高等数学A-2004参考答案

合集下载

04年4月全国自学考试高等数学(工本)统一考试试题及答案

04年4月全国自学考试高等数学(工本)统一考试试题及答案

-第 1 页 共 6 页-2004年上半年高等教育自学考试全国统一命题考试高等数学(工本)试题(课程代码 0023)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.函数f(x)=xx1x 37-+-的定义域是( ) A .⎥⎦⎤ ⎝⎛∞-37,B .⎥⎦⎤⎝⎛-∞37,0)0,(C .)37,0()0,( -∞D .)37,(-∞2.设是,则数列}a {1n 2n1a n n +-=( ) A .单调减而下有界 B .单调减而下无界 C .单调增而下有界 D .单调增而下无界3.极限=---→21x )1x ()1x cos(1lim ( ) A .21- B .0 C .1D .21 4.函数f(x)=⎪⎩⎪⎨⎧=≠-0x ,20x 22x1,在x=0处( )A .左连续B .右连续C .连续D .前三个均不成立5.设函数f(x)在x 0处可导,则极限=--+→h)h x (f )h x (f lim000h ( ) A .)x (f 20' B .)x (f 210'C .)x (f 0'D .06.设函数=''+-=⎰)(,11)(x f xxx 则( ) A .3)x 1(4+B .2)x 1(4+--第 2 页 共 6 页-C .3)x 1(x 2+- D .3)x 1(x 2+7.下列结论正确的是( ) A .函数y=x 2在[)+∞,0上是单调减函数B .x=0是曲线y=x 3的拐点C .直线y=0是曲线y=|x|在点(0,0)处的切线D ..x=0是函数y=x 3的驻点8.不定积分⎰=-dx x311( ) A .C x 31+-- B .C x 31+- C .C x 3123+--D .C x 3132+--9.定积分⎰=+10dx x11( ) A .2+22lnB .2lnC .2-ln 4D .1-ln 210.曲线2y 2x -=和x=|y|所围成的平面图形面积为( ) A .4πB .2π C .πD .23π 11.在下列方程中其图形是圆柱面的方程是( ) A .x 2+y 2-3=0 B .x 2+y 2+z 2-3=0 C .x 2+y 2-z 2-3=0 D .x 2+y 2-z-3=0 12.与平面3x-4y-5z=0平行的平面方程为( ) A .6x-8y+10z-9=0 B .3x+4y-5z-8=0 C .6x-8y-10z-7=0 D .3x-4y+5z-10=0 13.设z=f(x,y)在(x 0,y 0)处的偏导数存在,则=∂∂)y ,x (00xz( )A .x)y ,x (f )y y ,x x (f lim00000x ∆-∆+∆+→∆B .x)y ,x (f )y ,x x (f lim 000x ∆-∆+→∆C .x)y ,x (f )y ,x x (f lim 0x ∆-∆+→∆D .x)y ,x (f )y ,x x (f lim 00000x ∆-∆+→∆14.函数z=(6x-x 2)(4y-y 2)的驻点个数为( )-第 3 页 共 6 页-A .2B .3C .4D .515.设积分区域B 是连结三点(1,1),(4,1),(4,2)的线段所围成的三角形,则⎰⎰=σBd 4( ) A .4B .6C .8D .1216.设G 是由坐标面和平面x+y+z=1所围成的区域,则三重积分⎰⎰⎰Gdv 化为累积分为( ) A .⎰⎰⎰11010dz dy dxB .⎰⎰⎰--yx 101010dz dxdy C .⎰⎰⎰---yx 10x 101dz dydxD .⎰⎰⎰---xy 10z 1010dz dxdy17.微分方程是x sin xydx dy =+( ) A .可分离变量的微分方程 B .齐次微分方程 C .一阶线性齐次微分方程 D .一阶线性非齐次微分方程 18.下列函数中,是微分方程0y 3y =-'的通解的是( ) A .y=e -3x+CB .y=Ce 3xC .y=Ce -3xD .y=Ce x+319.设a 是非零常数,则当|q|<1时,级数∑∞=-0n n naq )1(收敛于( ) A .q 11- B .q 11+ C .q1a +D .q1a - 20.幂级数∑∞=-1n nn )1x (的收敛区间是( )A .(-1,1)B .[)2,0C .[)1,1-D .(0,2)二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

2004年普通高考数学试题及答案(上海理科卷)

2004年普通高考数学试题及答案(上海理科卷)

2004年全国普通高等学校统一招生考试数学(理工类) (上海卷)一、填空题(本大题满分48分,每小题4分) 1、若tgα=21,则tg(α+4π)= . 2、设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为 . 3、设集合A={5,log 2(a+3)},集合B={a,b}.若A∩B={2},则A∪B= . 4、设等比数列{a n }(n∈N)的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1= .5、设奇函数f(x)的定义域为[-5,5].若当x∈[0,5]时,f(x)的图象如右图,则不等式f(x)<0的解是 .6、已知点A(1, -2),若向量AB 与={2,3}同向AB =213,则点B 的坐标为 .7、在极坐标系中,点M(4,3π)到直线l:ρ(2cosθ+sinθ)=4的距离d= . 8、圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A(0, -4),B(0, -2),则圆C 的方程为 .9、若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示)10、若函数f(x)=a 2+-b x 在[0,+∞)上为增函数,则实数a 、b 的取值范围是 .11、教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 . 12、若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是 第 组.(写出所有符合要求的组号)①S 1与S 2; ②a 2与S 3; ③a 1与a n ; ④q 与a n . 其中n 为大于1的整数, S n 为{a n }的前n 项和. 二、选择题(本大题满分16分,每小题4分)13、在下列关于直线l 、m 与平面α、β的命题中,真命题是( ) (A)若l ⊂β且α⊥β,则l⊥α. (B) 若l⊥β且α∥β,则l⊥α. (C) 若l⊥β且α⊥β,则l∥α. (D) 若α∩β=m 且l∥m,则l∥α. 14、三角方程2sin(2π-x)=1的解集为( ) (A){x│x=2kπ+3π,k∈Z}. (B) {x│x=2kπ+35π,k∈Z}.(C) {x│x=2kπ±3π,k∈Z}. (D) {x│x=kπ+(-1)K ,k∈Z}. 15、若函数y=f(x)的图象可由函数y=lg(x+1)的图象绕坐标原点O 逆时针旋转2π得到,则 f(x)=( )(A) 10-x -1. (B) 10x -1. (C) 1-10-x . (D) 1-10x .16、某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )(A)计算机行业好于化工行业. (B) 建筑行业好于物流行业.(C) 机械行业最紧张. (D) 营销行业比贸易行业紧张. 三、解答题(本大题满分86分) 17、(本题满分12分)已知复数z 1满足(1+i)z 1=-1+5i, z 2=a -2-i, 其中i 为虚数单位,a∈R, 若21z z <1z ,求a 的取值范围.18、(本题满分12分)某单位用木料制作如图所示的框架, 框架的下行业名称 计算机机械 营销 物流 贸易应聘人数 2158302002501546767457065280行业名称 计算机 营销 机械 建筑 化工 招聘人数1246201029358911576516 70436部是边长分别为x 、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm 2. 问x 、y 分别为多少(精确到0.001m) 时用料最省?19、(本题满分14分) 第1小题满分6分, 第2小题满分8分 记函数f(x)=132++-x x 的定义域为A, g(x)=lg[(x -a -1)(2a -x)](a<1) 的定义域为B. (1) 求A ;(2) 若B ⊆A, 求实数a 的取值范围.20、(本题满分14分) 第1小题满分6分, 第2小题满分8分已知二次函数y=f 1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f 2(x)的图象与直线y=x 的两个交点间距离为8,f(x)= f 1(x)+ f 2(x). (1) 求函数f(x)的表达式;(2) 证明:当a>3时,关于x 的方程f(x)= f(a)有三个实数解.21、(本题满分16分) 第1小题满分4分, 第2小题满分6分, 第3小题满分6分如图,P-ABC 是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC 与棱锥P-ABC 的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1) 证明:P-ABC 为正四面体; (2) 若PD=21PA, 求二面角D-BC-A 的 大小;(结果用反三角函数值表示)(3) 设棱台DEF-ABC 的体积为V, 是否存在体积为V 且各棱长均相等的直 平行六面体,使得它与棱台DEF-ABC 有相同的棱长和? 若存在,请具体构造 出这样的一个直平行六面体,并给出证 明;若不存在,请说明理由.22、(本题满分18分) 第1小题满分6分, 第2小题满分4分, 第3小题满分8分设P 1(x 1,y 1), P 1(x 2,y 2),…, P n (x n ,y n )(n≥3,n∈N) 是二次曲线C 上的点, 且a 1=1OP 2, a 2=2OP2, …, a n =n OP 2构成了一个公差为d(d≠0) 的等差数列, 其中O 是坐标原点. 记S n =a 1+a 2+…+a n .(1) 若C 的方程为2510022y x +=1,n=3. 点P 1(3,0) 及S 3=255, 求点P 3的坐标; (只需写出一个)(2)若C 的方程为12222=+by a x (a>b>0). 点P 1(a,0), 对于给定的自然数n, 当公差d 变化时, 求S n 的最小值;. (3)请选定一条除椭圆外的二次曲线C 及C 上的一点P 1,对于给定的自然数n,写出符合条件的点P 1, P 2,…P n 存在的充要条件,并说明理由.2004年全国普通高等学校统一招生考试 数学(文史类)参考答案 (上海卷)一、填空题(本大题满分48分,每小题4分)1、32、(5,0)3、{1,2,5}4、25、(-2,0)∪(2,5]6、(5,4)7、5152 8、(x -2)2+(y+3)2=5 9、11410、a>0且b≤0 11、用代数的方法研究图形的几何性质 12、①、④ 二、选择题(本大题满分16分,每小题4分)13、B 14、C 15、A 16、B 三、解答题(本大题满分86分) 17、【解】由题意得 z 1=ii++-151=2+3i, 于是21z z -=i a 24+-=4)4(2+-a ,1z =13. 4)4(2+-a <13,得a 2-8a+7<0,1<a<7. 18、【解】由题意得xy+41x 2=8,∴y=x x 482-=48x x -(0<x<42). 于定, 框架用料长度为l=2x+2y+2(x 22)=(23+2)x+x16≥4246+. 当(23+2)x=x 16,即x=8-42时等号成立.此时, x≈2.343,y=22≈2.828.故当x 为2.343m,y 为2.828m 时, 用料最省. 19、【解】(1)2-13++x x ≥0, 得11+-x x ≥0, x<-1或x≥1 即A=(-∞,-1)∪[1,+ ∞)(2) 由(x -a -1)(2a -x)>0, 得(x -a -1)(x -2a)<0. ∵a<1,∴a+1>2a, ∴B=(2a,a+1). ∵B ⊆A, ∴2a≥1或a+1≤-1, 即a≥21或a≤-2, 而a<1,∴21≤a<1或a≤-2, 故当B A 时, 实数a 的取值范围是 (-∞,-2]∪[21,1) 20、【解】(1)由已知,设f 1(x)=ax 2,由f 1(1)=1,得a=1, ∴f 1(x)= x 2. 设f 2(x)=xk(k>0),它的图象与直线y=x 的交点分别为 A(k ,k )B(-k ,-k ) 由AB =8,得k=8,. ∴f 2(x)=x8.故f(x)=x 2+x8. (2) 【证法一】f(x)=f(a),得x 2+x 8=a 2+a8, 即x 8=-x 2+a 2+a8.在同一坐标系内作出f 2(x)=x8和 f 3(x)= -x 2+a 2+a8 的大致图象,其中f 2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, f 3(x)与的图象是以(0, a 2+a8)为顶点,开口向下的抛物线. 因此, f 2(x)与f 3(x)的图象在第三象限有一个交点, 即f(x)=f(a)有一个负数解. 又∵f 2(2)=4, f 3(2)= -4+a 2+a8 当a>3时,. f 3(2)-f 2(2)= a 2+a8-8>0, ∴当a>3时,在第一象限f 3(x)的图象上存在一点(2,f(2))在f 2(x)图象的上方.∴f 2(x)与f 3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解. 因此,方程f(x)=f(a)有三个实数解. 【证法二】由f(x)=f(a),得x 2+x 8=a 2+a8, 即(x -a)(x+a -ax8)=0,得方程的一个解x 1=a. 方程x+a -ax8=0化为ax 2+a 2x -8=0, 由a>3,△=a 4+32a>0,得x 2=a a a a 23242+--, x 3=aaa a 23242++-,∵x 2<0, x 3>0, ∴x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a=aa a a 23242++-,则3a 2=a a 324+, a 4=4a,得a=0或a=34,这与a>3矛盾, ∴x 1≠ x 3. 故原方程f(x)=f(a)有三个实数解.21、【证明】(1) ∵棱台DEF-ABC 与棱锥P-ABC 的棱长和相等, ∴DE+EF+FD=PD+OE+PF. 又∵截面DEF∥底面ABC,∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P -ABC 是正四面体. 【解】(2)取BC 的中点M,连拉PM,DM.AM. ∵BC⊥PM,BC⊥AM, ∴BC⊥平面PAM,BC⊥DM,则∠DMA 为二面角D-BC-A 的平面角. 由(1)知,P-ABC 的各棱长均为1,∴PM=AM=23,由D 是PA 的中点,得 sin∠DMA=33=AM AD ,∴∠DMA=arcsin 33. (3)存在满足条件的直平行六面体.棱台DEF-ABC 的棱长和为定值6,体积为V. 设直平行六面体的棱长均为21,底面相邻两边夹角为α, 则该六面体棱长和为6, 体积为81sinα=V.∵正四面体P-ABC 的体积是122,∴0<V<122,0<8V<1.可知α=arcsim(8V) 故构造棱长均为21,底面相邻两边夹角为arcsim(8V)的直平行六面体即满足要求.22、【解】(1) a 1=1OP 2=100,由S 3=23(a 1+a 3)=255,得a 3=3OP 3=70.∴点P 3的坐标可以为(215, 10). (2) 【解法一】原点O 到二次曲线C:12222=+by a x (a>b>0)上各点的最小距离为b,最大距离为a. 由2510022y x +=1 ,得x 23=60x 23+y 23=7y 23=10∵a 1=1OP 2=a 2, ∴d<0,且a n =n OP2=a 2+(n -1)d≥b 2, ∴122--n a b ≤d<0. ∵n≥3,2)1(-n n >0∴S n =na 2+2)1(-n n d 在[122--n a b ,0)上递增,故S n 的最小值为na 2+2)1(-n n ·122--n a b =2)(22b a n +.【解法二】对每个自然数k(2≤k≤n),由 x 2k +y 2k =a 2+(k -1)d,解得y 2k=222)1(ba dk b --- 22a x k +22b y k =1 ∵0< y 2k≤b 2,得122--k a b ≤d<0∴122--n a b ≤d<0以下与解法一相同.(3) 【解法一】若双曲线C:22a x -22by =1,点P 1(a,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是d>0.∵原点O 到双曲线C 上各点的距离h∈[a ,+∞),且1OP =a 2,∴点P 1, P 2,…P n 存在当且仅当n OP 2>1OP 2,即d>0.【解法二】若抛物线C:y 2=2x,点P 1(0,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是d>0.理由同上 【解法三】若圆C:(x -a)+y 2=a 2(a≠0), P 1(0,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是0<d≤142-n a .∵原点O 到圆C 上各点的最小距离为0,最大距离为2a ,且1OP =0, ∴d>0且n OP 2=(n -1)d≤4a 2.即0<d≤142-n a .。

2004年高考数学试题(福建理)及答案

2004年高考数学试题(福建理)及答案

2004年普通高等学校招生福建卷理工类数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数10)11(ii +-的值是( ) A .-1 B .1 C .-32 D .32 2.tan15°+cot15°的值是( )A .2B .2+3C .4D .3343.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充分而不必要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是 ( )A .3332 B .32C .22D .235.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:①若m ⊂α,n ∥α,则m ∥n ;②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n ,则m ∥α且m ∥β;④若m ⊥α,m ⊥β,则α∥β.其中真命题的个数是 ( ) A .0 B .1 C .2 D .36.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 ( )A .2426C A B .242621C A C .2426A AD .262A7.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b ) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是 ( )A .6πB .3πC .32πD .65π9.若(1-2x )9展开式的第3项为288,则)111(lim 2n n xx x +++∞→ 的值是 ( )A .2B .1C .21D .5210.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60°,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63 C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则( )A .f (sin6π)<f (cos 6π) B .f (sin1)>f (cos1) C .f (cos 32π)<f (sin 32π) D .f (cos2)>f (sin2) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的没岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2 km.现要在曲线PQ 上 选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、M 到C 修建公路的费用分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是( ) A .(27-2)a 万元 B .5a 万元C .(27+1) a 万元D .(23+3) a 万元第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 .14.设函数⎪⎩⎪⎨⎧-+=ax x x f 11)()0()0(=≠x x 在x =0处连续,则实数a 的值为 . 15.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正 确结论的序号).16.如图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起, 做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为 时,其容积最大. 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设函数f(x)=a ·b ,其中向量a=(2cos x ,1),b =(cos x , 3sin2x ),x ∈R.(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ;(Ⅱ)若函数y=2sin2x 的图象按向量c=(m ,n)(|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值.18.(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 19.(本小题满分12分)在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC , SA=SC=23,M 、N 分别为AB 、SB 的中点. (Ⅰ)证明:AC ⊥SB ;(Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离. 20.(本小题满分12分)某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为500(1+n21)万元(n 为正整数). (Ⅰ)设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n 、B n 的表达式;(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润? 21.(本小题满分14分) 已知f(x)=222+-x ax (x ∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.22.(本小题满分12分)如图,P 是抛物线C :y=21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q. (Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST 的取值范围.2004年普通高等学校招生福建卷理工类数学试题参考答案一、1.A 2.C 3.D 4.A 5.B 6.C 7.C 8.B 9.A 10.D 11.D 12.B二、13.45 14.1/2 15.1,3 16.2/3 三、17. 本小题主要考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,考查运算能力.满分12分.解:(Ⅰ)依题设,f(x)=2cos 2x +3sin2x =1+2sin(2x +6π). 由1+2sin(2x +6π)=1-3,得sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π.(Ⅱ)函数y=2sin2x 的图象按向量c=(m ,n)平移后得到函数y=2sin2(x -m)+n 的图象,即函数y=f(x)的图象. 由(Ⅰ)得 f(x)=2sin2(x +12π)+1. ∵|m|<2π,∴m=-12π,n=1.18.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.ξ的概率分布如下:E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32, P(B)=310381228C C C C +=1205656+=1514. 因为事件A 、B 相互独立,方法一:∴甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为 P=1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544.答:甲、乙两人至少有一人考试合格的概率为4544. 19.本小题主要考查直线与直线,直线与平面,二面角,点到平面的距离等基础知识,考查空间想象能力和逻辑推理能力.满分12分.解法一:(Ⅰ)取AC 中点D ,连结SD 、DB. ∵SA=SC ,AB=BC , ∴AC ⊥SD 且AC ⊥BD ,∴AC ⊥平面SDB ,又SB ⊂平面SDB , ∴AC ⊥SB.(Ⅱ)∵AC ⊥平面SDB ,AC ⊂平面ABC , ∴平面SDB ⊥平面ABC.过N 作NE ⊥BD 于E ,NE ⊥平面ABC , 过E 作EF ⊥CM 于F ,连结NF , 则NF ⊥CM.∴∠NFE 为二面角N -CM -B 的平面角.∵平面SAC ⊥平面ABC ,SD ⊥AC ,∴SD ⊥平面ABC. 又∵NE ⊥平面ABC ,∴NE ∥SD.∵SN=NB ,∴NE=21SD=2122AD SA -=21412-=2,且ED=EB.在正△ABC 中,由平几知识可求得EF=41MB=21, 在Rt △NEF 中,tan ∠NFE=EFEN=22, ∴二面角N —CM —B 的大小是arctan22.(Ⅲ)在Rt △NEF 中,NF=22EN EF +=23, ∴S △CMN =21CM ·NF=233,S △CMB =21BM ·CM=23. 设点B 到平面CMN 的距离为h , ∵V B-CMN =V N-CMB ,NE ⊥平面CMB ,∴31S △CMN ·h=31S △CMB ·NE ,∴h=CMNCMB S NE S ⋅=324.即点B 到平面CMN 的距离为324.解法二:(Ⅰ)取AC 中点O ,连结OS 、OB.∵SA=SC ,AB=BC , ∴AC ⊥SO 且AC ⊥BO.∵平面SAC ⊥平面ABC ,平面SAC ∩平面 ABC=AC ∴SO ⊥面ABC ,∴SO ⊥BO.如图所示建立空间直角坐标系O -x yz.则A (2,0,0),B (0,23,0),C (-2,0,0), S (0,0,22),M(1,3,0),N(0,3,2). ∴=(-4,0,0),=(0,23,22), ∵·=(-4,0,0)·(0,23,22)=0, ∴AC ⊥SB.(Ⅱ)由(Ⅰ)得=(3,3,0),=(-1,0,2).设n=(x ,y ,z )为平面CMN 的一个法向量,·n=3x +3y=0,z=1,则x =2,y=-6,·n=-x +2z=0,6,1),0,22)为平面ABC 的一个法向量, ∴cos(n ,OS ||||OS n ⋅=31.∴二面角N -CM -B 的大小为arccos 31. (Ⅲ)由(Ⅰ)(Ⅱ)得MB =(-1,3,0),n=(2,-6,1)为平面CMN 的一个法向量,∴点B 到平面CMN 的距离d=|||·|n n =324.20.本小题主要考查建立函数关系式、数列求和、不等式的等基础知识,考查运用数学知识解决实际问题的能力.满分12分. 解:(Ⅰ)依题设,A n =(500-20)+(500-40)+…+(500-20n)=490n -10n 2;B n =500[(1+21)+(1+221)+…+(1+n 21)]-600=500n -n 2500-100. (Ⅱ)B n -A n =(500n -n 2500-100) -(490n -10n 2)=10n 2+10n -n 2500-100=10[n(n+1) - n 250-10].因为函数y=x (x +1) - n 250-10在(0,+∞)上为增函数,当1≤n ≤3时,n(n+1) - n 250-10≤12-850-10<0;当n ≥4时,n(n+1) - n 250-10≥20-1650-10>0.∴仅当n ≥4时,B n >A n .答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.21.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设ϕ(x )=x 2-ax -2, 方法一: ① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ⇔-1≤a ≤1,∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0 ∴A={a |-1≤a ≤1}. 方法二:①⇔⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1 或 -1≤a ≤0 ⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0 ∴A={a |-1≤a ≤1}. (Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a .∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立, 即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ② 设g(t)=m 2+tm -2=mt+(m 2-2), 方法一:② ⇔ g(-1)=m 2-m -2≥0,g(1)=m 2+m -2≥0, ⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}. 方法二:当m=0时,②显然不成立; 当m ≠0时,②⇔ m>0,g(-1)=m 2-m -2≥0 或 m<0,g(1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.22. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分. 解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y=21x 2, ① 得y '=x .∴过点P 的切线的斜率k 切= x 1,∴直线l 的斜率k l =-切k 1=-11x , ∴直线l 的方程为y -21x 12=-11x (x -x 1),方法一:联立①②消去y ,得x 2+12x x -x 12-2=0. ∵M 是PQ 的中点 ∴ x 0=221x x +=-11x ,y 0=21x 12-11x (x 0-x 1) 消去x 1,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +,得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2),则x 0=2121x x y y --=k l =-11x ,∴x 1=-01x ,将上式代入②并整理,得 y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).(Ⅱ)设直线l :y=k x +b ,依题意k ≠0,b ≠0,则T(0,b). 分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则=+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'.由 y=21x 2, y=kx+b 消去x ,得y 2-2(k 2+b)y+b 2=0. ③ 则y 1+y 2=2(k 2+b),y 1y 2=b 2.方法一: ∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b=2. ∵y 1、y 2可取一切不相等的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二:∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2b b k +.当b>0时,||||||||SQ ST SP ST +=b 22)(2bb k +=b b k )(22+=b k 22+2>2; 当b<0时,||||||||SQ ST SP ST +=-b 22)(2b b k +=b b k -+)(22.又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,于是k 2+2b>0,即k 2>-2b. 所以||||||||SQ ST SP ST +>bb b -+-)2(2=2. ∵当b>0时,bk 22可取一切正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞).方法三:由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=11x by -.则x 1y 2-b x 1=x 2y 1-b x 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b=122212122121x x x x x x -⋅-⋅=-21x 1x 2.∴||||||||SQ ST SP ST +=||||||||21y b y b +=1|21|21x x -+1|21|21x x -=||12x x +||21x x ≥2. ∵||12x x 可取一切不等于1的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞).2 2。

2004年高考数学试题(全国4理)及答案

2004年高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x ∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)C已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值. 19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x e x f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.4316.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα,所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去 当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f图2Cy图1在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x ex x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nqq q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq q q q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

2004普通高等学校招生全国统一考试辽宁卷数学试题含答案

2004普通高等学校招生全国统一考试辽宁卷数学试题含答案
方 s 元(以下称 s 为赔付价格), (1)将乙方的年利润 w(元)表示为年产量 t(吨)的函数,并求出乙方获得最大利润
的年产量;
(2)甲方每年受乙方生产影响的经济损失金额 y = 0.002t 2 (元),在乙方按照获得最
大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求 的赔付价格 s 是多少?
A. p1 p2
B. p1(1− p2 ) + p2 (1− p1)
C.1 − p1 p2
D.1− (1− p1)(1− p2 )
6.已知点 A(−2,0) 、 B(3,0) ,动点 P(x, y)满足PA PB = x2 ,则点 P 的轨迹是
A.圆
B.椭圆
C.双曲线
7.已知函数 f (x) = sin(x − ) −1 ,则下列命题正确的是 2
A. 8 6
B. 64 6
C. 24 2
D. 72 2
11.若函数 f (x) = sin(x + ) 的图象(部分)如图所示,则和 的取值是
A. = 1, = B. = 1, = −
y
3
3
C. = 1 , = D. = 1 , = −
26
2
6
12.有两排座位,前排 11 个座位,后排 12 个座位,现安排
38
39
则 P( = 10) =
A.
2 39
B.
2 310
C.
1 39
D.
1 310
9.已知点 F1(−
2,0) 、 F2 (
2,0) ,动点 P 满足| PF2 | − | PF1 |= 2 .
当点 P 的纵坐标是 1 时, 2
点 P 到坐标原点的距离是

2004年普通高等学校招生全国统一考试江苏卷数学试题及答案

2004年普通高等学校招生全国统一考试江苏卷数学试题及答案

0.5 人数(人)时间(小时)2010 5 0 1.0 1.5 2.015 2004年普通高等学校招生江苏卷数学试题一、选择题(5分×12=60分) 1.设集合P={1,2,3,4},Q={},则P ∩Q 等于 ( )(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( ) (A)(B) (C)(D)3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( ) (A)140种 (B)120种 (C)35种 (D)34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( ) (A) (B)(C)(D)5.若双曲线的一条准线与抛物线的准线重合,则双曲线离心率为( )(A) (B) (C) 4 (D)6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( ) (A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时7.的展开式中x 3的系数是 ( )(A)6 (B)12 (C)24 (D)48 8.若函数的图象过两点(-1,0)和(0,1),则 ( ) (A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( ) (A)5216 (B)25216 (C)31216 (D)91216 10.函数在闭区间[-3,0]上的最大值、最小值分别是 ( )(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( ) (A)3 (B)32 (C)43 (D)6512.设函数,区间M=[a ,b](a<b),集合N={},则使M=N 成立的实数对(a ,b)有 ( )(A)0个 (B)1个 (C)2个 (D)无数多个 二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________. 15.设数列{a n }的前n 项和为S n ,S n =(对于所有n ≥1),且a 4=54,则a 1的数值是_______________________. 16.平面向量中,已知=(4,-3),=1,且=5,则向量=__________.三、解答题(12分×5+14分=74分) 17.已知0<α<,tan+cot=,求sin()的值.18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ; (Ⅲ)求点P 到平面ABD 1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6 · B 1PA CD A 1C 1D 1BO H ·20.设无穷等差数列{a n }的前n 项和为S n . (Ⅰ)若首项32,公差,求满足的正整数k ;(Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有成立.21.已知椭圆的中心在原点,离心率为12 ,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线与y 轴交于点M. 若,求直线的斜率.22.已知函数满足下列条件:对任意的实数x 1,x 2都有和,其中是大于0的常数.设实数a 0,a ,b 满足 和(Ⅰ)证明,并且不存在,使得;(Ⅱ)证明;(Ⅲ)证明.2004年普通高等学校招生江苏卷数学试题参考答案一、选择题ABDCA BCADC BA二、填空题13、或14、15、216、三、解答题17、解:由题意可知,18、解(1)(2)略(3)19、解:,设当时,取最大值7万元20、解:(1)(2)或或21、解:(1)(2)或022、解:(1)不妨设,由可知,是R上的增函数不存在,使得又(2)要证:即证:不妨设,由得,即,则(1)由得即,则(2)由(1)(2)可得(3),又由(2)中结论。

2004年江苏省普通高校“专转本”统一考试高等数学参考答案

2004年江苏省普通高校“专转本”统一考试高等数学参考答案

2004年江苏省普通高校“专转本”统一考试高等数学参考答案1—6 A BC B A D 7、1-e 8、32241-+==-z y x 9、!n 10、C x +4arcsin 4111、dx y x f dy dx y x f dy yy⎰⎰⎰⎰-+2021010),(),( 12、()3,1-13、间断点为πk x =,Z k ∈,当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =,0≠k ,Z k ∈时,∞=→xxx sin lim0,为第二类间断点.14、原式=2411221lim 12)sin 1(tan lim 12sin tan lim 3)sin (tan lim320303040=⋅=-=-=-→→→→⎰xx x x x x x x x x dt t t x x x xx 15、0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y y y ,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、因为)(x f 的一个原函数为x e x,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, ⎰dx x xf )2('⎰⎰==)2(21)2()2(21'x xdf x d x xf ⎰-=dx x f x xf )2(21)2(21 Cx e x e x x x d x f x xf x x +--=-=⎰88)12()2()2(41)2(21222C e x x x+-=241 17、2arctan 2112)1(2111112122π==+=+-=-∞++∞+∞+∞⎰⎰⎰t dt t dt t t t x t dx x x18、y f f xz⋅+=∂∂'2'1; []x f f y f x f f yx z ⋅+-⋅++⋅+-⋅=∂∂∂''22''21'2''12''112)1()1( ''22''21''12''11'2xyf yf xf f f +-+-=19、原式dy y y dx y y dy dxdy y yy y D⎰⎰⎰⎰⎰-===1010sin )1(sin sin 2 1sin 1cos cos )1(110-=--=⎰ydy y y20、n nn n x x x x f 4)2()1(41421141241)(0--=-+⋅=-+=∑∞=,)42(<-x 21、证明:令x t -=π,⎰⎰⎰-=---=ππππππ0)(sin )()(sin()()(sin dt t f t dt t f t dx x xf⎰⎰-=πππ0)(sin )(sin dx x xf dx x f故⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,证毕.4)arctan(cos 2cos 1sin 2cos 1sin 200202ππππππ=-=+=+⎰⎰x dx x x dx xx x 22、等式两边求导的)(2)('x f x x xf +=即x x xf x f 2)()('=-且1)0(-=f ,x p -=,x q 2=,⎰-=22xpdx ,22e pdxee -=⎰,22x pdxe e =⎰-,222222x x pdxedx xqdx qe ---==⎰⎰⎰所以2222222)2()(x x x Ce eC ex f +-=+-=--,由1)0(-=f ,解得1=C ,222)(x ex f +-=23、设污水厂建在河岸离甲城x 公里处,则22)50(40700500)(x x x M -++=,500≤≤x ,0)50(40)50(22170050022'=-+-⨯⨯+=x x M解得650050-=x (公里),唯一驻点,即为所求.。

2004高考数学试题(全国4理)及答案

2004高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

2004高考数学全国卷及答案文

2004高考数学全国卷及答案文

2004年高考试题全国卷1 文科数学(必修+选修I )(河南、河北、山东、山西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B )如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分 .1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(U C B )= ( )A .{2}B .{2,3}C .{3}D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f xx x f 则若( )A .21 B .-21 C .2D .-23.已知,a b均为单位向量,它们的夹角为60°,那么|3a b + |=( ) A .7 B .10C .13D .4 4.函数1(1)y x =≥的反函数是( )A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y球的表面积公式 S=42R π其中R 表示球的半径, 球的体积公式 V=334R π,其中R 表示球的半径5.73)12(xx -的展开式中常数项是 ( )A .14B .-14C .42D .-42 6.设)2,0(πα∈若,53sin =α则)4cos(2πα+=( )A .57 B .51 C .27D .47.椭圆1422=+yx的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23 B .3 C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线 l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST 等于( )A .91B .94C .41D .3111.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95B .94C .2111 D .211012.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式x +x 3≥0的解集是 .14.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = . 15.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 . ①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.18.(本小题满分12分)求函数xxx x x x f 2sin 2cossincossin)(2244-++=的最小正周期、最大值和最小值.19.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求:(I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离;(II )求面APB 与面CPB 所成二面角的大小.22.(本小题满分14分)设双曲线C :1:)0(1222=+>=-y x l a yax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.2004年高考试题全国卷1 文科数学(必修+选修I ) (河南、河北、山东、山西)参考答案一、选择题DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥0} 14.3·2n -315.422=+y x 16.①②④三、解答题17.本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:(Ⅰ)由,50,30,)1(20101==-+=a a d n a a n 得方程组⎩⎨⎧=+=+.5019,30911d a d a ……4分 解得.2,121==d a 所以 .102+=n a n ……7分(Ⅱ)由242,2)1(1=-+=n n S d n n na S 得方程.24222)1(12=⨯-+n n n ……10分 解得).(2211舍去或-==n n ………12分18.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cossin)cos(sin)(22222--+=.212s i n 41)c o s s i n 1(21)c o s s i n 1(2c o s s i n 122+=+=--=x x x x x x x 所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41…………12分19.本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.解:函数f (x )的导数:.163)(2-+='x ax x f ………………3分(Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;………………9分………………6分(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是(].3,-∞-………………12分20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分.解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=CC ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分 21.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角,………………4分 ∴∠PEB=120°,∠PEO=60° 由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯,即点P 到平面ABCD 的距离为23.………………6分(II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG .又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥等于所求二面角的平面角,…………10分 于是,772cos -==θ所以所求二面角的大小为772arccos-π.…………12分解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC.∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角.……9分 ∵AD ⊥面POB ,∴AD ⊥EG .又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23.在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AEEG =23,又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan23.…………12分22.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分.解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① ……2分.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率分的取值范围为即离心率且且6).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=e e e a a aa a e(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 ……8分由于x 1,x 2都是方程①的根,且1-a 2≠0, 分所以由得消去所以14.1317,06028912,,.12125,1212172222222222 =>=----=--=a a aax aaxa ax。

2004年高考数学试题(全国2理)及答案

2004年高考数学试题(全国2理)及答案

2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年高考数学(理科)真题及答案[全国卷I]

2004年高考数学(理科)真题及答案[全国卷I]

2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。

高等数学A2004[1].12

高等数学A2004[1].12

高等数学(上册)试题参考解答A2004.12
1. 填空题(每小题2分,共10分)
1. 若.
2. 极限.
3. 已知.
4. 已知.
5. 积分 0 .
二. 计算题一(每小题7分,共21分)
1. 求极限
解:原式
2. 求极限
解:原式
3. 设,试确定.
解:
欲使.
三. 计算题二(每小题7,共21分)
1. 设.
解:
2. 求曲线处的切线方程.
解:由第二个方程两端对
于是,由所给方程知当
从而所求切线方程为
3. 设
解:
于是
四. 计算题三(每小题7分,共28分)
1. 求
解:令,
则原式
2. 求
解:原式
3. 求
解:令则
4. 求
解:原式
五. 证明或应用题(共20分)
1.(7分) 证明为偶函数.
证:
2.(7分) 要做一个长方体的带盖箱子,其体积为72立方厘米,其底上两边长成1:2的关系,
问各边的长为多少时,才能使其表面积为最小?
解:设箱子的高为,底上两面三刀边的长分别为与,且,则有
即面积
故的最小值,此时,因此箱子各边长应为3、6、4厘米.
3.(6分) 设,证明存在
实数
证:由条件,任取
若则取结论成立;
若,不妨设则作函数显然连续,
此时有
由连续函数之零点定理知存在

同理可证的情形.
本试题共4页,此页为第1页本试题共4页,此页为第2页
本试题共4页,此页为第3页本试题共4页,此页为第4页。

2004年高考理科数学全国卷(word版含答案)

2004年高考理科数学全国卷(word版含答案)

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。

1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。

2004年普通高等学校招生全国统一考试上海卷理科数学试题含答案

2004年普通高等学校招生全国统一考试上海卷理科数学试题含答案

(D) 营销行业比贸易行业紧张.
三、解答题(本大题满分 86 分)
17.(本题满分 12 分)
已知复数 z1 满足(1+i)z1=-1+5i, z2=a-2-i, 其中 i 为虚数单位,a∈R, 若 z1 − z2 < z1 ,
求 a 的取值范围.
18.(本题满分 12 分) 某单位用木料制作如图所示的框架, 框架的下部是边长分别为 x、y(单位:m)的矩形.
∵正四面体 P-ABC 的体积是 2 ,∴0<V< 2 ,0<8V<1.可知 α=arcsim(8V)
12
12
故构造棱长均为 1 ,底面相邻两边夹角为 arcsim(8V)的直平行六面体即满足要求. 2
22.【解】(1) a1=
OP1
2=100,由 S3= 3 2
(a1+a3)=255,得 a3= OP3
∴PM=AM= 3 ,由 D 是 PA 的中点,得 2
sin∠DMA= AD =
3 ,∴∠DMA=arcsin
3
.
AM 3
3
(3)存在满足条件的直平行六面体. 棱台 DEF-ABC 的棱长和为定值 6,体积为 V.
设直平行六面体的棱长均为 1 ,底面相邻两边夹角为 α, 2
则该六面体棱长和为 6, 体积为 1 sinα=V. 8
22.(本题满分 18 分) 第 1 小题满分 6 分, 第 2 小题满分 4 分, 第 3 小题满分 8 分
设 P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是 二 次 曲 线 C 上 的 点 , 且 a1= OP1 2,
a2= OP2 2, …, an= OPn 2 构成了一个公差为 d(d≠0) 的等差数列, 其中 O 是坐标原点. 记

DA2004年高考数学全国卷Ⅰ理科(必修+选修Ⅱ)

DA2004年高考数学全国卷Ⅰ理科(必修+选修Ⅱ)

2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD ,OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=BC PB GA 于是有所以.GA PB BC PB GABC ⊥⋅⊥u u u r u u u r u u u r u u u r u u u r u u u r、的夹角θ 等于所求二面角的平面角, 于是,772cos -==θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △GAE 中,AE=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与l 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以 双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=Y Θ的取值范围为即离心率且且e e e a a a aa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得Θ 由于x 1,x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k -1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。

2004普通高等学校招生全国统一考试广东卷数学试题及答案

2004普通高等学校招生全国统一考试广东卷数学试题及答案

2004年普通高等学校招生广东卷数学试题一. 选择题(共12小题,每题5分,计60分)1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A. –3 B. –1 C. 1 D . 3 2.已知{}213|||,|6,22A x x B x x x ⎧⎫=+>=+≤⎨⎬⎩⎭则A B = ( ) A.[)(]3,21,2-- B.(]()3,21,--+∞ C. (][)3,21,2-- D.(](],31,2-∞-3.设函数 2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a= ( )A.12-B.14-C.14D.134.→∞--+-+-+++++123212lim 11111n n nn n n n n () 的值为 ( ) A. –1 B.0 C. 12D.15.函数22sin sin 44f x x x ππ=+--()()()是 ( ) A.周期为π的偶函数 B.周期为π的奇函数 C. 周期为2π的偶函数 D..周期为2π的奇函数6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 ( ) A.0.1536 B. 0.1808 C. 0.5632 D. 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 ( )A.23 B. 76 C. 45 D. 568. 若双曲线2220)x y k k -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A. 6 B. 8 C. 1 D. 49.当04x π<<时,函数22cos ()cos sin sin x f x x x x=-的最小值是 ( ) A. 4 B.12 C.2 D. 1410. 变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 A. ( 4.5 ,3 ) B. ( 3,6 ) C. ( 9, 2 ) D. ( 6, 4 )11. 若tan 4f x x π=+()(),则A. 1f -()>f (0)>f (1)B. f (0)>f (1)>f (-1)C. 1f ()>f (0)>f (-1)D. f (0)>f (-1)>f (1)12. 如右下图,定圆半径为a ,圆心为 ( b ,c ), 则直线ax+by+c=0与直线 x –y+1=0的交点在( ) A. 第四象限 B. 第三象限 C.第二象限 D. 第一象限二.填空题(共4小题,每题4分,计16分)13. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是 (用分数作答)14. 已知复数z 与 (z +2)2-8i 均是纯虚数,则 z = . 15. 由图(1)有面积关系: PA B PAB S PA PB S PA PB''∆∆''⋅=⋅, 则由(2) 有体积关系:.P ABC P A B CV V '''--=16.函数10)f x In x =>())(的反函数1().f x -=三.解答题(共6小题,74分)17. (12分)已知αβγ,,成公比为2的等比数列([]02απαβγ∈,),且s i n ,s i n ,s i n 也成等比数列. 求αβγ,,的值.图(2)图(1)18. 如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1.(1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值.19. (12分)设函数110,f x x x=->(),(1) 证明: 当0< a < b ,且()()f a f b =时,ab >1;(2) 点P (x 0, y 0 ) (0< x 0 <1 )在曲线()y f x =上,求曲线在点P 处的切线与x 轴和y 轴的正向所围成的三角形面积表达式(用x 0表达).DCA20 (12分)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)21. (12分)设函数f x x In x m =-+()(), 其中常数m 为整数. (1) 当m 为何值时,0f x ≥();(2) 定理: 若函数g(x) 在[a, b ]上连续,且g(a) 与g(b)异号,则至少存在一点x 0∈(a,b),使g(x 0)=0.试用上述定理证明:当整数m >1时,方程f(x)= 0,在[e -m-m ,e 2m-m ]内有两个实根.22.(14分)设直线与椭圆2212516x y+=相交于A、B两点,又与双曲线x2–y2=1相交于C、D两点, C、D三等分线段AB. 求直线的方程.2004年普通高等学校招生广东卷数学试题标准答案一、选择题:二、填空题:(13)75 (14)-2i (15)PCPB PA PC PB PA ⋅⋅⋅⋅''' (16))(22R x e e xx ∈+三、解答题17.∵α,β,γ成公比为2的等比数列,∴β=2α,γ=4α,∵sin α,sin β,sin γ成等比数列2sin sin sin 2sin 4cos 2cos 1sin sin sin sin 2βγαααααβαα∴=⇔=⇒=- 22cos cos 10αα--=即1cos 1,cos 2αα==-解得或当cos α=1时,sin α=0,与等比数列的首项不为零,故cos α=1应舍去,124cos ,[0,2],,233ππααπαα=-∈==当时或 2484816,,,,333333ππππππαβγαβγ======所以或18.解:(I )以A 为原点,1,,AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则有D(0,3,0)、D 1(0,3,2)、E(3,0,0)、F(4,1,0)、C 1(4,3,2) 于是,)2,2,4(),2,3,1(),0,3,3(11-==-=FD EC DE 设向量),,(z y x =与平面C 1DE 垂直,则有133013202n DE x y x y z x y z n EC ⎫⊥-=⎫⎪⇒⇒==-⎬⎬++=⊥⎭⎪⎭(,,)(1,1,2),0222z z zn z z ∴=--=-->其中001(1,1,2),,n n C DE =--取则是一个与平面垂直的向量1011(0,0,2),AA CDE n AA C DE C θ=∴--向量与平面垂直与所成的角为二面角的平面角0101cos ||||1n AA n AA θ∙===⨯tan 2θ=(II )设EC 1与FD 1所成角为β,则142122)4(2312223)4(1||||cos 2222221111=++-⨯++⨯+⨯+-⨯=⨯=FD EC β 19.证明:(I )⎪⎪⎩⎪⎪⎨⎧+∞∈-∈-=-=),1(,11]1,0(,11|11|)(x xx xx x f 故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,由0<a<b 且f(a)=f(b)得0<a<1<b 和ab b a ab ba b a 22211,1111>+=⇒=+-=-即 故1,1>>ab ab 即(II )0<x<1时,10,1)(,11|11|)(0200'<<-=∴-=-==x x f xx x f y x 曲线y=f(x)在点P (x 0,y 0)处的切线方程为:20202),(1x x xy x x y y x x -+-=--=-即 ∴切线与x 轴、y 轴正向的交点为)2(1,0()0),2((0000x x x x --和 故所求三角形面积听表达式为:2000000)2(21)2(1)2(21)(x x x x x x A -=-⋅-=20.解:如图,以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020) 设P (x,y )为巨响为生点,由A 、C 同时听到巨响声,得|PA|=|PB|,故P 在AC 的垂直平分线PO 上,PO 的方程为y=-x ,因B 点比A 点晚4s 听到爆炸声,故|PB|- |PA|=340×4=1360由双曲线定义知P 点在以A 、B 为焦点的双曲线12222=-by a x 上, 依题意得a=680, c=1020,y xoAB C P13405680340568010202222222222=⨯-⨯=-=-=∴y x a c b 故双曲线方程为用y=-x 代入上式,得5680±=x ,∵|PB|>|PA|,10680),5680,5680(,5680,5680=-=-=∴PO P y x 故即答:巨响发生在接报中心的西偏北450距中心m 10680处. 21.(I )解:函数f(x)=x-ln(x+m),x ∈(-m,+∞)连续,且m x x f mx x f -==+-=1,0)(,11)(''得令 当x ∈(-m,1-m)时,f ’(x )<0,f(x)为减函数,f(x)>f(1-m) 当x ∈(1-m, +∞)时,f ’(x )>0,f(x)为增函数,f(x)>f(1-m) 根据函数极值判别方法,f(1-m)=1-m 为极小值,而且 对x ∈(-m, +∞)都有f(x)≥f(1-m)=1-m 故当整数m ≤1时,f(x) ≥1-m ≥0(II)证明:由(I )知,当整数m>1时,f(1-m)=1-m<0, 函数f(x)=x-ln(x+m),在]1,[m m e m --- 上为连续减函数.,)1()(,10)ln()(异号与时当整数m f m ef m e m m e m e m e f mm m m m -->>=+---=------由所给定理知,存在唯一的0)(),1,(11=--∈-x f m m e x m 使 而当整数m>1时,),1121(032)12(2213)11(3)(222归纳法证明上述不等式也可用数学>-⇒>>--++>-+>-=-m m m m m m m m e m e f m m m 类似地,当整数m>1时,函数f(x)=x-ln(x+m),在],1[m e m m --- 上为连续增函数且 f(1-m)与)(2m e f m -异号,由所给定理知,存在唯一的0)(],,,1[22=--∈-x f m e m x m 使 故当m>1时,方程f(x)=0在],[2m e m e m m ---内有两个实根22.解:首先讨论l 不与x 轴垂直时的情况,设直线l 的方程为y=kx+b ,如图所示,l 与椭圆、双曲线的交点为:),(),,(),,(),,(44332211y x D y x C y x B y x Ayxol ABC D依题意有3,==,由)2...(0)1(2)1(1251650)1...(0)40025(2)2516(116252222222122222=+---⎩⎨⎧=-+=+-=+∴=-+-+⎪⎩⎪⎨⎧=++=b bkx x k y x b kx y kbkx x b bkx x k y x b kx y 得由得 若1±=k ,则与双曲线最多只有一个交点,不合题意,故1±≠k24312k bkx x -=+∴由43214213x x x x x x x x DB AC +=+⇒-=-⇒=13161616410),(331)2(,1645)1(,0)(0001225165022341224,322,122±=⇒+=--=-⇒=+±=-±====⇒=⇒-=+-⇒b b b x x x x b x b x k i b k bk kbkk bk 即由得由得由时当或 故l 的方程为1316±=y (ii)当b=0时,由(1)得24,322,111)2(,251620kx kx -±=+±=得由由251616251640)(33223412±=⇒-=+-=-⇒=k k k x x x x CD AB 即由 故l 的方程为x y 2516±= 再讨论l 与x 轴垂直的情况.设直线l 的方程为x=c,分别代入椭圆和双曲线方程可解得,1,23,4y y ==2143||3||||3||AB CD y y y y =⇒-=-由241c =⇒=±241l x =±故的方程为综上所述, 故l 的方程为1316±=y 、x y 2516±=和24124125±=x。

2004高考数学试题(天津理)及答案

2004高考数学试题(天津理)及答案

2004年普通高等学校招生全国统一考试(天津卷)数学(理工类)第一卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+。

如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅。

柱体(棱柱、圆柱)的体积公式Sh V =柱体。

其中S 表示柱体的底面积,h 表示柱体的高。

一. 选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 是虚数单位,3)2)(1(ii i ++-= A. i +1 B. i --1 C. i 31+D. i 31--2. 不等式21≥-xx 的解集为 A. )0,1[- B. ),1[∞+-C. ]1,(--∞D. ),0(]1,(∞+--∞3. 若平面向量与向量)2,1(-=a 的夹角是︒180,且53||=b ,则= A. )6,3(- B. )6,3(- C. )3,6(- D. )3,6(-4. 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PFA. 1或5B. 6C. 7D. 95. 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.2 B.2 C.1 D. 1 1、AD 的中0为等差数列”的A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件9. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是A. ]3,0[πB. ]127,12[ππC. ]65,3[ππD. ],65[ππ10. 如图,在长方体1111D C B A ABCD -中,AB=6,AD=4,31=AA 。

分别过BC 、11D A 的两个平行截面将长方体分成三部分,其体积分别记为111D F D AEA V V -=,11112D FCF A EBE V V -=,C F C B E B V V 11113-=。

高等数学(下)A2004_1_.5

高等数学(下)A2004_1_.5

高等数学(下期)A一、填空题(每小题2分,共10分)⒈ 已知=⨯=⋅==b a b a b a则,12,3,5⒉ 设),(),,(),,(y x z z z x y y z y x x ===都是由方程0),,(=z y x F 确定的具有连续偏导数的函数,则=∂∂⋅∂∂⋅∂∂xzz y y x ⒊ 函数⎰+=xdx x x f 011)(关于x 的幂级数展开式及其收敛域为⒋ 全微分方程0)2()2(4242=-+-dy y y x dx x xy 的通解为 ⒌ 设)5,1()2,1(到点面上从点为xoy L 的直线段,则曲线积分=⎰Ldx y x P ),(二、计算题(一)(每小题7分,共21分)⒈ 一平面垂直于平面和点通过点),0,5,6()2,0,0(-B A π01025:1=--+z y x π 求其方程。

⒉ 设.,arctandz yx y x z 求+-=⒊ 曲面32=xyz 上哪一点处的法线平行于向量}1,8,2{=S ?并求出此法线方程。

三、计算题(二)(每小题7分,共21分) ⒈ 计算22,2222==+Ω⎰⎰⎰Ωz z y x dxdydz zx 及平面是由曲面其中所围成的闭区域。

⒉ 计算dy xy xdx yL)13(2232⎰-++,其中.222x y x L =+为正向圆周⒊ 计算622,)(=++∑+⎰⎰∑z y x dxdy z x 是平面其中在第一卦限部分的上侧。

四、计算题(三)(每小题7分,共28分)⒈ 级数∑∞=-+-11)1(n n nn 是否收敛?若收敛,则是绝对收敛,还是条件收敛?⒉ 求幂级数∑∞=+1212n nnxn 的收敛半径与收敛域。

⒊ 求方程11ln 21=+=+'=x yx xy y 满足初始条件的特解。

⒋ 求出下列非齐次微分方程的对应齐次方程的通解,并写出该非齐方程特解的形式: ⑴ ;3442x xe y y y x +=+'-'' ⑵ x e xe y y y x x sin 542+=+'-'' 五、证明或应用题(20分) ⒈(8分)求内接于椭球1222222=++cz by ax 内的长方体(各侧面平行于坐标面)的最大体积.V⒉(6分)若∑∑∞=∞=112,n n n nna a 证明收敛绝对收敛。

2004年普通高等学校招生全国统一考试湖北卷理科数学试题及答案

2004年普通高等学校招生全国统一考试湖北卷理科数学试题及答案

2004年普通高等学校招生湖北卷理工类数学试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.与直线042=+-y x 的平行的抛物线2x y =的切线方程是( )A .032=+-y xB .032=--y xC .012=+-y xD .012=--y x 2.复数ii 31)31(2++-的值是( )A .-16B .16C .41-D .i 4341- 3.已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为( )A .21x x+ B .212x x+-C .212x x+ D .21x x+- 4.已知,,为非零的平面向量. 甲:则乙,:,=⋅=⋅( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件5.若011<<b a ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④2>+baa b 中,正确的不等式有( )A .1个B .2个C .3个D .4个6.已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 ( )A .59 B .3 C .779 D .49 7.函数]1,0[)1(log )(在++=x a x f a x上的最大值和最小值之和为a ,则a 的值为( )A .41B .21 C .2D .48.已知数列{n a }的前n 项和),,2,1]()21)(1(2[])21(2[11=+---=--n n b a S n n n 其中a 、b 是非零常数,则存在数列{n x }、{n y }使得( )A .}{,n n n n x y x a 其中+=为等差数列,{n y }为等比数列B .}{,n n n n x y x a 其中+=和{n y }都为等差数列C .}{,n n n n x y x a 其中⋅=为等差数列,{n y }都为等比数列D .}{,n n n n x y x a 其中⋅=和{n y }都为等比数列9.函数1)(3++=x ax x f 有极值的充要条件是( )A .0>aB .0≥aC .0<aD .0≤a10.设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是( )A .P QB .Q PC .P=QD .P Q=11.已知平面βα与所成的二面角为80°,P 为α、β外一定点,过点P 的一条直线与α、β所成的角都是30°,则这样的直线有且仅有( )A .1条B .2条C .3条D .4条12.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312∈++=t t y ππ二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.设随机变量ξ的概率分布为====a k a ak P k 则为常数,,2,1,,5)( ξ . 14.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 种.(以数字作答)15.设A 、B 为两个集合,下列四个命题: ①A ⊄B ⇔对任意B x A x ∉∈有, ②A ⊄ B ⇔=B A φ③A ⊄B ⇔AB④A ⊄ B ⇔存在B x A x ∉∈使得,其中真命题的序号是 .(把符合要求的命题序号都填上)16.某日中午12时整,甲船自A 处以16km/h 的速度向正东行驶,乙船自A 的正北18km处以24km/h 的速度向正南行驶,则当日12时30分时两船之间距间对时间的变化率是 km/h.三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知)32sin(],,2[,0cos 2cos sin sin 622παππααααα+∈=-+求的值.18.(本小题满分12分) 如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱 CD 上的动点.(I )试确定点F 的位置,使得D 1E ⊥平面AB 1F ;(II )当D 1E ⊥平面AB 1F 时,求二面角C 1—EF —A 的大小(结果用反三角函数值表示).AC A 1C 119.(本小题满分12分)如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中点,问与的夹角θ取何值时⋅的值最大?并求出这个最大值.A BC20.(本小题满分12分)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B.(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 21.(本小题满分12分) 某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成 400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施 所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9 和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防 方案使总费用最少. (总费用...=采取预防措施的费用+发生突发事件损失的期望值.) 22.(本小题满分14分)已知.,2,1,1,}{,011 =+==>+n a a a a a a a nn n 满足数列 (I )已知数列}{n a 极限存在且大于零,求n n a A ∞→=lim (将A 用a 表示);(II )设;)(:,,2,1,1A b A b b n A a b n nn n n +-==-=+证明(III )若 ,2,121||=≤n b n n 对都成立,求a 的取值范围.2004年普通高等学校招生湖北卷理工类数学试题参考答案一、选择题1.D 2.A 3.C 4.B 5.B 6.D 7.B 8.C 9.C 10.A 11.D 12.A 二、填空题13.4 14.240 15.(4) 16.-1.6 三、解答题17.本小题考三角函数的基本公式以及三角函数式的恒等变形等基础知识和基本运算技能,满分12分. 解法一:由已知得:0)cos sin 2)(cos 2sin 3(=-+αααα 0cos sin 20cos 2sin 3=-=+⇔αααα或 由已知条件可知).,2(,2,0cos ππαπαα∈≠≠即所以 .32tan ,0tan -=∴<αα于是3sin2cos 3cos2sin )32sin(παπαπα+=+.tan 1tan 123tan 1tan sin cos sin cos 23sin cos cos sin )sin (cos 23cos sin 22222222222αααααααααααααααα+-⨯++=+-⨯++=-+= 代入上式得将32tan -=α..3265136)32(1)32(123)32(1)32()32sin(222即为所求+-=-+--⨯+-+--=+πα解法二:由已知条件可知所以原式可化为则,2,0cos παα≠≠AC A 1C 1..32tan .0tan ),,2(.0)1tan 2)(2tan 3(.02tan tan 62下同解法一又即-=∴<∴∈=-+=-+ααππααααα18.本小题主要考查线面关系和正方体等基础知识,考查空间想象能力和推理运算能力,满分12分. 解法一:(I )连结A 1B ,则A 1B 是D 1E 在面ABB 1A ;内的射影∵AB 1⊥A 1B ,∴D 1E ⊥AB 1, 于是D 1E ⊥平面AB 1F ⇔D 1E ⊥AF. 连结DE ,则DE 是D 1E 在底面ABCD 内的射影.∴D 1E ⊥AF ⇔DE ⊥AF.∵ABCD 是正方形,E 是BC 的中点. ∴当且仅当F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.…………6分 (II )当D 1E ⊥平面AB 1F 时,由(I )知点F 是CD 的中点. 又已知点E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC , 设AC 与EF 交于点H ,则CH ⊥EF ,连结C 1H ,则CH 是 C 1H 在底面ABCD 内的射影. C 1H ⊥EF ,即∠C 1HC 是二面角C 1—EF —C 的平面角.在Rt △C 1CH 中,∵C 1C=1,CH=41AC=42, ∴tan ∠C 1HC=224211==CH C C . ∴∠C 1HC=arctan 22,从而∠AHC 1=22arctan -π. 故二面角C 1—EF —A 的大小为22arctan -π.解法二:以A 为坐标原点,建立如图所示的空间直角坐标系 (1)设DF=x ,则A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B (1,0,1),D 1(0,1,1),E )0,21,1(,F (x ,1,0)BPFAB E D CD F x x D AF E D F AB E D AB E D AB E D x AF AB E D 111111111111,.21210,011)0,1,(),1,0,1(),1,21,1(平面的中点时是故当点即平面于是即⊥==-⇔=⋅⇔⇔⊥⊥=-=⋅∴==--=∴(1)当D 1E ⊥平面AB 1F 时,F 是CD 的中点,又E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC ,设AC 与EF 交于点H ,则AH ⊥EF. 连结C 1H ,则CH 是C 1H 在底面ABCD 内的射影.∴C 1H ⊥EF ,即∠AHC 1是二面角C 1—EF —A 的平面角.31898983||||cos ).0,43,43(),1,41,41(),0,43,43(),1,1,1(11111-=⨯-=⋅=∠∴--==HC HA AHC HC H C.31arccos .31arccos )31arccos(11----=-=∠ππ的大小为故二面角即A EF C AHC19.本小题主要考查向量的概念,平面向量的运算法则,考查运用向量及函数知识的能力,满分12分.)()(,,,.0,:AC AQ AB AP CQ BP AC AQ CQ AB AP BP AQ AP -⋅-=⋅∴-=-=-==⋅∴⊥ 解法一 .cos 2121)(222222θa a BCPQ a BCPQ a a a +-=⋅+-=⋅+-=-⋅--=⋅+⋅--=⋅+⋅-⋅-⋅=.0.,)(0,1cos 其最大值为最大时方向相同与即故当⋅==θθ解法二:以直角顶点A 为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系..)()())(().2,2(),,(),,(),,().,(),,(.||,2||),,0(),0,(),0,0(,||||22by cx y x b y y x c x y x b c b y x y c x y x Q y x P a BC a PQ b C c B A b AC c AB -++-=--+--=⋅∴--=-=---=-=∴--====则的坐标为设点且则设.0,,)(0,1cos .cos .cos .cos 2222其最大值为最大时方向相同与即故当a a a by cx abycx ⋅==+-=⋅∴=-∴-==θθθθθ20.本小题主要考查直线、双曲线的方程和性质,曲线与方程的关系,及其综合应用能力,满分12分.解:(Ⅰ)将直线整理得后的方程代入双曲线的方程,12122=-+=y x C kx y l.022)2(22=++-kx x k ……①依题意,直线l 与双曲线C 的右支交于不同两点,故.22.022022,0)2(8)2(,0222222-<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-k k k k k k k k 的取值范围是解得(Ⅱ)设A 、B 两点的坐标分别为),(11y x 、),(22y x ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x k k x x ……② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0).则由FA ⊥FB 得:.0)1)(1())((.0))((21212121=+++--=+--kx kx c x c x y y c x c x 即整理得.01))(()1(221212=+++-++c x x c k x x k ……③把②式及26=c 代入③式化简得 .066252=-+k k解得))(2,2(566566舍去或--∉-=+-=k k 可知566+-=k 使得以线段AB 为直径的圆经过双曲线C 的右焦点. 21.本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分. 解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元); ②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元) ③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元); ④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.22.本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.解:(I )由两边取极限得对且存在nn n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→.24,0.24,122++=∴>+±=+=a a A A a a A A a A 又解得(II ).11,11Ab a A b a a a A b a n n n n n n ++=++=+=++得由都成立对即 ,2,1)(.)(11111=+-=+-=++-=++-=∴++n A b A b b A b A b A b A A b A a b n nn n n n n n(III ).21|)4(21|,21||21≤++-≤a a ab 得令.,2,121||,23.23,14.21|)4(21|22都成立对时现证明当解得 =≤≥≥≤-+∴≤-+∴n b a a a a a a n n (i )当n=1时结论成立(已验证).(ii )假设当那么即时结论成立,21||,)1(k k b k k n ≤≥=k k k k k A b A A b A b b 21||1|)(|||||1⨯+≤+=+故只须证明.232||,21||1成立对即证≥≥+≤+a A b A A b A k k.212121||,23.2||,1212||||.2,14,23,422411222++=⨯≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=++=k k k k k k k b a A b A b A A b A a a a aa a a A 时故当即时而当由于即n=k+1时结论成立.根据(i )和(ii )可知结论对一切正整数都成立.故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b nn。

2004年高考数学试题(全国3理)及答案

2004年高考数学试题(全国3理)及答案

2004年高考试题全国卷Ⅲ 理工类数学试题(人教版旧教材)第I 卷(A )一、选择题: ⑴设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则M N 中元素的个数为( ) A.1 B.2C.3D.4⑵函数sin 2xy =的最小正周期是( ) A.2πB.πC.2πD.4π ⑶设数列{}n a 是等差数列,26,a =- 86a =,S n 是数列{}n a 的前n 项和,则( )A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 5⑷圆2240x y x +-=在点(P 处的切线方程是( )A.20x -=B.40x -=C.40x +=D.20x +=⑸函数y =()C.[-2,-1)(1,2]D.(-2,-1) (1,2)⑹设复数z 的幅角的主值为23π2z =( )A. 2--B. 2i -C. 2+D. 2i⑺设双曲线的焦点在x轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A. 5B.C.D. 54⑻不等式113x <+<的解集为( )A.()0,2B.()()2,02,4-C.()4,0- D.()()4,20,2--⑼正三棱柱的底面边长为2,侧面均为直角三角形,则此三棱柱的体积为( )A.B.C. D.⑽在ABC ∆中,3,4AB BC AC ===,则边AC 上的高为( )A.B.C. 32 D.⑾设函数2(1)1()41x x f x x ⎧+<⎪=⎨-≥⎪⎩,则使得f (x )≥1的自变量x 的取值范围为( )A.(-∞,-2] [0,10]B.(-∞,-2] [0,1]C.(-∞,-2] [1,10]D.[-2,0] [1,10]⑿4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ) A. 12 种 B. 24 种 C 36 种 D. 48 种第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. ⒀用平面α截半径为R 的球,如果球心到截面的距离为2R,那么截得小圆的面积与球的表面积的比值为________ ⒁函数sin y x x =在区间[0,2π]的最小值为__________C⒂已知函数y =f (x )是奇函数,当x ≥0时, f (x )=3x -1,设f (x )的反函数是y =g (x ),则g (-8)=___⒃设P 为曲线y 2=4(x -1)上的一个动点,则点P 到点(0,1)的距离与点P 到y 轴的距离之和的最小值为_________三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤⒄(本小题满分12分)已知α为锐角,且tg α=12,求sin 2cos sin sin 2cos 2ααααα-的值. ⒅(本小题满分12分)解方程4x +|1-2x |=11.⒆(本小题满分12分)某村计划建造一个室内面积为 800m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留 l m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?⒇(本小题满分12分)三棱锥P-ABC 中,侧面P AC 与底面ABC 垂直,P A =PB =(1)求证 AB ⊥BC ;(II)如果AB=BC=AC 与侧面P AC 所成角的大小.(21) (本小题满分12分)设椭圆2211xy m +=+的两个焦点是 F 1(-c ,0), F 2(c ,0)(c >0),且椭圆上存在点P ,使得直线 PF 1与直线PF 2垂直.(I)求实数 m 的取值范围.(II)设l 是相应于焦点 F 2的准线,直线PF 2与l 相交于点Q. 若22||2||QF PF =,求直线PF 2的方程.(22)(本小题满分14分)已知数列{a n }的前n 项和S n 满足:S n =2a n +(-1)n ,n ≥1.⑴写出求数列{a n }的前3项a 1,a 2,a 3; ⑵求数列{a n }的通项公式; ⑶证明:对任意的整数m >4,有4511178m a a a +++< .C 2004年高考试题全国卷3 理工类数学试题(人教版旧教材)(内蒙、海南、西藏、陕西、广西等地区)参考答案一、选择题:1.B2.C3.B4.D5.A6.A7.C 8.D9.C 10.B 11.C 12.C二、填空题:13、3:16 14、1 . 15、-3 16三、解答题:17.解:∵12tgα=,α为锐角∴cosα=∴2sin2cos sin sin(2cos1)1sin2cos22sin cos cos22cosααααααααααα--===.18.解:当x≤0时, 有:4x+1-2x=11 化简得:(2x)2-2x-10=0解之得:2x=2x=舍去).又∵x≤0得2x≤1, 故2x=.当x<0时, 有:4x-1+2x=11化简得:(2x)2+2x-12=0解之得:2x=3或2x= -4(舍去)∴2x=3 x=log23综上可得原方程的解为x=log23.19.解:设温室的长为xm,则宽为800mx,由已知得蔬菜的种植面积S为:8001600(2)(4)80048S x xx x=--=--+4008084()648xx=-+≤(当且仅当400xx=即x=20时,取“=”). 故:当温室的长为20m, 宽为40m时,蔬菜的种植面积最大,最大面积为648m2.20.⑴证明:取AC中点O, 连结PO、BO.∵P A=PC∴PO⊥AC又∵侧面P AC⊥底面ABC∴PO⊥底面ABC又P A=PB=PC∴AO=BO=CO∴△ABC为直角三角形∴AB⑵解:取BC的中点为M,连结OM,PM,所以有OM=12∴PO==由⑴有PO⊥平面ABC,OM⊥BC,由三垂线定理得PM⊥BC ∴平面POM⊥平面PBC,又∵∴△POM是等腰直角三角形,取PM的中点N,连结ON, NC则ON⊥PM, 又∵平面POM⊥平面PBC, 且交线是PM, ∴ON⊥平面PBC∴∠ONC即为AC与平面PBC所成的角.12ON PM OC====∴1sin2ONONCOC∠==∴6ONCπ∠=. 故AC与平面PBC所成的角为6π.21.解:⑴∵直线PF1⊥直线PF2∴以O为圆心以c为半径的圆:x2+y2=c2与椭圆:2211xym+=+有交点.即2222211x y cxym⎧+=⎪⎨+=⎪+⎩有解又∵c 2=a 2-b 2=m +1-1=m >0 ∴222101m x a m m-≤=<=+ ∴1m ≥ ⑵设P (x,y ), 直线PF 2方程为:y =k (x -c )∵直线l的方程为:2a x c ==Q 的坐标为∵22||2||QF PF = ∴点P 分有向线段2QF所成比为3∵F 2∴P) ∵点P 在椭圆上21+=∴k =直线PF 2的方程为:y=x).22.解:⑴当n =1时,有:S 1=a 1=2a 1+(-1) a 1=1;当n =2时,有:S 2=a 1+a 2=2a 2+(-1)2⇒a 2=0;当n =3时,有:S 3=a 1+a 2+a 3=2a 3+(-1)3⇒a 3=2;综上可知a 1=1,a 2=0,a 3=2; ⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+---- 化简得:1122(1)n n n a a --=+-可化为:1122(1)2[(1)]33n n n n a a --+-=+- 故数列{2(1)3n n a +-}是以112(1)3a +-为首项, 公比为2的等比数列. 故121(1)233n n n a -+-= ∴121222(1)[2(1)]333n n n nn a --=--=--数列{n a }的通项公式为:22[2(1)]3n nn a -=--.⑶由已知得:232451113111[]221212(1)m mm a a a -+++=+++-+--23111111[]2391533632(1)m m -=++++++-- 11111[1]2351121=+++++ 11111[1]2351020<+++++ 511(1)1452[]12312m --=+-514221[]23552m -=+-51311131041057()1552151201208m -=-<=<= . 故4511178m a a a +++< ( m >4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档