5.5三角形的内角和(例6)
三角形的内角和公式及其应用
三角形的内角和公式及其应用三角形是几何学中最基础的图形之一,拥有丰富的性质和应用。
其中一个重要的性质是三角形的内角和公式,它能够帮助我们计算三角形内角的大小,并且在解决实际问题中起到重要的作用。
本文将详细介绍三角形的内角和公式,以及它在实际中的应用。
1. 三角形的内角和公式对于任意一个三角形,其内角和公式可以简洁地表达为:三角形的内角和等于180度。
即:角A + 角B + 角C = 180°其中,角A、角B和角C分别表示三角形的三个内角。
此公式成立于任何三角形,无论是等边三角形、等腰三角形还是一般三角形都适用。
2. 三角形的内角和公式的推导要理解三角形的内角和公式,可以通过以下推导来加深理解。
考虑任意一个三角形ABC,我们可以将其划分为两个锐角三角形,如下所示:A/ \C—B根据锐角三角形的内角和等于180度的性质,我们可以得出以下两个等式:角ABC + 角ACB = 180° -- (1)角ACB + 角BAC = 180° -- (2)将(1)式中的角ACB代入(2)式中,可得:角ABC + (180° - 角ABC) = 180°化简后得到:角ABC = 角ABC这就证明了三角形ABC的内角和等于180度。
3. 三角形内角和公式的应用三角形的内角和公式在解决各种实际问题中起到重要的作用,下面将介绍一些常见的应用场景。
3.1 三角形内角的计算通过三角形的内角和公式,我们可以很容易地计算出三角形中任意一个内角的大小。
例如,如果我们已知三角形的另外两个内角的度数,就可以通过内角和公式求解出第三个内角的度数。
3.2 三角形分类根据三角形的内角和公式,我们可以将三角形进行分类。
当三角形的三个内角和为180度时,可以得到以下结论:- 如果三角形的三个内角都小于90度,称为锐角三角形。
- 如果三角形中存在一个内角为90度,称为直角三角形。
- 如果三角形的三个内角中至少有一个大于90度,称为钝角三角形。
三角形的内角和
B
D
C
三角形的内角和等于180 °
三角形性质: 三角形的一个外角等于与它不相邻的两个内角的和
B
斜 边
C 直角边
即像△ABC这样把一边与另一边的延
长线所组成的角,叫做三角形的外角。 如∠ACD, ∠CAF.而∠ACB是∠ACD 是它相邻的内角, ∠ B、 ∠BAC是 F ∠ACD不相邻的内角。
A
BB
D
C
三角形的一个外角与三角形三个内角之间有何关系?在下图中,外.角 ∠ACD与∠A、 ∠B之间有什么大小关系?
答: ∠ A、∠B、∠C的度数分别为99 °、33°、48
三角形的内角和等于180 °,最多一个直角或一个钝角。
D E
G
FH
I
三个三角形中,三个角都是锐角的三角形 叫做锐角三角形 、有一个角是直角的三 角形叫做直角三角形,即用符号“Rt△” 来表示、有一个角是钝角的三角形叫做钝 角三角形。
A
直 角 边
∴∠B+∠C+∠BAC=180°
三角形的内角和等于1800
例3.在△ABC中, ∠A的度数是∠B度数的3倍,∠C比 ∠B大15 °,求∠ A、∠B、 ∠C的度数。
解:设∠B为x °,则∠A为(3x )°, ∠ C为(x+15° ), 从而有
3x+x+(x+15)=180
解得 x=33 所以3x=99,x+15=48
谢谢观赏!
三角形的三个内 角和是多少?
5.5三角形内角和定理(1)doc
5.5三角形内角和定理(1)一、教学目标1.知识与技能目标:会用平行线的性质与平角的定义证明三角形内角和等于︒180,能用三角形内角和等于︒180进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。
2.过程与方法目标:通过拼图实验、合作交流、推理论证的过程。
体现“做中学”发展学生的合情推理能力和逻辑思维能力,初步获得科学研究的体验。
3.情感态度价值观目标:通过操作、交流、探究、表述、推理等活动,培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆提出疑问,培养学生良好的学习习惯。
二、重点、难点重点:三角形内角和等于︒180的证明及应用难点:证明三角形内角和等于︒180三、教学过程“三角形的三个内角之和是︒180” 如何证明这个结论的正确性?已知:△ABC.求证:∠A+∠B+∠C=︒180证法一证明:在△ABC 的外部以CA 为边作∠ACE=∠A.延长BC 至D则 C E ∥B A ﹙内错角相等,两直线平行﹚∴∠DCE=∠B ﹙两直线平行,同位角相等﹚∵∠BCA+∠ACE+∠ECD=︒180 ﹙平角定义﹚∴∠BCA +∠A +∠B=︒180 ﹙等量代换﹚∴∠BCA +∠A +∠B = ︒1802.同学想一想还有没有其他的方法证明这个结论的正确性?证法二证明:延长BC 至D ,过C 作CE ∥BA.则∠A =∠ACE ﹙两直线平行,内错角相等﹚∠B =∠ECD ﹙两直线平行,同位角相等﹚ ∵∠BCA+∠ACE+∠ECD=︒180 E. D . A E. D .A证法三证明:过A 作EF ∥BC.则∠EAB =∠B.∠FAC = ∠C﹙两直线平行,内错角相等﹚∵∠EAB+∠BAC+∠CAF=︒180∴∠B+∠BAC+∠C=︒1801.三角形内角和定理:三角形的内角和等于︒180即△ABC 中,∠A +∠B+∠C=︒180 由证法一中的图可看出∠ACD 是三角形的一个外角,∠A 、∠B 是与∠ACD 不相邻的两个内角,由三角形内角和定理能推出∠ACD 与∠A 、 ∠B 之间有怎样的数量关系?∠ACD=∠A +∠B ∠ACD >∠A ∠ACD >∠B由此得出:推论1:三角形的一个外角等于与它不相邻的两个内角的和。
《三角形的内角和》教案
《三角形的内角和》名师教案一、学习目标(一)学习内容《义务教育教科书数学》(人教版)四年级上册第67页例6及做一做。
例6教学三角形的内角和。
教材先让学生通过“量、算”不同类型的三角形的内角度数,初步感受到它们的内角和大约是180°,然后又构建了“剪、拼、看”的活动用实验的方法验证三角形的内角和是180°。
三角形的内角和是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
(二)核心能力通过交流“量、算”的结果,培养实事求是、严谨的实验态度,感受误差的存在,在此基础上,通过“剪、拼”的操作活动,用实验的方法推理归纳出三角形的内角和,提高探究推理能力。
(三)学习目标1. 通过“量、算、剪、拼”等操作活动,推理得出三角形的内角和是180°。
2. 充分经历探究的过程,感受误差的存在,培养实事求是、严谨的实验态度。
3. 能灵活运用三角形的内角和解决生活中的简单问题。
(四)学习重点探究并掌握三角形的内角和是180度。
(五)学习难点用实验的方法验证(六)配套资源实施资源:《三角形的内角和》名师教学课件、不同种类的三角形纸片、课时作业。
二、教学设计(一)课前设计1.预习任务:在练习纸上分别画出一个锐角三角形、直角三角形、钝角三角形。
量一量每个三角形中三个角的度数,并标记出来。
(二)课堂设计1.创设情景,引出问题(1)猜谜语:(课件)形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
(打一图形名称)三角形(板书)(2)猜三角形(课件)老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?提问第3个图形时问:被遮住的两个角是什么角?会是两个直角吗?为什么?(引导学生开始对“三角形的内角和是多少”进行思索。
)(3)引出课题。
师:看来三角形的三个角之间一定藏着秘密,这节课我们就来研究有关三角形角的知识“三角形内角和”。
(板书课题)【设计意图】通过猜谜语、猜角引入本节课所探究问题:“三角形内角和是多少度”,让孩子们带着问题走入课堂,激发探究的欲望。
青岛版八年级数学上册三角形内角和定理
5.5 三角形内角和定理(1)1.根据下列条件,求ABC ∆中,C ∠的大小: (1)︒=∠︒=∠36,65B A ;(2)A C B ∠=∠=∠2; (3)︒=∠-∠︒=∠15,105C B A ;(4)C B A ∠=∠=∠.2.(1)一个直角三角形的两个锐角相等,这两个锐角各多少度?(2)一个直角三角形的两个锐角中,一个角是另一个角的2倍,这两个锐角各多少度?3.已知:如图,︒=∠︒=∠70,60,//ADE C BC DE ,求B A ∠∠、的度数.4.已知:如图,AD 是ABC ∆的角平分线,︒=∠∠=∠80,ADC BAD B ,求ABC ∆各内角的度数.5.一个三角形中能不能有两个直角或两个钝角?为什么? 6.如图,已知AB CD ACB ⊥︒=∠,90,垂足是D .(1)2,1∠∠有什么关系?(2)2∠∠、B 有什么关系?为什么?B ∠∠、1不是相等?为什么?7.如图,BD AD ⊥于D ,AE 平分︒=∠︒=∠∠34,70,C B BAC ,求DAE ∠的度数.三角形内角和定理(1) 1.在ABC ∆中,如果C B A ∠=∠=∠2121,那么C B A ∠∠∠,,分别等于多少度?ED CBA 2.已知:如图,E DC AB ,//是BC 上一点,43,21∠=∠∠=∠.求证:ED AE ⊥.3.如图,在ABC ∆中,EC AE B BAC ⊥︒=∠︒=∠,60,50,垂足为CD E ,平分ACB ∠且分别与AE AB,交于点F D ,.求AFC ∠的度数.4.如图,已知BC AD CD AB //,//. 求证:︒=∠+∠+∠18021B .5.如图,已知︒=∠50A ,(1)如图(1),ABC ∆的两条高CE BD ,相交于点O ,求BOC ∠的度数. (2)如图(2),ABC ∆的两条角平分线CN BM ,相交于P 点,求BPC ∠的度数.6.若一个三角形三个内角度数之比为1:5:6,那么,你能判断出它是一个什么形状的三角形吗?三角形内角和定理(1)一、选择题1.如图所示,BC ⊥AD,垂足是C,∠B=∠D,则∠AED 与∠BED 的关系是( )D CB AA.∠AED>∠BEDB.∠AED<∠BEDC.∠AED=∠BEDD.无法确定2.关于三角形内角的叙述错误的是( ) A.三角形三个内角的和是180°; B.三角形两个内角的和一定大于60° C.三角形中至少有一个角不小于60°; D.一个三角形中最大的角所对的边最长3.下列叙述正确的是 ( )A.钝角三角形的内角和大于锐角三角形的内角和;B.三角形两个内角的和一定大于第三个内角;C.三角形中至少有两个锐角;D.三角形中至少有一个锐角.4.△ABC 中,∠A+∠B=120°,∠C=∠A,则△ABC 是( ) A.钝角三角形 B.等腰直角三角形; C.直角三角形 D.等边三角形5.在△ABC 中,∠A-∠B=35°,∠C=55°,则∠B 等于( ) A.50° B.55° C.45° D.40°6.三角形中最大的内角一定是( )A.钝角B.直角C.大于60°的角D.大于等于60°的角 二、填空题1.直角三角形的两个锐角___________.2.在△ABC 中,∠A:∠B:∠C=1:2:3,则△ABC 是________ 三角形.3.在△ABC 中,∠A=∠B=110∠C,则∠C=_______. 4.在△ABC 中,∠A+∠B=120°,∠A-∠B+∠C=•120°,•则∠A=• ,• ∠B=______.5.如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D,则∠B=∠________,∠C=∠________.6.在一个三角形中,最多有______个钝角,至少有______个锐角.三、计算题1.如图,已知:∠A=∠C. 求证:∠ADB=∠CEB.E DCA2.如图,在△ABC 中,∠B=30°,∠C=65°,AE ⊥BC 于E,AD 平分∠BAC,求∠DAE 的度数.ED CBA3.如图,在正方形ABCD 中,已知∠AEF=30°,∠BCF=28°,求∠EFC 的度数.E FDCBA四、如图,一块梯形玻璃的下底及两腰的一部分被摔碎,量得∠A=120°,•∠D=105°,你能否求出两腰的夹角∠P 的度数.PDCBA五、小明在证明“三角形内角和等于180°”时用了如图所示的辅助线的方法,即延长BC 到D,延长AC 到E,过点C 作CF ∥AB,你能接着他的辅助线的做法证明出来吗?EFDC BA六、请你利用“三角形内角和定理”证明“四边形的内角和等于360°”.四边形ABCD 如图所示.DCBA七、我们已经证明了“三角形的内角等于180°”,易证“四边形的内角和等于360°=2×180°,五边形的内角和等于540°=3×180°……”试猜想一下十边形的内角等于多少度?n 边形的内角和等于多少度?三角形内角和定理(2)一.选择题1.以下命题中正确的是( )A.三角形的三个内角与三个外角的和为540°B.三角形的外角大于它的内角C.三角形的外角都比锐角大D.三角形中的内角中没有小于60°的2.如果一个三角形的一个外角等于等于它相邻的内角,这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形3.下列说法正确的有( )①三角形的外角大于它的内角;②三角形的一个外角等于和它不相邻的两个内角之和;③三角形的外角中至少有两个钝角;④三角形的外角都是钝角. A.1个 B.2个 C.3个 D.4个4.三角形的三个外角之比为2∶2∶3,则此三角形为( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形5.如果一个三角形的一个内角大于相邻的外角,这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形6.如图,∠x 的两条边被一直线所截,用含α和β的式子表示∠x 为( )βαxA.α-βB.β-αC.180°-α+βD.180°-α-β二.填空题7.直接根据图示填空:(1)∠α=_________ (2)∠α=_________ (3)∠α=_________; (4)∠α=_________ (5)∠α=_________ (6)∠α=_________α38°62° 20°α°30°25°150°α(1) (2) (3)70°α°70°60°20°α20°135°45°α(4) (5) (6) 8.如图△ABC 中,∠B =∠C ,FD ⊥BC ,DE ⊥AB ,∠AFD =158°,则∠EDF =________.ABC D FE 123 AC DE12B C AED9.在△ABC 中,∠A 等于和它相邻的外角的四分之一,这个外角等于等于∠B 的两倍,那么∠A =______,∠B =_______,∠C =_______.10.如图,∠1,∠2,∠3是△ABC 的不同的三个外角,则∠1+∠2+∠3=________. 11.如图,比较∠A.∠BEC.∠BDC 的大小关系为_______________________.12.如图,把△ABC 的纸片沿DE 折叠,当点A 落在四边形BCED 内部时,则∠A 与∠1.∠2之间有一种数量关系始终保持不变,请试着找出这个规律为___________________. 三.解答题13.如图,求证:∠A +∠B +∠C +∠D +∠E =180°A BFD E14.D 为△ABC 的边AB 上一点,且∠ADC =∠ACD.求证:∠ACB >∠BA15.如图,D 在BC 延长线上一点,∠ABC ,∠ACD 平分线交于E. 求证:∠E =12∠A AE16.如图,D 为AC 上一点,E 是BC 延长线上一点,连BD ,DE.求证:∠ADB >∠CDE.四.拓展探究(不计入总分)17.如图,P 是△ABC 内一点,请用量角器量出∠ABP.∠ACP.∠A 和∠BPC 的大小,再计算一下,∠ABP + ∠ACP +∠A 是多少度?这三个角的和与∠BPC 有什么关系?你能用学到的知识来解释其中的道理吗?你能判断∠BPC 和∠A 的大小吗?把你的想法与同伴交流,看谁说得更有道理.ABCPD三角形内角和定理(2)一、选择题:1.三角形的一个外角等于和它相邻的内角,则这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰直角三角形2.下列叙述正确的是( )A.三角形的外角等于两个内角的和B.三角形的外角大于内角C.三角形任何两个内角的和都等于第三个角的外角D.三角形每一个内角都只有一个外角 3.下列说法正确的是( )A.三角形的每一个外角都大于和它相邻的一个内角B.三角形的一个外角可以等于和它相邻的一个内角C.三角形的外角和等于180°D.三角形中至少有一个外角小于和它相邻的内角4.在△ABC 中,∠A 、∠B 的外角分别是120°、150°,则∠C=( ) A.120° B.150° C.60° D.90°5.如图1,∠1=∠2.∠3=∠4,则∠5是∠1的( ) A. 2倍 B.3倍 C.4倍 D.6倍5432180︒30︒1EDCBA(1) (2) (3) 6.三角形的外角都大于和它相邻的内角,则这个三角形是( )三角形. A.锐角 B.钝角 C.直角 D.不确定 二、填空题1.在△ABC 中,∠A=50°,∠B=70°,则∠C 的外角等于________.2.如图2,∠1=________.3.五角形的五个内角的和是________.4.由一个公理或定理直接推出的定理,叫做这个公理或定理的________.5.如图3,∠BAC_______∠BEC.6.在△ABC,∠A:∠B:∠C=∠1:∠2:∠3,则它们外角的比是_______. 三、计算题1. 如图,△ABC 中,∠B=∠C,外角∠DAC=100°,求∠B 、∠C 的度数.D CA2. 如图,△ABC 中,∠ABC=∠C=72°,BD 平分∠ABC,求∠ADB 的度数.DCBA3.如图,△ABC 中,∠A=80°,∠B 、∠C 的角平分线相交于点O,∠ACD=30°,•求∠DOB 的度数.ODCBA四、如图,△ABC 中,∠A=90°,∠C 的平分线交AB 于D,已知∠DCB=2∠B.•求∠ADC 的度数.DCBA五、如图,P 是△ABC 内的一点,连接PB 、PC,求证:∠BPC>∠A.PCBA六、如图,E是BC延长线上的点,∠1=∠2.求证:∠BAC>∠B21EDCBA七、如图,△ABC的两外角平分线交于点P,易证∠P=90°-12∠A;△ABC•两内角的平分线交于点Q,易证∠BQC=90°+12∠A;那么△ABC的内角平分线BM与外角平分CM•的夹角∠M=_____∠A.MQPCBA三角形内角和定理(2)1.如图,已知:︒=∠︒=∠⊥29,29,DAABDE,求ACB∠的度数.2.如图,已知:在ABC∆中,43,21,90∠=∠∠=∠︒=∠B,求D∠的大小.3.如图,P 是ABC ∆内一点,延长BP 交AC 于点D .用符号“<”表示A ∠∠∠,2,1的关系.4.如图,已知:D 是ABC ∆的外角平分线与BA 的延长线的交点.求证:B BAC ∠>∠.5.如图,已知:P 是ABC ∆内一点.求证:BAC BPC ∠>∠.6.已知:如图,在ABC ∆中,AD 平分AD CE BAC ⊥∠,,垂足为E . 求证:(1)ADC AEC ∠>∠;(2)B AEC ∠>∠.7.如图,在ABC ∆中,AB CE B A ⊥︒=∠︒=∠,70,30,垂足为CF E ,平分ACB ∠,求FCE ∠的度数.8.如图,在ABC ∆中,DB 和DC 分别平分内角ABC ∠和BG ACB ,∠和CG 分别平分外角CBE ∠和︒=∠∠40,A BCF ,求BDC ∠和G ∠的度数.9.如图,已知在五角形ABCDE 中,求证:︒=∠+∠+∠+∠+∠180E D C B A .10.如图,ABC ∆中,B C ∠>∠,D 为BC 上一点,(且不与C B ,重合) 求证:B ADB ∠>∠.11.如图,ABC ∆的两个外角EAC ∠和FCA ∠的平分线交于D 点. 求证:ABC ADC ∠-︒=∠2190.12.如图,ABC ∆中,AE BC AD C B ,,⊥∠>∠平分BAC ∠. 求证:)(21C B DAE ∠-∠=∠.三角形内角和定理(2)1、已知∠BAF 、∠CBD 、∠ACE 是△ABC 的三个外角.(如图)求证:∠BAF +∠CBD +∠ACE =360°.2、已知,如图,D 是AB 上一点,E 是AC 上的一点,BE 、CD 相交于点F , ∠A =62°,∠ACD =35°,∠ABE =20°求:(1)∠BDC 的高度; (2)∠BFD 的度数.3、已知,如图,BE 、CE 分别是△ABC 的内角、外角的平分线,若∠A =40°.求∠E 的度数.三角形内角和定理一、选择题:1.如图所示,在△ABC 中,∠ABC 和∠ACB 的外角平分线交于点O ,设∠BOC=α,则∠A 等于( )A .90°-2αB .90°-2α C .180°-2α D .180°-2α图1 图2 图3 图42.三角形三个内角之比为1:2:3,则该三角形三个外角之比为( ) A .5:4:3 B .3:2:1 C .1:2:3 D .2:3:43.已知三角形的一个外角小于和它相邻的内角,那么这个三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上均有可能4.等腰三角形的一个外角为110°,它的底角为()A.55° B.70° C.55°或70° D.以上均有可能5.如图2,射线BA,CA交于点A,连接BC,已知AB=AC,∠B=40°,那么x的值是(• )A.40 B.60 C.80 D.100二、填空题:6.如果三角形三个外角度数之比为4:2:•3,•则这个三角形的各外角度数分别为______.7.如果一个三角形的一个外角与它的一个内角相等,这个三角形只能是_____.8.如图3所示,一个顶角为40°的等腰三角形的纸片,剪去顶角后,得到一个四边形,则∠1+∠2=______.9.如图4所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=•DC,•则∠C=________.三、解答题:10.已知:如图所示,P是△ABC内一点,求证:∠BPC>∠BAC.ACPB11.如图所示,△ABC中,AD平分∠BAC,CD⊥AD于D,AB>AC,求证:∠ACD>•∠ABC.12.一个等腰三角形的三个内角与顶角的一个外角之和等于260°,•求这个等腰三角形的各内角的度数.三角形内角和定理一、七彩题:1.(一题多解)如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,求∠BCD•的度数.2.(巧题妙解题)一个零件的形状如图所示,按规定∠A应等于90°,∠B,∠C应分别等于32°和21°,检验工人量得∠BDC=148°就断定零件不合格.请你运用三角形有关知识说明零件不合格的原因.二、知识交叉题:3.(科内交叉题)如图所示,D是AB上一点,E是AC上一点,BE,CD相交于点F,•∠A=62°,∠ACD=35°,∠ABE=20°,求∠BDC和∠BFD的度数.4.(科内交叉题)如图,已知BE,CE分别是△ABC的内角∠ABC,外角∠ACD的平分线,若∠A=50°,你能求出∠E吗?若∠A= ,则∠E是多少?三、实际应用题5.在足球比赛中,球员越接近球门,射门角度(射球点与球门两边A,B间的夹角)•就越大,如图所示,你如何证明.四、经典题6.如图所示,∠1大于∠2的是()7.如图所示,AB∥CD,∠1=110°,∠ECD=70°,∠E•的大小是()A.30° B.40° C.50° D.60°五、探究学习:1.(旋转变换题)如图所示,把一个直角三角尺ABC绕着30°角的顶点B•顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度?(2)连接CD,试判断△CBD的形状;(3)求∠BDC的度数;2.(阅读理解题)关于三角形内角和定理的证明,•小马和小虎又各自找到了一种“创新”证法.如图1,已知△ABC,求证:∠A+∠B+∠C=180°.图1 图2 图3 小马的证法:如图2,延长BC到点D,则∠ACD=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠ACD+∠ACB=180°(平角的定义),所以∠A+∠B+∠ACB=180°.小虎的证法:如图3,过点A作AD⊥BC于点D,则∠1+∠B=90°,∠2+∠C=90°(直角三角形的两锐角互余),所以(∠1+∠2)+∠B+∠C=180°,即∠BAC+∠B+∠C=•180°.你认为他们的证法对吗?说说你的看法,请给出一种你认为比较简单且正确的证法.3.如图所示,在△ABC中,AD⊥BC,∠BAD>∠CAD,求证:AB>AC.。
5.5三角形内角和定理(2)doc
B D E C5.5三角形内角和定理(2)一、教学目标:1、知识与技能:(1)了解直角三角形的表示法。
(2)掌握直角三角形的三个性质定理,能利用直角三角形的性质定理进行有关的计算和证明2、过程与方法:经历“探索——发现——猜想——证明”的过程,引导学生体会合情推理与演绎推理的相互依赖和相互补充。
3、情感态度与价值观: 通过“探索——发现——猜想——证明”的过程体验数学活动中的探索与创新,感受数学的严谨性,激发学生的好奇心和求知欲,培养学习的自信心。
二、教学重点与难点重点:直角三角形性质及应用。
难点:直角三角形性质定的证明。
三、教学过程(一)复习旧知、引入新课1、三角形的内角和定理是什么?2如图,在△ABC 中,∠1=∠2,∠3=∠4,∠BAC =54°,求∠DAC 的度数。
如图,已知△ABC 中,已知∠B =65°,∠C =45°,AD 是BC 边上的高, AE 是∠BAC 的平分线,求∠DAE 的度数。
(2)(二)引入新课:(1)取一副三角尺,你能说出每个三角尺中的两个锐角的度数吗?同一个三角尺的两个锐角的和是多少度?(2)任意画一个RT △ABC, ∠C =90°,它的两个锐角∠A 与∠B 之间有什么数量关系?怎样证明你的结论?∠A +∠B=90° 在RT △ABC 中,∵∠C +∠A +∠B = ︒180∴∠A +∠B = ︒180-∠C∵∠C =90° ∴∠A +∠B =90°B D C2 43 1A CB C D 于是,就得到直角三角形性质定理 :直角三角形两个锐角互余。
直角三角形性质定理的逆命题 :两个锐角互余的三角形是直角三角形。
例1、已知如图,在Rt △ABC 中,∠C=90°,AB=16,BC=8,BD 平分∠ABC 。
求证:AD=BD练习巩固、掌握性质1、 Rt △ACB 中,∠ACB=90°CD ⊥AB,图中互余的角有几对2、如图,已知DF ⊥AB 于点F ,且∠A =45°,∠D =30°,求∠ACB 的度数。
5.5《三角形的内角和》(教案)四年级下册数学人教版
5.5《三角形的内角和》(教案)四年级下册数学人教版今天,我要为大家教授的是四年级下册数学人教版的《三角形的内角和》。
一、教学内容我们今天的学习内容是教材第五章第五节,主要内容是探讨三角形的内角和。
在这个章节中,学生们将通过观察和实验,验证三角形的内角和等于180度。
二、教学目标通过本节课的学习,我希望学生们能够理解三角形的内角和概念,能够运用这一概念解决实际问题。
三、教学难点与重点本节课的重点是让学生们验证并理解三角形的内角和等于180度。
难点在于如何引导学生通过实验和观察来得出这一结论。
四、教具与学具准备为了帮助学生们更好地理解课程内容,我准备了一些教具和学具,包括三角形模型、量角器、画图工具等。
五、教学过程六、板书设计在课堂上,我会设计一些简洁明了的板书,用来展示三角形的内角和等于180度的结论,以及一些示例题目。
七、作业设计八、课后反思及拓展延伸重点和难点解析在上述的教学设计中,有几个重要的细节是需要我们重点关注的。
实践情景的引入是非常关键的,它能够激发学生的兴趣,并让学生们意识到三角形内角和的概念在实际生活中的应用。
观察和实验的环节是学生们能够亲手验证三角形内角和的关键步骤,这一环节的设计需要学生们能够通过实际的操作来观察和记录数据。
再者,小组讨论的设计能够促进学生们之间的交流和合作,通过分享和讨论,他们能够更深入地理解和掌握三角形的内角和概念。
作业题目的设计是为了巩固学生们在课堂上所学的知识,通过解答题目,他们能够将所学的概念应用到具体的题目中。
对于这些重点细节,我想进一步补充和说明。
实践情景的引入可以通过一个简单的例子来进行。
比如,我可以拿出一个三角形模型,然后问学生们这个图形的内角和是多少。
这个简单的例子能够让学生们意识到三角形内角和的概念,并激发他们对这个问题的兴趣。
观察和实验的环节是学生们能够亲手验证三角形内角和的关键步骤。
在这个环节中,我会引导学生使用量角器来测量三角形的内角,并记录下来。
三角形的内角和ppt课件
按边可分为等边三角形、等腰三 角形和一般三角形;按角可分为 锐角三角形、直角三角形和钝角 三角形。
三角形边长与角度关系
三角形边长关系
任意两边之和大于第三边,任意两边之差小于第三边。
三角形角度关系
三角形内角和为180°,外角和为360°。
特殊三角形性质介绍
等边三角形性质 三边相等,三个角都是60°。
01
02
03
知识掌握情况
学生自我评价对于三角形 内角和的定义、性质以及 推导过程有清晰的认识和 理解。
解决问题能力
学生能够运用三角形内角 和的知识解决一些简单的 三角形角度计算问题。
学习态度与习惯
学生表现出积极的学习态 度和良好的学习习惯,能 够认真听讲、积极思考并 主动发言。
课后作业布置及要求
作业内容
判断形状类问题解析
已知三边判断形状
01
通过三边关系判断三角形的形状,如等边、等腰或一般三角形
。
已知两角及夹边判断形状
02
根据角边角(ASA)或角角边(AAS)关系判断三角形的形状
。
已知三角判断形状
03
通过三角形内角和定理及三角形形状的判断条件进行综合分析
。
一题多解类问题探讨
多种方法求角度
除了直接应用三角形内角和定理 外,还可以利用正弦、余弦定理
若三角形中三边相等,则三个角也 相等,每个角均为60°,可以快速判 断出所有角的大小。
05
典型例题解析与思路拓展
求角度类问题解析
1 2
已知两角求第三角
通过三角形内角和定理,直接计算第三角的度数 。
已知两边及夹角求其他角
利用正弦、余弦定理求解其他角度。
《三角形的内角和》
三角形的内角和三角形是平面几何中一种基本的多边形,由三条线段(即边)首尾相连围成的封闭图形。
在数学的多个领域中,三角形都是一个基础且重要的研究对象。
三角形的性质和定理在解决实际问题中扮演着关键角色,其中最基本且应用广泛的性质之一就是三角形的内角和。
三角形的内角和指的是一个三角形内部三个角的度数总和。
这个性质不仅在数学理论中占据重要地位,而且在实际生活和工作中,如建筑、工程、地理测量等领域,都有广泛的应用。
本文将深入探讨三角形的内角和的性质,以及其在不同情境下的应用。
三角形内角和的定理三角形内角和定理表述为:任意一个三角形的三个内角的度数和等于180度。
这个定理是几何学中的基本定理之一,也是学习平面几何的入门知识。
内角和定理的证明可以通过多种方式进行,常见的证明方法包括:1.平行线性质:通过在三角形的一个角上作平行于另一边的直线,利用平行线的性质和同位角的性质来证明内角和定理。
2.外角和性质:利用三角形的外角和定理(一个三角形的每个外角等于非相邻两个内角的和),结合外角和为360度的性质来证明内角和定理。
3.欧几里得几何:在欧几里得的《几何原本》中,通过公理化方法,利用几何的基本公理和公设来证明三角形的内角和为180度。
三角形内角和的应用1.角度计算:给定一个三角形中两个角的度数,可以快速计算出第三个角的度数。
例如,在直角三角形中,已知一个直角为90度,如果知道另一个角的度数,可以直接通过内角和定理计算出第三个角的度数。
2.形状判定:通过测量或计算三角形内角的度数,可以判断三角形的类型,如是否为直角三角形、等腰三角形或等边三角形。
3.平面测量:在土地测量或建筑设计中,常常需要根据已知的两个角度和边长来计算第三边的长度,这时就会应用到内角和定理。
4.物理与工程:在物理学中,当分析力或速度分量时,常常需要考虑角度问题,内角和定理可以帮助确定这些分量的关系。
结论三角形的内角和定理是几何学中一个简单而深刻的性质,它揭示了三角形内角之间的一种基本关系。
5.5三角形内角和定理(1)
C
E
R
图2
A 3
F 4 C B
A E
1 2
1 2
C
B
D
图5
C
图6
D
…………
交流与发现
• 三角形内角和定理的两个推论:
• 推论1 三角形的一个外角等于与它不相邻 的两个内角的和。
• 推论2 三角形的一个外角大于与它不相邻 的任意一个内角。
我学我用
1、证明:四边形四个内角的和等于3600
2、已知D是△ABC内的一点,求证:∠BDC﹥∠A
证法二Leabharlann 三角形的内角和等于1800.
E
2
A
1
F
B
C
证法二
三角形的内角和等于1800.
E
1
A
B
C
开启
智慧
你还有其他方法来证明三 角形内角和定理吗?
A A S F E C B N P R
添加辅助线思路:1、构造平角2、构造同旁内角
E A
Q M
B 图1 S P Q M B T 图4 N A
C B
D
T 图3
快乐丰收园
实践操作
你有什么办法可以验证呢?
言必有“据”
从刚才拼角的过程你能 想出证明的办法吗?
证法一
三角形的内角和等于1800.
过C作CE∥BA, 证明:延长BC到D, ∴∠A=∠1(两直线平行,内错角相等)
为了证明的需 ∠B=∠2 (两直线平行,同位角相等) 要,在原图上 添加的线叫做
∵∠1+∠2+∠ACB=180 (平角的定义) 辅助线 ° ∴∠A+∠B+∠ACB=1 A 80° E (等量代换) 1 2 B C D
三角形的内角和教学设计及反思
《三角形的内角和》教学设计教学内容:人教版四年级下册67页例6。
教材分析:教材通过让学生度量不同类型的三角形的内角度数,并分别计算它们的和,使学生初步感知到它们的内角和是180°,产生初步的发现和猜想,再“拼一拼、折一折”,引导学生对已有猜想进行验证,并概括三角形的内角和是180°。
经历提出猜想——进行验证的的过程,渗透数学学习方法和思想。
学情分析:学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。
四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
教学目的:1、学生通过量、折、拼、摆等操作学具活动,探索和发现并掌握三角形内角和是180°,会运用所学知识解决问题。
呢?(量一量,把三个内角的度数量出来,再相加得出内角和,板书:量)1、量一量、算一算量一量、算一算不同类型三角形内角和各是多少度?2、小组合作探究那我们要对每一种三角形的内角和进行研究,下面小组合作,请看合作要求(课件出示),哪位同学能声音响亮的读一读?请同学们按照小组合作要求,开始动手探究吧。
教师巡视,指导测量。
设计意图:直接测量的方法是学生利用已有的知识,测量出每个角的度数,再用加法求和,加深对三角形内角和的概念的理解,就是三个内角的度数之和。
3、学生汇报交流。
谁愿意把自己的成果给大家说一说?(每种找两名学生汇报)师小结:在测量的过程中可能会有误差,所以大家求出的三角形的内角和在180度左右,不够精准,求三角形内角和就是把三角形的三个角和起来考虑问题,180度的角就是我们以前学过的什么角?有什么方法能把三角形的三个内角合并在一起进行验证?4、用拼一拼,折一折的方法继续验证。
5.5三角形的内角和(例6)
三、知识运用
1. 这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°, 请计算出∠2=( 35 )°,∠3=( 35 )°。
3 1
(180-110°)÷2=35°
四、布置作业
作业:第69页练习十六,第1~3题。
那么什么样的学生才能吸引剑桥的青睐呢?让我们忍不住要跟即将入学剑桥的青岛墨尔文中学应届毕业生E聊一聊,一探这所800岁大学的招生套路,在教育品牌林立,线上线下竞争残酷,市场大范围下 沉的新形势下,很多教育行业广告主却陷入了低效率的投放模式,往往花费了不菲的营销费用,但却不能实现新增量,因此,学会合理安排时间成为了E在墨尔文学会的第一课,宽带办理 https://,如果旁边没人,孩子的上课效率完全得不到保证,当前新冠病毒爆发并在全球范围内流行,给整个社会经济造成了极大的困难和挑战,结业典礼由副院长夏连学主持
操作总会有误差,有没 有别的办法说明呢?
任意直角三角形的内角和是180 °。
长方形的四个角都是直角,所以长方形的内角和 应为:90°×4=360°。将长方形沿对角线分割, 可以分成两个完全相等的三角形,所以直角三角形 内角和应为:360°÷2=180°。
二、探究新知
(二)方法拓展
法国著名数学家帕斯卡,在12岁时就已经发现了这种用直角三角形 的内角和来证明其他三角形内角和是
一、引入新课
你知道三角尺内角的 度数分别是多少吗?
90°
45°
90°
60°
30°
每个三角尺的内角度 数之和都是180°。
45°
一、引入新课
拼成的大三角形内 角和是多少?
60°60°
30°
内角和怎么还是180°?
30°
二、探究新知
《三角形的内角和》完整版课件
《三角形的内角和》完整版课件Contents目录•三角形基本概念与性质•三角形内角和定理及其证明•三角形外角性质与计算•三角形面积计算公式推导与应用Contents目录•直角三角形中特殊角度和边长关系探讨•三角形相似与全等条件判断及证明方法•总结回顾与拓展延伸01三角形基本概念与性质三角形定义及分类三角形定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。
三角形分类按边可分为不等边三角形、等腰三角形和等边三角形;按角可分为锐角三角形、直角三角形和钝角三角形。
三角形边与角关系三角形边的关系任意两边之和大于第三边,任意两边之差小于第三边。
三角形角的关系三个内角之和等于180°,外角等于与它不相邻的两个内角之和。
两腰相等,两底角相等;三线合一(底边上的中线、高线和顶角的平分线互相重合)。
等腰三角形性质三边相等,三个内角都是60°;三线合一(任意一边上的中线、高线和这边所对角的平分线互相重合)。
等边三角形性质有一个角是90°;勾股定理(直角三角形的两条直角边的平方和等于斜边的平方)。
直角三角形性质特殊三角形性质02三角形内角和定理及其证明三角形内角和定理表述01三角形内角和定理:三角形的三个内角之和等于180度。
02该定理是三角形的基本性质之一,也是研究三角形的重要基础。
通过作辅助线,将三角形划分为两个直角三角形,利用直角三角形的性质证明三角形内角和定理。
几何证明法代数证明法向量证明法通过三角形的角度表示和代数运算,证明三角形内角和定理。
利用向量的夹角公式和向量运算,证明三角形内角和定理。
030201多种证明方法介绍定理应用举例计算三角形中未知角度已知三角形两个角度,可利用三角形内角和定理求出第三个角度。
判断三角形的形状根据三角形内角和定理,可以判断三角形的形状,如等边三角形、等腰三角形等。
解决与三角形有关的问题在几何、三角学等领域中,三角形内角和定理是解决与三角形有关问题的基础。
三角形内角和定理导学案
5.5三角形内角和定理一、学习目标(1)证明“三角形内角和定理”,体会证明中辅助线的作用,尝试用多种方法证明三角形内角和定理。
(2)通过小组合作探究、展示质疑,体会转化与化归思想。
(3)激情投入,全力以赴,养成严谨、规范的数学学习习惯。
二、学习重难点:重点:三角形内角和定理的证明思路及应用。
难点:三角形内角和定理的证明方法。
三、学习过程:1、情景导航:有些地板的拼合图案如右图,它是用正方形的地砖铺成的。
那么,形状、大小完全相同的任意三角形能否镶嵌成平面图形呢?为什么?活动三、抢答题1、在△ABC 中,∠A = 80A = 80°°,∠B =60B =60°°则 ∠C =2、在△ABC 中,∠A=40A=40°°,∠B=∠C ,则 ∠B =3、在△ABC 中,∠A = ∠B = ∠C ,则 ∠B = 5、已知:如图,则∠A 等于( )A.60A.60°°B.70 B.70°°C.50 C.50°°D.80 D.80°°ABCD60°130°4、若一个三角形三个内角度数的比为1︰2︰3,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形活动四、拓展提升已知:如图,四边形ABCD 是一个任意四边形。
求证:∠ABC+∠BCD+∠CDA+ ∠DAB=360DAB=360°°四、课堂小结: 1、知识方面:2、数学思想方法:ABCD:: 4ABC D60°130°60°°EDCB A6.5 三角形内角和定理的证明 同步练习一、选择题 1.1.如图所示如图所示如图所示,BC ,BC ,BC⊥⊥AD,AD,垂足是垂足是C,C,∠∠B=B=∠∠D,D,则∠则∠则∠AED AED 与∠与∠BED BED 的 关系是关系是( ) ( ) A. A.∠∠AED>AED>∠∠BED B.B.∠∠AED<AED<∠∠BED BED;; C. C.∠∠AED=AED=∠∠BED D.D.无法确定无法确定无法确定2.2.关于三角形内角的叙述错误的是关于三角形内角的叙述错误的是关于三角形内角的叙述错误的是( ) ( )A. A.三角形三个内角的和是三角形三个内角的和是180180°;°;°;B. B. B.三角形两个内角的和一定大于三角形两个内角的和一定大于6060°°C. C.三角形中至少有一个角不小于三角形中至少有一个角不小于6060°;°;°;D. D. D.一个三角形中最大的角所对的边最长一个三角形中最大的角所对的边最长一个三角形中最大的角所对的边最长 3.3.下列叙述正确的是下列叙述正确的是下列叙述正确的是( ) ( )A. A.钝角三角形的内角和大于锐角三角形的内角和;钝角三角形的内角和大于锐角三角形的内角和;钝角三角形的内角和大于锐角三角形的内角和;B. B.三角形两个内角的和一定大于第三个内角;三角形两个内角的和一定大于第三个内角;三角形两个内角的和一定大于第三个内角;C. C.三角形中至少有两个锐角;三角形中至少有两个锐角;三角形中至少有两个锐角;D. D.三角形中至少有一个锐角三角形中至少有一个锐角三角形中至少有一个锐角. . 4.4.△△ABC 中,∠A+A+∠∠B=120B=120°°,∠C=C=∠∠A,A,则△则△则△ABC ABC 是( ) A. A.钝角三角形钝角三角形钝角三角形 B. B. B.等腰直角三角形;等腰直角三角形;等腰直角三角形; C. C. C.直角三角形直角三角形直角三角形 D. D. D.等边三角形等边三角形等边三角形 5.5.在△在△在△ABC ABC 中,∠A-A-∠∠B=35B=35°°,∠C=55C=55°°,则∠则∠B B 等于等于( ) ( ) A.50 A.50°° B.55 B.55°° C.45 C.45°° D.40 D.40°° 6.6.三角形中最大的内角一定是三角形中最大的内角一定是三角形中最大的内角一定是( ) ( )D CBAA. A.钝角钝角钝角B. B. B.直角;直角;直角;C. C. C.大于大于6060°的角°的角°的角D. D. D.大于等于大于等于6060°的角°的角°的角 二、填空题1.1.直角三角形的两个锐角直角三角形的两个锐角直角三角形的两个锐角___________. ___________.2.2.在△在△在△ABC ABC 中,∠A:A:∠∠B:B:∠∠C=1:2:3,C=1:2:3,则△则△则△ABC ABC 是________________三角形三角形三角形. .3.3.在△在△在△ABC ABC 中,∠A=A=∠∠B=110∠C,C,则∠则∠则∠C=_______. C=_______.4.4.在△在△在△ABC ABC 中,∠A+A+∠∠B=120B=120°°,∠A-A-∠∠B+•B+•∠∠C=•120•C=•120•°°,•,•则∠则∠则∠A=•_______,•A=•_______,•A=•_______,•∠∠B=______.5.5.如图如图如图,,在△在△ABC ABC 中,∠BAC=90BAC=90°°,AD ,AD⊥⊥BC 于D,D,则∠则∠则∠B=B=B=∠∠________,________,∠∠C=C=∠∠________.6.6.在一个三角形中在一个三角形中在一个三角形中,,最多有最多有__________________个钝角个钝角个钝角,,至少有至少有__________________个锐角个锐角个锐角. . 三、计算题 1.1.如图如图如图,,已知已知::∠A=A=∠∠C. 求证求证求证::∠ADB=ADB=∠∠CEB.E DCBA2.2.如图如图如图,,在△在△ABC ABC 中,∠B=30B=30°°,∠C=65C=65°°,AE ,AE⊥⊥BC 于E,AD 平分∠平分∠BAC,BAC,BAC,求∠求∠求∠DAE DAE 的度数的度数. .ED CBA3.3.如图如图如图,,在正方形ABCD 中,已知∠已知∠AEF=30AEF=30AEF=30°°,∠BCF=28BCF=28°°,求∠求∠EFC EFC 的度数的度数. .E FDCBA四、如图四、如图,,一块梯形玻璃的下底及两腰的一部分被摔碎一块梯形玻璃的下底及两腰的一部分被摔碎,,量得∠量得∠A=120•A=120•A=120•°°,•,•∠∠D=105D=105°°,你能否求(B=2PD A。
《三角形的内角和》
注意在拼的过程中不要把角拼错了。
②通过两个活动可以得出“三角形的内角和是180°”
③那么刚刚两个三角形谁说的对呢?(Ss:蓝三角形说得对)
④那么我们根据这个规律可以解决什么问题?
Ss:已知两个角的度数求第三个角的度数。
⑤总结:三角形的内角和是180°
三、评学
1.巩固反馈
练习十六第1题、第2题
2.拓展提升
做一做第2题
作业设计:
一、做一做第1题
二、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
板书设计:
三角形的内角和
2、剪一剪、拼一拼:拿出自己准备的三角形,剪掉三个角拼起来,能拼成什么?
3、想一想、说一说:三角形的内角和是多少度?
二、互学
1.小组合作
完成自主探究1、2后,小组内交流自己的成果,说说自己的想法
2.展示点拨
①小组选代表展示自己小组的讨论结果;
1)∠A=∠B=∠C=内角和=
注意特殊的三角形和不特殊的三角形。
(五)月(数学)学科集体备课共案
时间:2018年5月14日星期一
备课组:数学
主要成员:数学组中段所有教师
主讲人:齐研捷
研讨主题:
初案
集体商议修订
《三角形的内角和》初案
寺坪小学齐研捷
学习内容:例6三角形的内角和
学习目标:
1.通过实践操作发现和验证“三角形的内角和是180°”的规律;
2.通过探究活动,培养学生的合作能力、动手实践能力,发展学生的空间观念。并能运用所学的知识,解决实际问题;
蓝三角形说:“我们都是三角形,内角和一样大!”
他们争论的是什么问题?(Ss:三角形的内角和)是的,三角形的内角和,这节课我们就一起来学习,三角形的内角和。(板书课题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、布置作业
作业:第69页练习十六,第1~3题。
二、探究新知
(二)方法拓展
操作总会有误差,有没 有别的办法说明呢?
任意直角三角形的内角和是180 °。
长方形的四个角都是直角,所以长方形的内角和 应为:90°×4=360°。将长方形沿对角线分割, 可以分成两个完全相等的三角形,所以直角三角形 内角和应为:360°÷2=180°。
二、探究新知
(二)方法拓展
三、知识运用
1. 这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°, 请计算出∠2=( 35 )°,∠3=( 35 )°。
三、知识运用
2. 剪一剪。 把一个三角形纸板沿直线剪一刀,剩下的纸板的
内角和是多少度?
可能是三角形,内角和是180°,也可能是其他的情况。
三角形
三角形的内角和
一、引入新课
拼成的大三角形内 角和是多少?
60°60°
30°
内角和怎么还是180°?
30°
二、探究新知
(一)明确结论
2020年,让我们和OPPO E W51降噪耳机一起为高考降噪,为考生加油,双方将在未来以技术驱动英语学习,以优质师资、定制教材赋能全产业,力图将互联基因和教育底蕴完美融合,创造出沉浸式个性 化学习场景,为传统教培机构提供一份落地线上线下深度融合的综合解决方案,真正孕育出代表新生的未来教学课堂,在海选时排名第一的9岁学员隋家祺,在现场带来了声情并茂、极具感染力的表演 ,给观众留下了深刻印象,QQ代刷网 /,二、专业、先进的考试系统,为确保在线考试的公平公正,线上考试系统具备生物特征身份核验功能,防止替考等违规行为,并配备 了严密的防作弊系统,为帮助复学后学校尽快恢复正常教育秩序,令全校师生恢复良好的身心状态,并从不同层面探讨复学后学校心理疏导工作开展的思路和重点,2020年6月5日-6月9日,晋江市教育局、 晋江市教师进修学校根据不同对象开展了晋江市复学后学校心理疏导工作系列专题培训,而在过去的2019年中,是遗憾和希望并存的一年
操作总会有误差,有没 有别的办法说明呢?
43
43
1
2
1
2
任意三角形的内角和是180 °。
沿高可以将任意三角形分成两个直角三角形。 由于前面证明了任意直角三角形的内角和是180°, 因此两个直角三角形的内角和应为:180°×2=360°。 而直角三角形的两个直角不属于分割前三角形的内角, 因此任意三角形的内角和应为:360°-180°=180°。