高中高一数学函数的定义域知识点

合集下载

高一值域和定义域的知识点

高一值域和定义域的知识点

高一值域和定义域的知识点高一数学知识点:值域和定义域解析数学中的值域和定义域是一项基本概念,特别在高一的课程中,这两个概念被频繁地引用和运用。

理解和掌握这些概念,对于高一学生来说是至关重要的。

一、定义域的概念与运用1.1 定义域的定义在函数的定义中,值域和定义域是两个至关重要的概念。

首先,定义域指的是自变量的取值范围。

也就是说,在一个函数中,自变量可以取到的所有可能值形成的集合就是该函数的定义域。

例如,在函数 y = 2x + 3 中,自变量 x 可以取到任何实数的值,所以定义域是整个实数集R。

1.2 定义域的限制在实际问题中,有时候函数并不适用于所有的自变量取值范围。

例如,对于一个表示温度的函数而言,可能只适用于自变量为正数的情况,因为负温度在实际生活中并没有意义。

所以,在这种情况下,定义域就需要做出相应的限制。

例如,函数y = √x 的定义域就是非负实数集[0, +∞)。

1.3 定义域的确定方法确定一个函数的定义域,首先要注意函数中不能出现负号下的奇次根号,因为这样的根无法在实数范围内取得。

其次,要注意有分数形式的分母,不能等于零,因为除数不能为零。

最后,要留意任何其他潜在的限制条件,如有意义性等。

二、值域的概念与运用2.1 值域的定义与定义域类似,值域也是函数的一个重要概念。

值域指的是函数的因变量所能取到的所有可能值所形成的集合。

例如,在函数 y = 2x + 3 中,对于任何实数的自变量 x ,函数的值域都是整个实数集R。

2.2 值域的限制对于某些函数而言,其值域可能受到一些限制。

例如,函数 y = x^2 的值域就是非负实数集[0, +∞),因为平方的结果永远不会是负数。

在寻找函数的值域时,我们需要考虑是不是有潜在的限制条件。

2.3 值域的确定方法确定一个函数的值域,可以通过图像分析和数学推导等多种方法。

对于某些函数而言,我们可以通过观察函数的图像,来判断函数的值域。

例如,当一个函数的图像形状是一个开口向上的抛物线时,我们就可以确定其值域是非负实数集。

高一函数定义域和值域知识点

高一函数定义域和值域知识点

高一函数定义域和值域知识点在高中数学中,函数是一个非常重要的概念。

函数是一个映射关系,它将一个集合中的元素对应到另一个集合中的元素。

而函数的定义域和值域则是函数的两个基本性质,它们对于理解函数的性质和特点非常关键。

一、函数的定义域函数的定义域是指函数中所有可能输入的取值范围。

也就是说,在定义一个函数时,我们需要确定函数的输入可以采取哪些值。

例如,考虑一个简单的函数f(x) = √x。

这个函数的定义域是什么呢?我们知道平方根是一个实数运算,但是如果x取负值,那么该函数就无法定义了。

因此,这个函数的定义域是所有非负实数。

我们可以表示为:定义域D = [0, +∞)。

同样地,对于一个分式函数g(x) = 1/x,我们知道分母不能为零。

因此,该函数的定义域是除了x=0之外的所有实数。

我们可以表示为:定义域D = (-∞, 0)∪(0, +∞)。

另外,有些函数的定义域可能受到一些附加条件的限制。

比如,如果考虑一个函数h(x) = log(x),我们知道对数运算要求x必须大于0,因此,该函数的定义域是所有正实数。

我们可以表示为:定义域D = (0, +∞)。

二、函数的值域函数的值域是指函数中所有可能输出的取值范围。

也就是说,在定义一个函数时,我们需要确定函数的输出可以采取哪些值。

例如,考虑函数f(x) = x^2,我们可以通过平方运算得到一个非负数。

因此,该函数的值域是所有非负实数。

我们可以表示为:值域R = [0,+∞)。

同样地,对于函数g(x) = sin(x),我们知道正弦函数的取值范围是在[-1, 1]之间的所有实数。

因此,该函数的值域是[-1, 1]。

另外,有些函数的值域可能受到一些附加条件的限制。

比如,如果考虑函数h(x) = e^x,我们知道指数函数的取值范围是大于0的实数。

因此,该函数的值域是大于0的所有实数。

我们可以表示为:值域R = (0, +∞)。

总结起来,函数的定义域和值域是函数的两个基本性质。

高一数学值域定义域知识点

高一数学值域定义域知识点

高一数学值域定义域知识点数学中的值域(Range)和定义域(Domain)是描述函数的两个重要概念。

值域表示函数的所有可能输出值的集合,而定义域表示函数的所有可能输入值的集合。

在高一数学中,理解和应用这两个概念对于解决函数相关的问题至关重要。

一、定义域(Domain)定义域是指函数中所有可能的输入值的集合。

在数学中,定义域可以是实数集、整数集、有理数集或者其他特定的数集,根据具体问题而定。

为了确定一个函数的定义域,我们需要考虑以下几个因素:1. 根式的定义域:对于包含根式的函数,我们需要确保根式内的数值为非负数或者分母不为零。

2. 分式的定义域:对于包含分式的函数,我们需要注意分母不能为零,因为分母为零时函数无定义。

3. 对数函数的定义域:对于对数函数,底数必须为正数且不等于1,同时函数中的参数也必须满足相应的定义条件。

4. 指数函数的定义域:对于指数函数,底数必须为正数且不等于1。

在确定函数的定义域时,我们还需要考虑其他限制条件,如不等式、约束条件等。

通过合理的分析和推理,我们可以准确地确定一个函数的定义域。

二、值域(Range)值域是指函数中所有可能的输出值的集合。

通过确定一个函数的定义域以及函数的性质,我们可以进一步确定它的值域。

1. 线性函数的值域:对于形如y = kx + b的线性函数,值域是整个实数集。

由于线性函数的图像是一条直线,我们可以看到函数的输出可以取任意的实数值。

2. 幂函数的值域:对于形如y = x^n的幂函数,如果n为奇数,则值域是整个实数集(或者负实数集,根据函数的性质而定);而如果n为偶数,则值域是非负实数集。

3. 指数函数的值域:对于形如y = a^x的指数函数,值域是正实数集。

通过观察函数的图像,结合函数的性质和定义域,可以帮助我们准确地确定一个函数的值域。

总结:值域和定义域是解决函数问题的重要概念,我们可以通过分析函数的性质、图像以及定义域的限制条件来确定一个函数的值域。

高一数学函数知识点总结(5篇)

高一数学函数知识点总结(5篇)

高一数学函数知识点总结函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结一、函数的基本概念函数的定义:对于两个非空数集A和B,如果存在某种对应关系f,使得A中的每一个元素x都能在B中找到唯一的元素y与之对应,则称f是从A到B的函数,记作y=f(x),其中x是自变量,y是因变量。

函数的定义域:函数y=f(x)中,自变量x的取值范围称为函数的定义域。

函数的值域:函数y=f(x)在定义域内所有函数值的集合称为函数的值域。

二、函数的性质单调性:如果对于定义域内的任意两个数x1和x2(x1<x2),都有f(x1)≤f(x2)或f(x1)≥f(x2),则称函数f(x)在定义域内单调递增或单调递减。

奇偶性:如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数;如果对于定义域内的任意x(且x≠0),都有f(-x)=-f(x),则称函数f(x)为奇函数。

周期性:如果存在一个正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则称函数f(x)具有周期性,T为函数的周期。

三、基本初等函数幂函数:形如y=x^a(a为实数)的函数称为幂函数。

指数函数:形如y=a^x(a>0且a≠1)的函数称为指数函数。

对数函数:如果a^x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log_aN。

函数y=log_ax(a>0,且a≠1)叫做对数函数。

三角函数:包括正弦函数、余弦函数、正切函数等,它们与角度和弧度有关。

四、函数的应用函数模型的应用:通过建立函数模型来解决实际问题,如最优化问题、增长率问题等。

函数图像的应用:通过观察和分析函数的图像来理解函数的性质和行为,从而解决相关问题。

以上是高一数学函数的主要知识点总结。

在学习过程中,应注重理解和掌握这些基本概念和性质,并通过练习和应用来加深对知识点的理解和记忆。

高一数学函数知识点归纳总结大全

高一数学函数知识点归纳总结大全

高一数学函数知识点归纳总结大全函数是数学中非常重要的概念之一,在高一阶段的数学学习中,我们会接触到许多有关函数的知识点。

本文将对高一数学函数知识点进行归纳总结,旨在帮助同学们系统地理解和掌握这些内容。

一、函数的定义和表示方法函数是一个将一个集合中的元素(称为自变量)映射到另一个集合中的元素(称为因变量)的规则。

函数可以用各种方式来表示,常见的有解析式、图像和表格。

1. 解析式表示法:函数可以用解析式来表示,通常采用f(x)或y的形式表示。

例如:f(x) = 2x + 1,y = sin(x)。

2. 图像表示法:函数的图像是用直角坐标系上的点表示的,其中自变量通常对应横坐标,因变量对应纵坐标。

3. 表格表示法:函数可以用表格形式来表示,其中列出自变量的取值和对应的因变量的取值。

二、函数的性质了解函数的性质有助于我们更好地理解函数的特点和行为。

1. 定义域和值域:函数的定义域是指所有使得函数有意义的自变量的取值范围,而值域则是函数的所有可能的因变量的取值范围。

2. 奇偶性:如果对于函数的定义域中的任意x值,都有f(-x) =f(x)成立,则函数是偶函数;如果对于函数的定义域中的任意x值,都有f(-x) = -f(x)成立,则函数是奇函数;否则函数既不是偶函数也不是奇函数。

3. 单调性:如果函数的自变量增加时,其对应的因变量是单调递增或单调递减的,我们称这个函数是单调函数。

4. 周期性:如果函数的某个正数T满足对于函数的所有x值都有f(x+T) = f(x)成立,则称函数具有周期性,T是函数的一个周期。

三、常见函数的类型在高一阶段,我们会学习到以下几类常见的函数。

1. 一次函数:一次函数的解析式为f(x) = ax + b,其中a和b是常数,且a≠0。

一次函数的图像是一条斜率为a的直线。

2. 二次函数:二次函数的解析式为f(x) = ax^2 + bx + c,其中a、b和c是常数,且a≠0。

二次函数的图像通常是一个开口向上或向下的抛物线。

高一数学定义域知识点总结

高一数学定义域知识点总结

高一数学定义域知识点总结在高一数学学习过程中,定义域是一个常见而重要的概念,它涉及到函数的取值范围和合法性。

下面将对高一数学中与定义域相关的知识点进行总结和归纳。

一、定义域的基本概念定义域是指函数中自变量的取值范围,也即是使函数有意义并能得到有效输出的自变量取值范围。

在数学中,我们常常通过解方程或不等式来确定函数的定义域。

定义域通常用数学符号表示,比如用集合的形式表示为{自变量 | 条件}。

二、常见函数的定义域1. 一元一次函数的定义域:一元一次函数通常表示为f(x) = ax + b,其中a和b为常数。

对于一元一次函数来说,定义域为全体实数集R,即所有实数都是函数的定义域。

2. 幂函数的定义域:幂函数的形式为f(x) = x^a,其中a为常数。

当x>0时,幂函数有定义,所以定义域为(0, +∞)。

当a为分数时,要满足根式的分母不为0。

3. 指数函数的定义域:指数函数的形式为f(x) = a^x,其中a为常数且a>0且a≠1。

由于指数函数的幂次可以取到所有实数,所以定义域为全体实数集R。

4. 对数函数的定义域:对数函数的形式为f(x) = loga(x),其中a为常数且a>0且a≠1。

对于对数函数来说,只有正实数x能够使函数有定义,所以定义域为(0, +∞)。

5. 二次函数的定义域:二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数且a≠0。

二次函数的定义域为全体实数集R,因为平方项的值总是非负的。

6. 有理函数的定义域:有理函数是多项式函数和多项式函数的商。

对于有理函数来说,需要注意分母不能为0,因此需要去除函数中分母的取值为0的点,其他的点都属于有理函数的定义域。

三、确定函数定义域的方法确定函数的定义域主要有以下几种方法:1. 对于多项式函数、指数函数和对数函数来说,定义域为全体实数集R,即所有实数都是函数的定义域。

2. 对于分式函数来说,需要注意分母不能为0。

高一函数值域定义域知识点

高一函数值域定义域知识点

高一函数值域定义域知识点函数是数学中一种重要的概念,它描述了一种输入和输出之间的关系。

在高一阶段,学生们开始学习函数的概念和基本性质,其中包括值域和定义域的概念与计算。

本文将详细介绍高一函数值域定义域的知识点。

一、函数的定义函数是一种映射关系,它将一个集合中的每个元素唯一地对应到另一个集合中的一个元素。

通常用 f(x) 表示函数,其中 f 是函数名,x 是函数的自变量,f(x) 是函数的因变量或函数值。

函数也可以用一个公式或规则来表示。

例如,y = 3x + 2 就是一个函数,它表示自变量 x 的值经过一定的计算规则后得到因变量 y 的值。

二、定义域定义域是函数中自变量的取值范围。

换句话说,它表示输入可以是哪些实数。

定义域通常用符号 D(f) 表示。

对于一个简单的函数f(x) = √x,这个函数的定义域是x ≥ 0,因为平方根只有在非负实数范围内有定义。

对于复合函数,定义域需要满足所有子函数的定义域的交集。

比如对于函数 f(x) = 1/(x-2),我们需要使得 x-2 ≠ 0,即x ≠ 2。

因此,定义域是除了 2 之外的所有实数。

三、值域值域是函数中因变量的取值范围。

换句话说,它表示输出可以是哪些实数。

值域通常用符号 R(f) 表示。

对于函数 f(x) = x^2,由于平方的结果始终为非负实数,所以该函数的值域是y ≥ 0,即非负实数。

对于含有分式的函数,我们需要特别注意分母不能为零。

例如函数 f(x) = 1/(x-1),由于分母不能为零,所以值域是实数集合 R 除去 1。

四、计算方法在计算函数的定义域和值域时,需要遵循一些规则和技巧。

1. 对于代数函数,通常需要考虑分式、开方和对数等特殊情况。

2. 对于复合函数,需要先确定每个子函数的定义域,然后求交集作为最终的定义域。

3. 对于复合函数的值域计算,通常需要将子函数的值域作为定义域代入到父函数中进行计算。

4. 对于一些特殊函数,如反比例函数和根号函数,需要注意它们的定义域和值域的特点。

高一函数定义域和值域讲解

高一函数定义域和值域讲解

函数定义域、值域求法总结(一)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(二)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C 是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结一、定义域是函数()y f x =中的自变量x 的范围。

求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

(6)0x 中x 0≠二、值域是函数()y f x =中y 的取值范围。

高一上册函数数学知识点

高一上册函数数学知识点

高一上册函数数学知识点函数是高中数学中的重要概念之一,在高一上册,我们学习了一系列的函数数学知识点。

本文将对这些知识点进行详细介绍和讲解。

一、函数的定义和表示方式函数是一个自变量与因变量之间的对应关系,通常用f(x)表示。

其中,x为自变量,f(x)为因变量。

函数可以用图像、表格、解析式等方式来表示。

二、函数的性质1. 定义域和值域:函数存在的自变量范围称为定义域,函数对应的因变量值的范围称为值域。

2. 奇偶性:若对于函数f(x),当x在定义域内变化时,有f(-x)= f(x),则函数为偶函数;若有f(-x) = -f(x),则函数为奇函数。

3. 单调性:若对于函数f(x),当x1 < x2时,有f(x1) < f(x2),则函数为增函数;若有f(x1) > f(x2),则函数为减函数。

4. 周期性:若对于函数f(x),存在一个正数T,使得对于任意x,有f(x+T) = f(x),则函数具有周期性。

三、常见函数类型1. 一次函数:f(x) = kx + b,其中k和b为常数,k称为斜率,b称为截距。

2. 二次函数:f(x) = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0,图像为抛物线。

3. 指数函数:f(x) = a^x,其中a为常数,a>0且a≠1,图像为递增的曲线。

4. 对数函数:f(x) = loga(x),其中a为常数,a>0且a≠1,图像为递增的曲线。

5. 幂函数:f(x) = x^a,其中a为常数,a ≠ 0,图像与指数函数类似,但可以取负数。

四、函数的运算1. 函数的和差:对于函数f(x)和g(x),可以定义函数h(x) = f(x) ±g(x)。

相加时,对应的函数值相加;相减时,对应的函数值相减。

2. 函数的乘积:对于函数f(x)和g(x),可以定义函数h(x) = f(x) * g(x)。

对应的函数值相乘。

3. 函数的复合:对于函数f(x)和g(x),可以定义函数h(x) =f(g(x))。

高一数学定义域重要知识点

高一数学定义域重要知识点

高一数学定义域重要知识点数学是一门基础学科,其中的定义域是一个重要的概念。

在高一数学学习中,我们需要掌握定义域的相关知识点。

本文将介绍定义域的概念、定义域的求解方法以及定义域在实际问题中的应用。

一、定义域的概念定义域是函数中自变量的所有可能取值的集合。

简单来说,就是函数中自变量可以取的值的范围。

对于一个函数来说,自变量的取值范围决定了函数的输入值。

例如,对于函数y = 2x+1来说,x可以取任意实数值,所以定义域为全体实数,用符号表示为D: R。

二、定义域的求解方法定义域的求解方法主要取决于函数的类型。

下面分别介绍了常见函数类型的定义域求解方法。

1. 一次函数一次函数的通式为y = kx + b,其中k和b为常数。

对于一次函数来说,它的定义域为全体实数,即D: R。

2. 幂函数幂函数的通式为y = x^n,其中n为整数。

幂函数的定义域取决于幂指数n的奇偶性。

- 当n为正偶数时,幂函数的定义域为全体非负实数,即D: [0, +∞)。

- 当n为正奇数时,幂函数的定义域为全体实数,即D: R。

- 当n为负数时,幂函数的定义域为非零实数,即D: R*。

3. 根式函数根式函数的通式为y = √x。

根式函数的定义域一般要求被开方的表达式大于等于0,即x≥0。

所以根式函数的定义域为非负实数集合,即D: [0, +∞)。

4. 有理函数有理函数为两个多项式相除的函数,例如y = (x+1)/(x-2)。

有理函数的定义域需要排除使分母为0的值。

- 在这个例子中,分母不能为0,即x-2≠0,解得x≠2。

- 所以有理函数的定义域为除去x=2的全体实数,即D: (−∞, 2) ∪ (2, +∞)。

5. 指数函数与对数函数指数函数和对数函数的定义域一般要求底数大于0且不等于1。

- 对于指数函数y = a^x,a>0且a≠1,定义域为全体实数,即D: R。

- 对于对数函数y = loga x,a>0且a≠1,定义域为正实数,即D: R*。

高一数学知识点总结大全(非常全面)

高一数学知识点总结大全(非常全面)

高一数学知识点总结大全(非常全面)高一数学知识点汇总1函数的有关概念注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要根据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)假如函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各局部都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u 一样函数的判断方法:①表达式一样(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射高一数学知识点汇总2集合(1)含n个元素的集合的子集数为2n,真子集数为2n-1;非空真子集的数为2n-2;(2)注意:讨论的时候不要遗忘了的情况。

(3)第二局部函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析^p 法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、间隔、绝对值的意义等);⑧利用函数有界性;⑨导数法。

函数定义域 函数值域高一数学知识点总结

函数定义域 函数值域高一数学知识点总结

函数定义域函数值域高一数学知识点总结函数定义域函数值域高一数学知识点总结「篇一」一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:2. 求函数定义域常见的用解析式表示的函数f(x)的.定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R。

②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

3. 求函数值域(1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;(2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;(3)、判别式法:(4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;(5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;(6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;(7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;(8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;(9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

高一数学函数知识点归纳

高一数学函数知识点归纳

高一数学函数知识点归纳一、函数的概念1. 函数定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,通常表示为y=f(x)。

2. 定义域:能够输入到函数中的所有可能的x值的集合。

3. 值域:函数输出的所有可能的y值的集合。

4. 函数图像:函数在坐标系中的图形表示。

二、函数的表示法1. 公式法:用数学公式表示函数关系,如y=2x+3。

2. 表格法:用表格列出x与y的对应值。

3. 图像法:通过函数图像直观表示函数关系。

三、函数的性质1. 单调性:函数在定义域内随着x的增加,y值单调递增或递减。

2. 奇偶性:函数f(x)如果满足f(-x)=-f(x)称为奇函数;如果满足f(-x)=f(x)称为偶函数。

3. 周期性:函数如果存在一个非零常数T,使得对于所有x,都有f(x+T)=f(x),则称函数具有周期性。

4. 有界性:函数的值域在某个区间内有限,称函数在该区间内有界。

四、基本初等函数1. 线性函数:y=kx+b(k≠0),其中k为斜率,b为截距。

2. 二次函数:y=ax^2+bx+c(a≠0),顶点形式为y=a(x-h)^2+k。

3. 幂函数:y=x^n,其中n为实数。

4. 指数函数:y=a^x(a>0,a≠1)。

5. 对数函数:y=log_a(x)(a>0,a≠1)。

6. 三角函数:正弦函数y=sin(x),余弦函数y=cos(x),正切函数y=tan(x)等。

五、函数的运算1. 函数的和差:(f±g)(x)=f(x)±g(x)。

2. 函数的乘积:(f*g)(x)=f(x)g(x)。

3. 函数的商:(f/g)(x)=f(x)/g(x)(g(x)≠0)。

六、复合函数1. 复合函数定义:如果有两个函数f(x)和g(x),那么(f∘g)(x)=f(g(x))。

2. 复合函数的运算法则:(f∘g)(x)=f(g(x)),其中g(x)≠0。

七、反函数1. 反函数定义:如果函数y=f(x)在区间I上是单调的,则存在一个函数x=f^(-1)(y),使得f(f^(-1)(y))=y。

高一数学知识点-函数

高一数学知识点-函数

9.函数的最大值、最小值
最大值
最小值
条件
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意 的x∈I,都有
f(x)≤M
f(x)≥M
结论
存在x0∈I,使得f(x0)=M
称M是函数y=f(x)的最大值
称M是函数y=f(x)的最小值
几何意义
f(x)图象上最高点的纵坐标
f(x)图象上最低点的纵坐标
2.区间概念(a,b为实数,且a<b)
定义 {x|a≤x≤b}
名称 闭区间
符号
[a,b]
数轴表示
{x|a<x<b} 开区间
{x|a≤x<b} {x|a<x≤b}
半开半闭区 间
半开半闭区 间
(a,b) [a,b) (a,b]
3.其他区间的表示
定义
R
{x|x≥a}
{x|x>a}
{x|x≤a}
{x|x<a}
10.函数的奇偶性

条件

结论
图象特征
偶函数
奇函数
对于函数f(x)定义域内任意一个x,都有
f(-x)=f(x)
f(-x)=-f(x)
函数f(x)叫做偶函数
函数f(x)叫做奇函数
图象关于y轴对称
图象关于原点对称
(1)奇偶函数的定义域关于原点对称,反之,若定义域不关于原 点对称,则这个函数一定不具有奇偶性.
符号 (-∞,+∞) [a,+∞) (a,+∞) (-∞,a] (-∞,a)
4.函数的表示
5.分段函数
(1)分段函数就是在函数定义域内,对于自变量x的不同取值范
围,有着不同的对应关系的函数. (2)分段函数是一个函数,其定义域、值域分别是各段函数的 定义域、值域的并集;各段函数的定义域的交集是空集.

高一数学必修一定义域知识点

高一数学必修一定义域知识点

高一数学必修一定义域知识点定义域是数学中一个重要的概念,它指的是函数输入的所有可能取值。

在学习高一数学必修一的过程中,我们需要掌握一些关键的定义域知识点,以便正确理解和应用函数的概念。

本文将就此展开讨论。

1. 实数集的定义域实数集是我们最常见的数集,包括了所有的有理数和无理数。

在函数的定义域中,如果没有其他限制条件,我们通常认为定义域为实数集。

例如,在解析几何中,直线的定义域为全体实数。

2. 整数集的定义域在某些函数中,定义域可能限制为整数集。

比如,考虑一个函数$f(x)$,其中$x$表示一个自然数,那么定义域可以是自然数集$\mathbb{N}$。

3. 正数集的定义域有时候,我们只关注函数在正数集上的取值范围。

比如,考虑一个函数$g(x)$,其中$x$表示一个正实数,那么定义域可以是正实数集$\mathbb{R}^+$。

4. 有理数集的定义域有时候,我们只考虑函数在有理数集上的取值范围。

比如,考虑一个函数$h(x)$,其中$x$表示一个有理数,那么定义域可以是有理数集$\mathbb{Q}$。

5. 符合特定条件的定义域在一些函数中,定义域可能受到特定条件的限制。

例如,考虑一个函数$i(x)$,其中$x$表示一个实数,在定义域时需要满足$x>0$。

6. 常见函数的定义域在学习高一数学必修一的过程中,我们会接触到一些常见函数,它们有特定的定义域。

以下是一些例子:- 幂函数:$y = x^a$,其中$x$可以是实数,$a$是一个常数。

- 二次函数:$y=ax^2+bx+c$,其中$x$可以是实数。

- 三角函数:正弦函数、余弦函数等,定义域通常是全体实数。

- 指数函数:$y = a^x$,其中$a$是一个正常数,$x$可以是实数。

- 对数函数:$y = \log_a x$,其中$a$是一个正常数,$x$可以是大于0的实数。

- 有理函数:$y = \frac{p(x)}{q(x)}$,其中$p(x)$和$q(x)$都是多项式函数,定义域是使得$q(x) \neq 0$的所有实数$x$的集合。

高一函数知识点总结归纳

高一函数知识点总结归纳

高一函数知识点总结归纳高一函数知识点总结1函数知识点归纳1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A 叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A}叫做函数的值域。

2、函数定义域的解题思路:⑴若x处于分母位置,则分母x不能为0。

⑵偶次方根的被开方数不小于0。

⑶对数式的真数必须大于0。

⑷指数对数式的底,不得为1,且必须大于0。

⑸指数为0时,底数不得为0。

⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数⑴表达式相同:与表示自变量和函数值的字母无关。

⑵定义域一致,对应法则一致。

4、函数值域的求法⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵图像法:适用于易于画出函数图像的函数已经分段函数。

⑶配方法:主要用于二次函数,配方成y=(x-a)2+b的形式。

⑷代换法:主要用于由已知值域的函数推测未知函数的值域。

5、函数图像的变换⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

⑵伸缩变换:在x前加上系数。

⑶对称变换:高中阶段不作要求。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶不要求集合B中的每一个元素在集合A中都有原象。

7、分段函数⑴在定义域的不同部分上有不同的解析式表达式。

高一数学知识点 定义域

高一数学知识点 定义域

高一数学知识点定义域高一数学知识点:定义域在高一数学中,我们学习了许多重要的数学知识,其中之一是定义域。

定义域是一个数学概念,它在函数中起着非常重要的作用。

在本文中,我们将探讨关于定义域的概念、性质以及如何确定一个函数的定义域。

一、定义域的概念在数学中,定义域指的是函数中自变量的取值范围。

简而言之,它是指函数中使得函数有意义的输入值的集合。

对于一个函数f(x),我们可以通过限制x的取值来确定函数的定义域。

二、定义域的性质1. 定义域可以是实数集或者一部分实数集,取决于函数中包含了哪些自变量的值。

2. 当函数中存在分式或者根号时,我们需要注意分母或者根号下的数不能为0,否则会导致函数无定义。

3. 在函数中存在对数的情况下,我们需要注意底数和指数的条件,以保证函数有意义。

三、确定函数的定义域的方法确定一个函数的定义域可以通过以下几种方法:1. 首先,我们要注意函数中是否存在分式,如果存在,我们需要将分母不等于零的条件加入到定义域中。

2. 其次,如果函数中有根号,我们需要将根号下的数大于等于零的条件加入到定义域中,保证函数有意义。

3. 如果函数中存在对数,我们需要保证对数中的底数大于零且不等于1,同时对数中的真数大于零,以保证函数有意义。

4. 此外,我们还需要注意是否存在其他特殊情况,例如函数中存在无理数或者不等式的条件等。

举例来说,对于一个简单的函数f(x) = 1/x,我们需要注意分母不等于零,因此定义域为除了x等于零的所有实数。

另一个例子是函数f(x) = √(x-2),根号下的数大于等于零,所以我们可以得到定义域是x大于等于2的所有实数。

综上所述,定义域是函数中使函数有意义的自变量的取值范围。

我们可以通过限制自变量的取值来确定函数的定义域。

了解和掌握定义域的概念、性质以及确定方法,将有助于我们更好地理解和应用数学知识。

这就是关于高一数学知识点“定义域”的文章内容。

通过本文的讲解,我们希望读者能够对定义域有更深入的理解,并能够准确确定函数的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高中高一数学函数的定义域知识点
数学的学习贯穿了我们的整个学习阶段,是我们必须掌握的知识,为了帮助大家学好数学,小编准备了高一数学函数的定义域知识点,希望你喜欢。

定义域
(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。

其中,x叫作自变量,x的取值范围A
叫作函数的定义域;
值域
名称定义
函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合
常用的求值域的方法
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
关于函数值域误区
定义域、对应法则、值域是函数构造的三个基本元件。

平时数学中,实行定义域优先的原则,无可置疑。

然而事物均具有二重性,在强化
定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手硬一手软,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。

如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。

才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

范围与值域相同吗?
范围与值域是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。

值域是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而范围则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。

也就是说:值域是一个范围,而范围却不一定是值域。

一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初
学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,其实就是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

以上就是我们学大的老师分享的有关数学的知识,这篇2019高一数学函数的定义域知识点,同学们学习过之后也要经常地的总结和回顾,这样才能真正的提高数学成绩!
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

高一数学函数的定义域知识点就为大家介绍到这里,希望对你有所帮助。

相关文档
最新文档