调电压。

失调电压(voltage offset):实际运放中,当输入信号为零时,由于输入级的差分对不匹配及电路本身的偏差,使得输出不为零,而为一较小值,该值为输出失调电压,折算到输入级即为输入失调电压(Vos)。

由于是差分输入,又是单位增益放大器(输入失调电压是输入为零的时候,输出电压与放大倍数的比值是输入失调电压),失调电压即输出与输入之差,也就是两个输入之差,差分输入电压源给予偏置电压,设置直流工作点 2.5V。

这样的失调电压是由两部分组成的:由器件的失配引起的和放大器的增益不是无穷大引起的。

输出节点是2.498V 即V OS = |Vo - Vi| (mV)=5-2.498=2mV3.12 系统失调电压温度系数(Vio)的仿真定义:系统失调电压随温度的变化率。

单位:uV/℃对Temperature仿真。

设置值一般为-55——125。

运行Netlist and Run注意:此时运算结果是放大器内部失调和温度失调的双重结果3.13 共模电压输入范围(input common_mode range)和输出摆幅的仿真ICMR:对理想运放,当输入共模电压时,输出应为零(即保持共模电压不变),而对实际运放,输入共模电压时,输出不为零,当共模电压超过一定值时,运放不能再对差模信号进行正常放大。

对于运放本身的共模输入范围,可以通过下图所示电路,对输入信号在0~Vdd 范围内进行DC分析,测试输出电压能够跟随输入电压的的范围,即为运放的共模输入范围,这种方法是建立在输出摆幅不影响输入范围的基础之上,一个比较简单实用的方法是根据电路的静态工作点,计算出共模输入范围。

输出摆幅:输出动态范围是在额定的电源电压和额定的负载情况下,运放可提供的没有明显失真的最大输出电压范围。

测试电路:(此电路忽略了输出和输入摆幅的相互制约)ICMR=2.869V注意:由于输出和输入摆幅的相互制约,该电路结构不能正确测量范围,应该用下列电路处理,可以解决。

(a)测量输出摆幅(b)测量输入共模范围3.2 直流参数仿真3.21 开环增益(open loop gain)开环增益:低频工作时(<200Hz),运放开环放大倍数L=1 GH 增益是小信号概念,是在交流情况下输出的变化量比上输入的变化量的值,在这里电感起到了隔交的作用,因此交流下未形成闭环。

C=1 GF 在直流情况下,在这里电容起到了隔直的作用,该电路在直流情况下工作在闭环状态下。

为AMP设置了合适的工作点。

在交流情况下工作在开环情况。

这样令激励源AC=1V ; 输出OUT既是开环增益。

交流增益为67.7dB,大概幅值有2500。

相位裕度有77°,符合要求增益裕度有-22dB主极点位置在13K次主极点位置在117.8M单位增益带宽为32M-3dB带宽为13K,由主极点位置决定增益带宽积:随着频率的上升,A0会开始下降,A0下降 0dB 时的频率即为GB; 相位裕度: 为保证运放工作的稳定性,当增益下降到0dB时,相位的移动应小于180度,一般 取余量应大于60度,即相位的移动应小于120度; 增益裕度: 为保证运放稳定性,除相位裕度外,还应保证:当相位移动达到180度时,增益要小于0dB,一般要有10dB裕量,即当相位移动达到180度时,增益要小于-10dB。

如果将补偿电容由6.9p改成700f仿真结果如下:相位裕度只有31度。

3.2.2. 闭环频率特性仿真闭环频率特性是与开环频率特性相关的,它是开环频率特性的一种验证,如果开环时的相位裕度不够,在闭环曲线的转折频率处就会出现过冲,相位裕度越底,过冲越大,一般在相位裕度为70deg以上时,才没有过冲。

由于过冲的存在,在仿真闭环频率特性时,以0.1dB平坦带宽为衡量标准,即增益随频率的变化小于0.1dB的带宽,很显然,在不同的应用场合,变化范围是可以不一样的。

假设该放大器只有一个极点:()1A A s s ω=+0A 表示低频增益,0ω表示2dB带宽,则闭环传输函数为:()()()0000000000011()1()1111111A A s A A Y s A s s X s A s 0s A A ωωωωω++===≈++++++++极点的位置移动了()01A +倍。

从图中可以看出,由于开环的相位裕度比较大(77度),闭环曲线的转折频率处就不会出现明显的过冲。

如果将补偿电容由6.9p改成700f仿真结果如下:此时过冲很大,系统出现不稳定3.2.3.共模抑制比(CMRR)的仿真定义:CMRR即为差模电压增益与共模电压增益之比,并用对数表示。

如果运算放大器有差分输入和单端输出,其小信号输出电压能用其差分模式输入电压及共模输入电压(和)描述,如下列方程:id v ic v o dm id cm v A v A v =++ic其中dm A 是差模增益而cm A 是共模增益,根据定义:dm cmA CMRR A = CMRR能被认为是由共模输入电压的单位变化引起的输入失调电压。

两种方法可以增加CMRR:减少过载电压提高镜像电流源的输出电阻(但会减小ICMR)V1=V2=Vcm=1V 设置AC Magnitude =1仿真电路:根据定义12(12)2out cm dm V V V A A V V +=+− (1) V1=Vout+VcmV2= Vcm带入(1)式out cm cm out ()V +V 2V V out cmdm V A A +=+− 整理得 cm 1(/V out cm dm cm V A A A =+−2)0cm A ≅;且,V 1dm A cm =1 则:1cm out dm A V A CMRR ==CMRR可以达到117K。

3.2.4 电源电压抑制比(PSRR)的仿真假设电源供应电压是恒定的,以便运算放大器输出电压仅取决于提供给运算放大器的差分及共模的输入电压。

然而,在实际中电源电压并不是恒定的,在电源电压上的变化将影响运算放大器的输出。

定义:PSRR 表示差模增益A v 与差模输入为零时电源波纹到输出的增益的比值。

(0(0v dd dd in A V PSRR A V ))=== V dd 是V DD 的电源波纹,PSRR + 是V DD 的PSRR 。

如果我们将运算放大器接成单位增益模式,输入一个与电源V DD 串联的交流信号V dd ,V o / V dd 将是PSRR + 的倒数。

V out 由两部分组成(这里忽略了共模输出),一个是差模输出——Av (Vn-Vp )=Av (-V out ),一个是电源波纹引起的输出——V dd A dd ()out v out dd dd V A V V A =−+11out dd dd dd v v V V V A A A PSRR +=≈=+因为V dd =1V ,这样输出曲线的倒数就是所要求的PSRR +仿真电路图如下:注:仿真时将电源电压设置为AC源,进行AC分析。

令Vdd=1V。

PSRR=860接下来对电路进行了-55—125度的温度仿真,结果如下:3.2.5 输出阻抗分析定义:输出阻抗是指运放闭环应用时的输出阻抗,如果把闭环系统作为一个电压源来看,则输出阻抗即为该电压源的源电阻。

开环输出电阻:95欧姆输出电阻为39m欧3.3 瞬态参数仿真4.3.1 转换速率(slew rate)、建立时间(setup time)的仿真转换速率(slew rate):运放输出电压对时间的变化率,在测试转换速率时,应取最大变化率。

相关文档
最新文档