初中数学中考专题复习绝对值与数轴练习试题

合集下载

(完整版)初一绝对值和数轴提高题.docx

(完整版)初一绝对值和数轴提高题.docx

绝对值的提高练习一. 知识点回顾1、绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.2、绝对值运算法则:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即:3、绝对值性质:任何一个实数的绝对值是非负数.二 .典型例题分析:例 1、 a , b 为实数,下列各式对吗?若不对,应附加什么条件?请写在题后的横线上。

(1) | a+b | =| a | +|b |;;(2)|ab | =| a|| b|;;(3)| a-b | =| b-a |;;(4)若| a| =b ,则 a=b ;;(5) 若| a|<| b|,则 a < b;;(6)若 a> b ,则| a|>| b|,。

例 2、设有理数 a , b, c 在数轴上的对应点如图1-1 所示,化简| b-a | +|a+c | +| c-b |.例 3 、若x y 3 与 x y 1999 互为相反数,求x 2 y的值。

x y三 .巩固练习 :( 一 ). 填空题 :1.a >0 时, |2a|=________ ;(2) 当 a>1 时, |a-1|=________ ;2.已知a 1 b 3 0,则a ____ b ______3.如果 a>0, b<0,a b ,则a,b,—a,—b这4个数从小到大的顺序是__________( 用大于号连接起来 )4.若 xy 0, z0 ,那么xyz=______0.5. 上山的速度为 a 千米 / 时,下山的速度为 b 千米 / 时,则此人上山下山的整个路程的平均速度是__________千米 / 时( 二 ). 选择题 :6.值大于 3 且小于 5 的所有整数的和是() A. 7 B.-7 C. 0 D. 57.知字母 a 、b表示有理数,如果 a +b=0,则下列说法正确的是()A . a、b中一定有一个是负数 B. a 、b都为0 C. a 与b不可能相等 D. a 与b的绝对值相等8.下列说法中不正确的是 ( )A. 0 既不是正数 , 也不是负数 B . 0 不是自然数C.0的相反数是零 D . 0 的绝对值是 09.下列说法中正确的是()A 、a是正数B 、— a 是负数C、 a 是负数D、 a 不是负数10.x =3, y =2,且x>y,则x+y的值为()A 、5B、 1C、 5 或 1 D 、— 5 或— 111.a<0 时,化简a)A 、 1B、— 1C、 0 D 、1等于(a12.若 ab ab,则必有() A 、 a>0,b<0 B 、a<0,b<0C、 ab>0D、ab013.已知: x =3, y =2,且x>y,则x+y的值为() A 、 5 B 、1C、 5 或 1D、— 5 或— 1(三 ).解答题 :14. a+ b< 0,化简| a+b-1|-| 3-a-b|.15.. 若x y + y 3 =0,求2x+y的值.16.当 b 为何值时, 5- 2b 1有最大值,最大值是多少?17. 已知a是最小的正整数,b、 c 是有理数,并且有|2+ b|+(3 a+2c) 2=0.求式子4ab c的值 .a2 c 2418.已知 x< -3 ,化简:| 3+ | 2- | 1+x |||.19.若| x| =3 ,| y| =2 ,且| x-y | =y-x ,求 x+y 的值.20.化简:| 3x+1 | +| 2x-1 |.21.若 a , b , c 为整数,且| a-b |19+| c-a |99=1 ,试计算| c-a | +| a-b | +| b-c |的值.22 .已知 y= |2x+6 | +| x-1| -4 | x+1 |,求 y 的最大.23. a < b < c< d,求| x-a | +| x-b |+| x-c | +| x-d |的最小.24. 若 2x+ | 4-5x |+ |1-3x | +4 的恒常数,求x 足的条件及此常数的.三、巩固1. x 是什么数,下列等式成立:(1)| (x-2)+(x-4) |=| x-2 | +| x-4 |;(2)| (7x+6)(3x-5) | =(7x+6)(3x-5) .2.化下列各式:(2) |x+5 | +| x-7 | +| x+10 |.3.已知 y= | x+3 |+ |x-2 | -| 3x-9 |,求 y 的最大.4. T= | x-p | +|x-15 | +| x-p-15 |,其中0< p < 15,于足p≤ x≤ 15 的 x 来, T 的最小是多少?5.不相等的有理数 a ,b,c 在数上的点分 A ,B,C,如果| a-b | +| b-c | =| a-c |,那么 B 点 ().(1) 在 A, C 点的右;(2) 在 A, C 点的左;(3) 在 A ,C 点之;(4) 以上三种情况都有可能.6.若| x| =3 ,| y|=2 ,且| x-y | =y-x ,求 x+y 的.7.化:| 3x+1 | +| 2x-1 |.8.若 2+ |4-5x| +| 1-3x |+4的恒常数,求x 足的条件及此常数的.9. a 1b 2 0,求 a b 2001+a b 2000+⋯a b2+ a b.10.已知 ab 2 与 b 1 互相反数,法求代数式1111的值 .ab( a 1)(b1) (a 2)(b2)(a 1999)(b1999)11. 若 a,b, c 为整数,且 a b2001c 2001a ab bc 的值.a 1,计算 c12. 若 a 19, b 97 ,且 a ba b ,那么 ab = .13. 已知 a 5 , b 3 且 abab ,求 ab 的值。

七年级数学绝对值典型试题及答案(中考重点考点试题)

七年级数学绝对值典型试题及答案(中考重点考点试题)

七年级数学绝对值典型试题及答案(中考重点考点试题)5分钟训练(预习类训练,可用于课前)1.判断题:(1)数a的绝对值就是数轴上表示数a的点与原点的距离; ()(2)负数没有绝对值; ()(3)绝对值最小的数是0; ()(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大; ()(5)如果数a的绝对值等于a,那么a一定是正数. ()思路解析:(2)负数的绝对值为它的相反数.(4)可举反例如:-100的绝对值比5的绝对值大,但-100小于5.(5)还可能是0.答案:(1)√ 2)×(3)√(4)×(5)×2.填表:答案3.-3的绝对值是在_______上表示-3的点到________的距离,-3的绝对值是_________. 思路解析:根据绝对值的几何意义解题.答案:数轴原点 34.绝对值是3的数有_______个,各是________;绝对值是2.7的数有_______个,各是________;绝对值是0的数有________个,是________;绝对值是-2的数有没有?________.思路解析:根据绝对值的意义来解.答案:两±3 两±2.7 1 0 没有10分钟训练(强化类训练,可用于课中)1. (1)若|a|=0,则a=_______;(2)若|a|=2,则a=________.思路解析:根据绝对值的定义来解.答案:(1)0 (2)±22.如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m思路解析:可通过特例解答,如5>0,-6<0,5<|-6|,则-m=-5,-n=6,它们的大小关系是6>5>-5>-6,即-n>m>-m>n.答案:A3.判断题:(1)两个有理数比较大小,绝对值大的反而小; ()(2)-3.14>4; ()(3)有理数中没有最小的数; ()(4)若|x|>|y|,则x>y; ()(5)若|x|=3,-x>0则x=-3. ()思路解析:(1)若都为负数时,才有绝对值大的反而小;(2)先利用符号判断,若同号,再判断绝对值大小.显然,-3.14<4;(3)如在负数中,没有最小的数,而正数大于零,大于负数;(4)举反例,|-5|>|-4|,而-5<-4;(5)由|x|=3可知,x=±3,又-x>0,则x必为负数,故x=-3.答案:(1)×(2)×(3)√(4)×(5)√4.填空题:(1)|-112|________;(2)-(-7)________;(3)-|-7|________;(4)+|-2|_______;(5)若|x|=3,则x_________;(6)|3-π|=_______. 思路解析:由绝对值定义来解,注意绝对值外面的负号.答案:(1)112(2)7 (3)-7 (4)2 (5)3或-3 (6)π-35.把四个数-2.371,-2.37%,-2.3·7·和-2.37用“<”号连接起来.思路解析:这里都是负数,利用绝对值大的反而小来判别,另外要注意循环小数和百分数的意义.答案:-2.37<-2.371<-2.37<-2.37%快乐时光女老师竭力向孩子们证明,学习好功课的重要性.她说:“牛顿坐在树下,眼睛盯着树在思考,这时,有一个苹果落在他的头上,于是他发明了万有引力定律,你们想想看,做一位伟大的科学家多么好,多么神气啊,要想做到这一点,就必须好好学习.”班上一个调皮鬼对此并不满意.他说:“兴许是这样,可是,假如他坐在学校里,埋头书本,那他就什么也发现不了啦.”30分钟训练(巩固类训练,可用于课后)1.比较大小:(1)-2_______5,|-72|_______|+38|,-0.01________-1;(2)-45和-56(要有过程).思路解析:(1)正数大于负数,则-2<5;|-27|=27=1656,|+38|=38=2156,∴|-72|<|+38|;两个负数,绝对值大的反而小,|-1|=1,|-0.01|=0.01,而0.01<1,∴-0.01>-1(2)-45=-0.8,-56=-0.83,-0.8离原点近,∴-0.8>-0.83即-45>-56.答案:(1)<<>(2)>2.写出绝对值不大于4的所有整数,并把它们表示在数轴上.思路解析:不大于就是小于或等于.答案:±1,±2,±3,±4,0.3.填空:(1)若|a|=6,则a=_______;(2)若|-b|=0.87,则b=_______;(3)若|-1c|=49,则c=_______;(4)若x+|x|=0,则x是数________.思路解析:(1) a=±6;(2)|-b|=|b|=0. 87,∴b=±0.87;(3)|-1c|=49,∴1c=±49,c=±214;(4) x是非正数.答案:(1)±6 (2)±0.87 (3)±214(4)非正4.求下列各数的绝对值:(1)-38; (2)0.15;(3)a(a<0); (4)3b(b>0);(5)a-2(a<2); (6)a-b.思路解析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号(6)题没有给出a与b的大小关系,所以要进行分类讨论.解:(1)|-38|=38(2)|+0.15|=0.15(3)∵a<0,∴|a|=-a(4)∵b>0,∴3b>0,|3b|=3b(5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a(6)(), ||0(),().a b a ba b a bb a a b->⎧⎪-==⎨⎪-<⎩5.判断下列各式是否正确:(1)|-a|=|a|;()(2)||||a aa a=(a≠0); ()(3)若|a|=|b|,则a=b;()(4)若a=b,则|a|=|b|;()(5)若a>b,则|a|>|b|;()(6)若a>b,则|b-a|=a-b. ()思路解析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判断(或证明)一个结论是错误的,只要能举出反例即可.如第(1)小题中取a=1,则|a|=|1|=1,|-a|=|-1|=1,所以-|a|=|-a|.答案:(1)√ (2)√ (3)× (4)√ (5)×(6)√6.有理数m,n在数轴上的位置如图,比较大小:-m______-n,1m_______1n.思路解析:取特殊值验得:由图知,m、n都是小于0而大于-1的数,取m=-23,n=-13∴-m=23>-n=13,而1m=-32,1n=-3,∵-32>-3,∴1m>1n.答案:>>7.若|x-1| =0,则x=_______,若|1-x |=1,则x=_________.思路解析:零的绝对值只有一个零,即x-1=0;一个正数的绝对值有两个数,∴1-x=±1. 答案:-1 0或2。

(完整)数轴与绝对值经典题型

(完整)数轴与绝对值经典题型

数轴与绝对值经典题型一、选择题(单项选择,每小题3分,共45分)1.π-14.3的计算结果是( )A .0B .π-14.3C .14.3-πD .π--14.32.如果一个数的平方与这个数的绝对值相等,那么这个数是( )A .0B .1C .-1D .0,1或-13.如果一个数的绝对值等于它的相反数,那么这个数( )A .必为正数B .必为负数C .一定不是正数D .不能确定正负A 0;B 正数;C 非负数;D 非正数。

4、在数轴上,a 在原点的右侧,b 在原点德左侧,则下列结论一定成立的是( )A. a+b <0B. a+b >0,C. ab <0D. ba >0 5、下列说法正确的是( )A. 绝对值等于自身的数是正数;B.绝对值最小的有理数是1;C. 相反数等于自身的数是0;D.倒数等于自身的数是1。

6、下列语句正确的是( )A. 最小的数是-1;B.最小的有理数是0;C .绝对值最小的数是0; D.平方等于自身的数是1。

7、若x 表示有理数,则|x|+x 的值为( )A. 正数B.非正数C. 负数D.非负数8.若5,2==b a ,则b a +等于( )A. ±3B. ±7C. 3或7D. ±3或±79.数轴上的两点M 、N 分别表示-5和-2,那么M 、N 两点间的距离是( )A 、-5+(-2)B 、-5-(-2)C 、|-5+(-2)|D 、|-2-(-5)|10.如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a11.│3.14- π|的值是( ).A .0B .3.14- πC .π-3.14D .3.14+π12.一个数和它的倒数相等,则这个数是( )A .1B .1-C .±1 D.±1和013.如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a14.有理数a 、b 在数轴上的对应的位置如图所示:则( ) 0-11a bA .a + b <0B .a + b >0C .a -b = 0D .a -b >015.若x 为有理数,则丨x 丨-x 表示的数是 ( )A .正数B .非正数C .负数D .非负数二、填空题(每题3分,共30分)16、若a <0,b >0 ,且| a |>| b | ,则a+b 0。

数轴、相反数、绝对值及综合练习

数轴、相反数、绝对值及综合练习

数轴、相反数和绝对值的综合练习一、选择题(每小题3分, 共24分)1.如图, 数轴上点A表示数a, 则-a表示的数是( )A. -1B. 0C. 1D. 22. 在0, 1, -, -1四个数中, 最小的数是( )A. 0B. 1C. -D. -13. 如图, 若|a|=|b|, 则该数轴的原点可能为( )A. A点B. B点C. C点D. D点4. 下列各对数中, 相等的是( )A. -(-)和-0.75B. +(-0.2)和-(+)C. -(+)和-(-0.01)D. -(-)和-(+)5. 一个数的相反数比它的本身小, 则这个数是( )A. 正数B. 负数C. 正数和零D. 负数和零6. 下列说法正确的是( )A. 绝对值等于3的数是-3B. 绝对值小于2的数有±2, ±1, 0C.若|a|=-a, 则a≤0D. 一个数的绝对值一定大于这个数的相反数7. 有理数m, n在数轴上的对应点如图所示, 则下列各式子正确的是( )A. m>nB. -n>|m|C. -m>|n|D. |m|<|n|8. 若a, b是两个有理数, 则下列结论: ①如果a=b, 那么|a|=|b|;②如果|a|=|b|, 那么a=b;③如果a≠b, 那么|a|≠|b|;④如果|a|≠|b|, 那么a≠b.其中一定正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分, 共32分)9. 计算: |-20|=.10. 若a+=0, 则a=.11. 数轴上点A表示-1, 点B表示2, 则A.B两点间的距离是.12. 将-3, -|+2|, -, -1按从小到大的顺序, 用“<”连接应当是.13. 一只小虫在数轴上先向右爬3个单位, 再向左爬7个单位, 正好停在-2的位置, 则小虫的起始位置所表示的数是.14.如图, 在数轴上点B表示的数是, 那么点A表示的数是.15. 当a=时, |a-1|+5的值最小, 最小值为.16.在数轴上点A对应的数为-2, 点B是数轴上的一个动点, 当动点B到原点的距离与到点A的距离之和为6时, 则点B对应的数为.三、解答题(共44分)17. (6分)根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数A: ,B: ;(2分)(2)观察数轴, 与点A的距离为4的点表示的数是;(4分)(3)若将数轴折叠, 使得A点与-3对应的点重合, 则B点与数对应的点重合.(6分)18. (8分)把下列各数表示在数轴上, 并用“<”连接起来:, -(-5), -0.5, 0, -|-3|, , -(+2).19. (8分)如图, 图中数轴的单位长度为1.请回答下列问题:(1)如果点A.B表示的数是互为相反数, 那么点C.D表示的数是多少?(2)如果点D.B表示的数是互为相反数, 那么点C.D表示的数分别是多少?20. (10分)(1)已知|a|=8, |b|=5, 且a<b, 试求a, b的值;(2)已知|a-3|+|2b-6|=0, 试求a-b的值.21. (12分)随着网购的快速发展, 相关的快递送达范围也越来越广泛, 惠及乡村. 某快递公司快递员骑摩托车从某快递点出发, 先向东骑行2 km到达A村, 继续向东骑行3 km到达B村, 然后向西骑行9 km到C村, 最后回到快递点.(1)以该快递点为原点, 以向东方向为正方向, 用1个单位长度表示1 km画数轴, 并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100 km耗油2.5升, 完成此次任务, 摩托车耗油多少升?数轴、相反数和绝对值的六种常见题型1. 在-1, , 0.618, 0, -5%, 2 021, 0.5中, 整数有________个, 分数有________个.2.有五个有理数(不能重复), 同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)必须有质数和分数.请写出这五个数.3. 下列说法正确的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 有理数不是正数就是负数C. 有理数不是整数就是分数D. 有理数不是正数就是分数4. 把下列各数填在相应的大括号里:15, -, 0.81, -3, , -3.1, -2 022, 171, 0, 3.14.正数: { …};负数: { …};正整数: { …};负整数: { …};有理数: {…}.5. 下列说法正确的是()A. 所有的有理数都可以用数轴上的点来表示B. 数轴上的点都用来表示有理数C.正数可用原点右边的点表示, 负数可用原点左边的点表示, 零不能在数轴上表示D. 数轴上一个点可以表示不止一个有理数6. 根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数: ____________;(2)观察数轴, 写出与点A的距离为4的点表示的数:______________;(3)若将数轴折叠, 使得点A与数-3对应的点重合, 则点B与数________对应的点重合;(4)若数轴上M, N两点间的距离为2 022(M在N的左侧), 且M, N两点经过(3)中折叠后互相重合, 求M, N两点表示的数.7. 如图, 已知A, B, C, D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数, 则原点为点________;(2)若点B和点D表示的数互为相反数, 则原点为点________;(3)若点A和点D表示的数互为相反数, 请在数轴上标出原点O的位置.8. 如图, 一个单位长度表示2, 观察图形, 回答问题:(1)若B与D所表示的数互为相反数, 则点D所表示的数为多少?(2)若A与D所表示的数互为相反数, 则点D所表示的数为多少?(3)若B与F所表示的数互为相反数, 则点D所表示的数的相反数为多少?9. 下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等, 那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A. 1个B. 2个C. 3个D. 4个10. 如图, 数轴的单位长度为1, 请回答下列问题:(1)如果点A, B表示的数互为相反数, 那么点C表示的数是多少?(2)如果点D, B表示的数互为相反数, 那么点C表示的数是正数还是负数?图中所示的5个点中, 哪一个点表示的数的绝对值最小, 最小的绝对值是多少?11. 如图, A, B为数轴上的两个点, A点表示的数为-10, B点表示的数为90.(1)请写出与A, B两点距离相等的M点表示的数;(2)电子蚂蚁P从B点出发, 以3个单位长度/s的速度向左运动, 同时另一只电子蚂蚁Q从A点出发, 以2个单位长度/s的速度向右运动, 经过多长时间这两只电子蚂蚁在数轴上相距35个单位长度?12. 情境问题某工厂负责生产一批螺帽, 根据产品质量要求, 螺帽的内径可以有0.02 mm的误差.抽查5个螺帽, 超过规定内径的毫米数记作正数, 不足规定内径的毫米数记作负数, 检查结果如下表:螺帽编号①②③④⑤内径/mm +0.030 -0.018 +0.026 -0.025 +0.015(1)指出哪些产品是合乎要求的(即在误差范围内);(2)指出合乎要求的产品中哪个质量好一些(即最接近标准);拓展延伸:(3)如果对两个螺帽进行上述检查, 检查的结果分别为a和b, 请利用学过的绝对值知识指出哪个螺帽的质量好一些.。

《数轴、相反数、绝对值》专题练习(含答案)

《数轴、相反数、绝对值》专题练习(含答案)

《数轴、相反数、绝对值》专题练习(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.-5的绝对值为 ( )A .-5B .5C .-15D .152.-18的相反数是 ( )A .-8B .18 C .0.8 D .83.在下面所画的数轴中,你认为正确的数轴是 ( )4.下列说法正确的是 ( )A .正数与负数互为相反数B .符号不同的两个数互为相反数C .数轴上原点两旁的两个点所表示的数互为相反数D .任何一个有理数都有它的相反数5.数轴上的点A ,B 位置如图所示,则线段AB 的长度为 ( )A .-3B .5C .6D .76.若a =7,b =5,则a -b 的值为 ( )A .2B .12C .2或12D .2或12或-12或-27.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .44-=B .1122= C .00= D . 1.5 1.5-=-9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b+c2-d的值是( )A.-2 B.-1 C.0 D.110.如果abcd<0,a+b=0,cd>0,那么这四个数中的负因数至少有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数.13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使1x =x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x<y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a>b>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6.3),+(-32),12,312.20.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-132,4,2.5,0,1,-(-7),-5,-112.21.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x 的点与表示数1的点的距离等于1,其几何意义可表示为:1x -=1,这样的数x 可以是0或2.(1)等式2x -=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(2)等式3x +=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(3)在数轴上,表示数x 的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x 的相反数是_______,m +12n 的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=12(2+6),那么到点100和到点999距离相等的点表示的数是_______;到点m 和点-n 距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m 和点n 之间的距离是_______.25.(6分)设0a b c ++=,0abc >,求b c c a a b a b c+++++的值。

初中数学有理数数轴、相反数、绝对值综合测试卷(含答案)

初中数学有理数数轴、相反数、绝对值综合测试卷(含答案)

初中数学有理数(数轴、相反数、绝对值)综合
测试卷
一、单项选择题(共8道,每道10分)
1.假设有理数a、b在数轴上的对应点如下图,那么|b|,a,-a,b的大小关系正确的选项是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:有理数比较大小
2.|a|+5有最值是.横线上填写正确的选项是()
A.大;-5
B.大;5
C.小;-5
D.小;5
答案:D
试题难度:三颗星知识点:利用绝对值的非负性求最值
3.假设|x|<1,那么化简|x-1|+|x+1|得()
答案:B
试题难度:三颗星知识点:去绝对值
4.有理数a、b、c在数轴上的位置如图,那么化简|a-b|+|b-c|-|c-2a|的结果为
()
+2b-2c
+2b-2c
答案:B
试题难度:三颗星知识点:去绝对值
,那么化简的结果为()
+2z +2z
答案:D
试题难度:三颗星知识点:去绝对值
6.已知|x|=5,|y|=7,且|x-y|=y-x,那么|x+y|的值为()
或12
或13
答案:B
试题难度:三颗星知识点:绝对值分类讨论
7.已知有理数a、b、c知足abc>0,那么代数式的值为() 或-1 或-3
C.±1或3
D.±1或±3
答案:A
试题难度:三颗星知识点:绝对值分类讨论
为有理数,那么|x-2|+|x-5|的最小值为()
D.不能确定
答案:B
试题难度:三颗星知识点:绝对值的几何意义。

绝对值的性质与几何意义、数轴上动点问题(6种常考题型)

绝对值的性质与几何意义、数轴上动点问题(6种常考题型)

绝对值的性质与几何意义、数轴上动点问题(6种常考题型)题型一利用绝对值的性质化简题型二绝对值非负性的应用题型三利用绝对值的性质求最值题型四绝对值几何意义题型五数轴上两点之间的距离题型六数轴上动点问题一.利用绝对值的性质化简(共15小题)1.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A .2-B .1-C .0D .22.若0ab ≠,那么a ab b+的取值不可能是()A .2-B .0C .1D .23.已知有理数a ,b 在数轴上的位置如图所示,则化简1a b a +--的结果为()A .21a b -+B .1b -+C .1b --D .21a b ---4.0a <,则化简a a aa aa++-的结果为()A .2-B .1-C .0D .25.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是()A .22a b +B .22a b c+-C .c-D .2b c--6.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d+++的最大值是.7.已知数a b c 、、位置如图所示,化简a b a c --+=.8.a 、b 、c 三个数在数轴上的位置如图所示,则化简||2||a b a c --+的结果是.9.若12x <<,求代数式2121x x x x xx---+=--.10.若0a >,||a a=;若0a <,||a a =;①若0||||a b a b +=,则||ab ab=-;②若0abc <,则||||||a b ca b c ++=.11.有理数0a >,0b >,0c <,且a c b <<.(1)在数轴上将a ,b ,c 三个数在数轴上表示出来如图所示;(2)化简:2b c a b a c +--+-.12.已知有理数a b c d 、、、在数轴上对应的点的位置如图所示,化简:a c b d c b++---13.a ,b 在数轴上的位置如图,化简b a a a b --++.14.已知有理数a 、b 、c 在数轴上位置如图所示,化简:|1|||||a c b a b c +---++.15.有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.二.绝对值非负性的应用(共11小题)1.如果21(2)0a b ++-=,则a b +的值为()A .1B .3C .1-D .3-2.若()23a +与1b -互为相反数,则().A .3,1a b =-=-B .3,1a b =-=C .3,1a b ==D .3,1a b ==-3.若320x y -++=,则x y +的值是().A .5B .1C .2D .04.如果有理数x 、y 满足10x x y -++=,那么xy 的值是()A .1-B .1±C .1D .25.若()22430||a b ++--=,则b =;a =.6.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.7.已知2(3)|24|0x y x +++-=,则y =.8.已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.9.已知230x y -++=.(1)求x y +的值.(2)求x y -的值.10.若|21||3|0x y -++=,求x 、y 的值.11.若201503b a --+=,求a ,b 的值.三.利用绝对值的性质求最值(共9小题)1.设n 个有理数12,,,n x x x ⋅⋅⋅满足1(1,2,,)i x i n <= ,且12x x +++ 1219n n x x x x =++++ ,则n 的最小值是()A .19B .20C .21D .222.如果x 为有理数,式子20232x -+存在最大值,这个最大值是()A .2025B .2024C .2023D .20223.若a 是有理数,则|1|2a -+的最小值是()A .0B .1C .2D .34.(1)若6m -有最小值,则当m =时,取最小值,最小值为.(2)若260m n -+-=,则m =,n =.(3)5m -有最(填“大”或“小”)值,这个最(大)小值是.5.已知a 为有理数,则24a -+的最小值为.6.如果x 为有理数,式子20213x --存在最大值,那么这个式子有最值是,此x =7.已知,数轴上A ,B ,C 三点对应的有理数分别为a ,b ,c .其中点A 在点B 左侧,A ,B 两点间的距离为4,且a ,b ,c 满足()220240a b c ++-=,则(1)c 的值为.(2)数轴上任意一点P ,点P 对应的数为x ,若存在x 使x a x b x c -+-+-的值最小,则x 的值为.8.阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求:(1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.9.阅读下面的材料:点A B ,在数轴上分别表示有理数a b ,,A B ,两点之间的距离表示为AB .当A B ,两点中有一点在原点时,不妨设点A 在原点,如图①所示,AB OB b a b ===-;当A B ,两点都不在原点时,a .如图②所示,点A B ,都在原点的右边,AB OB OA b a b a a b =-=-=-=-;b .如图③所示,点A B ,都在原点的左边,()AB OB OA b a b a a b =-=-=---=-;c .如图④所示,点A B ,在原点的两边,()AB OA OB a b a b a b =+=+=+-=-.综上,数轴上A B ,两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2-和5-的两点之间的距离是,数轴上表示1和3-的两点之间的距离是;(2)数轴上表示x 和1-的两点A 和B 之间的距离是,如果2AB =,那么x 为;(3)当47x y ++-取最小值时,x =,y =.四.绝对值几何意义(共6小题)1.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是()A .12x ≤≤B .1x ≤-或2x ≥C .12x -≤≤D .12x ≤≤-2.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是.3.阅读理解:对于有理数a 、b ,a 的几何意义为:数轴上表示数a 的点到原点的距离;|a -b |的几何意义为:数轴上表示数a 的点与表示数b 的点之间的距离.如:2x -的几何意义即数轴表示数x 的点与表示数2的点之间的距离,请根据你的理解解答下列问题:(1)根据2x +的几何意义,若23x +=,那么x 的值是.(2)画数轴分析23x x +++的几何意义,并求出23x x +++的最小值是.(3)11232023x x x x x x +++-+-+-+⋯+-的最小值是多少?4.阅读下面的材料:根据绝对值的几何意义,我们知道53-表示5、3在数轴上对应的两点间的距离;535(3)+=--,所以53+表示5、3-在数轴上对应的两点之间的距离;550=-,所以5表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 两点之间的距离可以表示为AB a b =-.回答下列问题:(1)数轴上表示6与9-的两点之间的距离是_________;数轴上表示x 与2的两点之间的距离是_______.(2)若33x -=,则x =_______.(3)满足235x x ++-=的整数x 有_______个.(4)当a =_______时,代数式12x a x ++-的最小值是3.5.阅读下列材料:经过有理数运算的学习,我们知道53-可以表示5与3之差的绝对值,同时也可以理解为5与3两个数在数轴上所对应的两点之间的距离,我们可以把这称之为绝对值的几何意义.同理,()52--可以表示5与2-之差的绝对值,也可以表示5与2-两个数在数轴上所对应的两点之间的距离.试探究:(1)5x -表示数轴上有理数x 所对应的点到________所对应的点之间的距离;2x +表示数轴上有理数x 所对应的点到________所对应的点之间的距离.若25x +=,则x =________.(2)利用绝对值的几何意义,请找出所有符合条件的整数x ,使得257x x ++-=.这样的整数x 有________________.(写出所有的整数x )(3)利用绝对值的几何意义,求出123x x x -+++-的最小值,并说明理由.6.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且19AB =.(1)直接写出数轴上点B 表示的数;(2)53-表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 3的点之间的距离,试探索:①若82x -=,则x =(直接写出);②118x x ++-的最小值为(直接写出);(3)请直接写出所有满足37329a a ++-=的整数a 的值.五.数轴上两点之间的距离(共15小题)1.已A B 、两点在数轴上表示的数分别是3-和6-,若在数轴上找一点C ,使得A 和C 之间的距离是4,使得B D 、之的距离是1,则C D 、之间的距离不可能是()A .0B .6C .2D .42.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14-,10,现以点C 为折点,将数轴向右对折,若点A 落在射线C 上且到点B 的距离为6,则C 点表示的数是()A .1B .3-C .1或5-D .1或4-3.如图,已知A ,(B B 在A 的左侧)是数轴上的两点,点A 对应的数为12,且18AB =,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为(0)t t >秒,则下列结论中正确的有()①B 对应的数是6-;②点P 到达点B 时,9t =;③2BP =时,6t =;④在点P 的运动过程中,线段MN 的长度会发生变化.A .1个B .2个C .3个D .4个4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移2个单位长度,得到点C .若点C 到A 、B 两个点的距离相等,则a 的值为()A .0B .1-C .2-D .15.如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是().A .1-B .0C .1D .26.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2013厘米的线段AB ,则线段AB 盖住的整点的个数是()A .2011或2012B .2012或2013C .2013或2014D .2014或20157.在数轴上有若干个点,每相邻两个点之间的距离是1个单位长度,有理数a ,b ,c ,d 表示的点是这些点中的4个,且在数轴上的位置如图所示.已知343a b =-,则代数式5c d -的值是.8.如图,在数轴上,点A 表示的数是10,点B 表示的数为50,点P 是数轴上的动点.点P 沿数轴的负方向运动,在运动过程中,当点P 到点A 的距离与点P 到点B 的距离比是2:3时,点P 表示的数是.9.一把刻度尺的部分在数轴上的位置摆放如图所示,若刻度尺上的刻度“4cm ”和“1cm ”分别对应数轴上的0和2,现将该刻度尺沿数轴向右平移3个单位,则刻度尺上6.1cm 对应数轴上的数为.10.如图,边长为3的正方形ABCD 的边AB 在数轴上,数轴上的点A 表示的数为4-,将正方形ABCD 在数轴上水平移动,移动后的正方形记为A B C D '''',点、、A B C 、D 的对应点分别为A B C D ''''、、、,点E 是线段AA '的中点,当BEC '△面积为9时,点A '表示的数为.11.如图,A ,B ,C 为数轴上的点,4AC =,点B 为AC 的中点,点P 为数轴上的任意一点,则2PA PB PC ++的最小值为.12.如图所示,观察数轴,请回答:(1)点C 与点D 的距离为,点B 与点D 的距离为;(2)点B 与点E 的距离为,点A 与点C 的距离为;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN =(用m ,n 表示)13.同学们都知道,()73--表示7与3-之差的绝对值,实际上也可理解为数轴上分别表示7与3-的两点之间的距离.试探索:(1)()73--=________;(2)找出所有符合条件的整数x ,使得415x x ++-=;(3)对于任何有理数x ,36x x -+-是否有最小值?若有,请求出最小值;若没有,请说明理由;(4)若169x x ++-=时,求x 的值.14.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与1-表示的点重合,则2-表示的点与数表示的点重合;(2)若1-表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A 、B 两点之间的距离为2023(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?15.如图所示,在一条不完整的数轴上从左到右有三点、、A B C ,其中2AB =,1BC =,设点、、A B C 所对应的数的和是m .(1)若B 为原点.则A 点对应的数是__________;点C 对应的数是__________,m =__________.(2)若原点O 在图中数轴上点C 的右边,且6CO =.求m .六.数轴上动点问题(共12小题)1.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为1-和0,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则翻转2019次后,数轴上数2019所对应的点是()A .点AB .点BC .点CD .点D2.一个电子跳蚤在一条数轴上从原点开始,第一次向右跳1个单位长度,紧接着第二次向左跳2个单位长度,第三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点()个单位长度.A.0B.100C.50D.-503.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过秒后,M、N两点间的距离为8个单位长度.4.如图,动点A,B,C分别从数轴-30,10,18的位置沿数轴正方向运动,速度分别为2个单位长度/秒,4个单位长度/秒,8个单位长度/秒,线段OA的中点为P,线段OB的中点为M,线段OC的中点为N,若⋅-为常数,则k为.k PM MN5.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.-,点N所表示的数为2如图2,M,N为数轴上两点,点M所表示的数为7(1)点E,F,G表示的数分别是3-,6.5,11,其中是【M,N】美好点的是_;写出【N,M】美好点H所表示的数是_.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?6.若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为2-,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;-,点B所表示的数为40.现有一只电子蚂蚁P从点(2)如图3,A、B为数轴上两点,点A所表示的数为20B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?、两点表示的数是互为相反数;7.如图,数轴上的单位长度为1,A B(1)点A表示的数是______,点B表示的数______.(2)数轴上一个动点P先向左移动2个单位长度,再向右移动5个单位到达点M,若点M表示的数是1,则点P所表示的数是______.(3)在数轴上,点O 为坐标原点,若点A 、点B 分别以2个单位长度/秒和0.5个单位长度/秒的速度向右运动,当两点同时运动时,设运动时间为t 秒()0t >.①点A 表示的数为______;点B 表示的数为______.(用含t 的式子表示)②当t 为何值时,点A 、点B 、点O 三点之间恰好有一个点到其他两个点的距离相等?8.如图,已知点A 、B 、C 是数轴上三点,O 为原点.点C 对应的数为3,2BC =,6AB =.(1)则点A 对应的数是,点B 对应的数是;(2)动点P 、Q 分别同时从A 、C 出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M 在线段AP 上,且AM MP =,N 在线段CQ 上,且14CN CQ =,设运动时间为()0t t >.①求点M 、N 对应的数(用含t 的式子表示)②猜想MQ 的长度是否与t 的大小有关?如果有关请你写出用t 表示的代数式;如果无关请你求出MQ 的长度.9.阅读下面的材料:如图1,在数轴上A 点所示的数为a ,B 点表示的数为b ,则点A 到点B 的距离记为AB ,线段AB 的长可以用右边的数减去左边的数表示,即AB b a =-.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置:(2)点C到点A的距离CA=______cm;若数轴上有一点D,且5AD=,则点D表示的数为_________;x,则移动后的点表示的数为_____;(用代数式表示)(3)若将点A向右移动cm(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动,设移动时间-的值是否会随着t的变化而改变?请说明理由.为t秒,试探索:AC AB-、10,动点P从A出发,以每秒1个单位10.已知数轴上有A、B、C三个点,分别表示有理数24-、10长度的速度向终点C移动,设移动时间为t秒.若用PA,PB,PC分别表示点P与点A、点B、点C的距离,试回答以下问题.(1)当点P运动10秒时,PA=______,PB=______,PC=______;(2)当点P运动了t秒时,请用含t的代数式表示P到点A、点B、点C的距离:PA=______,PB=______,PC=______;(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请直接写出点P表示的数;如果不能,请说明理由.11.定义:数轴上A 、B 两点的距离为a 个单位记作AB a =,根据定义完成下列各题.两个长方形ABCD 和EFGH 的宽都是3个单位长度,长方形ABCD 的长AD 是6个单位长度,长方形EFGH 的长EH 是10个单位长度,其中点A 、D 、E 、H 在数轴上(如图),点E 在数轴上表示的数是5,且E 、D 两点之间的距离为14,原点记为0.(1)求数轴上点H 、A 所表示的数?(2)若长方形ABCD 以4个单位长度/秒的速度向右匀速运动,同时长方形EFGH 以3个单位长度/秒的速度向左匀速运动,数轴上有M 、N 两点,其中点M 在A 、D 两点之间,且12AM AD =,其中点N 在E 、H 两点之间,且15EN EH =,设运动时间为x 秒.①经过x 秒后,M 点表示的数是,N 点表示的数是(用含x 的式子表示,结果需化简).②求MN (用含x 的式子表示,结果需化简).(3)若长方形ABCD 以2个单位长度/秒的速度向右匀速运动,长方形EFGH 固定不动,设长方形ABCD 运动的时间为()0t t >秒,两个长方形重叠部分的面积为S ,当12S =时,求此时t 的值.12.阅读下面材料:若点A B 、在数轴上分别表示实数a b 、,则A B 、两点之间的距离表示为AB ,且AB a b =-;回答下列问题:(1)①数轴上表示x 和2的两点A 和B 之间的距离是;②在①的情况下,如果3AB =,那么x 为;(2)代数式12x x ++-取最小值时,相应的x 的取值范围是.(3)若点、、A B C 在数轴上分别表示数a b c 、、,a 是最大的负整数,且2(5)0-++=c a b ,①直接写出a b c 、、的值.A B C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分②点、、别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.。

绝对值的性质与几何意义、数轴上动点问题(6种常考题型(解析版)

绝对值的性质与几何意义、数轴上动点问题(6种常考题型(解析版)

绝对值的性质与几何意义、数轴上动点问题(6种常考题型)题型一利用绝对值的性质化简题型二绝对值非负性的应用题型三利用绝对值的性质求最值题型四绝对值几何意义题型五数轴上两点之间的距离题型六数轴上动点问题一.利用绝对值的性质化简(共15小题)1.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a b a b +的值是()2.若0ab ≠,那么a ab b +的取值不可能是()A .2-B .0C .1D .2【答案】C【分析】本题考查了绝对值的意义,由0ab ≠,可得:①0a >,0b >,②0a <,0b <,③0a >,0b <,④0a <,0b >;分别计算即可,采用分类讨论的思想是解此题的关键.【详解】解:∵0ab ≠,,3.已知有理数a ,b 在数轴上的位置如图所示,则化简1a b a +--的结果为()4.0a <,则化简a a a a a a ++-的结果为()5.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是()A .22a b+B .22a b c +-C .c -D .2b c--【答案】C 【分析】本题考查了整式的加减和去绝对值,根据数轴分别判断0a b +<,0c b ->的正负,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.6.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d +++的最大值是.7.已知数a b c 、、位置如图所示,化简a b a c --+=.的结果是.【答案】32a b c-+【分析】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.先根据各点在数轴上的位置判断出a 、b 、c 的符号及大小,再去绝对值符号,合并同类项即可.【详解】解: 由图可知,0b a c <<<,||a c >,0a b ∴->,0a c +<,∴原式()22232a b a c a b a c a b c =-++=-++=-+.故答案为:32a b c -+.9.若12x <<,求代数式21x x x ---+=.10.若0a >,a=;若0a <,||a =;①若0||||a b a b +=,则||ab ab=-;②若0abc <,则||||||a b c a b c ++=.1111||||||a b c a b c ++=-++=,当a 、b 、c 中有三个负数时,1113||||||a b c a b c ++=---=-,故答案为:1或3-.11.有理数0a >,0b >,0c <,且a c b <<.(1)在数轴上将a ,b ,c 三个数在数轴上表示出来如图所示;(2)化简:2b c a b a c +--+-.【答案】(1)见详解(2)3a【分析】(1)根据所给的范围确定数在数轴上的位置即可;(2)由题意可知0b c +>,0a b -<,0a c ->,再化简即可.本题考查实数与数轴,熟练掌握数轴上点的特征,绝对值的意义是解题的关键.【详解】(1)解:依题意,有理数0a >,0b >,0c <,且a c b<<∴如图所示:(2)解:0a > ,0b >,0c <,且a c b <<,0b c ∴+>,0a b -<,0a c ->,|||||2|b c a b a c ∴+--+-()(2)b c b a a c =+--+-2b c b a a c=+-++-3=a .12.已知有理数a b c d 、、、在数轴上对应的点的位置如图所示,化简:a c b d c b++---【答案】2a c d--+【分析】此题综合考查了数轴、绝对值的有关内容,熟练掌握以上知识是解题的关键.先观察数轴,得到0a b c d <<<<,从而得到0a c +<,0b d -<,0c b ->,然后根据绝对值的性质进行化简即可.【详解】解:由数轴可知,0a b c d <<<<,∴0a c +<,0b d -<,0c b ->,∴2a c b d c b a c b d c b a c d++---=---+-+=--+13.a ,b 在数轴上的位置如图,化简b a a a b --++.b ,.【答案】21b -【分析】本题考查数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.根据数轴可以判断a 、b 、c 的正负和绝对值的大小,从而可以化简题目中的式子.【详解】解:根据数轴,得10,0,0a c b a b c +<->++<,|1|(1),||,||()a a c b c b a b c a b c ∴+=-+-=-++=-++,|1|||||a cb a bc ∴+---++(1)()()a cb a bc =-+--+++1a c b a b c=---++++21b =-.15.有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.二.绝对值非负性的应用(共11小题)1.如果21(2)0a b ++-=,则a b +的值为()2.若()23a +与1b -互为相反数,则().3,1a b =-=-3.若320x y -++=,则x y +的值是().4.如果有理数x 、y 满足10x x y -++=,那么xy 的值是()5.若()22430||a b ++--=,则b =;a =.【答案】32【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++--=,∴20,30a b +=-=-,解得:3,2b a ==.故答案为:3,2.6.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.故答案为:1,2.2y =8.已知,b 是有理数,且满足,求与b 的值.【答案】1a =,2b =【分析】本题考查了绝对值非负的性质.当它们相加和为0时,必须满足其中的每一项都等于0.根据非负数的性质列出方程求出未知数的值.【详解】解:|1||2|0a b -+-= ,10a ∴-=,20b -=,1a ∴=,2b =,故答案为:1a =,2b =.9.已知230x y -++=.(1)求x y +的值.x y -的值.,求、的值.11.若201503b a --+=,求a ,b 的值.【答案】3a =,2015b =根据绝对值的性质去绝对值是解题的关键.三.利用绝对值的性质求最值(共9小题)1.设n 个有理数12,,,n x x x ⋅⋅⋅满足1(1,2,,)i x i n <= ,且12x x +++ 1219n n x x x x =++++ ,则n 的最小值是()2.如果x 为有理数,式子20232x -+存在最大值,这个最大值是()的最小值是()A .0B .1C .2D .3【答案】C【分析】根据绝对值的非负性即可求解.【详解】解:∵a 是有理数∴1a -可为正数、负数、零由绝对值的非负性可知:|1|0a -≥∴2|12|a -+≥即:|1|2a -+的最小值是2故选:C【点睛】本题考查绝对值的非负性.熟记相关结论即可.4.(1)若6m -有最小值,则当m =时,取最小值,最小值为.(2)若260m n -+-=,则m =,n =.(3)5m -有最(填“大”或“小”)值,这个最(大)小值是.5.已知a 为有理数,则24a -+的最小值为.【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,6.如果x 为有理数,式子20213x --存在最大值,那么这个式子有最值是,此x =a ,b ,c 满足()220240a b c ++-=,则(1)c 的值为.(2)数轴上任意一点P ,点P 对应的数为x ,若存在x 使x a x b x c -+-+-的值最小,则x 的值为.8.阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求:(1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.点A B ,在数轴上分别表示有理数a b ,,A B ,两点之间的距离表示为AB .当A B ,两点中有一点在原点时,不妨设点A 在原点,如图①所示,AB OB b a b ===-;当A B ,两点都不在原点时,a .如图②所示,点A B ,都在原点的右边,AB OB OA b a b a a b =-=-=-=-;b .如图③所示,点A B ,都在原点的左边,()AB OB OA b a b a a b =-=-=---=-;c .如图④所示,点A B ,在原点的两边,()AB OA OB a b a b a b =+=+=+-=-.综上,数轴上A B ,两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2-和5-的两点之间的距离是,数轴上表示1和3-的两点之间的距离是;(2)数轴上表示x 和1-的两点A 和之间的距离是,如果2AB =,那么x 为;(3)当47x y ++-取最小值时,x =,y =.四.绝对值几何意义(共6小题)1.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是()A .12x ≤≤B .1x ≤-或2x ≥ 2.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取对x 的值进行分类讨论,进而得出代数式的值.以1-和2为界点,将数轴分成三部分,对x 的值进行分类讨论,然后根据绝对值的意义去绝对值符号,分别求出代数式的值进行比较即可.【详解】解:如图,当1x <-时,10x +<,20x -<,|1||2|x x ++-(1)(2)x x =-+--12x x =---+213x =-+>;当2x >时,10x +>,20x ->,|1||2|x x ++-(1)(2)x x =++-12x x =++-213x =->;当12x -≤≤时,10x +≥,20x -≤,|1||2|x x ++-(1)(2)x x =+--123x x =+-+=;综上所述,当12x -≤≤时,|1||2|x x ++-取得最小值,所以当|1||2|x x ++-取得最小值时,x 的取值范围是12x -≤≤.故答案为:12x -≤≤.3.阅读理解:对于有理数a 、b ,a 的几何意义为:数轴上表示数a 的点到原点的距离;|a -b |的几何意义为:数轴上表示数a 的点与表示数b 的点之间的距离.如:2x -的几何意义即数轴表示数x 的点与表示数2的点之间的距离,请根据你的理解解答下列问题:(1)根据2x +的几何意义,若23x +=,那么x 的值是.(2)画数轴分析23x x +++的几何意义,并求出23x x +++的最小值是.(3)11232023x x x x x x +++-+-+-+⋯+-的最小值是多少?的点之间的距离,当23x -≤≤-时,23x x +++的最小值是为根据绝对值的几何意义,我们知道53-表示5、3在数轴上对应的两点间的距离;535(3)+=--,所以53+表示5、3-在数轴上对应的两点之间的距离;550=-,所以5表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 两点之间的距离可以表示为AB a b =-.回答下列问题:(1)数轴上表示6与9-的两点之间的距离是_________;数轴上表示x 与2的两点之间的距离是_______.(2)若33x -=,则x =_______.(3)满足235x x ++-=的整数x 有_______个.经过有理数运算的学习,我们知道53-可以表示5与3之差的绝对值,同时也可以理解为5与3两个数在数轴上所对应的两点之间的距离,我们可以把这称之为绝对值的几何意义.同理,()52--可以表示5与2-之差的绝对值,也可以表示5与2-两个数在数轴上所对应的两点之间的距离.试探究:(1)5x -表示数轴上有理数x 所对应的点到________所对应的点之间的距离;2x +表示数轴上有理数x 所对应的点到________所对应的点之间的距离.若25x +=,则x =________.(2)利用绝对值的几何意义,请找出所有符合条件的整数x ,使得257x x ++-=.这样的整数x 有________________.(写出所有的整数x )(3)利用绝对值的几何意义,求出123x x x -+++-的最小值,并说明理由.(1)直接写出数轴上点B 表示的数;(2)53-表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离,试探索:①若82x -=,则x =(直接写出);②118x x ++-的最小值为(直接写出);(3)请直接写出所有满足37329a a ++-=的整数a 的值.故答案为:,,0.五.数轴上两点之间的距离(共15小题)1.已A B 、两点在数轴上表示的数分别是3-和6-,若在数轴上找一点C ,使得A 和C 之间的距离是4,使得B D 、之的距离是1,则C D 、之间的距离不可能是()A .0B .6C .2D .4【答案】D【分析】本题考查了数轴,画出数轴,然后根据两种情况确定出点C D 、的位置,再根据数轴上的两点间的距离求出C 的可能值,据此即可求解,掌握数形结合思想和分类讨论思想是解题的关键.【详解】解:如图,C D 、间的距离可能是0268、、、,∴C D 、之间的距离不可能是4,故选:D .2.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14-,10,现以点C 为折点,将数轴向右对折,若点A 落在射线C 上且到点B 的距离为6,则C 点表示的数是()A .1B .3-C .1或5-D .1或4-【答案】C 【分析】本题考查了数轴,分类讨论思想是解题的关键.先根据两点间的距离公式求出点A 落在对应点表示的数,在利用中点公式求出C 点表示的数.【详解】设A '是点A 的对应点,由题意可知点C 是A 和A '的中点当点A 在B 的右侧,6BA '=,A '表示的数为10616+=,那么C 表示的数为:(1416)21-+÷=,当点A 在B 的左侧,6BA '=,A '表示的数为1064-=,那么C 表示的数为:(144)25-+÷=-,故选:C .3.如图,已知A ,(B B 在A 的左侧)是数轴上的两点,点A 对应的数为12,且18AB =,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为(0)t t >秒,则下列结论中正确的有()①B 对应的数是6-;②点P 到达点B 时,9t =;③2BP =时,6t =;④在点P 的运动过程中,线段MN 的长度会发生变化.A .1个B .2个C .3个D .4个【答案】B 【分析】本题考查了数轴上两点距离.利用数轴,分类讨论即可求解.【详解】解: 已知A ,(B B 在A 的左侧)是数轴上的两点,点A 对应的数为12,且18AB =,B ∴对应的数为:12186-=-;故①是正确的;1829÷= ,故②是正确的;当2BP =时,16AP =,1628t =÷=,故③是错误的;在点P 的运动过程中,9MN =,故④是错误的;故选:B .4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移2个单位长度,得到点C .若点C 到A 、B 两个点的距离相等,则a 的值为()A .0B .1-C .2-D .1【答案】C【分析】此题考查了数轴上点的移动,由题意得点A 表示数为a ,点B 表示数为2,点C 表示数为2a +,熟知数轴A .1-B .0C .1D .2【答案】C 【分析】根据已知图形可写出墨水盖住的整数,相加即可;【详解】由图可知,被墨水盖住的整数为:3-,2-,1,2,3,相加为()321231-+-+++=;故选C .【点睛】本题主要考查了有理数的加法运算,准确表示出盖住的整数是解题的关键.6.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2013厘米的线段AB ,则线段AB 盖住的整点的个数是()个,且在数轴上的位置如图所示.已知343a b =-,则代数式5c d -的值是.【答案】12-【分析】根据题意,则2b a =+,3c a =+,7d a =+,结合343a b =-,列式解答即可.本题考查了数轴的意义,有理数的计算,熟练掌握有理数加减运算是解题的关键.【详解】解:仔细观察图形,由数轴可知:a b c d <<<.∵每相邻两点之间的距离是1个单位长,∴2b a =+,3c a =+,7d a =+.∵343a b =-,∴()3423a a =+-,∴5a =-,∴3532c a =+=-+=-,7572d a =+=-+=,∴521012c d -=--=-.故答案为:12-.8.如图,在数轴上,点A 表示的数是10,点B 表示的数为50,点P 是数轴上的动点.点P 沿数轴的负方向运动,在运动过程中,当点P 到点A 的距离与点P 到点B 的距离比是2:3时,点P 表示的数是.现将该刻度尺沿数轴向右平移3个单位,则刻度尺上6.1cm 对应数轴上的数为.平移动,移动后的正方形记为A B C D '''',点、、A B C 、D 的对应点分别为A B C D ''''、、、,点E 是线段AA '的中点,当BEC '△面积为9时,点A '表示的数为.【分析】本题考查了数轴上的动点问题,三角形的面积,解题的关键是根据正方形平移后正确地表示出各线段的长∵113922BEC S BE D A BE '''=⋅=⨯=V ,∴6BE =,∴369AE AB BE =+=+=,∵点E 是线段AA '的中点,∴18AA '=,∵点A 表示的数为4-,∴点A '表示的数为41814-+=;②当正方形ABCD 沿数轴向左移动时,如图,S V Q 6,BE ∴=∴633AE BE AB =-=-=,∵点E 是线段AA '的中点,∴6AA '=,∵点A 表示的数为4-,∴点A '表示的数为4610--=-.综上,数轴上点A '表示的数是14或10-;故答案为:14或10-.11.如图,A ,B ,C 为数轴上的点,4AC =,点B 为AC 的中点,点P 最小值为.【答案】6【分析】根据题意得出2AB BC ==,然后分情况讨论,作出相应图形求解即可.【详解】解:∵4AC =,点B 为AC 的中点,∴2AB BC ==,当点P 位于点A 左侧时,如图所示,()22410PA PB PC PA PA AB PA AC PA ++=++++=+;当点P 与点A 重合时,如图所示,202810PA PB PC ++=++=;当点P 位于点A 与点B 之间时,如图所示:()22226PA PB PC PB BC PB ++=++=+;当点P 与点B 重合时,如图所示,220226PA PB PC ++=++⨯=;当点P 位于点B 与点C 之间时,如图所示:22246PA PB PC AB PB PB PC ++=+++=+=;当点P 与点C 重合时,如图所示,2426PA PB PC ++=+=;当点P 位于点C 右侧时,如图所示,2264PA PB PC AC PC BC PC PC PC ++=++++=+;综上可得:2PA PB PC ++的最小值为6,故答案为:6.【点睛】本题主要考查数轴上两点之间的距离及分类讨论思想,理解题意,进行分类讨论是解题关键.12.如图所示,观察数轴,请回答:(1)点C 与点D 的距离为,点B 与点D 的距离为;(2)点B 与点E 的距离为,点A 与点C 的距离为;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们13.同学们都知道,()73--表示7与3-之差的绝对值,实际上也可理解为数轴上分别表示7与3-的两点之间的距离.试探索:(1)()73--=________;(2)找出所有符合条件的整数x ,使得415x x ++-=;(3)对于任何有理数x ,36x x -+-是否有最小值?若有,请求出最小值;若没有,请说明理由;(4)若169x x ++-=时,求x 的值.+=--=-,617112∴x的值为2-或7.14.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与1-表示的点重合,则2-表示的点与数表示的点重合;(2)若1-表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为2023(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?的和是m.(1)若B为原点.则A点对应的数是__________;点C对应的数是__________,m=__________.CO=.求m.(2)若原点O在图中数轴上点C的右边,且6【答案】(1)2--,1,1(2)22-A B C所对应的数是解题关键.【分析】本题主要考查了数轴的知识,根据题意确定点、、A B C所对应的数,即可获得答案;(1)根据题意,确定点、、A B C所对应的数,即可获得答案.(2)根据题意,确定点、、【详解】(1)解:根据题意,2BC=,AB=,1若B为原点,即点B对应的数为0,则点A 对应的数为2-,点C 对应的数为1,∴2011=-++=-m .故答案为:2-,1,1-;(2)解:根据题意,原点O 在图中数轴上点C 的右边,且6CO =,则点C 对应的数为6-,点B 对应的数为7-,点A 对应的数为9-,∴()()67922m =-+-+-=-.六.数轴上动点问题(共12小题)1.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为1-和0,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则翻转2019次后,数轴上数2019所对应的点是()三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点()个单位长度.A .0B .100C .50D .-50【答案】C【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【详解】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50,所以落点处离0的距离是50个单位.故答案为:C .【点睛】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.3.如图,在数轴上点A 、B 表示的数分别为﹣2、4,若点M 从A 点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N 从B 点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M 、N 同时出发,运动时间为t 秒,经过秒后,M 、N 两点间的距离为8个单位长度.【答案】14或149【分析】已知运动时间为t 秒,根据题意建立含有t 的一元一次方程,解出t 的值即可.【详解】解:已知运动时间为t 秒,根据题意M 、N 两点间的距离为8个单位长度,分析N 点的两种移动方向分别建立一元一次方程可得:当N 向左运动,则有25448t t -+-+=,解得t =149,当N 向右运动,则有25448t t -+--=,解得t =14.故答案为14或149.【点睛】本题主要考查线段的动点和数轴问题,根据题意分情况列出含有t 的一元一次方程是解决本题的关键.4.如图,动点A ,B ,C 分别从数轴-30,10,18的位置沿数轴正方向运动,速度分别为2个单位长度/秒,4个单位长度/秒,8个单位长度/秒,线段OA 的中点为P ,线段OB 的中点为M ,线段OC 的中点为N ,若k PM MN ⋅-为常数,则k 为.【答案】2【分析】运动t 秒后,点P 在数轴上表示的数为-15+t ,点M 在数轴上表示的数是5+2t ,点N 在数轴上表示的数是9+4t ,分别表示出PM =20+t ,MN =2t +4,再代入k PM MN ⋅-,根据k PM MN ⋅-为常数,得到关于k 的方程,解方程即可.【详解】解:根据题意得,点P 在数轴上表示的数为-3022t +=-15+t ,点M 在数轴上表示的数是1042t +=5+2t ,点N 在数轴上表示的数是1882t +=9+4t ,则PM =20+t ,MN =2t +4,(20)(24)(2)204k PM MN k t t k t k ∴⋅-=+-+=-+- k PM MN ⋅-为常数,2=0k ∴-2k ∴=故答案为:2.【点睛】本题考查一元一次方程的应用、数轴上点的位置关系,根据k PM MN ⋅-为常数列方程是解题关键.5.定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是【A ,B 】的美好点.例如:如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的美好点,但点D 是【B ,A 】的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2(1)点E ,F ,G 表示的数分别是3-,6.5,11,其中是【M ,N 】美好点的是_;写出【N ,M 】美好点H 所表示的数是_.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,P ,M 和N 中恰有一个点为其余两点的美好点?【答案】(1)G ;4-或16-(2)1.5,2.25,3,6.75,9,13.5【分析】本题考查数轴上的动点问题、数轴上两点之间的距离、点是【M ,N 】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.(1)根据美好点的定义,结合图2,直观考察点E ,F ,G 到点M ,N 的距离,只有点G 符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分8种情况,须区分各种情况分别确定P 点的位置,进而可确定t 的值.【详解】(1)解:根据美好点的定义,18GM =,9GN =,2GM GN =,只有点G 符合条件,故答案是:G .结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,点N 的右侧不存在满足条件的点,点M 和N 之间靠近点M 一侧应该有满足条件的点,进而可以确定4-符合条件.点M 的左侧距离点M 的距离等于点M 和点N 的距离的点符合条件,进而可得符合条件的点是16-.故答案为:4-或16-;(2)解:根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分8种情况,第一情况:当P 为【M ,N 】的美好点,点P 在M ,N 之间,如图1,当2MP PN =时,3PN =,点P 对应的数为231-=-,因此 1.5t =秒;第二种情况,当P 为【N ,M 】的美好点,点P 在M ,N 之间,如图2,当2PM PN =时,6NP =,点P 对应的数为264-=-,因此3t =秒;第三种情况,P 为【N ,M 】的美好点,点P 在M 左侧,如图3,当2PN MN =时,18NP =,点P 对应的数为21816-=-,因此9t =秒;第四种情况,M 为【P ,N 】的美好点,点P 在M 左侧,如图4,当2MP MN =时,27NP =,点P 对应的数为22725-=-,因此13.5t =秒;第五种情况,M 为【N ,P 】的美好点,点P 在M 左侧,如图5,当2MN MP =时,13.5NP =,点P 对应的数为213.511.5-=-,因此 6.75t =秒;第六种情况,M 为【N ,P 】的美好点,点P 在M ,N 左侧,如图6,当2MN MP =时, 4.5NP =,因此 2.25t =秒;第七种情况,N 为【P ,M 】的美好点,点P 在M 左侧,当2PN MN =时,18NP =,因此9t =秒,第八种情况,N 为【M ,P 】的美好点,点P 在M 右侧,当2MN PN =时, 4.5NP =,因此 2.25t =秒,综上所述,t 的值为:1.5,2.25,3,6.75,9,13.5.6.若A 、B 、C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是【A ,B 】的好点.例如,如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点.知识运用:如图2,M 、N 为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.(1)数所表示的点是【M ,N 】的好点;(2)如图3,A 、B 为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)2或10t=秒或20秒或15秒(2)10【分析】本题考查了数轴上两点之间的距离、数轴上的动点问题:(1)根据数轴求出两点距离,再根据新定义的概念求出结果,注意有两种情况;(2)分情况讨论,根据好点的定义可求出结果;正确理解新定义是解题的关键.【详解】(1)解:设点H是【M,N】的好点,∴=,2HM HN当H在M、N之间时,HM HN MN∴+==--=,4(2)6∴+=,HN HN26∴=,2HN∴表示的数为422H-=,当H在N右边时,设H表示的数为h,h h∴--=-,(2)2(4)∴=,10h故答案为:2或10;(2)解:当P是【A,B】好点时,即2=,PA PB\-=´,t t60222t∴=;10当P是【B,A】好点时,即2=,PB PA∴=-,t t22(602)t∴=;20当B是【A,P】好点时,即2BA BP=,\=´,6022tt∴=,15当A是【B,P】好点时,即2=,AB AP∴=-,602(602)tt∴=;15t=秒或20秒或15秒时,P、A和B中恰有一个点为其余两点的好点.综上所述,当10、两点表示的数是互为相反数;7.如图,数轴上的单位长度为1,A B(1)点A表示的数是______,点B表示的数______.(2)数轴上一个动点P先向左移动2个单位长度,再向右移动5个单位到达点M,若点M表示的数是1,则点P所表示的数是______.(3)在数轴上,点O为坐标原点,若点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度向右运动,当两点t>.同时运动时,设运动时间为t秒()0①点A 表示的数为______;点B 表示的数为______.(用含t 的式子表示)②当t 为何值时,点A 、点B 、点O 三点之间恰好有一个点到其他两个点的距离相等?(1)则点A 对应的数是,点B 对应的数是;(2)动点P 、Q 分别同时从A 、C 出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M 在线段AP 上,且AM MP =,N 在线段CQ 上,且14CN CQ =,设运动时间为()0t t >.①求点M、N对应的数(用含t的式子表示)②猜想的长度是否与t的大小有关?如果有关请你写出用t表示的代数式;如果无关请你求出的长度.如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB,线段AB的长可以用右边=-.的数减去左边的数表示,即AB b a请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置:(2)点C到点A的距离CA=______cm;若数轴上有一点D,且5AD=,则点D表示的数为_________;x,则移动后的点表示的数为_____;(用代数式表示)(3)若将点A向右移动cm(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,-的值是否会随着t的变化而改变?请说明理由.试探索:AC AB-,C表示4,图见解析;【答案】(1)A表示2-,B表示5CA=--=+=(cm);(2)4(2)426设D表示的数为a,度向终点C移动,设移动时间为t秒.若用PA,PB,PC分别表示点P与点A、点B、点C的距离,试回答以下问题.(1)当点P运动10秒时,PA=______,PB=______,PC=______;(2)当点P运动了t秒时,请用含t的代数式表示P到点A、点B、点C的距离:PA=______,PB=______,PC=______;(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请直接写出点P表示的数;如果不能,请说明理由.当Q 点未到达点,此时3AQ x =,BP x =,则Q 则()10243PQ x x =-+--+此时(343AQ AC QC =-=-则Q 点表示的数为2468-+-两个长方形ABCD 和EFGH 的宽都是3个单位长度,长方形ABCD 的长AD 是6个单位长度,长方形EFGH 的长EH 是10个单位长度,其中点A 、D 、E 、H 在数轴上(如图),点E 在数轴上表示的数是5,且E 、D 两点之间的距离为14,原点记为0.(1)求数轴上点H 、A 所表示的数?(2)若长方形ABCD 以4个单位长度/秒的速度向右匀速运动,同时长方形EFGH 以3个单位长度/秒的速度向左匀速运动,数轴上有M 、N 两点,其中点M 在A 、D 两点之间,且12AM AD =,其中点N 在E 、H 两点之间,且15EN EH =,设运动时间为x 秒.①经过x 秒后,M 点表示的数是,N 点表示的数是(用含x 的式子表示,结果需化简).②求MN (用含x 的式子表示,结果需化简).(3)若长方形ABCD 以2个单位长度/秒的速度向右匀速运动,长方形EFGH 固定不动,设长方形ABCD 运动的时间为()0t t >秒,两个长方形重叠部分的面积为S ,当12S =时,求此时t 的值.。

2019 年初中数学中考复习 有理数---绝对值与数轴 专题训练 含答案

2019 年初中数学中考复习    有理数---绝对值与数轴   专题训练 含答案

2019 年初中数学中考复习有理数---绝对值与数轴专题训练1. 在数轴上表示-2的点与表示3的点之间的距离是( )A.5 B.-5 C.1 D.-12. 若绝对值相等的两个数在数轴对应点的距离是6,则这两个数分别为( ) A.-2,4 B.-4,2 C.3,3 D.3,-33. 若|m-2|+|n-7|=0,则|m+n|=( )A.2 B.7 C.8 D.94. 如图所示,数轴上一个动点P向右移动5个单位长度到达点A,再向左移动8个单位长度到达点B.若点B表示的数为-5,则点P表示的数为( )A.12 B.-2 C.3 D.-35. 在数轴上点A表示的数为-2,当点A沿数轴移动4个单位长度到达点B时,点B所表示的数为( )A.2 B.6 C.2或-6 D.4或-86. 有理数a在数轴上的位置如图所示,则关于a,-a,1,-1的大小关系正确的是( )A.a<-1<-a<1 B.a<-1<1<-a C.-a<-1<1<a D.-a<-1<a<1 7. 若有理数a,b在数轴上的对应点如图所示,则下列判断错误的是( )A.|b|<-a B.|a|>-b C.b>a D.-a<-b8. 计算:|-6.18|=9. 计算:|-2|+2=____10. 计算:-|-14|=11. 计算:-|-(98)|= 12. 计算:-(π)|=____13. 计算:|-5|-|+3|+|-10|=____14. 当a =____时,2+|3a -12|有最小值,这个最小值为____15. 当m = 时,9-|2m -1|有最大值,这个最大值为____16. 如果点P 表示的数是2,将点P 向左移动7个单位长度,再向右移动3个单位长度,那么终点表示的数为____17. 如果将点P 向右移动3个单位长度,再向左移动8个单位长度,终点表示的数是-5,那么点P 表示的数为____18. 数轴上的点A ,B 分别表示-2和-10,点C 到点A 的距离与点C 到点B 的距离相等,则点C 表示的数为____.19. 比较下列各组数的大小.(1)-45和-|-34|;(2)-|-3.14|和-π.20. 化简:|-3|,|-(-8)|,|0|,-|-112|,-|+(-6)|.21. 已知|a|=10,求a的值.22. 已知|x|=7,|y|=3,且x<y,求x,y的值.23. 若|x-5|+|2y-1|=0,求x-2y的值.24. 已知|a-2|+|b-3|+|c-4|=0,求abc-a-b-c的值.25. 已知a>0,b<0,|b|<|a|,把a,-a,b,-b四个数按从小到大的顺序连接起来.26. 已知A,B两点在同一条数轴上,点A在原点的左边,到原点的距离为8,点B在原点的右边,点A到点B的距离为32.(1)求A,B两点所表示的数;(2)若A,B两点分别以每秒1个单位长度和每秒3个单位长度的速度同时相向移动,在点C相遇,求点C表示的数?(3)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C表示的数.参考答案:1---7 ADDBC BD8. 6.189. 410. -1411. -9812. π13. 1214. 4 215. 129 16. -217. 018. -619. 解:(1)-|-34|=-34,∵|-45|=45=1620, |-34|=34=1520,而1620>1520,∴-45<-|-34| (2)-|3.14|=-3.14,∵|-3.14|=3.14,|-π|=π,而3.14<π,∴-|-3.14|>-π20. 解:|-3|=3,|-(-8)|=|8|=8,|0|=0,-|-112|=-112,-|+(-6)|=-|-6|=-6 21. 解:a =±1022. 解:x =±7,y =±3,又∵x<y ,∴x =-7,y =±3,即x的值为-7,y的值为±323. 解:根据题意得:|x-5|=0,|2y-1|=0,∴x-5=0,2y-1=0,解得x=5,y=12,∴x-2y=5-2×12=424. 解:根据题意得:|a-2|=0,|b-3|=0,|c-4|=0,即a-2=0,b-3=0,c-4=0,∴a=2,b=3,c=4,∴abc-a-b-c=2×3×4-2-3-4=1525. 解:-a<b<-b<a26. 解:(1)点A表示的数为-8,点B表示的数为24(2)设A,B两点经过x秒相遇,则(1+3)x=32,即4x=32,x=8,∴A点向右移动了1×8=8个单位长度,∴点C表示的数为0(3)设点C到原点的距离为y,①当点C在原点的右边时,则有y+3y=24,∴y =6,即点C表示的数为6;②当点C在原点的左边时,则有3y-y=24,∴y=12,即点C表示-12,∴点C表示的数为6或-12。

初中数学中考专题复习绝对值与数轴练习试题

初中数学中考专题复习绝对值与数轴练习试题

初中数学中考专题复习绝对值与数轴练习试题绝对值与数轴姓名____一.知识导引:(1)|a|的几何意义:数轴上表示a 的点到原点的距离;|a -b|的几何意义是:数轴上表示数a 、b 的两点的距离.对于某些问题用绝对值的几何意义来解,直观简捷,事半功倍(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。

也可以写成: ()()()||0a a a a a a =??-??当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。

二.典例精析:例1.(体现分类讨论思想)三个数a 、b 、c 的积为负数,和为正数,且bcbc ac ac ab ab c c b b a a x +++++=,则 123+++cx bx ax 的值是_______ 。

变式:(1)若abc ≠0,求cc b b a a ++的所有可能的值式x 19+99x+2014之值.例2. (零点分段法)若631542+-+-+x x x 的值恒为常数,求x 取值范围及此常数的值。

变式:(1)若2a+|4-5a|+|1-3a|的值是一个定值,求a 的取值范围___________________.(2)|2-x|-3|x+1|=x-9(3)|x+1|-|x-2|=x-6.例3。

(绝对值的几何意义)方程132=-+-x x 的解的个数是( )A 、0B 、1C 、2D 、3E 、多于3个变式:(1)若|x+1|+|2-x|=3,则x 的取值范围是_________________________.例4. 方程|x -1|+|x +2|=4的解为________变式:(1)X 是有理数,求22195221100++-x x 的最小值。

(2)|x -2|-| x -5| 的最大值是_______,最小值是_______.(3)在数轴上,找出所有整数点P ,?使它们到点1003?和点-?1003?的距离之和等于2006,并求出这些整数的和.(4)|x+1|+|x+99|+|x +2|=1996共有()个解.A..4; B . 3; C . 2; D .1例5.122-+-++x x x 的最小值是………………… ()A. 5B.4C.3D. 2变式:在式子4321+++++++x x x x 中,用不同的x 值代入,得到对应的值,在这些对应值中,最小的值是( ) A 、1 B 、2 C 、3 D 、4例6。

数轴、相反数、绝对值(习题及答案)

数轴、相反数、绝对值(习题及答案)

数轴、相反数、绝对值(习题)巩固练习1.下列图形表示数轴正确的是( )101234-1A .B .12-1-2-2-121C .D .2.下列说法正确的是( ) A .正数和负数统称有理数 B .正整数和负整数统称为整数 C .小数3.14不是分数D .整数和分数统称为有理数3.下列各组数中,互为相反数的是( ) A .( 3.2)--与 3.2-B .2.3与 2.31-C .[]( 4.9)-+-与4.9D .(1)-+与(1)+-4.下列说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的射线B .离原点近的点所对应的有理数较小C .任意一个有理数都可以用数轴上的一个点来表示D .原点在数轴的正中间5.关于相反数的叙述,错误的是( ) A .两数之和为0,则这两个数互为相反数B .到原点距离相等的点所表示的两个数互为相反数C .符号相反的两个数,一定互为相反数D .零的相反数是零6. 任何一个有理数的绝对值一定( ) A .大于0 B .小于0 C .不大于0 D .不小于07. 如果a a >,那么a 是( )A .正数B .负数C .非正数D .非负数8.下列说法正确的是( )A .绝对值等于它本身的数是正数B .相反数等于它本身的数是负数C .相反数等于它本身的数是0D .任意一个数小于它的绝对值9.如图,若点A ,B ,C 所对应的数为a ,b ,c ,则下列大小关系错误的是( )CBA -3-2-1321A .b c a <<B .a b c -<<C .b c a <-<D .a c b <<-10. 有如下一些数:-3,3.14,-20,0,6.8,0.34,12-,9-,其中是非正整数的有____________________________.11. 在数轴上点A 表示-1,点B 表示-0.5,则离原点较近的是点__________. 12. 在数轴上距离原点为2的点所对应的数为________,它们互为_____________. 13. 数轴上-1所对应的点为A ,将点A 向右移4个单位再向左移6个单位,则此时点A 到原点的距离为__________.14. 绝对值最小的数是________;绝对值越小,则该数在数轴上所对应的点离原点越________. 15. 若0x>,则x --=_______;若m n >,则n m -=________.16.填空: (1)43=__________________;----= (2)21=____________----=;(3)32_____________-⨯-=⨯=; (4)33=___________________________42-÷-÷=⨯=.思考小结 1. 在数轴上距离原点3个单位长度的点表示的数是_________. 2.若字母a 表示一个有理数,则-a 一定是负数吗? 我们的思考过程是这样的:-a 表示a 的相反数,若a 为正数,则-a 为__________; -a 表示a 的相反数,若a 为0,则-a 为__________; -a 表示a 的相反数,若a 为负数,则-a 为__________.综上:若字母a 表示一个有理数,则-a 可能是正数、负数或0,因此,-a___________(“一定”或“不一定”)是负数. 3.请判断下列说法的正误.(对的打“√”,错的打“×” ) (1)所有的有理数都能用数轴上的点表示 ( ) (2)符号不同的两个数互为相反数 ( ) (3)有理数分为正数和负数 ( ) (4)最小的正数是1 ( ) (5)最大的负整数是-1 ( ) (6)绝对值最小的数是0 ( ) (7)绝对值等于它本身的数是0和1 ( ) (8)相反数等于它本身的数是0和1 ( )【参考答案】巩固练习1. D2. D3. A4. C5. C6. D7. B8. C9. D10.-3,-20,011.B12.±2,相反数13.314.0,近15.-x,-n+m16.(1)4,3,1 (2)2,1,1(3)3,2,6 (4)34,32,34,23,12思考小结1.±32.负数;0;正数.不一定3.(1)√;(2)×;(3)×;(4)×;(5)√;(6)√;(7)×;(8)×.。

初一绝对值数轴练习题

初一绝对值数轴练习题

绝对值、数轴提升题1、阅读:|5-0|=5,它在数轴上的意义可以理解为:表示5的点与原点(即表示0的点)之间的距离为5;|6-3|=3,它在数轴上的意义可以理解为:表示6的点与3的点之间的距离为3;类比:|-6-3|= ,它在数轴上的意义为:表示的点与的点之间的距离为 .在图1-2-4上标出这两个数并画出它们之间的距离.图1-2-4归纳:|a-b|在数轴上的意义为表示的点与的点之间的距离.应用:|a+5|=1,它在数轴上的意义为表示的点与的点之间的距离为1,所以a的值为 .2、观察下列每对数在数轴上的对应点间的距离,并回答下列问题:4与-2,3与5,-2与-6,-4与3(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?(2)若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为什么?(3)结合数轴求|x+3|+|x-2|的最小值,并求出取得最小值时x的取值范围;(4)求满足|x+1|+|x+4|>3的x的取值范围.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.若abc≠0,求|a|a +|b|b+|c|c+|abc|abc的值.5.|x|={x,x>0,0,x=0,−x,x<0,即当x<0时, x|x|=x−x=−1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求a|a|+b|b|的值;(2)已知a,b是有理数,当abc≠0时,求a|a|+b|b|+c|c|的值;(3)已知a,b,c是有理数,a+b+c=0, abc<0,求b+c|a|+a+c|b|+a+b|c|的值.6.如图1-4-4,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80, ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数;②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?7.如图1-5,点A,B,C 在数轴上表示的数分别是1,-1,-2.E 是线段BC 的中点,点P 从点A 出发,向左运动,速度是每秒0.3个单位,设运动的时间是t 秒.(1)点E 表示的数是 ;(2)在t=3,t=4这两个时间中,使点P 更接近原点O 的时间是哪一个?(3)若点P 分别在t=8,t=n 两个不同的位置时,到点E 的距离完全一样,求n 的值;(4)设点M 在数轴上表示的数是m ,点N 在数轴上表示的数是n ,用m 和n 列一个代数式,使这个式子的值可以体现点M 和点N 之间距离的远近,这个式子的值越小,两个点的距离越近.图1-58、.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2020这个数说给第一位同学,第一位同学将它减去它的 12的结果告诉第二位同学,第二位同学再将听到的结果减去它的 13的结果告诉第三位同学,第三位同学再将听到的结果减去它的 14的结果告诉第四位同学,…照这样的方法,直到全班40人全部传完,最后一位同学将听到的结果告诉李老师,你知道最后的结果吗?。

有理数、数轴动点、绝对值、求值化简问题(原卷版)-初中数学

有理数、数轴动点、绝对值、求值化简问题(原卷版)-初中数学

有理数、数轴动点、绝对值、求值化简问题【题型归纳】题型一:正数与负数1.(2024七年级上·浙江)小戴同学的微信钱包账单如图所示, 5.20+表示收入5.20元,下列说法正确的是( )A . 1.00-表示收入1.00元B . 1.00-表示支出1.00元C . 1.00-表示支出 1.00-元D .收支总和为6.20元2.(2024七年级上·江苏·专题练习)在下列选项中,具有相反意义的量是( )A .上升了6米和后退了7米B .卖出10斤米和盈利10元C .收入20元与支出30元D .向东行30米和向北行30米3.(2024七年级上·江苏·专题练习)机床厂工人加工一种直径为30mm 的机器零件,要求误差不大于0.05mm ,质检员现抽取10个进行检测(超出部分记为正,不足部分记为负,单位:mm )得到数据如下:0.050.040.020.070.030.040.010.010.030.06+--+-+--+-,,,,,,,,,.其中不合格的零件有( )A .1个B .2个C .3个D .4个题型二:有理数的分类4.(2024七年级上·全国·专题练习)下列说法正确的是( )A .正整数、负整数、正分数和负分数统称为有理数B .整数和分数统称有理数C .正数和负数统称有理数D .正整数和负整数统称整数5.(2024七年级上·江苏·专题练习)关于4-,227,0.41,116-,0,3.14这六个数,下列说法错误的是( )A .4-,0是整数B .227,0.41,0,3.14是正数C .4-,227,0.41,116-,0,3.14是有理数D .4-,116-是负数6.(23-24七年级上·贵州黔东南)对于有理数,有下列说法:(1)正整数和负整数的总和就是整数;(2)分数包括了正分数和负分数和0;(3)有理数是整数和分数的统称;(4)0是整数;(5)分数包含有限小数、循环小数,其中说法全正确的有( )A .(1)(2)(3)B .(2)(3)(4)C .(3)(4)(5)D .(1)(4)(5)题型三:利用数轴比较有理数大小7.(23-24七年级上·河南郑州·期末)已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0a b->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④8.(23-24七年级上·四川达州·期末)如图,若A 是有理数a 在数轴上对应的点,则关于a ,a -,1的大小关系表示正确的是( )A .1a a <<-B .1a a <-<C .1a a <-<D .1a a -<<9.(2024·广东广州·二模)有理数a ,b 在数轴上的对应点的位置如图所示,把a ,a -,b 按照从小到大的顺序排列,正确的是( )A .a a b <-<B .a b a -<<C .a a b -<<D .b a a<-<题型四:数轴的距离问题10.(2024·福建福州·三模)如图是单位长度为1的数轴,点A ,B 是数轴上的点,若点A 表示的数是3-,则点B 表示的数是( )A .1-B .0C .1D .211.(2024·北京·二模)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,3,将点A 向左平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A .2-B .1-C .1D .212.(23-24七年级上·河南新乡·期末)如图,在数轴上点A 在原点右侧,距离原点5个单位长度,表示的数是5,点B 距离点A 是6个单位长度,则点B 表示的数是( )A .6B .6或6-C .11或6-D .11或1-题型五:数轴的动点问题13.(23-24九年级下·河北保定·期中)如图,一个点在数轴上从原点开始先向右移动1个单位长度,再向左移动a 个单位长度后,该点所表示的数为3-,则a 的值是( )A .4-B .4C .3-D .314.(23-24七年级上·湖南衡阳·期末)一个动点P 从数轴上的原点出发,沿数轴的正方向以前进4个单位,后退2个单位的程序运动,已知点P 每秒前进或后退1个单位.设n x 表示第n 秒点P 在数轴上的位置所对应的数,如22x =,44x =,53x =,则2023x 为( )A .673B .674C .675D .67615.(23-24七年级上·江苏苏州·阶段练习)如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数1-的点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示数2124-的点与圆周上表示数字( )的点重合.A .0B .1C .2D .3题型六:绝对值非负数的应用16.(23-24七年级下·山东潍坊·阶段练习)若5x -与7y +互为相反数,则3x y -的值是( )A .22B .8C .8-D .22-17.(23-24七年级上·河南新乡·阶段练习)若230a b -++=,则a b +的值是( )A .0B .1C .1-D .202118.(23-24七年级上·广东韶关·期末)若320x y -++=,则x y +的值是( ).A .5B .1C .2D .0题型七:化简绝对值问题19.(2024七年级上·全国·专题练习)若0ab ¹,那么a a b b+的取值不可能是( )A .2-B .0C .1D .220.(23-24七年级下·海南省直辖县级单位·期末)实数m 、n 在数轴上的位置如图所示,化简||n m n -+的结果为( )A .mB .m -C .2m n -D .2n m-21.(2024七年级上·江苏·专题练习)若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为( )A .1B .2C .3D .4题型八:有理数的综合问题22.(2024七年级上·浙江·专题练习)把下列各数分别填在表示它所属的横线上:① 3.14-;②(9)++;③425-;④0;⑤(7)+-;⑥13.14;⑦2000;⑧80%-.(填写序号)(1)正数:___________;(2)负数:___________;(3)整数:___________;(4)分数___________.23.(23-24七年级上·广东·单元测试)如图,数轴上的三点A 、B 、C 分别表示有理数a ,b ,c .(1)填空:a b -______0,a c +______0,b c -______0.(用<或>或=号填空)(2)化简:a b a c b c ---+-.24.(23-24七年级下·甘肃陇南·阶段练习)阅读材料:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离可表示为AB a b =-.例如:7与1-两数在数轴上所对应的两点之间的距离表示为()718--=,6x -的几何意义是数轴上表示有理数x 的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数轴上两点A 、B 对应的数分别为1-和2,数轴上另有一个点P 对应的数为有理数x .(1)请根据阅读材料填空:点P 、A 之间的距离PA =________(用含x 的式子表示);若该距离为4,则x =________.(2)根据几何意义,解决下列问题:①若点P 在线段AB 上,则12x x ++-=________.②若125x x ++-=,求点P 表示的有理数x .【专题训练】一、单选题25.(23-24七年级上·四川南充)在π223.141500.333 2.010********--¼-¼,,,中,非负数的个数( )A .2个B .3个C .4个D .5个26.(2024七年级上·全国·专题练习)下列各对数中,互为相反数的有( )()1-与1+;()2--与()2+-;12æö--ç÷èø与12æö++ç÷èø;()1-+与()1+-;()2-+与()2--A .1对B .2对C .3对D .4对27.(2024七年级上·山东青岛·专题练习)下列关于零的说法中,正确的是( )A .零是正数B .零是负数CD .零仅表示没有28.(23-24七年级上·安徽合肥·期末)在()5--,0.8-,0,|6|-四个数中,最小的数是( )A .()5--B .0.8-C .0D .|6|-29.(2024七年级上·江苏·专题练习)下列说法正确的是( )A .数轴上的一个点可以表示不同的有理数B .数轴上有两个不同的点可以表示同一个有理数C .任何有理数都可以在数轴上找到与它对应的唯一的点D .有的有理数不能在数轴上表示出来30.(23-24七年级上·江苏常州·期末)有理数a ,b 在数轴上的对应点的位置如图所示.把a -,b ,0按照从小到大的顺序排列,正确的是( )A .0a b <-<B .0a b -<<C .0b a<<-D .0b a <-<31.(2024七年级上·全国·专题练习)下列有关相反数的说法:①符号相反的数叫相反数;②数轴上原点两旁的数是相反数;③()3--的相反数是3-;④a -一定是负数;⑤若两个数之和为0,则这两个数互为相反数; ⑥若两个数互为相反数,则这两个数一定是一个正数一个负数.其中正确的个数有( )A .2个B .3个C .4个D .5个32.(24-25七年级上·全国·随堂练习)如果0a b c ++=且c b a >>.则下列说法中可能成立的是( )A .a 、b 为正数,c 为负数B .a 、c 为正数,b 为负数C .b 、c 为正数,a 为负数D .a 、b 、c 为正数二、填空题33.(24-25七年级上·河南安阳·开学考试)乒乓球被誉为我国的“国球”,在正规比赛中,乒乓球的标准质量为2.7克.一位质检员检验乒乓球质量时,把一个超出标准质量0.15克的乒乓球记作0.15+,那么另一个低于标准质量0.03克的乒乓球记作 .34.(2024七年级上·北京·专题练习)把下列各数填入它所属的集合内3-,30%,215-,0, 5.32-(1)整数集合{____________________……};(2)分数集合{____________________……};(3)非负数集合.35.(24-25七年级上·河南南阳·开学考试)在56-,2-,0.35,2.4,25%,0,6,1-,97,24,100.2这些数中,( )是自然数,( )是整数,( )最大,( )最小.36.(24-25七年级上·全国·随堂练习)已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.37.(2024七年级上·浙江·专题练习)已知m 是有理数,则|2||4||6||8|m m m m -+-+-+-的最小值是 .三、解答题38.(2024七年级上·江苏·专题练习)在数轴上表示下列各数的相反数,并比较原数的大小.3, 1.5-,132-,4||5-,0,4-39.(2024七年级上·全国·专题练习)化简下列各式的符号,并回答问题:(1)()2--;(2)15æö+-ç÷èø;(3)()4éù---ëû(4)()3.5éù--+ëû;(5)(){}5éù----ëû(6)(){}5éù---+ëû问:①当5+前面有2012个负号,化简后结果是多少?②当5-前面有2013个负号,化简后结果是多少?你能总结出什么规律?40.(2024七年级上·全国·专题练习)阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段()101AB ==--;线段220BC ==-;线段()321AC ==--问题:(1)数轴上点M N 、代表的数分别为9-和1,则线段MN =___________;(2)数轴上点E F 、代表的数分别为6-和3-,则线段EF =___________;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m ,求m .41.(2024七年级上·江苏·专题练习)同学们都知道,()42--表示4与2-的差的绝对值,实际上也可理解为4与2-两数在数轴上所对应的两点之间的距离;同理3x -也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)求()42--= ;(2)若25x -=,则x = ;(3)请你找出所有符合条件的整数x ,使得123x x -++=.。

初三数学中考复习 有理数数轴、相反数和绝对值 专题复习训练 含答案

初三数学中考复习  有理数数轴、相反数和绝对值  专题复习训练 含答案

初三数学中考复习有理数数轴、相反数和绝对值专题复习训练含答案2019 初三数学中考复习有理数-数轴、相反数和绝对值专题复习训练1. 数轴是( )A.一条射线B.有单位长度的直线C.有原点、正方向的直线D.规定了原点,正方向和单位长度的一条直线2. 下列是四位同学画出的数轴,其中正确的是( )3. 如图,数轴上点M和点N表示的数分别是( )A.1.5和-2.5 B.2.5和-1.5 C.-1.5和2.5 D.1.5和2.5 4.下列说法错误的是( )A.所有有理数都可以用数轴上的点表示B.数轴上原点表示的数是0C.在数轴上表示1的点和-1的点的距离是1D.在数轴上原点左边的点表示的数是负数5. 下列说法正确的是( )A.正数与负数互为相反数B.符号不同的两数互为相反数C.0没有相反数D.-a与a互为相反数6. a,b,c在数轴上的位置如图,a,b,c表示的数是( )A.a,b,c都是负数 B.a,b,c都是正数C.a,b是负数,c是正数 D.a,b是正数,c是负数7. 数轴上到原点的距离为2的点所表示的数是( )17. 化简:-(-1.5)=_______18. 化简:-[+(-5)]=____.19. 若a =-3,则-a =____;若-a =-(-5),则a =____.20.如图,小明不慎将墨水滴在数轴上,则被墨水盖住的整数有____个.21. 在数轴上,点A 表示的数是-3,与点A 距离2个单位长度的点表示的数____.22. 若x +4与-6互为相反数,求x 的值.23. 如图,点A 表示-4,点B 表示-3.(1)标出数轴上的原点0;(2)指出点C 表示的数;(3)有一点D(但不是点C),它到原点的距离等于点C 到原点的距离,那么点D 表示什么数?并标出点D参考答案:1---11 DCCCD CCACC B12. 213. 1314. -2 215. -416. -π17. 1.518. 519. 3 -520. 821. -5或-122. 解:原式=x=223. 解:(1)(2)点C表示的数是5(3)点D表示-5,如图。

中考数学专题复习《数轴》测试卷(附带答案)

中考数学专题复习《数轴》测试卷(附带答案)

中考数学专题复习《数轴》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.解答题(共15小题)1.如图1 将一根木棒放在数轴(单位长度为1)上木棒左端与数轴上的点A重合右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动则当它的左端移动到点B时它的右端在数轴上所对应的数为30 若将木棒沿数轴向左水平移动则当它的右端移动到点A时它的左端在数轴上所对应的数为3 由此可得这根木棒的长为图中点A所表示的数是点B所表示的数是(2)受(1)的启发请借助“数轴”这个工具解决下列问题:①一天爸爸对小明说:“我若是你现在这么大你才刚出生你若是我现在这么大我就84岁啦!”则爸爸的年龄是岁.(在图2中标出分析过程)②爷爷对小明说:“我若是你现在这么大你还要14年才出生你若是我现在这么大.我就118岁啦!”则爷爷的年龄是岁.(画出示意图展示分析过程)2.数轴上两点A B A在B左边原点O是线段AB上的一点已知AB=4 且OB=3OA.点A B对应的数分别是a b点P为数轴上的一动点其对应的数为x.(1)a=b=(2)若P A=2PB求x的值(3)若点P以每秒2个单位长度的速度从原点O向右运动同时点A以每秒1个单位长度的速度向左运动点B以每秒3个单位长度的速度向右运动设运动时间为t秒.请间在运动过程中3PB﹣P A的值是否随着时间t的变化而改变?若变化请说明理由若不变请求其值.3.【定义】点M N Q是一条直线上从左到右的三个点若直线上点P满足PM+PN=PQ 则称点P是点M N Q的“和谐点”.【理解】(1)在数轴上(图1)点A B C P表示的数分别为﹣2 0 5 1 点P是否为点A B C的“和谐点”?请通过计算作出判断.(2)点A B C是一条直线上从左到右的三个点且AB=2 BC=3 若点P是点A B C的“和谐点”则AP的长是.【拓展】(3)在数轴上(图2)点A B C表示的数分别为a a+2 a+5(a是整数)点P 在点A的左侧且点P是点A B C的“和谐点”点A B C P表示的数之和是否能被4整除?请通过计算作出判断.4.已知数轴上A B C三点对应的数分别为﹣1 3 5 点P为数轴上任意一点其对应的数为x.点A与点P之间的距离表示为AP点B与点P之间的距离表示为BP.(1)若AP=BP则x=(2)若AP+BP=8 求x的值(3)若点P从点C出发以每秒3个单位的速度向右运动点A以每秒1个单位的速度向左运动点B以每秒2个单位的速度向右运动三点同时出发.设运动时间为t秒试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.5.一年一度的“双十一”全球购物节完美收官来自全国各地的包裹陆续发到本地快递公司.一快递小哥骑三轮摩托车从公司P出发在一条东西走向的大街上来回投递包裹现在他一天中七次连续行驶的记录如表(我们约定向东为正向西为负单位:千米)第一次第二次第三次第四次第五次第六次第七次﹣2+7﹣9+10+4﹣5﹣8(1)快递小哥最后一次投递包裹结束时他在公司P的哪个方向上?距离公司P多少千米?(2)在第次记录时快递小哥距公司P地最远(3)如果每千米耗油0.08升每升汽油需7.2元那么快递小哥投递完所有包裹需要花汽油费多少元?6.对数轴上的点P进行如下操作:先把点P沿数轴向右平移m个单位长度得到点P1再把点P1表示的数乘以n所得数对应的点为P2.若mn=k(m n是正整数)则称点P2为点P的“k倍关联点”.已知数轴上点M表示的数为2 点N表示的数为﹣3.例如当m=1 n=2时若点A表示的数为﹣4 则它的“2倍关联点”对应点A2表示的数为﹣6.(1)当m=1 n=2时已知点B的“2倍关联点”是点B2若点B2表示的数是4 则点B表示的数为(2)已知点C在点M右侧点C的“6倍关联点”C2表示的数为11 则点C表示的数为(3)若点P从M点沿数轴正方向以每秒2个单位长度移动同时点Q从N点沿数轴正方向以每秒1个单位长度移动且在任何一个时刻点P始终为点Q的“k倍关联点”直接写出k的值.7.阅读材料:我们知道|x|的几何意义是在数轴上的数x对应的点与原点的距离即|x|=|x ﹣0| 这个结论我们可以推广到数轴上任意两点之间的距离如图若数轴上两点A B 分别对应有理数a b则A B两点之间的距离为AB=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示2和﹣3的两点之间的距离是(2)数轴上表示x和﹣2的两点A B间的距离是若AB=3 则x (3)求|x﹣6|﹣|x+2|的最大值并求出x的取值范围(4)互不相等的有理数a b c在数轴上的对应点分别为A B C.若|a﹣b|+|c﹣a|=|b ﹣c| 请分析判断在点A B C中哪个点居于另外两点之间.8.如图1 已知数轴上点A表示的数为a点B表示的数是b并且a b满足|a+16|+(b ﹣4)2=0.(1)点A表示的数为点B表示的数为(2)若点C是线段AB上一点点H为线段AC的中点图中所有的线段长度和是64 求点H表示的数(3)若点P开始从点A以每秒2个单位的速度向右移动同时点Q从点B开始以每秒1个单位的速度也向右移动设运动时间为t秒M是线段PB的中点N是线段BQ的中点.若线段MN= 2 求t.9.根据所学数轴知识解答下面的问题:(1)知识再现:在数轴上有三个点A B C如图1所示.①A点表示的数是AB之间的距离是②将点B向左平移4个单位此时该点表示的数是(2)知识迁移:如图2 将一根木棒放在数轴(单位长度为1cm)上木棒左端与数轴上的点A重合右端与数轴上的点B重合.①若将木棒沿数轴向右水平移动则当它的左端移动到点B时它的右端在数轴上所应的数为30 若将木棒沿数轴向左水平移动则当它的右端移动到点A时它的左端在数轴上所对应的数为6 由此可得这根木棒的长为cm?②图中点A所表示的数是点B所表示的数是(3)知识应用:如图3由(2)中①②的启发请借助“数轴”这个工具解决下列问题:一天妙妙去问奶奶的年龄奶奶说:“我若是你现在这么大你还要37年才出生你若是我现在这么大我就119岁啦!”请问奶奶现在多少岁了?琪琪的想法是:借助数轴把妙妙和奶奶的年龄差看作木棒AB奶奶像妙妙这样大时可看作点B移动到点A此时点A向左移动后所对应的点C所表示的数为﹣37根据琪琪的想法完成一下问题:①若把A移动到B时此时点B向右移动后所对应的点D表示的数为②求奶奶现在多少岁了.10.如图1 点A B C是数轴上从左到右排列的三个点分别对应的数为﹣7 b2.某同学将刻度尺按如图2所示的方式放置使刻度尺上的数字0对齐数轴上的点A发现点B对齐刻度2.1cm点C对齐刻度6.3cm.(1)求数轴上的一个单位长度对应刻度尺上的长度是多少cm?(2)求在数轴上点B所对应的数b(3)若Q是数轴上一点且满足A Q两点间的距离是A B两点间的距离的2倍求点Q在数䌷上所对应的数.11.已知数轴上的点A B对应的有理数分别为a b且(12ab+10)2+|a−2|=0点P是数轴上的一个动点.(1)求出A B两点之间的距离.(2)若点P到点A和点B的距离相等求出此时点P所对应的数.(3)数轴上一点C距A点7.2个单位长度其对应的数c满足|ac|=﹣ac.当P点满足PB=2PC时求P点对应的数.12.已知数轴上A B两点对应的数分别为a b且a b满足|a+20|=﹣(b﹣13)2点C 对应的数为16 点D对应的数为﹣13.(1)求a b的值(2)点A B沿数轴同时出发相向匀速运动点A的速度为6个单位/秒点B的速度为2个单位/秒若t秒时点A到原点的距离和点B到原点的距离相等求t的值(3)在(2)的条件下点A B从起始位置同时出发.当A点运动到点C时迅速以原来的速度返回到达出发点后又折返向点C运动.B点运动至D点后停止运动当B停止运动时点A也停止运动.求在此过程中A B两点同时到达的点在数轴上对应的数.13.【阅读理解】我国著名数学家华罗庚曾经用诗句“数形结合百般好割裂分家万事非”表达了数形结合的重要性.点A B在数轴上分别表示有理数a b A B两点之间的距离表示为AB在数轴上A B两点之间的距离AB=|a﹣b|.【理解应用】如图1 已知数轴上的点A B C分别表示有理数a b c其中b是最大的负整数且a b c满足(a﹣4b)2+|c﹣11|=0.(1)请你直接写出a b c的值a=b=c=.(2)若D为数轴上的一个动点且DC=3DB求点D在数轴上表示的数.【拓展延伸】(3)若点P R Q分别从点A B C同时出发在数轴上运动点P以每秒4个单位的速度向左运动点Q以每秒5个单位的速度向右运动点R以每秒3个单位的速度朝某个方向运动若PQ+nRQ的值不随时间t的变化而变化请求出n的值.14.在数轴上把原点记作点O表示数1的点记作点A.对于数轴上任意一点P(不与点O点A重合)将线段PO与线段P A的长度之比定义为点P的特征值记作P即P= POPA例如:当点P是线段OA的中点时因为PO=P A所以P=1.(1)如图点P1P2P3为数轴上三个点点P1表示的数是−14点P2与P1关于原点对称.①P2̂=②比较P1̂P2̂P3̂的大小(用“<”连接)(2)数轴上的点M满足OM=13OA求M(3)数轴上的点P表示有理数p已知P<100且P为整数则所有满足条件的p的倒数之和为.15.如图数轴上从左到右排列的A B C三点的位置如图所示.点B表示的数是3 A 和B两点间的距离为8 B和C两点间的距离为4.(1)求A C两点分别表示的数(2)若动点P从点A出发以每秒2个单位长度的速度向右运动运动时间为t秒.①当点P运动到与点B和点C的距离相等时求t的值②若同时有M N两动点分别从点B C同时出发都以每秒1个单位长度的速度沿着数轴向左运动把点P与点M之间的距离表示为PM点P与点N之间的距离表示为PN当PM+PN取最小值时求t的最大值和最小值.参考答案与试题解析一.解答题(共15小题)1.如图1 将一根木棒放在数轴(单位长度为1)上木棒左端与数轴上的点A重合右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动则当它的左端移动到点B时它的右端在数轴上所对应的数为30 若将木棒沿数轴向左水平移动则当它的右端移动到点A时它的左端在数轴上所对应的数为 3 由此可得这根木棒的长为9图中点A所表示的数是12点B所表示的数是21(2)受(1)的启发请借助“数轴”这个工具解决下列问题:①一天爸爸对小明说:“我若是你现在这么大你才刚出生你若是我现在这么大我就84岁啦!”则爸爸的年龄是56岁.(在图2中标出分析过程)②爷爷对小明说:“我若是你现在这么大你还要14年才出生你若是我现在这么大.我就118岁啦!”则爷爷的年龄是74岁.(画出示意图展示分析过程)【考点】数轴.【专题】实数运算能力.【答案】(1)9 12 21(2)①56 ②74.【分析】(1)由图象可知3倍的AB长为30﹣3=27 即可求AB得长度.A点在3的右侧距离3有9个单位长度故A点为12 B点在A的左侧距离A有9个单位长度故B点为21.(2)根据题意设数轴上小木棒的A端表示小明的年龄B端表示爸爸(爷爷)的年龄则木棒的长度表示二人的年龄差参照(1)中的方法结合已知条件即可得出.【解答】解:(1)观察数轴可知三根这样长的木棒长为30﹣3=27 则这根木棒的长为27÷3=9∴A点表示为3+9=12 B点表示的数是3+9+9=21故答案为:9 12 21(2)①借助数轴把小明和爸爸的年龄差看作木棒AB同理可得爸爸比小明大84÷3=28∴爸爸的年龄是84﹣28=56(岁)故答案为:56.②借助数轴把小明和爷爷的年龄差看作木棒AB同理可得爷爷比小明大(118+14)÷3=44∴爷爷的年龄是118﹣44=74(岁)故答案为:74.【点评】本题考查了数轴的认识用数轴表示数及有理数的加减法读懂题干及正确理解题意是解决本题的关键.2.数轴上两点A B A在B左边原点O是线段AB上的一点已知AB=4 且OB=3OA.点A B对应的数分别是a b点P为数轴上的一动点其对应的数为x.(1)a=﹣1b=3(2)若P A=2PB求x的值(3)若点P以每秒2个单位长度的速度从原点O向右运动同时点A以每秒1个单位长度的速度向左运动点B以每秒3个单位长度的速度向右运动设运动时间为t秒.请间在运动过程中3PB﹣P A的值是否随着时间t的变化而改变?若变化请说明理由若不变请求其值.【考点】数轴.【答案】(1)﹣1 3(2)x的值为53或7(3)3PB﹣P A的值为定值不随时间变化而变化.【分析】(1)根据OB=3OA且AB=4 求出OA和OB即可解答(2)分三种情况分析当P点在A点左侧时当P点位于A B两点之间时当P点位于B点右侧时依次令P A=2PB即可解答(3)表示出t秒后的各点再计算3PB﹣P A得出固定结果即可说明.【解答】(1)∵OB=3OA且AB=4∴OA=1 OB=3∴a=﹣1 b=3故答案为:﹣1 3(2)①当P点在A点左侧时P A<PB不合题意舍去.②当P点位于A B两点之间时因为P A=2PB所以x+1=2(3﹣x)所以x=5 3.③当P点位于B点右侧时因为P A=2PB所以x+1=2(x﹣3)所以x=7.故x的值为53或7.(3)t秒后A点的值为(﹣1﹣t)P点的值为2t B点的值为(3+3t)所以3PB﹣P A=3(3+3t﹣2t)﹣[2t﹣(﹣1﹣t)]=9+3t﹣(2t+1+t)=9+3t﹣3t﹣1=8.所以3PB﹣P A的值为定值不随时间变化而变化.【点评】本题考查了数轴线段的和差关系及动点的应用是解题关键.3.【定义】点M N Q是一条直线上从左到右的三个点若直线上点P满足PM+PN=PQ 则称点P是点M N Q的“和谐点”.【理解】(1)在数轴上(图1)点A B C P表示的数分别为﹣2 0 5 1 点P是否为点A B C 的“和谐点”?请通过计算作出判断.(2)点A B C 是一条直线上从左到右的三个点 且AB =2 BC =3 若点P 是点A B C 的“和谐点” 则AP 的长是 3或73 .【拓展】(3)在数轴上(图2) 点A B C 表示的数分别为a a +2 a +5(a 是整数) 点P 在点A 的左侧 且点P 是点A B C 的“和谐点” 点A B C P 表示的数之和是否能被4整除?请通过计算作出判断.【考点】数轴.【专题】数形结合 数感 推理能力.【答案】(1)是 (2)3或73 (3)能被4整除.【分析】(1)根据PM +PN =PQ 则称点P 是点M N Q 的“和谐点” 在﹣2 0 5 1选择合适的数据 确定出P 的位置.(2)由AB =2 BC =3 若点P 是点A B C 的“和谐点” 设P 表示的教为x 分情况讨论.(3)P 在A 左侧时 设AP =m 则PB =m +2 PC =m +5 化简即可. 【解答】解:(1)∵P A =3 PB =1 PC =4 ∴P A +PB =PC∴点P 是A B C 的“和谐点”(2)以A为原点建立数轴则A表示0 B表示2 C表示5设P表示的教为x①P在A左边时令P A+PB=PC即(0﹣x)+(2﹣x)=(5﹣x)x=﹣3此时AP=3.②P在AB之间时令P A+PB=PC即(x﹣o)+(2﹣x)=(5﹣x)x=3(舍去).③P在BC之间时令P A+PB=PC即(x﹣0)+(x﹣2)=(5﹣x)解得:x=7 3.此时AP=7 3.P在C点右侧时不可能P A+PB=PC.(3)P在A左侧时设AP=m则PB=m+2 PC=m+5且满足P A+PB=PC即m+m+2=m+5解得:m=3∴p表示的数为a﹣3.A B C P来示的数之和为:a﹣3+a+a+2+a+5=4a+4=4(a+1)(a为整数)∴能被4整除.故答案是:(1)是 (2)﹣3或73 (3)能被4整除.【点评】本题主要考查的是数轴 根据阅读内容进行转化 同时考查了线段的和差 列方程求解.4.已知数轴上A B C 三点对应的数分别为﹣1 3 5 点P 为数轴上任意一点 其对应的数为x .点A 与点P 之间的距离表示为AP 点B 与点P 之间的距离表示为BP . (1)若AP =BP 则x = 1 (2)若AP +BP =8 求x 的值(3)若点P 从点C 出发 以每秒3个单位的速度向右运动 点A 以每秒1个单位的速度向左运动 点B 以每秒2个单位的速度向右运动 三点同时出发.设运动时间为t 秒 试判断:4BP ﹣AP 的值是否会随着t 的变化而变化?请说明理由.【考点】数轴.【专题】数形结合 分类讨论 实数 数据分析观念 运算能力. 【答案】见试题解答内容【分析】(1)观察数轴 可得答案(2)根据点P 在点A 左侧或点P 在点A 右侧 分别列式求解即可(3)分别用含t的式子表示出BP和AP再计算4BP﹣AP即可得答案.【解答】解:(1)由数轴可得:若AP=BP则x=1故答案为:1(2)∵AP+BP=8∴若点P在点A左侧则﹣1﹣x+3﹣x=8∴x=﹣3若点P在点A右侧则x+1+x﹣3=8∴x=5∴x的值为﹣3或5.(3)BP=5+3t﹣(3+2t)=t+2AP=t+6+3t=4t+6∴4BP﹣AP=4(t+2)﹣(4t+6)=2∴4BP﹣AP的值不会随着t的变化而变化.【点评】本题考查了数轴在有理数加减运算中的简单应用数形结合及分类讨论是解题的关键.5.一年一度的“双十一”全球购物节完美收官来自全国各地的包裹陆续发到本地快递公司.一快递小哥骑三轮摩托车从公司P出发在一条东西走向的大街上来回投递包裹现在他一天中七次连续行驶的记录如表(我们约定向东为正向西为负单位:千米)第一次第二次第三次第四次第五次第六次第七次﹣2+7﹣9+10+4﹣5﹣8(1)快递小哥最后一次投递包裹结束时他在公司P的哪个方向上?距离公司P多少千米?(2)在第五次记录时快递小哥距公司P地最远(3)如果每千米耗油0.08升每升汽油需7.2元那么快递小哥投递完所有包裹需要花汽油费多少元?【考点】数轴正数和负数.【专题】实数数感.【答案】(1)最后一次投递包裹结束时快递小哥在公司P的西边距离公司3千米(2)五(3)快递小哥工作一天需要花汽油费25.92元.【分析】(1)利用有理数的加减法求七个数的和得出的数是正数表示在公司东是负数就在公司西(2)从第一个数开始绝对值最大的就是最远距离(3)首先算出走过的路即各数的绝对值的和乘以每千米耗油量再乘以单价即可.【解答】解:(1)﹣2+7﹣9+10+4﹣5﹣8=﹣3(千米)答:最后一次投递包裹结束时快递小哥在公司P的西边距离公司3千米(2)|﹣2|=2(千米)|﹣2+7|=5(千米)|﹣2+7﹣9|=4(千米)|﹣2+7﹣9+10|=6(千米)|﹣2+7﹣9+10+4|=10(千米)|﹣2+7﹣9+10+4﹣5|=5(千米)|﹣2+7﹣9+10+4﹣5﹣8|=3(千米)∴第五次快递小哥距公司P最远.故答案为:五(3)|﹣2|+|+7|+|﹣9|+|+10|+|+4|+|﹣5|+|﹣8|=45(千米)∴0.08×45=3.6(升)7.2×3.6=25.92(元)答:快递小哥工作一天需要花汽油费25.92元.【点评】本题考查的是绝对值的性质有理数的加减和乘法大小比较等知识关键就是要求学生对有理数相关知识的要熟练掌握.6.对数轴上的点P进行如下操作:先把点P沿数轴向右平移m个单位长度得到点P1再把点P1表示的数乘以n所得数对应的点为P2.若mn=k(m n是正整数)则称点P2为点P的“k倍关联点”.已知数轴上点M表示的数为2 点N表示的数为﹣3.例如当m=1 n=2时若点A表示的数为﹣4 则它的“2倍关联点”对应点A2表示的数为﹣6.(1)当m=1 n=2时已知点B的“2倍关联点”是点B2若点B2表示的数是4 则点B表示的数为1(2)已知点C在点M右侧点C的“6倍关联点”C2表示的数为11 则点C表示的数为52或5(3)若点P从M点沿数轴正方向以每秒2个单位长度移动同时点Q从N点沿数轴正方向以每秒1个单位长度移动且在任何一个时刻点P始终为点Q的“k倍关联点”直接写出k的值.【考点】数轴.【专题】新定义分类讨论数与式应用意识.【答案】见试题解答内容【分析】(1)设B表示的数为x利用“k被关联点”的定义列出方程即可解决问题(2)由于没有给出具体m n的值m n为正整数所以“6被关联点”要分4种情况进行根据定义列出方程求出C表示的数然后根据已知得到满足条件的C值即可(3)分别用运动时间表示P Q对应的数根据“k被关联点”的定义列出方程列出方程再根据k的取值与t无关即可确定对应的m n的值进而确定k的值.【解答】解:(1)设B表示的数为x则有:2(x+1)=4∴x=1即B表示的数为1.故答案为:1.(2)设C表示的数为y C在M的右侧则y>2∵6的正因数有1 2 3 6∴①当m =1 n =6时 则有6(y +1)=11 解得:y =56<2 不符合题意 舍去②当m =2 n =3时 则有3(y +2)=11 解得:y =53<2 不符合题意 舍去 ③当m =3 n =2时 则有2(y +3)=11 解得:y =52>2 符合题意 ④当m =6 n =1时 则有y +6=11 解得:y =5>2 符合题意 综上所述 y 为52或5 即C 表示的数为52或5.故答案为:52或5.(3)设运动时间为t 秒 则P 表示的数为2+2t Q 点表示的数为﹣3+t ∵点P 始终为点Q 的“k 倍关联点” ∴n (﹣3+t +m )=2+2t∴(n ﹣2)t +(﹣3n +mn ﹣2)=0 对于任意t 都成立 ∴n =2 3n +mn ﹣2=0 解得:n =2 m =4 ∴k =8.【点评】此题的关键是根据已知理解新定义 同时能够灵活运用定义解决问题 同时要注意分情况进行讨论.7.阅读材料:我们知道|x |的几何意义是在数轴上的数x 对应的点与原点的距离 即|x |=|x ﹣0| 这个结论我们可以推广到数轴上任意两点之间的距离 如图 若数轴上两点A B 分别对应有理数a b 则A B 两点之间的距离为AB =|a ﹣b |. 根据阅读材料 回答下列问题:(1)数轴上表示2和﹣3的两点之间的距离是 5(2)数轴上表示x和﹣2的两点A B间的距离是|x+2|若AB=3 则x﹣5或1(3)求|x﹣6|﹣|x+2|的最大值并求出x的取值范围(4)互不相等的有理数a b c在数轴上的对应点分别为A B C.若|a﹣b|+|c﹣a|=|b ﹣c| 请分析判断在点A B C中哪个点居于另外两点之间.【考点】数轴绝对值.【专题】实数数感运算能力.【答案】(1)5(2)|x+2| ﹣5或1(3)x≤﹣2(4)点A位于点B C之间.【分析】(1)绝对值内相减即可解答(2)绝对值内相减再代入3即可解答(3)分析差最大时的点应在﹣2或﹣2的左侧即可解答(4)根据已知判断AB+AC=BC即可解答.【解答】解:(1)2﹣(﹣3)=5∴表示2和﹣3的两点之间的距离是5故答案为:5(2)|x﹣(﹣2)|=|x+2|∵|x+2|=3∴x=﹣5或1故答案为:|x+2| ﹣5或1(3)|x﹣6|﹣|x+2|表示的是x与6和x与﹣2的距离的差当x≤﹣2时6﹣(﹣2)=8∴x的取值范围为x≤﹣2(4)∵|a﹣b|+|c﹣a|=|b﹣c|∴AB+AC=BC∴点A位于点B C之间.【点评】本题考查了数轴绝对值的性质的应用是解题关键.8.如图1 已知数轴上点A表示的数为a点B表示的数是b并且a b满足|a+16|+(b ﹣4)2=0.(1)点A表示的数为﹣16点B表示的数为4(2)若点C是线段AB上一点点H为线段AC的中点图中所有的线段长度和是64 求点H表示的数(3)若点P开始从点A以每秒2个单位的速度向右移动同时点Q从点B开始以每秒1个单位的速度也向右移动设运动时间为t秒M是线段PB的中点N是线段BQ的中点.若线段MN= 2 求t.【考点】数轴非负数的性质:绝对值非负数的性质:偶次方.【专题】代数几何综合题数感几何直观模型思想.【答案】(1)﹣16 4 (2)﹣12 (3)16或24.【分析】(1)利用绝对值及偶次方的非负性可得到a+16=0 b﹣4=0 可得出a b 的值进而得出点A B的表示的数(2)从条件所有线段的和为64入手再由点A B表示的数及点H为线段AC的中点可得到3AB +CH =64 可得出点H 表示的数(3)当运动时间为t 时 点P 表示的数为﹣16+2t 点Q 表示的数为4+t 计算出M N 表示的数 结合MN =2 得出一个关于t 的一元一次方程 解方程即可. 【解答】解:(1)由题意得:a +16=0 b ﹣4=0 解得:a =﹣16 b =4∴点A 表示的数为﹣16 点B 表示的数为4. 故答案为:﹣16 4.(2)∵点A 表示的数为﹣16 点B 表示的数为4 ∴AB =20∵所有线段的和为64∴AH +AC +AB +HC +HB +CB =2AC +2BC +AB +HC =3AB +HC =64 ∴HC =4 ∴AH =4∴点H 表示的数为:﹣16+4=﹣12.(3)当运动时间为t 时 点P 表示的数为:﹣16+2t 点Q 表示的数为:4+t 16÷2=8(秒) 当MN 的距离为2时 点P 在B 的右侧 则点M 表示的数为:−16+2t−42+4=t −6 则点N 表示的数为:4+t 2∴t −6−(t2+4)=±2 解得:t =16或t =24 答:t的值为16或24.【点评】本题考查了一元一次方程的应用数轴绝对值的非负性以及偶次方的非负性解题的关键是构建一元一次方程正确解方程.9.根据所学数轴知识解答下面的问题:(1)知识再现:在数轴上有三个点A B C如图1所示.①A点表示的数是﹣2AB之间的距离是4②将点B向左平移4个单位此时该点表示的数是﹣2(2)知识迁移:如图2 将一根木棒放在数轴(单位长度为1cm)上木棒左端与数轴上的点A重合右端与数轴上的点B重合.①若将木棒沿数轴向右水平移动则当它的左端移动到点B时它的右端在数轴上所应的数为30 若将木棒沿数轴向左水平移动则当它的右端移动到点A时它的左端在数轴上所对应的数为6 由此可得这根木棒的长为8cm?②图中点A所表示的数是14点B所表示的数是22(3)知识应用:如图3由(2)中①②的启发请借助“数轴”这个工具解决下列问题:一天妙妙去问奶奶的年龄奶奶说:“我若是你现在这么大你还要37年才出生你若是我现在这么大我就119岁啦!”请问奶奶现在多少岁了?琪琪的想法是:借助数轴把妙妙和奶奶的年龄差看作木棒AB奶奶像妙妙这样大时可看作点B移动到点A此时点A向左移动后所对应的点C所表示的数为﹣37根据琪琪的想法完成一下问题:①若把A移动到B时此时点B向右移动后所对应的点D表示的数为119②求奶奶现在多少岁了.【考点】数轴.【专题】实数数感运算能力.【答案】(1)①﹣2 4 ②﹣2(2)①8 ②14 22(3)①119 ②奶奶现在的年龄67岁.【分析】(1)①从图中数轴可直接得出答案②将点平移即可得出答案(2)①最大数减去最小数再除以3即可②依次加8即可解答(3)①由题得最大数为119 即为答案②最大数减去最小数再除以3 再用119减去AB即可.【解答】解:(1)①如图点A表示﹣2 点B表示2∴AB=4故答案为:﹣2 4②将点B向左平移4个单位该点表示的数是﹣2故答案为:﹣2(2)①30﹣6=24 24÷3=8∴这根木棒的长为8cm故答案为:8②6+8=14 30﹣8=22∴点A所表示的数是14 点B所表示的数是22故答案为:14 22(3)①若把A移动到B时此时点B向右移动后所对应的点D表示的数为119故答案为:119②妙妙和奶奶的年龄差为:[119﹣(﹣37)]÷3=52(岁)∴奶奶现在的年龄:119﹣52=67(岁).【点评】本题考查了数轴点的平移规律及合理的计算是解题关键.10.如图1 点A B C是数轴上从左到右排列的三个点分别对应的数为﹣7 b2.某同学将刻度尺按如图2所示的方式放置使刻度尺上的数字0对齐数轴上的点A发现点B对齐刻度2.1cm点C对齐刻度6.3cm.(1)求数轴上的一个单位长度对应刻度尺上的长度是多少cm?(2)求在数轴上点B所对应的数b(3)若Q是数轴上一点且满足A Q两点间的距离是A B两点间的距离的2倍求点Q在数䌷上所对应的数.【考点】数轴.【专题】实数运算能力.【答案】(1)0.7cm(2)﹣4(3)﹣1或﹣13.。

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴.相反数.绝对值 【1 】专题练习1. 若上升5m 记作+5m,则-8m 暗示___________;假如-10元暗示支出10元,那么+50元暗示_____________;假如零上5℃记作5℃,那么零下2℃记作__________;宁靖洋中的马里亚纳海沟深达11 034m,可记作海拔11 034m (即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它地点的聚集里:-2,7,32,0,2 013,0.618,3.14,-1.732,-5,+3 ①正数聚集:{…}②负数聚集:{…}③整数聚集:{…}④非正数聚集:{…}⑤非负整数聚集:{…}⑥有理数聚集:{…}3. a ,b 为有理数,在数轴上的地位如图所示,则下列关于a ,b ,0三者之间的大小关系,准确的是( )b 0aA.0<a<b B.a<0<b C.b<0<a D.a<b<04.在数轴上暗示下列各数:0,0.5,112,1,+3,223,并比较它们的大小.5.在数轴上大于-4.12的负整数有______________________.6.到原点的距离等于3的数是____________.7.数轴上暗示-2和-101的两个点分离为A,B,则A,B两点间的距离是______________.8.已知数轴上点A与原点的距离为2,则点A对应的有理数是____________ 点B与点A之间的距离为3,则点B对应的有理数是________________.9.在数轴上,点M暗示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N,则点N暗示的数是_________.10.文具店.书店和玩具店依次坐落在一条器械走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的地位在()A.玩具店 B.文具店 C.文具店西边40米 D.玩具店东边-60米11.如图是正方体的概况睁开图,请你在其余三个空格内填入恰当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图12. 上图是一个正方体盒子的睁开图,请把-10,8,10,-3,-8,3这六个数字分离填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不准确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+-C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的地位如图所示,把a ,-a ,b ,-b按照从小到大的次序分列准确的是( )b 0aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值必定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______;21+=_______;5--=_______;3+=_______;_______=1;_______=-2. 20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值规模是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____; (3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____.25.化简下列各数的符号:(1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26.若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27.若-m>0,|m|=7,求m.28.若|a+b|+|b+z|=0,求a,b的值.29.去失落下列各数的绝对值符号:(1)若x<0,则|x|=________________;(2)若a<1,则|a-1|=_______________;(3)已知x>y>0,则|x+y|=________________;(4)若a>b>0,则|-a-b|=__________________.【参考答案】1.降低8m;收入50元;2℃;+50m;30m2.①7,2 013,0.618,3.14,+3②2,23-, 1.732, 5③2,7,0,2 013,5,+3④2,23-,0, 1.732,5⑤7,0,2 013,3+3⑥2,7,23-,0,2 013,0.618,3.14, 1.732,5,+3 3. B4.21210.501332-<-<-<<<+图略;5.4,3,2, 16.3±7.998.2±;1±,5±9.10. B11.略12.略13. C14. D15. B16. C17. C18.13+,3-,(2)19. 3.5;12;5;3;1±;2±20.x,n m;21. D22.3±;3; 2 23.±7;724.(1)43;(2)4.2 4.2 0; (3)3 5 8;(4)2 2 0;(5)3 6.218.6;(6)23,143,23,314,17。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值与数轴 姓名____
一.知识导引:
(1)|a|的几何意义:数轴上表示a 的点到原点的距离;|a -b|的几何意义是:数轴上表示数a 、b 的两点的距离.对于某些问题用绝对值的几何意义来解,直观简捷,事半功倍
(2)代数意义:
①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。

也可以写成: ()()()
||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数
说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。

二.典例精析:
例1.(体现分类讨论思想)三个数a 、b 、c 的积为负数,和为正数, 且bc
bc ac ac ab ab c c b b a a x +++++=,则 123+++cx bx ax 的值是_______ 。

变式:(1)若abc ≠0,求c
c b b a a ++的所有可能的值
式x 19+99x+2014之值.
例2. (零点分段法)若
631542+-+-+x x x 的值恒为常数,求x 取值范围及此常数的
值。

变式:(1)若2a+|4-5a|+|1-3a|的值是一个定值,求a 的取值范围___________________.
(2)|2-x|-3|x+1|=x-9
(3)|x+1|-|x-2|=x-6.
例3。

(绝对值的几何意义)方程132=-+-x x 的解的个数是( )
A 、0
B 、1
C 、2
D 、3
E 、多于3个
变式:(1)若 |x+1|+|2-x|=3,则x 的取值范围是_________________________.
例4. 方程|x -1|+|x +2|=4的解为________
变式:(1)X 是有理数,求22195221100++-x x 的最小值。

(2)|x -2|-| x -5| 的最大值是_______,最小值是_______. (3)在数轴上,找出所有整数点P ,•使它们到点1003•和点-•1003•的距离之和等
于2006,并求出这些整数的和.
(4)|x+1|+|x+99|+|x +2|=1996共有( )个解.
A..4; B . 3; C . 2; D .1
例5.122-+-++x x x 的最小值是………………… ( )
A. 5
B.4
C.3
D. 2
变式:在式子4321+++++++x x x x 中,用不同的x 值代入,得到对应的值,在这些对应值中,最小的值是( ) A 、1 B 、2 C 、3 D 、4
例6。

求|x -1|+|x -2|+|x -3|+…+|x -2008|的最小值.
结论:设数轴上有n 个定点,当n 为偶数时,到这n 个定点的距离之和最小的点在第~+1个点之间(含两个端点);当n 为奇数时,到这n 个定点的距离之和最小的点在第个点处.
例7.(
解不等式) 不等式|x +2|+|x -3|>5的解集是__________. 例8 。

对于任意数
x ,若不等式|x +2|+|x -4|>a 恒成立,则a 的取值范围是___________. 例9.已知|x +2|+|1-x|=9-|y -5|-|1+y|,求x+ y 最大值与最小值.
例10:(平方法)已知实数a ,b ,c 满足不等式|a|≥|b+c|,|b|≥|c+a|,|c|≥|a+b|,
求证:a+b+c=0.
第二讲 绝对值与数轴配套练习 姓名____
1.已知a 、b 、c 在数轴上位置如图:
则代数式 | a | + | a+b | + | c -a | - | b -c | 的值等于( )
A .-3a
B . 2c -a
C .2a -2b
D . b
2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++
的值( )A .是正数 B .是负数 C .是零 D .不能确定符号。

相关文档
最新文档