加热炉串级控制(参数整定)

合集下载

复杂过程控制系统--串级控制

复杂过程控制系统--串级控制

14
对于一个控制系统来说,当它在给定信号作用 下,其输出量能复现输入量的变化,即Y1(s)/X1(s) 越接近于1时,则系统的控制性能越好;当它在扰 动作用下,其控制作用能迅速克服扰动的影响,即 Y1(s)/F2(s)越接近于0时,则系统的控制性能越 好,系统的抗干扰能力就越强。 ❖ 图4-5串级控制系统抗干扰能力可用下式表示: Q C 2 ( s )= Y Y 1 1 ( ( s s ) ) / /X F 2 1 ( ( s s ) )= W C W 1 ( s * ) 0 W 2 ( 's 0 2 ) ( s )= W C 1 ( s ) W C 2 ( s ) W V ( s )
9
二、串级控制系统的特点与分析
在结构上与电力传动自动控制系统中的双闭 环系统相同(比单回路系统多了一个副回路),其 系统特点与分析方法亦基本相同。
主回路(外环):定值控制系统 副回路(内环):随动控制系统 与单回路系统相比,串级控制系统多用了一 个测量变送器与一个控制器(调节器),增加的投 资并不多(对计算机控制系统来说,仅增加了一个 测量变送器),但控制效果却有显著的提高,其原 因在于串级控制系统中增加了一个包含二次扰动 的副回路。
16
单回路控制系统的抗干扰能力为
Y(s)/X(s) QD2(s)=Y(s)/F2(s)=W C(s)W V(s)
串级控制系统与单回路控制系统的抗扰动能力
之比:
QC2(s) =WC1(s)WC2(s)
QD2(s)
WC(s)
设串级与单回路系统均采用比例调节器,其比
例放大系数分别为KC1、KC2、KC,则上式变为
第四章 复杂过程控制系统
❖串级控制 ❖前馈控制 ❖大滞后补偿控制 ❖比值控制 ❖分程与选择性控制 ❖多变量解耦控制 ❖模糊控制 ❖预测控制

实验四 串级控制系统

实验四 串级控制系统

实验四 加热炉温度串级控制系统(实验地点:程控实验室,崇实楼407)一、实验目的1、熟悉串级控制系统的结构与特点。

2、掌握串级控制系统临界比例度参数整定方法。

3、研究一次、二次阶跃扰动对系统被控量的影响。

二、实验设备1、MATLAB 软件,2、PC 机 三、实验原理工业加热炉温度串级控制系统如图4-1所示,以加热炉出口温度为主控参数,以炉膛温度为副参数构成串级控制系统。

图4-1 加热炉温度串级控制系统工艺流程图图4-1中,主、副对象,即加热炉出口温度和炉膛温度特性传递函数分别为主对象:;)130)(130()(18001++=-s s e s G s 副对象:21802)1)(110()(++=-s s e s G s主控制器的传递函数为PI 或PID ,副控制器的传递函数为P 。

对PI 控制器有 221111)(),/(,111)(c c I c I I c I c c K s G T K K s K K s T K s G ==+=⎪⎪⎭⎫ ⎝⎛+=采用串级控制设计主、副PID 控制器参数,并给出整定后系统的阶跃响应曲线和阶跃扰动响应曲线,说明不同控制方案控制效果的区别。

四、实验过程串级控制系统的设计需要反复调整调节器参数进行实验,利用MATLAB 中的Simulink 进行仿真,可以方便、快捷地确定出调节器的参数。

1.建立加热炉温度串级控制系统的Simulink 模型 (图4-2)在MATLAB 环境中建立Simulink 模型如下:)(01s G 为主被控对象,)(02s G 为副被控对象,Step 为系统的输入,c 为系统的输出,q1为一次阶跃扰动,q2为二次阶跃扰动,可以用示波器观察输出波形。

PID1为主控制器,双击PID 控制器可设置参数:(PID 模块在MATLAB/Simulink Library Browser/Simulink Extras ),Step 为阶跃信号,参数起始时间应设置为0。

加热炉出口温度与燃料油压力串级控制系统

加热炉出口温度与燃料油压力串级控制系统
例如,当炉出口温度因原料油流量的减小或初温的上升而 升高,同时炉膛温度也因燃料压力的增大而升高时,炉出口温度 升高,主控制器感受的偏差为正,因此它的输出减小,也就是说, 副控制器的设定值减小。与此同时,炉膛温度升高,使副测量值 增大。这样一来,副控制器感受的偏差是两方面作用之和,是一 个比较大的正偏差。于是它的输出要大幅度地减小,控制阀则根 据这一输出信号,大幅度地关小阀门,燃料流量则大幅度地减小 下来,使炉出口温度很快地回复到设定值。
项目三 串级控制系统
串级控制系统
内容提要
本项目讲述以提高系统控制质量为目的的串 级控制系统。主要介绍了串级控制系统的组成原 理与结构,系统特点,应用范围、串级控制方案 的设计原则,最后介绍了串级控制系统的投运步 骤和参数整定方法。
项目三 串级控制系统
在简单反馈回路中增加了计算环节、控制环 节或其他环节的控制系统统称为复杂控制系统。 复杂控制系统的种类较多,按其所满足的控制要 求可分为两大类:
从上述分析中可以看出,在串级控制系统中,由于引入了一 个副回路,因而能及早克服从副回路进入的二次扰动对主变量的 影响,又能保证主变量在其他扰动(一次扰动)作用下能及时加 以控制,因此能大大提高系统的控制质量,以满足生产的要求。
项目三 串级控制系统
3.2 串级控制系统的特点
从总体来看,串级控制系统仍然是一个定值控制系统。 但是和简单控制系统相比,串级控制系统在结构上增加了一 个与之相连的副回路,因此具有很多特点,如下所述。
图3.3 加热炉温度串级控制系统方框图
项目三 串级控制系统
3.1.2 串级控制系统的结构
1.方框图 串级控制系统是一种常用的复杂控制系统,它是根据系统
结构命名的。串级控制系统由两个控制器串联连接组成,其中一 个控制器的输出作为另一个控制器的设定值。 如图3.4所示,为串级控制系统的通用原理方框图。由该图 可以看出,串级控制系统在结构上具有以下特征: (1)将原被控对象分解为两个串联的被控对象; (2)中间变量为副被控变量,称为副控制系统; (3)以原对象的输出信号为主被控变量,构成一个主控制系 统,称为主控制系统、主回路或主环; (4)主控制系统中控制器的输出信号作为副控制系统控制器 的设定值; (5)主回路是定值控制系统,副回路是随动控制系统。

基于PID参数自整定的炉温模糊串级控制系统设计

基于PID参数自整定的炉温模糊串级控制系统设计
r mee swa e e t d a d t e f z y c s a o to y t m a e n c n g r to ot r a t r spr s n e n h u z a c de c n r ls se b s d o o f u ain s fwa e,i tli e e i n elg nc me s rn p la e a d c s a e c n r lwa n e tg td i g s f r a e . Th e ul h we h tt e a u i g a p inc n a c d o to s i v sia e n a u n cs e r s t s o d t a h s g o fe t r c e e y t e c s a o tolr a h st mpe au e c nto y tm a h h r c o d e fc swe e a hiv d b h a c de c n r le nd t i e r t r o r ls se h s t e e a a — t rsis o t t c u a y,a a t b lt e itc fsa i a c r c c d p a ii y,r la lt e ibi y,a d a t—ntre e c . i n n ii ef r n e
The de i n o e p r t r uz y c s a e c n r ls se sg f t m e a u e f z a c d o t o y t m
b sd o ef d u t gP D p r mee s a e n sl a j si I a a tr - n
Ke r stm ea r o t l c sa ecnrl sl ajsn I aa tr; uzdPD; ne— ywod : p rt ecnr ; ac d o t ; e -dut gPD prme s fze —I it e u o o f i e l

基于matlab的加热炉串级控制的设计

基于matlab的加热炉串级控制的设计

课程设计任务书学生姓名:专业班级:电气1002班指导教师:刘教瑜工作单位:自动化学院题目: 基于matlab的加热炉串级控制的设计初始条件:有一个加热炉系统,系统参数设定为:1.物料以恒定速度进入管道,流速为20L/s,管道直径为10cm,不考虑物料浓度变化、压力变化等其他条件。

2. 物料在加热炉内的长度为5m,假定物料受热均匀,并在4s后上升至指定温度。

3. 假定燃气混合浓度不变,物料温度上升只受燃料流量影响。

4. 不考虑环境温度、燃料热值等影响,主要考虑燃料流量的扰动。

当此加热炉当出口温度要求70±2℃时,设计一个温度-流量串级控制系统,并用matlab软件对其进行仿真。

要求完成的主要任务:1、运用matlab对加热炉控制系统进行仿真2、分析仿真结果,理解PID控制的意义。

时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录1设计要求 (1)2系统建模分析 (1)2.1影响因素分析 (1)2.2系统方框图的建立 (1)2.3工作过程分析 (2)3 调节阀与检测变送器的选取 (2)3.1 调节阀的选取 (2)3.2 温度检测变送器的选取 (2)3.2.1温度检测器 (2)3.2.2温度变送器 (3)3.3流量检测变送器选取 (4)4 调节器的设定 (5)4.1调节器正方作用选择 (5)4.2调节器控制类型选择 (6)4.2.1 PID控制原理 (6)4.2.2 PID控制各参数的作用 (6)4.2.3 加热炉串级控制PID控制规律的选择 (7)5调节器参数整定 (8)5.1副回路控制器设计 (8)5.2主回路控制器设计 (9)5.2.1 用Ziegler-Nichols方法设计控制器 (9)5.2.2 用ITAE方法设计控制器 (10)6基于MATLAB simulink方框图的仿真模拟 (11)6.1 用simulink对Ziegler-Nichols方法设计的控制器仿真模拟 (11)6.1.1 用simulink建立Ziegler-Nichols方法PI控制仿真 (11)6.1.2 Ziegler-Nichols方法PID控制仿真 (12)6.2 用simulink对ITAE方法设计的控制器仿真模拟 (13)6.2.1 用simulink建立ITAE方法PI控制仿真 (13)6.2.2 用simulink建立ITAE方法PID控制仿真 (14)6.3 仿真结果分析 (16)7总结 (17)8参考文献 (18)基于matlab的加热炉串级控制的设计1设计要求有一个加热炉系统,系统参数设定为:1.物料以恒定速度进入管道,流速为20L/s,管道直径为10cm,不考虑物料浓度变化、压力变化等其他条件。

课程设计--加热炉温度串级控制系统(设计部分)

课程设计--加热炉温度串级控制系统(设计部分)

加热炉温度串级控制系统设计摘要:生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。

传统的单回路控制系统很难使系统完全抗干扰。

串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中.结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性.关键词:串级控制干扰主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade co ntrol system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLA B-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (5)2.3方案选择 (5)3、串级控制系统的特点 (6)4. 温度控制系统的分析与设计 (7)4.1控制对象的特性 (7)4.2主回路的设计 (8)4.3副回路的选择 (8)4.4主、副调节器规律的选择 (8)4.5主、副调节器正反作用方式的确定 (8)5、控制器参数的工程整定 (10)6 、MATLAB系统仿真 (10)6.1系统仿真图 (11)6.2副回路的整定 (12)6.3主回路的整定 (14)7.设计总结 (16)【参考文献】 (16)1.前言加热炉是炼油、化工生产中的重要装置之一。

串级控制

串级控制

串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。

例:加热炉出口温度与炉膛温度串级控制系统1. 基本概念即组成结构串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。

前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。

整个系统包括两个控制回路,主回路和副回路。

副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。

一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。

二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。

2. 串级控制系统的工作过程当扰动发生时,破坏了稳定状态,调节器进行工作。

根据扰动施加点的位置不同,分种情况进行分析:* 1)扰动作用于副回路* 2)扰动作用于主过程* 3)扰动同时作用于副回路和主过程分析可以看到:在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。

副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。

3. 系统特点及分析* 改善了过程的动态特性,提高了系统控制质量。

* 能迅速克服进入副回路的二次扰动。

* 提高了系统的工作频率。

* 对负荷变化的适应性较强4. 工程应用场合* 应用于容量滞后较大的过程* 应用于纯时延较大的过程* 应用于扰动变化激烈而且幅度大的过程* 应用于参数互相关联的过程* 应用于非线性过程5. 系统设计* 主参数的选择和主回路的设计* 副参数的选择和副回路的设计* 控制系统控制参数的选择* 串级控制系统主、副调节器控制规律的选择* 串级控制系统主、副调节器正、反作用方式的确定编辑本段串级控制系统的设计1. 主回路的设计串级控制系统的主回路是定值控制,其设计单回路控制系统的设计类似,设计过程可以按照简单控制系统设计原则进行。

加热炉论文

加热炉论文

加热炉串级控制系统摘要本设计是加热炉串级控制系统的设计方案,利用MATLAB中的Simulink进行系统仿真,并采用临界比例度法进行参数的整定,最终完成符合实际要求的加热炉串级控制系统的设计方案。

关键词:加热炉串级控制系统主控制量临界比例度1序言在大多数情况下,简单控制系统由于其自身需要的自动化仪表少,设备投资少,维护、投运简单,同时,生产实践证明它能解决大量的生产控制问题,满足定值控制的要求,因此,简单控制系统是生产过程自动控制中最简单、最基本、应用最广的一种形式,约占自动控制系统的90%左右。

但是,针对不同的生产过程为满足其生产过程的生产工艺、生产参数的不同要求,简单控制系统已不能满足生产要求,所以相继出现了各种复杂控制系统,例如,串级控制系统,前馈控制系统,纯滞后补偿控制系统和解耦控制系统等。

在各种复杂控制系统中,串级控制系统占有较大比重。

串级控制系统是在简单控制系统的基础上发展起来的,为双闭环或多闭环控制系统。

串级控制系统可以应用于容量滞后较大的对象,纯滞后较大的对象,扰动变化激烈而且幅度大的对象和参数互相关联的对象。

工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。

加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。

在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。

从实际工程可知,加热炉出口温度的控制系统中的温度属于容量滞后较大的对象,为了提高控制质量,采用串级控制系统,选择滞后较小的炉膛温度为副参数,构成炉出口温度对炉膛温度的串级控制系统。

运用副回路的快速作用,将有效地提高控制质量,可以满足生产要求。

为此设计以串级控制为基础的加热炉串级控制系统,对该生产过程有积极意义。

2加热炉串级控制系统分析2.1加热炉串级控制系统的描述加热炉温度控制系统如图1所示,原料在加热管中从入口到出口过程中被加热到指定的温度。

第四章 串级控制系统

第四章 串级控制系统
要求: 被加热物料的出口温度为定值。 控制方案一 影响因素: (1)被加热物料的流量和初温f1(t); (2)燃料油压力的波动、流量的变化、燃料值的变化f2(t); 被控参数: 出口温度 控制参数:燃料油流量
(3)烟囱抽力变化f3(t);
(4)配用、炉膛漏风和环境温度的影响f4(t). 缺陷:由于对象内部燃料油要经管道传输、燃烧、传热等一系列环节,总滞后较大 (15min),导致控制作用不及时,另燃料油压力变化较大且频繁,致使偏差较大。 东北大学
' K02 K02
K C 2 KV K 02 1 K C 2 KV K 02 K m 2
' T02
T02 1 K C 2 KV K 02 K m 2
由于Km2>1,有:
' T02 T02
从以上可以证明,由于副回路的存在,可以使等效对象的时间常数大大减小,整个 系统中对象总的时间滞后近似地等于主对象的时间滞后,单回路控制系统对象总的时间 滞后要有所缩短,使得系统的动态响应加快,控制更加及时,最大动态偏差得到减小;
进料 精 1馏 塔 再 沸 器
FC
设 定 值 FT
2
蒸汽
凝液 塔底出料
进料 精 1馏 塔
TT
TC
FC
FT
最大偏差不超过 1.5 C
o
再 沸 器
2
蒸汽
凝液 塔底出料
东北大学
4.2串级控制系统的应用范围 4. 克服对象的非线性
工业过程存在非线性,负荷变化引起工作点的移动,通过调节阀的 特性补偿。由于受调节阀等各种条件的限制,仍存在较大非线性。 采用串级控制系统,能适应负荷和操作条件的变化,自动调节副调 节器的给定值,改变调节阀未知,使系统运行在新的工作点。

串级控制原理

串级控制原理

一般 K c 2取值较大,K c1 K c K c1 K c 2 K c
即:串级控制系统克服二次干扰的能力大于单回路控制系统 (约10~100倍)。
串级控制系统克服一次干扰的能力也比单回路控制系统强。 2、提高了系统的工作频率 双容对象的单回路控制系统如下图所示:
X (S )
Kc
K2 1T02S
输出对于二次扰动的传递函数:
WV ( s)W02 ( s)W01 ( s) Y1 S) ( F2 S) 1 Wc1 ( s)Wc 2 ( s)WV ( s)W02 ( s)W01 ( s)Wm1 ( s) Wc 2 ( s)WV ( s)W02 ( s)Wm 2 ( s) ( Y1 S) X 1 S) ( / ( 若克服二次干扰的能力用 来表示 Y1 S) F2 S) ( / ( Y1 S) X 1 S) ( / ( 则 Wc1 ( S )Wc 2 ( S ) K c1 K c 2 Y1 S) F2 S) ( / (
二、副变量的选择
选择原则: (1)在保证副回路时间常数较 小的前提下,使其纳入主 要的和更多的干扰 副回路包含的干扰越多, 其通道越长,克服干扰的灵敏 度越低。
(2)应使主、副对象的时间常数匹配 为确保串联系统不产生共振,一般取
d 2 (3 ~ 10)d 1
副回路工作频率 主回路工作频率
(3)应考虑工艺上的合理性、可能性和经济性
返回
假设主、副调节器均采用比例调节器,即Wc1 ( S ) K c1,Wc 2 ( S ) K c 2
单回路控制系统方框图如下:
F2 ) (S F1 ) (S
X(S)
Y(S)

Wc (S )
WV (S )

加热炉温度串级控制系统说明书

加热炉温度串级控制系统说明书

设计说明书1加热炉的简介1.1加热炉的基本构成与组成加热炉是一种直接受热加热设备主要用于加热气体或液体,所用燃料通常有燃料油和燃料气。

加热炉的传热方式以辐射传热为主。

加热炉一般由辐射室、余热回收系统、对流室、燃烧器和通风系统等五部分组成。

(1)辐射室:通过火焰或高温烟气进行辐射传热的部分。

这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。

(2)余热回收系统:用以回收加热炉的排烟余热。

有空气预热方式和废热锅炉方式两种方法。

(3)对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。

(4)燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。

(5)通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。

其结构通常包括:钢结构、炉管、炉墙(内衬)、燃烧器、孔类配件等。

1.2加热炉温度控制系统工作原理加热炉温度控制系统原理图控制原理图如上所示,加热炉的主要任务是把物料加热到一定温度,以保证下一道工序的顺利进行。

燃料油经过蒸汽雾化后在炉膛中燃烧,物料流过炉膛四周的排管中,就被加热到出口温度。

在燃料油管道上装设一个调节阀,物用它来控制燃油量以达到所需出口温度T1的目的。

1.3加热炉出口温度控制系统设计目的及意义加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于加热炉具有强耦合、大滞后等特性,控制起来非常复杂。

同时,近年来能源的节约、回收和合理利用日益受到关注。

加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。

因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。

另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。

1.4加热炉温度控系统工艺流程及控制要求加热炉的主要任务是把原制油或重油加热到一定温度,以保证下一道工序(分馏或裂解)的顺利进行。

加热炉前馈串级控制系统

加热炉前馈串级控制系统

加热炉前馈--串级控制系统加热炉前馈-串级控制系统是一种先进的控制系统,主要用于加热炉的温度控制。

这种控制系统能够有效地提高加热炉的温度控制精度,减少能源浪费,提高生产效率。

下面将对这种控制系统进行详细的介绍。

一、前馈控制系统前馈控制系统是一种开环控制系统,它通过测量输入信号的变化,提前对输出信号进行控制,以达到减少干扰信号对系统的影响。

在加热炉控制系统中,前馈控制系统可以用来提前控制加热炉的输出,以达到防止因外部干扰引起的温度波动。

前馈控制系统的核心是前馈控制器,它根据输入信号的变化,产生相应的控制信号,以控制加热炉的输出。

前馈控制器通常采用PID控制算法,通过对输入信号的变化进行比例、积分和微分处理,产生相应的控制信号。

二、串级控制系统串级控制系统是一种闭环控制系统,它由两个控制器串联组成,一个控制器的输出作为另一个控制器的输入。

在加热炉控制系统中,串级控制系统可以用来提高温度控制的精度和稳定性。

串级控制系统的核心是两个控制器,一个是内环控制器,另一个是外环控制器。

内环控制器根据加热炉的当前温度和设定温度的差异,产生相应的控制信号,以控制加热炉的输出。

外环控制器则根据加热炉的输出和目标值的差异,产生相应的控制信号,以调整内环控制器的设定值。

三、加热炉前馈-串级控制系统加热炉前馈-串级控制系统结合了前馈控制系统和串级控制系统的优点,能够更有效地提高温度控制的精度和稳定性。

在加热炉前馈-串级控制系统中,前馈控制器通过对输入信号的变化进行预测,提前控制加热炉的输出。

串级控制器则通过内环控制器和外环控制器的串联,实现对加热炉温度的精确控制。

具体来说,前馈控制器根据加热炉的输入信号(如燃料流量、空气流量等)的变化,预测出加热炉的温度变化趋势,并提前调整加热炉的输出。

然后,内环控制器根据加热炉的当前温度和设定温度的差异,产生相应的控制信号,以控制加热炉的输出。

同时,外环控制器根据加热炉的输出和目标值的差异,产生相应的控制信号,以调整内环控制器的设定值。

加热炉温度串级控制系统设计

加热炉温度串级控制系统设计

加热炉温度串级控制系统设计引言:加热炉是工业生产中常用的设备之一,用于加热物体到目标温度。

为了确保加热炉的温度能够稳定地达到所需温度并且尽量减小温度误差,本文将就一种串级控制系统的设计进行阐述。

串式控制系统使用了两组控制器,一个主控制器 (Master Controller) 和一个从控制器 (Slave Controller),通过对系统的不同层次进行控制,实现了温度的快速、准确地调节。

本文将针对主控制器和从控制器的设计进行详细说明。

一、主控制器设计:主控制器的作用是通过对从控制器的输出进行调节,以实现加热炉温度的稳定。

主控制器采用PID控制算法,其中P代表比例控制,I代表积分控制,D代表微分控制。

PID控制算法充分考虑了温度调节系统的动态和静态特性,并能够在不同的工作条件下自动调整参数,以保证系统的稳定性和快速响应。

在主控制器设计中,首先需要确定温度传感器的位置,将温度传感器安装在加热炉的合适位置,以获取准确的温度信息。

接下来,需要对主控制器的参数进行设置。

主控制器的参数设置对系统的稳定性和响应时间有着重要影响。

在设置主控制器的参数时,可以采用经验法或者试探法。

经验法是根据历史数据和经验对主控制器参数进行初始化,然后通过不断实际运行和调节参数,直到系统达到理想状态。

试探法则是在实际运行过程中,逐步调节参数,观察系统响应并作出相应调整。

两种方法都可以达到主控制器参数的最优化,但试探法的调试过程可能会相对较长。

二、从控制器设计:从控制器的作用是根据主控制器的输出对加热炉的加热功率进行调节。

从控制器也采用PID控制算法来实现。

从控制器的设计需要考虑如下因素:1.从控制器对主控制器的输出进行调节,以实现稳定的加热功率控制。

根据实际需要和经验,设置从控制器的参数,使得从控制器能够快速、准确地响应主控制器的输出。

2. 考虑到加热炉的动态特性,可以利用先进的控制算法,如模型预测控制 (Model Predictive Control)等,将从控制器的参数调整为非线性和时变的。

加热炉炉温PID串级控制方法的研究

加热炉炉温PID串级控制方法的研究

加热炉炉温 PID串级控制方法的研究摘要:加热炉炉温控制系统属于多时变的、存在物理耦合的、本质非线性的复杂系统,传统的基于滞后反馈的控制律无法平衡炉温检测与炉温调控之间的时间同步关系,容易造成整个加热炉炉温调控系统的温度非线性波动、间歇性振荡,引起炉温调控器的参数变化。

提出基于改进PID串级控制的加热炉炉温控制方法,通过实际验证得知,采用改进算法进行加热炉炉温调控,能够有效提高调控系统的实时性与鲁棒性,符合新形势下对加热炉炉温调控的实际需求。

关键词: PID 串级控制加热炉炉温1 引言1.1基本构成和组成加热炉燃烧系统的检测与控制采用现场一次检测仪表和PLC控制系统相结合的方式,完成加热炉燃烧系统的温度、压力、流量及水系统水温、水压、水流量等参数的检测,并对加热炉的炉压、炉温、空燃比及相关的保护措施等项目进行自动控制。

由计算机系统的操作站监视全部生产过程,保证加热炉节能、高效、安全、稳定运行。

加热炉采用三段供热的温度制度,设置一加热段上、一加热段下、二加热段上、二加热段下、均热段上、均热段下共6个燃烧控制区。

加热炉采用混合煤气为燃料,燃料热值为2300x4.18kJ/m3。

加热炉设两台助燃风机,正常生产时一用一备。

助燃空气经烟道中的空气换热器预热后供给加热炉燃烧系统。

煤气经烟道中的煤气换热器预热后供给加热炉燃烧系统。

1.2工作原理利用燃料在炉膛内燃烧时产生的高温火焰与烟气作为热源,来加热炉内的物料,使其达到规定的工艺温度。

燃料从燃烧器喷出燃烧,产生高温火焰和高温烟气,高温火焰通过辐射将热量传给辐射室内的炉管,进而传给路管内的介质。

高温烟气由于烟囱的抽力或引风机的作用向上进入加热炉的对流室,通过对流的方式将热量传给对流室内的炉管,进而传给炉管内的介质。

2自动控制方法的设计炉温测量采用S型热电偶,各控制段设有二个炉温测量点,其中一个用于控制,一个用于监视,通过CRT上的软操作开关可选择其中任意一个作为控制用的热电偶,断偶时可自动切换到另一只热电偶,并断偶报警。

管式加热炉出口温度串级控制系统设计报告

管式加热炉出口温度串级控制系统设计报告

管式加热炉出口温度串级控制系统设计报告本文将详细介绍管式加热炉出口温度串级控制系统的设计方案。

1.系统结构管式加热炉出口温度串级控制系统的结构由两个级联的控制回路组成。

第一个回路为内环控制回路,负责控制燃烧系统的燃气量和进气量,以达到对加热炉温度的快速调节。

第二个回路为外环控制回路,负责控制进料速度和加热炉的出口温度。

2.内环控制回路设计内环控制回路采用比例-积分(PI)控制器。

控制器的输入信号为加热炉温度偏差,输出信号为燃气量和进气量的调节量。

采用PI控制的主要原因是为了避免过度调节,保证系统的稳定性。

3.外环控制回路设计外环控制回路以内环控制回路的调节量作为输入信号,输出信号为进料速度的调节量。

为了达到出口温度的稳定性,可以采用模糊控制器。

模糊控制器的输入信号为加热炉温度偏差和燃气量的调节量,输出信号为进料速度的调节量。

4.控制算法设计内环控制回路采用PI控制算法。

PI控制器的参数调节可以根据系统的响应速度和稳定性进行优化。

外环控制回路采用模糊控制算法。

模糊控制器的参数调节可以通过模糊化和解模糊化的方式进行,以适应不同的工况。

5.控制器实现控制器可以采用嵌入式系统实现。

嵌入式控制器可以根据实时的温度和燃气量数据进行计算和控制,以实现对加热炉温度的稳定控制。

6.系统优化系统的优化可以通过参数调节和控制策略的优化来实现。

参数调节可以通过系统的建模和仿真分析来进行,以找到最优的控制参数。

控制策略的优化可以通过实时监测和调整来实现,以适应不同的工况和控制要求。

总结:通过设计一个管式加热炉出口温度串级控制系统,可以实现对加热炉温度的稳定控制。

内环控制回路负责快速调节温度,外环控制回路负责稳定控制温度。

通过控制算法的设计和优化,可以实现系统的稳定性和响应速度的改善。

通过嵌入式控制器的实现,可以实时计算和控制温度的调节量。

最后,通过参数调节和控制策略的优化,可以进一步提高系统的效果。

串级控制系统的适用场合

串级控制系统的适用场合

快装锅炉三冲量液位串级控制
串级控制系统
串级控制系统的适用场合
3.纯滞后时间比较长的被控对象
在离调节阀较近、纯时延较小的地方,选择一个辅助参数 作为副参数,构成一个纯滞后较小的副回路。 工艺要求:过滤前的压力稳定在250KPa
特点:距离长,纯滞后时间长。
计量泵
仿丝胶液压力与压力串级控制系统
串级控制系统
过程控制
串级控制系统
串级控制系统的适用场合
串级控制系统的适用场合
1.容量滞后较大的被控对象 选容量滞后较小的辅助变量,减小时间常数,提高工作频率。
加热炉温度串级控制系统
串级控制系统
串级控制系统的适用场合
2.干扰变化频繁且幅度大的过程
工艺要求:控制汽包液位
特点:快装锅炉容量小,蒸汽流量与水压变化频繁、激 烈→三冲量液位串级控制。
串级控制系统的适用场合
4.当被控参数的给定值需要根据工艺情况经常改变时
为了防止催化剂从进料器顶上吹出,并防止催化剂降落
至加料器底部堵塞管道和容器,造成事故,一次风量必须随
一次风压的变化不断校正,为此以一次风压为主参数,一次
风量为副参数构成串级控制系统,即可满足工艺要求。
炼油厂催化裂化装置中催化剂进料器一次风压与一次风量串级控制系统
串级控制系统
串级控制系统的适用场合
5.被控对象有非线性,而负荷变化又较大时
特点:负荷或操作条件改变导致过程特性改变。若单回路控 制,需随时改变调节器整定参数以保证系统的衰减率不变; 串级控制,则可自动调整副调节器的给定值。
合成反应器温度串级控制:换

加热炉温度串级控制系统

加热炉温度串级控制系统

加热炉温度串级控制系统首先,我们需要设计主控制器。

主控制器主要控制主燃料供给。

我们可以采用比例-积分-微分(PID)控制算法来设计主控制器。

PID控制器的输出是由三个部分组成的,分别是比例部分、积分部分和微分部分。

比例部分通过计算设定值与实际值之间的差异来产生控制输出,积分部分通过对偏差的积分来产生控制输出,微分部分通过对偏差变化率的微分来产生控制输出。

为了设计主控制器,我们首先需要确定PID控制器的参数。

这可以通过试验和经验来确定。

接下来,我们需要设计从控制器。

从控制器主要控制辅助燃料供给。

从控制器的设计原理与主控制器相似,也可以采用PID控制算法。

然而,由于从控制环的响应速度通常比主控制环慢,从控制器的参数可能需要进行调整。

设计从控制器时,我们需要考虑主控制器和从控制器之间的互动。

为了避免两个控制环之间的相互影响,我们可以采用串联结构。

在串联结构中,主控制器的输出作为从控制器的输入。

这样,主控制器和从控制器之间的影响可以得到较好的隔离。

另外,对于加热炉温度串级控制系统,还需要考虑测量系统。

测量系统主要负责测量加热炉的温度,并将测量结果反馈给控制器。

在设计测量系统时,我们需要选择适当的传感器,并根据测量结果进行合理的滤波处理,以减小测量误差和噪声的影响。

最后,为了验证加热炉温度串级控制系统的性能,我们可以进行模拟和实验验证。

可以利用数学模型进行仿真,评估控制系统的性能指标,如稳态误差、超调量和响应时间等。

同时,可以在实际加热炉上进行试验,验证控制系统在实际工作条件下的稳定性和鲁棒性。

总的来说,加热炉温度串级控制系统的设计包括主控制器的设计、从控制器的设计、主控制器和从控制器之间的互动设计以及测量系统的设计。

通过合理设计和调整控制器参数,并进行模拟和实验验证,可以实现加热炉温度的精确控制,提高生产效率和产品质量。

加热炉的控制系统

加热炉的控制系统



•TC •101
•FT
•TT
•101
•101
•TC
•101
•FT
•101
•TT
•101
•FC •102
•FT •102
前馈主要克服进料流量的干扰
加热炉安全联锁保护控制系统
在以燃料气为燃料的加热炉中,主要危险包括: § 被加热工艺介质流量过少或中断; § 熄火; § 回火;(什么情况下发生?) § 脱火。(什么情况下发生?)
特点:关联回路多,实施困难
•TT •TC •101 •101
•加热炉 •工艺 •介质
•FC •101
•FT •101
•燃料
•TC
•TT
•101
•101
•TC
•TT
•102
•102
•FC •FT
•••燃 料 油•101 •101
•加热炉 ••工介艺质
3、出口温度对燃料阀后压力的串级
燃料量小、粘度大时,流量测量困难 压力测量较方便
•加热炉
③ 燃料油雾化蒸汽压力控制。
•燃 ••料 油
•PC •102
•雾化蒸汽
•PT
•FT
•102
•101
••工介艺质
•FC •101
燃料油压力较平稳时,③回路可以 满足雾化要求。
燃料油压力波动较大时,单回路不能 保证良好雾化,可采用以下方案:
①用燃料油阀后压力与雾化蒸汽压力之差来 调节雾化蒸汽。
②燃料油阀后压力与雾化蒸汽压力比值控制 。 (前提条件:管道应畅通)
也可采用流量比值控制
加热炉负荷大、时间常数和滞后时间较大, 单回路控制很难满足要求,炉出口温度波动较大
3、单回路控制适用场合 对炉出口温度要求不高的场合 干扰较小,且不频繁 炉膛容量较小,滞后小

串级控制系统

串级控制系统

系统工作频率提高分析
GC1(s)
GC2(s) GV (s) Gm1 (s)
Y2 (s) Y1(s)
G0 2 (s)
G01(s)
由上图求出闭环系统的 特征方程: 1 GC1(s)GC2 (s)Gm1(s)GV (s)G02(s)G01(s) 0
串级控制系统工作频率
假设G01(s)

K01 T01s
T02s
K02
1 K02KC2Km2KV K02 ,
1
T02
s T02s 1
1 K02KC2Km2KV
K 02

K 02 1 KC 2 KV T02 KC 2 KV K 02 K m2
可见:K02 K02 ,T02 T02
随着K
(1)被加热物料的流量和初温f 1(t); (2)燃料热值的变化、压力波动、 流量的变化f 2(t);
(3)烟窗挡板位置的改变、抽力的 变化f 3(t).
方案1的分析
系统的框图如下:
r(t)
f2 (t) f3(t) f1(t) y(t)
调节器 调节阀 炉膛 管壁 物料

测量变送器
方案1的分析
• 所有的扰动都包含在环内 ,理论上都 可以由温度控制器予以克服;
1
,
GC1
(s)

KC1
GV (s) KV ,Gm1(s) Km1,则
T01T02s2 (T01 T02)s 1 KC1KC2 Km1KV K02K01 0
串级控制系统工作频率
与二阶标准形式对比, 得:
2 0

T01 T02 T01T02
系统工作频率 与自然频率 0的关系为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 前言 (1)2总体方案设计 (2)2.1 方案比较 (2)2.2 方案论证 (4)2.3 任务与设计要求 (5)3串级控制系统的参数整定 (6)3.1 参数整定方法 (6)3.2 参数整定 (6)3.3 两步法的整定步骤 (7)4 MATLAB仿真 (8)4.1 副回路的整定 (8)4.2.2 主回路的整定 (9)4.2.3 整体参数整定 (9)5 结论 (13)6总结与体会 (14)7参考文献 (15)1 前言随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。

而加热炉温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量和产量。

现代加热炉的生产过程可以实现高度的机械化,这就为加热炉的自动化提供了有利条件。

加热炉自动化是提高锅炉安全性和经济性的重要措施。

目前,加热炉的自动化主要包括自动检测、自动调节、程序控制、自动保护和控制计算五个方面。

实现加热炉自动化能够提高加热炉运行的安全性、经济性和劳动生产率,改善劳动条件,减少运行人员。

加热炉是将物料或工件加热的设备。

按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。

应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。

在生产过程控制中,一些复杂环节,往往需要进行串级控制。

即把两个控制器串联起来,第一个控制器的设定值是控制目标,它的输出传给第二个控制器,作为它的设定值,第二个控制器的输出作为串级控制系统的输出,送到被控系统,作为它的控制“动作”。

控制系统的这种串级形式对于复杂对象的控制往往比单回路控制的效果更好。

串级控制对克服被控系统的时滞之所以能收到好的效果,是因为当用两个控制器进行串级控制时,每个控制器克服时滞的负担相对减小,这就使得整个控制系统克服时滞的能力得到加强。

2总体方案设计2.1 方案比较开环控制是指控制装置与被控对象之间只有按顺序工作,没有反向联系的控制过程,按这种方式组成的系统称为开环控制系统,其特点是系统的输出量不会对系统的控制作用发生影响,没有自动修正或补偿的能力。

开环控制没有反馈环节,系统的稳定性不高,响应时间相对来说很长,精确度不高,使用于对系统稳定性精确度要求不高的简单的系统.。

闭环控制有反馈环节,从输出量变化取出控制信号作为比较量反馈给输入端控制输入量,一般这个取出量和输入量相位相反,所以叫负反馈控制。

通过反馈系统使系统的精确度提高,响应时间缩短,适合于对系统的响应时间,稳定性要求高的系统。

自动控制通常是闭环控制。

而闭环控制又包含有单回路控制和串级控制等。

如上所述,本设计需要闭环控制,因此本设计选择单回路控制和串级控制两个方案进行比较。

方案一:加热炉单回路控制系统图2.1单回路反馈控制由四个基本环节组成,即被控对象(简称对象)或被控过程(简称过程)、测量变送装置、控制器和控制阀。

该方案采用单回路系统控制如图2.1,系统框图如图2.2,该系统根据原料油出口温度1()t θ变化来控制燃料的阀门开度,通过改变燃料流量将原油出口温度控制在规定的数值上,由图2.1可知,当燃料压力3f 或燃料热值4f 变化时,先影响炉膛温度,然后通过传热过程逐渐影响原料油的出口温度。

从燃料流量1f 变化经过三个容量后,才引起原料油出口温度变化。

方案二:加热炉温度串级控制系统串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。

12,f f 34,f f -调节器调节阀炉膛管壁原料油温度变送器1()t θ+-+++图2.2 方案一原理框图图2.3该方案采用串级控制,如图2.3,系统框图如图2.4,以原料出口温度为主要被控参数(主参数),以炉膛温度为辅助被控参数(副参数)的串级控制系统,干扰34,f f 对原油出口温度的影响主要由炉膛温度调节器构成的控制回路(副回路)进行校正;由原料油出口温度调节器构成的控制回路(主回路)克服干扰12,f f 对原油出口温度的影响,并对其他干扰所引起原料出口温度的偏差进行校正。

2.2 方案论证方案一中,从燃料流量到引起原料油出口温度的变化,这个通道时间常数很大(约15min ),反应缓慢。

而温度调节器是根据原料油的出口温度与设定值的偏差进行控制。

当燃料部分出现干扰后,单回路 控制系统并不能及时产生控制作用,克服干扰对被控参数的影响,控制质量差。

当生产工艺对原料油出口温度要求很严格时,此单回路控制系统很难满足要求。

方案二中,串级控制系统与单回路控制系统相比有一个显著的区别,即其在结构上多了一个副回路,形成了两个闭环----双闭环或称双环。

串级控制系统在结构上与电力传动自动控制系统中的双环系统相同,就其主回路(外环)来看是一个定值控制系统,而副回路(内环)则为一个随动系统。

以加热炉串级控制系统为例,在控制过程中,副回路起着对炉出口温度的“粗调”作用,而主回路则完成对炉出口温度的“细调”任务。

与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器(调节器),增加的投资并不多(对计算机控制系统来说,仅增加了一个测量变送器),但控制效果却有显著的提高。

其原因是在串级控制系统中增加了一个包含二次扰动的副回路,使系统①改善了被控过程的动态特性,提高了系统的工作频率; ②对二次扰动有很强的克服能力;③提高了对一次扰动的克服能力和对回路参数变化的自适应能力。

图2.2 方案二原理框图主调节器副调节器 调节阀炉膛 管壁原料油温度变送器2 温度变送器1+-++ + -+-34,f f12,f f综上所述,本设计选择串级控制系统。

2.3 任务与设计要求1.和控制系统设计组配合,进行主、副回路的参数整定工作;2.对主、副回路时间常数匹配问题进行验证,并得出结论;3.绘制相应的控制图和MATLAB 仿真。

主对象传递函数:011()(301)(31)G s s s =++副对象传递函数:0221()(101)(1)G s s s =++3串级控制系统的参数整定串级控制系统从整体上来看是定制控制系统,要求主参数有较高的控制精度。

但副回路是随动系统,要求副参数能准确、快速地跟随主调节器输出的变化。

串级控制系统主、副回路的原理不同,对主、副参数的要求也不同。

通过正确的参数整定,可取得理想的控制效果。

3.1 参数整定方法串级控制系统主、副调节器的参数整定方法有逐步逼近法、两步整定法和一步整定法。

1. 逐步逼近法逐步逼近法是一种依次整定主回路、副回路,然后循环进行,逐步接近主、副回路最佳整定的一种方法。

2.两步整定法两步整定法就是让系统处于串级工作状态,第一步按单回路控制系统整定副调节器参数,第二步把已经整定好的副回路视为串级控制系统的一个环节,仍按单回路对主调节器进行一次参数整定。

3.一步整定法一步整定发就是根据经验,先将副调节器参数一次调好,不再变动,然后按一般单回路控制系统的整定方法直接整定主调节器参数。

本设计选择两步整定法来整定串级控制系统的参数。

3.2 参数整定在串级控制系统中,主、副回路中被控过程的时间常数应有适当的匹配关系,一般为1o T =(3~10)2o T 。

主回路的工作周期远大于副回路的工作周期,主、副回路间的动态关联较小。

因此,当副调节器参数整定好之后,视其为主回路的一个环节,按单回路控制系统的方法整定主调节器参数,而不再考虑主调节器参数变化对副回路的影响。

一般串级系统对主参数的控制质量要求高,而对副参数的控制要求相对较低。

因此,当副调节器参数整定好之后再去整定主调节器参数时,虽然会影响副参数的控制品质,但只要主参数控制品质得到保证,副变量的控制品质差一点也是可以接受的。

3.3 两步法的整定步骤1) 在生产工艺稳定,系统处于串级运行状态,主、副调节器均为比例作用的条件下,先将主调节器的比例度1P 置于100%刻度上,然后由大到小逐渐降低副调节器的比例度2P ,直到得到副回路过渡过程衰减比为4:1的比例度2s P ,过渡过程的振荡周期为2s T 。

2) 在副调节器的比例度等于2s P 的条件下,逐步降低主调节器的比例度1P ,直到同样得到主回路过渡过程衰减比为4:1的比例度1s P ,过渡过程的振荡周期为1s T 。

3) 按已求得的1s P 、1s T 和2s P 、2s T 值,结合已选定的调节规律,按下表衰减曲 整定参数 调节规律P (%)i Td TP s PPI 1.2s P 0.5s TPID0.8s P0.3s T0.1s T4)按照“先副回路,后主回路”的顺序,将计算出的参数值设置到调节器上,做一些扰动试验,观察过渡过程曲线,作适当的参数调整,直到控制品质最佳为止。

表3.14 MATLAB 仿真由主对象传递函数: 011()(301)(31)G s s s =++,和副对象传递函数:0221()(101)(1)G s s s =++,在MATLAB 中画出仿真框图,如图4.1:4.1 副回路的整定由步骤1),将主环路断开,副环路为比例作用的条件下,由大到小逐渐降低副调节器的比例度。

此时的仿真曲线如图4.2所示。

图4.14.2.2 主回路的整定保持副回路的比例度不变,逐步降低主回路的比例度P1,直到得到主回路过渡过程衰减比为4:1的比例度P 1S ,记取过渡过程的振荡周期T 1S 。

当衰减比为4:1时,比例度2s P 为98,振荡周期为2s T 为56.3,此时主回路的仿真曲线如图4.3所示。

4.2.3 整体参数整定按已求得的P 1S 、T 1S 和P 2s 、T 2s 值,结合已选定的调节规律,按表3.1衰减曲线法整定参数的经验公式,计算出主、副调节器的整定参数值。

经计算以后,主、副调节器的参数设置如图4.4、4.5所示。

图4.2图4.3图4.4图4.5当副调节器参数整定好之后,视其为主回路的一个环节,按单回路控制系统的方法整定主调节器参数,而不再考虑主调节器参数变化对副回路的影响。

一般串级系统对主参数的控制质量要求高,而对副参数的控制要求相对较低。

因此,当副调节器参数整定好之后再去整定主调节器参数时,虽然会影响副参数的控制品质,但只要主参数控制品质得到保证,副参数的控制品质差一点也是可以接受的。

主、副调节器参数整定好以后系统输出图如图4.6所示。

对设定值施加干扰信号以后,系统仿真框图如图4.7,系统输出如图4.8所示。

图 4.6 整定完成后系统输出图图4.7 系统仿真框图图 4.7 施加干扰时系统输出图5 结论在系统结构上,串级控制系统有两个闭合回路:主回路和副回路,主、副调节器串联工作;主调节器输出作为副调节器设定值,系统通过副调节器输出控制执行器动作,实现对主参数的定值控制。

串级系统的主回路是定值控制系统,副回路是随动控制系统,通过它们的协调工作,使主参数能够准确地控制在工艺规定的范围之内。

相关文档
最新文档