数据分析基础测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据分析基础测试题及答案
一、选择题
1.某地区汉字听写大赛中,10名学生得分情况如下表:
分数50859095
人数3421
那么这10名学生所得分数的中位数和众数分别是()
A.85和85 B.85.5和85 C.85和82.5 D.85.5和80
【答案】A
【解析】
【分析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.
【详解】
把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;
在这一组数据中85出现的次数最多,则众数是85;
故选:A.
【点睛】
此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
2.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()
A.15岁,14岁B.15岁,15岁
C.15岁,15
6
岁D.14岁,15岁
【答案】A 【解析】
【分析】
根据众数、平均数的定义进行计算即即可.
【详解】
观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.
这12名队员的年龄的平均数是:123131142155161
14
12
⨯+⨯+⨯+⨯+⨯
=
故选:A
【点睛】
本题主要考查众数、平均数,熟练掌握众数、平均数的定义是解题的关键.
3.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()
A.7,6 B.7,4 C.5,4 D.以上都不对
【答案】B
【解析】
【分析】
根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出1
3
(-2+b-2+c-2)的值;再由
方差为4可得出数据a-2,b-2,c-2的方差.
【详解】
解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,
∴1
3
(a-2+b-2+c-2)=3,
∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,
∴1
3
[(a-5)2+(b-5)2+(c-5)2]=4,
∴a-2,b-2,c-2的方差=1
3
[(a-2-3)2+(b-2-3)2+(c--2-3)2]
= 1
3
[(a-5)2+(b-5)2+(c-5)2]=4,
故选B.
【点睛】
本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.
4.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()
A.极差是47 B.众数是42
C.中位数是58 D.每月阅读数量超过40的有4个月
【答案】C
【解析】
【分析】
根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.
【详解】
A、极差为:83-28=55,故本选项错误;
B、∵58出现的次数最多,是2次,
∴众数为:58,故本选项错误;
C、中位数为:(58+58)÷2=58,故本选项正确;
D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;
故选C.
5.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )
A.8 B.9 C.10 D.12
【答案】C
【解析】
【分析】
根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.
【详解】
当x=8时,有两个众数,而平均数只有一个,不合题意舍去.
当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,
将这组数据按从小到大的顺序排列为8,10,10,12,
处于中间位置的是10,10,
所以这组数据的中位数是(10+10)÷2=10. 故选C . 【点睛】
本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
6.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于
本次训练,有如下结论:①22
s s >甲乙;②22
s s <甲乙;③甲的射击成绩比乙稳定;④乙的射
击成绩比甲稳定.由统计图可知正确的结论是( )
A .①③
B .①④
C .②③
D .②④
【答案】C 【解析】 【分析】
从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】
由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,
x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,
∴甲的射击成绩比乙稳定; 故选:C . 【点睛】
本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差
S 2=
1
n
[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
7.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是