第九章 秩和检验和分析
第九章秩和检验
第九章秩和检验一、教学大纲要求(一)掌握内容1.非参数统计基本概念和特点。
2.配对设计差值的符号秩检验。
3.成组设计资料两样本比较的秩和检验。
(二)熟悉内容1.成组设计多样本比较的秩和检验步骤。
2.随机区组设计资料的秩和检验。
(三)了解内容1.成组设计多样本两两比较的秩和检验。
2.随机区组设计资料两两比较的秩和检验。
二、教学内容精要(一)参数统计与非参数统计1.参数统计样本所来自的总体分布具有某个已知的函数形式,而其中有的参数是未知的,统计分析的目的就是对这些未知的参数进行估计或检验。
此类方法称为参数统计。
2.非参数统计样本所来自的总体分布难以用某种函数式来表达,还有一些资料的总体分布的函数式是未知的,只知道总体分布是连续型的或离散型的,解决这类问题的一种不依赖总体分布的具体形式的统计方法。
由于这类方法不受总体参数的限制,故称非参数统计法(non-parametric statistics),或称为不拘分布(distribution-free statistics)的统计分析方法,又称为无分布型式假定(assumption free statistics)的统计分析方法。
它检验的是分布,而不是参数。
非参数统计不需对总体分布(总体参数)作出特殊假设。
(二)非参数统计的特点和适用范围1.特点(1)样本所来自的总体的分布形式为任何形式,甚至是未知的,都能适用。
(2)收集资料方便,可用“等级”或“符号”来评定观察结果。
(3)多数非参数方法比较简便,易于理解和掌握。
(4)缺点是损失信息量,适用于参数统计法的资料用非参数统计方法进行检验将降低检验效能。
2.适用范围(1)等级资料。
(2)偏态分布资料。
当观察资料呈偏态或极度偏态分布而又未作变量变换,或虽经变量变换仍未达到正态或近似正态分布时,宜用非参数检验。
(3)各组离散程度相差悬殊,即方差明显不齐,且不能变换达到齐性。
(4)个别数据偏离过大,或资料为单侧或双侧没有上限或下限值。
秩和检验【医学统计学】
568.4
14.0
384.6
3.0
556.2
13.0
369.1
1.0
435.7
7.0
377.8
2.0
574.8
15.0
436.7
8.0
468.7
12.0
662.9
19.5
433.4
6.0
582.8
16.5
442.3
10.0
438.1
9.0
426.1
5.0
n1 10
T1 101
n2 12
T2 152
2.求检验统计量T 值
①省略所有差值为0的对子数,观察单位数减去0对子数 的个数 ②按差值的绝对值从小到大编秩,绝对值相等的差值若 符号不同取平均值,并保持原差值的正负号;
③任取正秩和或负秩和为T,本例取T-=3。
3. 确定P 值,作出推断结论
2020/8/8
15
检验步骤
查附表12 • 本例T=3,n=10,
3 9 6 8 7 -1 10 4 -2 5
T 52 T 3
2020/8/8
10
配对符号秩检验基本思想
• 当H0(差值的总体中位数Md=0)成立,任一配对差值出现正号、负号的 机会均等,秩和T-与T+的理论数也应相等为n(n+1)/4
• 可以证明:
• H0为真时,秩统计量T是对称分布 • H0非真时,T呈偏态分布
单纯⑴虚寒型 ⑵3 ⑶6 ⑷25 ⑸26 13 ⑻ 73
喘息虚寒型
1
3 10
9
3 26
虚寒阻塞型 16 28 61 27 ⑹9 141
2020/8/8
21
医学统计学秩和检验课件课件
医学统计学秩和检验课件xx年xx月xx日CATALOGUE目录•秩和检验概述•秩和检验的类型与计算方法•秩和检验的数据分析步骤•秩和检验的实例分析•秩和检验的注意事项与建议•总结与展望01秩和检验概述秩和检验是一种非参数统计方法,它通过将原始数据转换为秩(即相对位置),并利用秩的分布来进行假设检验。
定义秩和检验基于这样一个原理,即在不同组别中,如果总体分布相同,则秩的平均数应该相等。
因此,通过比较各组的秩平均数,可以判断各组的分布是否存在显著差异。
原理定义与原理优点适用于小样本数据:在样本量较小时,秩和检验仍然能够有效地检验假设,不受分布形状的限制。
不受异常值影响:由于秩和检验关注的是相对位置而不是具体数值,因此即使存在异常值,也不会对检验结果产生太大影响。
缺点对数据条件要求较高:秩和检验要求数据满足独立性、正态性和方差齐性等条件,否则可能导致误判。
检验效能较低:相对于参数检验方法,秩和检验的检验效能较低,即需要更大的样本量才能达到相同的检验效果。
秩和检验的优缺点临床医学研究在临床医学研究中,常常需要比较不同治疗方案的效果,此时可以使用秩和检验对不同组别的疗效进行比较。
秩和检验的应用场景生物医学研究在生物医学研究中,常常需要对不同生物样本(如动物、人类等)的生理指标进行比较,此时可以使用秩和检验来分析指标的差异。
流行病学研究在流行病学研究中,需要对不同地区、不同人群的疾病发病率、患病率等进行比较,此时可以使用秩和检验来分析差异是否存在。
02秩和检验的类型与计算方法配对比较法也称为配对t检验,它是对同一研究对象进行两种不同的处理,然后比较它们的结果。
配对比较法定义适用于小样本数据,特别是无法确定总体分布或总体方差未知的情况。
适用范围首先对配对数据求差值,然后对这些差值进行t检验。
计算方法独立样本法定义01独立样本法也称为独立t检验,它是对两个不同的总体进行比较。
适用范围02适用于大样本数据,并且样本的总体分布是正态分布或近似正态分布的情况。
医学统计学 9第九讲 秩和检验
7
2.20 0.05 2.5 2.99 0.84
8
2.12 -0.03 -1 3.19 1.04
9
2.42 0.27
4
3.37 1.22 10
2.52 0.37
5
4.57 2.42 11
1. 建立假设 H0:差值总体中位数为0 H1:差值总体中位数不为0;
α=0.05 2. 计算统计量: T+=62.5,T-=3.5
B组:1
2
4.5 4.5 4.5
+
8.5
++
++
++
+++
+++
6 8 9 10 11 12
4.5 8.5 8.5 8.5 11.5 11.5
秩和
A组: - 、、+、+、+、 ++ 秩和: 1 2 4.5 4.5 4.5 8.5
TA=25
B组: +、++、++、++、+++、+++ 秩和: 4.5 8.5 8.5 8.5 11.5 11.5
(4)将秩次冠以正负号,计算正、负秩和(T+,T-); T++T- =n(n+1)/2
(5)用不为“0”的对子数n及T(取绝对值小的秩和作为统
计量T)查T界值表,得到P值作出判断。
编秩
A组: - 、、+、+、+、++ B组: +、++、++、++、+++、+++
秩和检验
非参数统计的主要优点
①由于没有条件限制,适用范围广。它可适用于有序分类资料、 偏态分布资料、变异较大或方差不齐的资料、分布型不明的资 料及有特大、特小值或数据的某一端有不确定数值的资料。 ②搜集资料方便。由于非参数统计在搜集资料时可用“等级”或 “符号”来评定观察结果,因而搜集资料十分方便,更符合实 际情况。 ③具有较好的稳健性。参数检验是建立在严格的假定条件的基础 上,一旦不符合假定条件,其推断的正确性将受到质疑。非参 数检验则是带有最弱的假定,所受条件限制很少,稳健性好。
配对符号秩检验基本思想
H0为真时,T服从对 称分布,大多数情况下,T 在对称点n(n+1)/4附近。
H0为非真时,T呈
偏态分布,大多数的情 况下,T远离对称点为
n(n+1)/4。
符号秩检验的基本思想
可以证明:当H0(Md=0)成立时,任一配对的差值出现正号与负 号的机会均等,因此,秩和T+与T-的理论数(期望值)也应相等, 由T+与T-之和为n(n+1)/2可知,T+与T-的理论数为n(n+1)/4,当n 很大时,T近似服从均数T为n(n+1)/4,方差为n(n+1)(2n+1)/2 4的正态分布。 H0不成立时,统计量T呈偏态分布,并且在大多数情况下T远离n (n+1)/4 。 因此,在H0成立的情况下T远离n(n+1)/4为小概率事件,可认为 在一次抽样中是不会发生的,故当出现这种情况时推断拒绝H0。
第一节 配对设计资料的符号秩 和检验
(Wilcoxon signed-rank test)
一、基本思想 二、检验步骤
一、基本思想
符号秩和检验:是由Wilcoxon于1945年提出,又称 Wilcoxon 符号秩检验 常用于检验差值的总体中位数是否等于零 配对资料有: 同对的两个受试对象分别接受不同处理 同一样品用两种不同方法测试 同一受试对象处理前后的比较或不同部位测定值比较
10第九章 秩和检验
3.确定P值、做出推论
(1)当n≤50时,查T界值表。 n≤50时 界值表。 若检验统计量T值在界值范围内, 若检验统计量T值在界值范围内,则P值>表上方 相应概率水平; 相应概率水平; 值在界值范围外, 相应的概率水平。 若T值在界值范围外,则P值<相应的概率水平。 • 本例n=10,T=3.5,用n =10,α=0.05(双侧 本例n 10,T=3.5 3.5, 10, 0.05(双侧 查T界值表,得T0.05/2,10=8~47,未包括T+ 界值表, 47,未包括T+ 0.05/ 所以P<0.05。 P<0.05 与T-,所以P<0.05。 • 按双侧0.05水准拒绝H0,接受H1,提示用平肝 按双侧0.05水准拒绝H 0.05水准拒绝 接受H 潜阳法辨证施治高血压病人前后舒张压变化的差 别有统计学意义。 别有统计学意义。 50,超出T界值表的范围,可用u检验。 (2)若n>50,超出T界值表的范围,可用u检验。
卫生统计学第九章 秩与检验
──────────────────────
1
0.5
0.0
0.5
2
2
2.2
1.1
1.1
7
3
0.0
0.0
0.0
-
4
2.3
1.3
1.0
6
5
6.2
3.4
2.8
8
6
1.0
4.6
-3.6
-9
7
1.8
1.1
0.7
3.5
8
4.4
4.6
-0.2
-1
9
2.7
3.4
-0.7
-3.5
10
1.3
2.1
-0.8
-5
━━━━━━━━━━━━━━━━━━━━━━
1、建立假设和确定检验水准
H0: 差值总体中位数Md=0 H1: 差值总体中位数Md≠0 α=0.05
2、求差值
3、编秩:
(1)依差值绝对值从小到大编秩,再根据差值 的正负给秩次冠以正负号; (2)差值为零时,舍去不计(例数相应减1); (3)差值相等,符号相同,按顺序编秩; (4)差值相等,符号不同,取平均秩次。
而当相同秩次较多(超过25%)时,需计算校正
HC值. 本例:
HC =H/C
C=1-
(
t
3 j
t
j)
(N 3 N )
H 12 Ri23(N1)
N(N1) n1
12(22 19.5 2 2 5.5 7 2) 3 (1 8 1 ) 1.9 45
1(1 8 8 1 )
6
5、确定P值
应概率 T恰好等于界值, P值等于表上方相应
医学统计学秩和检验课件
确定样本量和分组
在应用秩和检验时,需要确定合适的 样本量和分组,以使结果更具有代表 性和可靠性。
统计结果的解读与报告
解读P值
秩和检验的P值是用来判断假设是否成立的 重要依据。如果P值小于显著性水平(如 0.05),则可以拒绝原假设。
报告结果
在报告秩和检验结果时,需要包括以下内容 :样本量、分组、秩和统计量、P值、95% 置信区间等。同时还需要对结果进行解释和 说明。
案例四:多个样本比较法应用实例
总结词
多个样本比较法是将多个样本的秩和分别进行排列,然 后根据秩和顺序进行多重比较的一种秩和检验方法。
详细描述
多个样本比较法适用于需要对三个或更多个样本进行比 较的情况,例如在药物疗效研究中比较不同药物的治疗 效果。该方法可以通过一次检验同时处理多个样本,提 高统计效率,但需要注意控制假阳性率。
在生物统计学中的应用
遗传学研究
在遗传学研究中,秩和检验可用于比较不同基因或基因组在不同物种或种群之间的差异。通过对基因序列、表达 谱等数据进行统计分析,有助于揭示遗传多样性和物种演化的规律。
生物分类学
在生物分类学研究中,秩和检验可用于比较不同物种或类群之间的形态特征、生态习性等方面的差异。为生物分 类学研究和系统发生学分析提供定量方法支持。
原理
秩和检验基于这样一种思想:在大多数情况下,如果两个样本的总体分布相同, 那么它们在各个样本中的相对大小(即秩)应该大致相同。因此,如果两个样本 的秩存在显著差异,那么我们就可以认为它们的总体分布存在显著差异。
秩和检验的适用范围
适用范围
秩和检验主要用于处理等级数据,例如病人症状的轻重程度、治疗效果的好坏 等。它不适用于处理不服从正态分布的数据。
秩和检验分析
不确定值
方差齐性检验(以两样本t检验数据为例)
两样本t检验
两组独立样本秩和检验
根据经验,百分率通常 不属于正态分布
本书中两样本秩和检验示例
???
正态性检验及方差齐性检验
重新按照两独立样本t检验进行计算,结果一样
完全随机设计多样本秩和检验
若数据或经过数据转换仍不满足方差分析的前提条件的, 需进行秩和检验 方法同两样本秩和检验 Kruskal-Wallis H检验,适用于多样本连续型变量的分析
如果二者相差太大,超出界值范围,则拒绝原假设
应用Wilcoxon配对符号秩和检验
配对样本秩和检验
完全随机设计的两组独立样本秩和检验
资料不服从正态分布 资料方差不齐(样本较小时,专业知识判断很重要) 欲推断两样本代表的两总体分布是否相同,即是否来自同 一总体 两组数据由大到小,统一编秩,遇相同数据,取平均秩次 分别求两组秩和 选样本例数较小组秩和为统计量T 查表法或软件计算 Mann-Whitney Wilcoxon 检验,亦称Mann-Whitney U 检验
统计软件R
单样本秩和检验
推断样本中位数与已知总体中位数是否相等(各观察值与 已知总体中位数之差) 因差值有正有负,所以有符号的区别,故称为符号秩和检 验 对差值进行正态性检验,不符合即进行Wilcoxon符号秩和 检验 秩次相加,正秩、负秩分别相加,取绝对值小的秩和为T 统计量,查表或软件计算P值
正态性检验—单样本举例
秩和检验
(Rank Sum Test) (Rank-Based Test)
参数检验与非参数检验
参数检验
– 来自于某种分布的总体或总体符合某种假设 – 是对总体参数进行的假设检验 – 总体均数或方差 – 如u检验,t检验,方差分析等
秩和检验(SPSS)分析
其他相关信息
此外,还会提供其他相关信 息,如可信区间、P值等, 帮助用户更全面地理解检验 结果。
03
秩和检验的优缺点
秩和检验的优点
无假设限制
秩和检验不需要严格的假设条件,如正态分布、方差 齐性等,因此应用范围较广。
适用于小样本
在样本量较小的情况下,秩和检验能够提供较为准确 的结果。
避免数据异常值影响
应用价值。
未来研究可以进一步探讨秩和 检验与其他统计方法的结合使 用,以更好地满足研究需求。
在实际应用中,研究者应充分 了解秩和检验的适用范围和限 制条件,根据具体情况选择合 适的统计方法。
随着大数据时代的到来,秩和 检验在处理大规模数据方面的 应用将更加广泛,有助于推动 各领域研究的深入发展。
THANKS
运行检验
点击“运行”按钮,SPSS将自动进 行秩和检验,并输出检验结果。
SPSS中秩和检验的结果解读
描述性统计结果
检验统计量
在检验结果中,首先会给出 各个组别的描述性统计结果, 包括各组的频数、百分比、 中位数等。
接着会给出检验的统计量, 包括秩次、秩次之和、平均 秩次等。
检验结论
根据统计量的大小和分布情 况,SPSS会给出检验结论, 判断各组之间是否存在显著 差异。
04
秩和检验的案例分析
案例一:配对设计资料的秩和检验
总结词
配对设计资料的秩和检验适用于对同一观察对象在不同条件下进行观察或测量的情况,例如同一批受 试者在不同时间点的观察值。
详细描述
配对设计资料的秩和检验首先需要对配对数据进行分析,确定配对数据是否具有相关性,然后采用适 当的统计方法进行检验。在SPSS中,可以使用Wilcoxon匹配对符号秩检验或Wilcoxon符号秩检验等 方法进行配对设计资料的秩和检验。
医学统计学秩和检验课件课件
它利用数据排序后的秩次(即数 据在排序后的位置)代替原始数 据,通过比较不同组别间秩次的 平均值来推断各组之间的差异。
适用范围
适用于总体分布不明 确或不符合正态分布 的情况。
可用于处理等级数据 、有序分类数据和无 序分类数据。
适用于小样本或样本 量不均衡的情况。
特点
01
秩和检验不受总体分布 限制,具有较好的稳健 性。
秩和检验无法处理含有缺失值的数 据,如果数据中存在缺失值,需要 进行适当的处理或剔除。
使用注意事项
选择合适的检验方法
在应用秩和检验时,需要根据数据的实际情况选择合适的检验方 法,如配对比较、独立样本或等级数据等。
注意数据的异常值和离群点
在应用秩和检验前,需要关注数据中的异常值和离群点,并进行适 当的处理。
数据清洗
对数据进行预处理,如缺 失值填充、异常值处理等 。
描述性统计
对数据进行描述性统计分 析,如均值、中位数、标 准差等,以了解数据的基 本特征。
秩和检验实施
根据数据类型和检验目的 选择适当的秩和检验方法 ,如Wilcoxon秩和检验或 Mann-Whitney U检验。
结果解释与结论
结果解释
根据秩和检验的结果,解释数据间的差异是否有统计学显著性。
考虑数据的分布情况
在应用秩和检验时,需要考虑数据的分布情况,如果数据不符合正 态分布,可能需要采用其他统计方法。
05
秩和检验的实例分析
实例选择与数据收集
实例选择
选择一组实际的临床数据或公共卫生数据,数据应具有代表性且符合正态分布 。
数据收集
确保数据来源可靠,收集过程严谨,避免数据误差和偏倚。
实例分析过程
03
医学统计学秩和检验课件
秩和检验基于以下原理:对于来自同一总体的两个样本,它 们的样本分布形状应该相同;如果来自不同总体的两个样本 ,它们的样本分布形状应该有显著差异。
秩和检验的优缺点
优点
秩和检验不依赖于数据的分布假设,因此它比参数统计方法更具有稳健性; 同时,秩和检验可以处理各种类型的数据,包括定性和定量数据。
缺点
场景3
在社会科学研究中,对于一些评价社会现象的指标,如幸福感、生活质量等,秩和检验可 以用来比较不同地区或不同群体之间的差异。
02
秩和检验的类型与方法
配对比较法
01 02
定义
配对比较法也称为配对t检验,它是在医学研究中经常使用的一种统计 方法。这种方法主要用于分析两组配对的样本,以评估它们之间的平 均值是否存在显著差异。
适用范围
配对比较法适用于分析两种相关样本间的关系,例如同一组患者在治 疗前后的血压或血糖水平的变化。
03
步骤
首先,将两组配对的样本数据按大小进行排序,并赋予秩次;然后,
计算每组的平均秩次,并使用t检验来比较两组的平均秩次是否存在显
著差异。
独立样本法
定义
独立样本法也称为独立t检验,它是在医学研究中常用的 另一种统计方法。这种方法主要用于比较两个独立的样 本,以评估它们的平均值是否存在显著差异。
其他秩和统计量及其分布
Mann-Whitne…
也称为U统计量,用于比较两个独立样本的总体中 位数是否相同。
Jonckheere-…
也称为Z统计量,用于比较两个或更多有序样本的 总体中位数是否相同。
分布
Mann-Whitney U统计量服从于正态分布,其均 值和方差与Wilcoxon秩和统计量相同。
选择研究对象
《秩和检验》课件
秩和检验在应用中需要注意数据的分布情况、样本量 大小等因素,以确保结果的准确性和可靠性。
秩和检验是一种非参数统计方法,适用于处理 等级数据和不符合正态分布的数据,能够有效 地解决实际应用中的问题。
秩和检验具有广泛的应用领域,如医学、生物学 、心理学、经济学等,可用于比较不同组别之间 的差异、探索影响因素等。
案例二:独立样本的秩和检验
总结词
独立样本的秩和检验适用于对两个独立 样本进行比较的情况,例如不同组别之 间的比较。
VS
详细描述
独立样本的秩和检验通过将两个独立样本 的数据进行混合,然后按照大小进行排序 ,再利用秩次进行统计分析,从而得出两 个独立样本是否有统计学差异。
案例三:等级资料的秩和检验
总结词
检验统计量及其分布
检验统计量
根据秩和数据计算检验统计量,如Z、T等。
分布情况
检验统计量需要符合特定的概率分布,如正态分布、t分布等。在计算检验统计 量的过程中,需要考虑其分布情况。
03
秩和检验的优缺点
秩和检验的优点
适用范围广
无假设限制
秩和检验可用于连续变量、有序分类变量 和无序分类变量的比较,适用范围较广。
《秩和检验》ppt课件
• 秩和检验概述 • 秩和检验的基本步骤 • 秩和检验的优缺点 • 秩和检验的案例分析 • 结论与展望
01
秩和检验概述
秩和检验的定义
秩和检验是一种非参数统计检验方法 ,通过将原始数据转换为秩次,然后 对秩次进行统计分析,以判断两组数 据是否存在显著差异。
它不需要假设数据符合特定的概率分 布,因此具有更广泛的应用范围。
研究展望
01
进一步研究秩和检验在不同领域 中的应用,拓展其应用范围和深 度。
医学统计学09秩和检验
32
例 两种方法测定血清谷-草转氨酶
样品号 (1) 1 2 3 4 5 6 7 8 9 10 旧法 (2) 40 132 212 80 38 212 230 95 236 38 新法 (3) 60 142 210 82 25 243 237 100 200 43 差值 (4) -20 -10 2 -2 13 -31 -7 -5 36 -5 秩次 (5) -8 -6 1.5 -1.5 7 -9 -5 -3 10 -4
非参数统计
直接比较分布
样本所来自的总体分布不能确定,这时参数统计 方法不适用,需要借助于另一种不依赖总体分布的具体 形式的统计方法,称为非参数估计。
7
8.1 秩次与秩和
秩次(rank),秩统计量 是指全部观察值按某种顺序排列的位序; 秩和(rank sum) 同组秩次之和。
8
例8.1 编秩
A组: - 、±、+、+、+、++ B组: +、++、++、++、+++、+++ A:- ± + + + ++ 1 2 4.5 4.5 4.5 8.5 3 4 5 7 B: + ++ ++ ++ +++ +++ 4.5 8.5 8.5 8.5 11.5 11.5 4.5 8 6 9 10 11 12
9
秩和
A组: - 、±、+、+、+、 ++ 秩和: 1 2 4.5 4.5 4.5 8.5
TA=25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Solution to the task
Blue-male Red- female
16
The locations of small value are in front(small rank), and great value are in the post(great rank).
17
rank sum
0.112
0.9113
2018/9/28
6
7
Compare proportion by Chisquare test
Drugs Effect of drug effective Not effective 41 4 24 11 65 15 total Sampl e rates
Drug A Drug B total
4
Compare means by t-test
type
Single sample t-test Paired t-test
conditions
H0
μ=μ0
x ,S,n,μ0
t x 0 t s/ n
ν n-1
d ,Sd,n
μd=0 ,
t
d 0 sd / n
np-1
Two group ttest
Sum(T1 ,T2)=N(N+1)/2=210
23
STEP III: Determine P Value, conclusion
From table in appendix E, by n1=8,n2-n1=4, we
have the critical interval of Tα (58-110)
21
ห้องสมุดไป่ตู้
STEP II: Statistic
Assign Ranks
To pool n1 +n2 observations to form a single sample rank all observations of the pooled sample from smallest to largest in column 2 and 4 Mid-ranks are used by tied values
Part I: Wilcoxon Rank Sum Test
Rank Sum Test for Comparing the Locations of Two Populations Mann-Whitney test review t-test for comparing 2 population means Normality and homogeneity
R total n1 n2 n
9
Test Statistic
(A T) T
2 2
A (T) 41 (36.56) 24 (28.44) 4 (8.44) 11 (6.56)
2
41 36.562
36.56
2 4 8.44
8.44
2 24 28.44
45 35 70
91.1 68.6
Are the 2 population proportions equal or not? How categorical variables are distributed among 2 population?
8
solution
H0: πA = πB H1: πA≠πB, α=0.05
OUTLINE
Basic logic of rank based methods Rank sum test for 2 independent group (Completely random design) Sign rank test for Paired design Rank sum test for 3 or more independent group (Completely random design) Multiple Comparison
Pooled sample time rank time rank 28 11 14 1 30 12 15 2 34 13 16 3 35 14 17 4 44 15 19 5 46 16 21 6.5 46 17 21 6.5 48 18 23 8 49 19 25 9.5 50 20 25 9.5 n1=8 T1=127.5 n2=12 T2=82.5
Calculate T and Test Statistic, Chi-square
A (T)
41 (36.56)
24 (28.44)
4 (8.44)
11 (6.56)
Drug A B C total
positive T11 36.56 T21 28.44 m1
negative T12 8.44 T22 6.56 m2
20
n1=8
T1=127.5
STEP I: Test Hypothesis and sig. level
H0:M1=M2 population locations of survival time
of both cat and rabbit are equal H1: M1 ≠ M2 population locations of survival time of both cat and rabbit are not equal ; a = 0.05
Measures of central
Measures of Dispersionquantitative data
Range, Interquartile range , Variance and standard deviation , coefficient of variation
Lecture9 nonparametric methods
Xiaojin YU Department of Epi. And Biostatistics, School of public health,Southeast university
1
Review: Type of data
qualitative data (categorical data) (1) binary (dichotomous, binomial) (2) multinomial (polytomous) (3) ordinal quantitative data
18
Rank: 1
2018/9/28
2
3.5
3.5
5
6
19
EXAMPLE 1: Table 9.1 Survival Times of Cats & Rabbits without oxygen
Cats minutes 25 34 44 46 46 48 49 50 rank 9.5 13 15 16 17 18 19 20 rabbits minutes rank 14 1 15 2 16 3 17 4 19 5 21 6.5 21 6.5 23 8 25 9.5 28 11 30 12 35 14 n2=12 T2=82.5
Since T=127.5, is beyond of Tα, so,P≤α。Given α=0.05, P<0.05;
H0 is rejected, it concludes that the survival times
of cats and rabbits in the environment without oxygen might be different. Cat will survive for longer time without oxygen.
13
Rank & Rank Sum
Review of median Example of duration in Hospital: month 3.1 5.5 6.0 10.2 11.9 rank 1 2 3 4 5
14
Task to you
How to compare boys are taller or girl are taller no measuring is allowed?
Zc Z / c
C 1 (t j3 t j ) /(N 3 N )
26
EXAMPLE 2: Table 9-2 Results From a Clinic Trial for Hypertension
28.44
2 11 6.56
6.56
6.573
10
Conclusion
Since 6.573>3.84, P<0.05, we reject H0,accept H1 at 0.05 level, so We conclude that the two populations are not homogeneous with respected to effect of drug. The effects of drug A and drug B are not equivalent.
2
tendency- quantitative data