有机光电材料PPT课件
【精品课件】有机光电功能材料
有机导电材料
2000年诺贝尔化学奖得主
美国物理学家 Heeger
美国化学家 MacDiarmid
日本化学家 Shirakawa
ቤተ መጻሕፍቲ ባይዱ
1977年,发现掺杂碘的聚乙炔具有金属的特性
目前已发现的具有导电功能的有机高分子材料有:聚乙 炔(PA)、聚吡咯(PPY)、聚噻吩(PTH)、聚对苯乙烯(PPV)、 聚苯胺(PANI)以及他们的衍生物。
目前有机太阳能电池的光电转换效率已经达到10%。
Nature Materials 2009(8):208-211
有机太阳能电池优点:
1、制备工艺简单,廉价; 2、制造面积大; 3、良好柔韧性等。
OLED显示技术
OLED,即有机发光二极管。不同于传统的需背光灯 的LCD显示方式,它是通过有机材料自身发光来达到显 示目的。因而它能显著的节省电能。
降低光伏电池成本主要有三条途径:
1、提高光电转换效率:减少缺陷、背电极、钝化、 减反层等;
2、寻找廉价光伏材料:化合物半导体、染料敏化 TiO2、有机半导体等;
3、改善太阳能电池结构。
通过改善结构降低光伏电池成本的方法:
Fermi-golden rule
Science 2008(321):226-228
其中聚乙炔的所能达到的电导率在已发现的导电聚合物中 是最高的,达到了105S/cm量级,接近Pt和Fe的室温电导率。
有
1、能源(二次电池、太阳能电池、固体电池)
机
2、光电器件
导 电
3、晶体管
材
4、发光二极管
料 的 应
5、传感器 6、电磁屏蔽
用
7、隐身技术等等
三、我们实验室能做的工作
有机光电材料.课件
02
有机光电材料的特性
光学性质
吸收光谱
有机光电材料能够吸收特定波长的光,表现 出不同的吸收光谱。
荧光光谱
有机光电材料在受激发后能发射荧光,荧光 光谱是其重要特性之一。
发光效率
有机光电材料的发光效率高,能够在较低的 驱动电流下实现较高的亮度。
稳定性
有机光电材料的光稳定性较好,不易因光照 而分解或变色。
05
有机光电材料的挑战与前 景
面临的挑战
稳定性问题
效率提升
有机光电材料在光照、氧气和湿度等环境 因素下容易发生降解,导致性能下降。
目前有机光电材料的效率相较于无机材料 还有待提高,尤其是在光伏和LED等领域。
大规模生产
生物相容性和安全性
实现有机光电材料的大规模生产和应用, 需要解决工艺和成本等方面的问题。
跨学科交叉研究
结合生物学、化学、物理学等多学科知识,拓展有机光电材料在生物 医学、能源和环境等领域的应用。
工艺优化和成本降低
优化有机光电材料的制备工艺,降低成本,推动其大规模生产和应用 。
06
有机光电材料的实际应用 案例
有机发光二极管显示屏
总结词
有机发光二极管显示屏是利用有机光电 材料制成的显示技术,具有轻薄、可弯 曲、低功耗等优点。
详细描述
有机非线性光学材料具有较高的非线性系数和较短的响 应时间,能够实现高速、高效的光信号处理。在光通信 中,可以利用有机非线性光学材料实现光信号的调制、 解调、倍频等功能,提高通信容量和传输速度。
有机场效应晶体管在电子书中的应用
总结词
有机场效应晶体管是一种利用有机光电材料 制成的电子器件,具有高开关比、低噪声等 优点,被广泛应用于电子书等便携式电子产 品中。
有机光电材料.课件
提高有机发光二极管性能策略
材料优化
研发新型有机材料,提高发光效率、稳定性和寿命,降低 成本,推动OLED技术的广泛应用。
器件结构优化
通过改进器件结构,如采用多层结构、微腔效应等,提高 OLED的光电性能和色彩表现。
制造工艺改进
优化制造工艺,如提高薄膜制备质量、降低界面电阻等, 提高OLED的生产效率和良品率。
国内外研究现状及发展趋势
国内研究现状
01
介绍国内在有机光电材料研究方面的进展,包括科研
团队、研究成果及应用情况。
国外研究现状
02 概述国外在有机光电材料领域的研究动态,关注国际
前沿发展趋势。
发展趋势
03
预测有机光电材料未来的发展趋势,提出可能的研究
方向和挑战。
02
有机光电材料基础知识
有机光电材料分类
低成本
有机光电材料制备工艺相 对简单,成本较低,有利 于大规模生产。
有机光电材料应用领域
显示技术
OLED显示器具有自发光、高对比度、轻薄等优点,已广泛应用于 电视、手机等电子产品。
光伏技术
聚合物太阳能电池具有重量轻、可弯曲折叠等特点,适用于便携式 设备和特殊应用场景。
光探测技术
有机光电探测器具有高灵敏度、快速响应等特点,可用于图像传感 、光通信等领域。
溅射镀膜
利用高能粒子轰击靶材,使材料溅射出来并沉积在基底上。
分子束外延
在超高真空条件下,精确控制分子束流,实现高质量薄膜的外延 生长。
其他制备技术
化学气相沉积
通过气态反应物在基底表面发生化学反应,生成所需材料薄膜。
电化学沉积
利用电化学方法在基底上沉积材料,实现薄膜制备。
光伏材料与器件 有机薄膜太阳电池PPT课件
相对于制造无机电池的高昂代价来讲,有 机太阳能的研究仍旧有很强大的生命力。
➢OPV 简介
有机材料
• van de Waals 力
无机材料
• 共价键+离子键
•
没有自由载流子或者很少,因为材料 中的缺陷和杂质
•
有机薄膜晶体管组件(OTFT)
Source
Au Drain
Pentacene Thermal oxide SiO2
Gate: n+-Si substrate
Source
Au Drain
Tetracene Cross-linked PVP
ITO Gate Glass
PEDOT
印刷式柔性有机IC
OLED显示器优势
1. Acene系列: Pentacene, Tetracene, Pentacene Precursor ……
2. PTCDA系列: PTCDI, PTCBI ……
3. C60系列: PCBM ……
4. Polymer系列: P3HT, P3OT ……
导电聚合物的应用
✓ PLED和PSC的ITO电极修饰层(PEDOT,PAn等) ✓ 聚合物光伏电池(PTh和PPV衍生物等) ✓ 场效应晶体管(FET)半导体材料(PTh衍生物) ✓ 聚合物发光器件(LED&LEC,PPV和PF等) ✓ 化学电源的电极材料 ✓ 修饰电极和酶电极 ✓ 电色显示 ✓ 固体电容器 ✓ 防静电和防腐蚀材料(聚苯胺等) ✓ 微波吸收(隐身材料)
载流子传输层 载流子传输层有时候也是同时作为作用层和电极修饰层的,
他对载流子的收集性能很重要。 ➢ 激子阻挡层(BCP) ➢ LiF ➢ PEDOT:PSS ➢ 碳纳米管 影响:短路电流,填充因子
有机光电器件与材料
关键点总结
光电性能测试
评估光电转换效率 考察发光亮度 测量响应速度
稳定性评价
热稳定性测试 光稳定性评估 湿热稳定性检测
性能优化方法
材料设计优化 器件结构调整 工艺流程改进
产业化现状
面临挑战与机遇 产学研协同创新 前景广阔可期
● 05
第五章 有机光电器件应用前 景
有机光电器件在柔性显示领域 的应用
● 03
第3章 有机光电器件制备技 术
有机薄膜制备技 术
有机薄膜制备技术是 制备有机光电器件中 的重要步骤。常用的 制备技术包括溶液法、 真空蒸发法和热转印 法等。这些技术的选 择取决于所需的薄膜 特性和器件应用环境。 不同的制备技术适用 于不同类型的有机薄 膜晶体管,影响着器 件性能和稳定性。
有机光伏器件制备技术
共沉淀法
适用于大面积制 备
真空蒸发法
高纯度薄膜
溶液法
简单易操作
有机发光二极管制备技术
01 有源蒸发
高效率制备
02 共沉淀
低成本生产
03 喷墨印刷
适用于柔性显示
有机光电器件封装技术
负压封装
有效隔绝空气 提高器件稳定性
气体封装
控制器件环境 延长器件寿命
无机封装
提供更高的保护性 用于高要求环境下
● 02
第2章 有机光电器件的工作 原理
有机光伏器件原 理
有机光伏器件是利用 光电效应将光能转换 为电能的器件。其工 作原理包括光子的吸 收、电荷的分离以及 电荷的输运等过程, 通过这些步骤实现光 能转换为电能的功能。
有机光伏器件原理
吸收光子
光能转换
电荷输运
电荷运输至电极
电荷分离
产生电荷对
光电功能材料--光纤材料 ppt课件
波导 :waveguide,能限定和引导电磁波在长度方向上传 播的管道
光纤传输信息具有许多优点:
●载频为3×1014Hz,约为电视通信所用超高频 的100000倍,从而使信息载带容量或带宽激增;
氟化铍 在红外区的本征损失为石英的l/6,可拉制透射2 µm波段的光纤。该种光纤有可能将光信号无中继传输数百甚 至上千公里。
氟化锆 理论损耗达0.001dB/km(2.55µm)(比 最好的石英光纤低两个数量级),透过率可达氧 化物玻璃的100倍,且受高能辐照不易黑化。氟 化锆基玻璃的主成分为氟化锆(60~70mol%),并 以氟化钡(20~30mol%)为改性剂(降低熔点), 以 少量其它氟化物作稳定剂(如AlF3、LaF3、PbF2 作结晶化抑制剂)和指数改性剂(如PbF2),借以获 得合适的纤芯和包层组分。这种玻璃光纤的透射
B 硫属玻璃光纤
砷、锗、锑与硫属元素硫、硒构成的玻璃叫 硫属玻璃,光学损耗高,主要用于短距离传能。 目前己拉出在CO和CO2激光波长下损耗为数百dB 的纤维。在一根光纤上能传输数瓦的能量,这对 拓宽CO2和CO大功率激光器的应用领域有重要意 义。
C 重金属氧化物光纤
对此类纤维的研究,主要局限于GeO2系统。 抽成丝后最小损耗约为4dB/km(2µm)。可用作红 外光纤、非线性光学光纤,尤其是可用来实现光 信号放大,有可能用于超长距离光学传输系统。
波长范围从7~8 µm的红外区一直延伸到0.2~0.3 µm的近紫外区。
拉出的Zr(锆)-Ba-La-Al-Li-Pb(纤 芯)/Zr-Ba-La-Al-Li (包层)氟化物光 纤,在2.55 µm下的最低损耗为6.8dB/km, 纤维的“实用”强度高达3800MPa。估计 氟化物玻璃光纤接近0.001dB/km的最低理 论损耗,从而实现横跨大洋的通信。
有机太阳能电池PPT课件
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2000年,5.R.Forrest研究小组通过在有机小分子制备的双层结构太阳能电池器件 的有机层和金属阴极之间插入BCP(Bathocuproine)薄膜层,使得器件的光电转换 效率提高到了2.4%,并且改善了器件的伏安特性曲线,提高了器件的稳定性。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1.有机太阳能电池的简介:
定义:有机太阳能电池,就是由有机材料构成核心部分,基于有机 半导体的光生伏特效应,通过有机材料吸收光子从而实现光电转换 的太阳能电池。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
➢聚合物材料:太阳能电池上应用的聚合物首先必须是导电高分子,并 且聚合物的微观结构和宏观结构都对聚合物材料的光电特性有较大影响。 导电性聚合物的分子结构特征是含有大的π电子共扼体系,而聚合物材 料的分子量影响着共扼体系的程度。材料的凝聚状态(非晶和结晶)、结 晶度、晶面取向和结晶形态都会对器件光电流的大小有影响。主要的聚 合物材料有聚对苯乙烯(PPv)、聚苯胺(队Nl)和聚唆吩(PTh)以及它们的 衍生物等。
与前述“肖特基型”电池相比,此种结 构的特点在于引入了电荷分离的机制, 使得在有机材料中产生的激子,可以较 容易地在两种材料的界面处解离以实现 电荷分离,极大的提高了激子解离的效 率,从而获得电池器件效率的增大。
有机光电材料PPT课件
大阪大学(2008年3月27~30日)成功开发出了单元转换 效率高达5.3%的有机固体太阳能电池。
2015年使模块转换效率为15%的有机太阳能电池实现 实用化
有机小分子化合物
太阳能电池是太阳能光伏发电的基础和核心,是 一种光能转变为电能的器件,用适当的光照在上 边之后器件两端会产生电动势。
典型的太阳电池是一个p-n结半导体二极管。 ◆ p-n结的形成过程(N型半导体中含有较多
的空穴,而P型半导体中含有较多的电子,这样, 当P型和N型半导体结合在一起时,就会在接触 面形成电势差,这就是P-N结)。
1986年,柯达公司的邓青云博士. 光电转 化效率达到1%左右。时至今日这种双层膜异 质结的结构仍然是有机太阳能电池研究的重点 之一。
1992年,土耳其人Sariciftci发现,激发 态的电子能极快地从有机半导体分子注入到 C60分子而反向的过程却要慢得多1993年, Sariciftci在此发现的基础上制成PPV/C60双 层膜异质结太阳能电池。
材料分类
硅太阳能 无机化合物半导体太阳能(硫化镉-硫化亚铜, 砷化镓等) 敏化纳米晶太阳能(染料敏化太阳能) 有机化合物太阳能 以酞菁 等等为集体材料制 成的太阳能(小分子有机物太阳能) 塑料太阳能(高分子多聚物太阳能)
材料种类
有机太阳能电池简介
广泛的讲有机太阳能电池主要是利用有机 小分子或有机高聚物来直接或间接将太阳能转 变为电能的器件。
静电复印:。当硒鼓(导电高分子)充电以后,经过光 照处理,照光的部分电荷就会消失,文字、图像等遮光的 地方,电荷不会消失。当复印的黑粉撒到硒鼓上时,有文 字、图像的地方由于相对应的硒鼓带电,可以吸引黑粉, 这样就可把原稿上的字或图转印到一张白纸上。
有机光电材料
导电高分子材料的研究进展
初期的实验发现与理论积累
1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质 1954年,米兰工学院G.Natta用Et3Al-Ti(OBu)4为催化剂制得聚乙炔 1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性
科学家将有机高分子与无机高分子导电聚合物 的开发研究合在一起开始了探寻之旅。
新 能 源
燃料电池-质子交换膜
CF2 CF2 x
CF2 CF y
O
CF2
CF O
m
CF3
CF2 n SO3H
有机发光二极管
OLED:有机发光显示器,有机半导体材料
邓青云
1979年的一天晚上,在柯达公司从事科学研究工作的 华裔科学家邓青云博士在回家的路上忽然想起有东西 忘记在实验室。回到实验室,他发现黑暗中有个亮东 西。打开灯,原来是一块做实验的有机蓄电池在发光
将Ziggler—Natta催化剂溶于甲苯中,冷却到-78度, 通入乙炔,可在溶液表面生成顺式的聚乙炔薄膜。掺 杂后电导率达到105S/cm量级。
2000年诺贝尔化学奖得主
美国物理学 家Heeger
美国化学家 MacDiarmid
日本化学家 Shirakawa
导电高分子
迄今为止,国内外对结构型导电高分子研究得 较为深入的品种有聚乙炔、聚对苯硫醚、聚对苯 撑、聚苯胺、聚吡咯、聚噻吩等。
在太阳光照下,毫无损伤地产生电子能量
能级分布
绝 缘 体 固体中的能量状态图
半导体 金 属
太阳能电池发电原理
太阳能电池种类
硅太阳能电池 纳米晶太阳能电池
聚合物多层修饰电极型太阳能电池 多元化合物太阳能电池
聚合物太阳能电池
有机光电材料与器件
有机光电材料与器件
有机光电材料与器件是一种新型的材料与器件,它们在光电领域具有重要的应
用价值和发展前景。
有机光电材料与器件具有许多优异的特性,如可调性强、光学性能优良、制备工艺简单等,因此备受研究者的关注和青睐。
首先,有机光电材料具有较高的可调性。
有机光电材料的分子结构可以通过合
成方法进行调控,从而实现对其光学性能的调节。
这种可调性使得有机光电材料能够满足不同光电器件的需求,为器件的性能优化提供了可能。
其次,有机光电材料具有优异的光学性能。
相比于传统的无机光电材料,有机
光电材料在光学特性上具有独特的优势,如较宽的光谱响应范围、较高的光电转换效率等。
这些优异的光学性能使得有机光电材料在太阳能电池、光电显示等领域具有广阔的应用前景。
此外,有机光电材料的制备工艺相对简单。
相比于无机材料的合成工艺,有机
光电材料的制备工艺更加灵活多样,且通常采用溶液加工的方法,能够实现大面积、低成本的制备。
这为有机光电器件的商业化应用奠定了基础。
有机光电器件作为有机光电材料的应用载体,也具有许多优秀的特性。
例如,
有机太阳能电池具有柔性、轻薄、可弯曲等特点,适用于可穿戴设备、移动电源等领域;有机光电显示器件具有高对比度、快响应速度等特性,适用于智能手机、平板电脑等电子产品。
总的来说,有机光电材料与器件在光电领域具有广泛的应用前景,其优异的可
调性、光学性能以及制备工艺为其应用打下了坚实的基础。
随着科技的不断进步和创新,相信有机光电材料与器件将会在未来发展中发挥越来越重要的作用,为人类社会的可持续发展做出更大的贡献。
有机光电材料的特征与应用
有机光电材料的特征与应用
有机光电材料的特征与应用
一、有机光电材料的特征
1、有机光电材料是一种新兴的具有扩展性、可编程性和可改变性的材料,它们具有极高的光电转换效率、快速响应速度和低成本等优点。
2、有机光电材料主要是指以有机分子为主要组成部分的光电材料,具
有较高的电子密度、电磁屏蔽效果和热稳定性等特点。
3、有机光电材料的光致发光效率和有机电致发光效率很高,可用于多
种光电转换应用,具有低成本、易于控制等优点。
二、有机光电材料的应用
1、有机光电材料可用于有机太阳能电池,有机太阳能电池具有低成本、薄膜结构、轻质等优点,能够充分发挥有机光电材料的优势。
2、有机光电材料也可用于有机发光器件和显示器件,具有节省能源、
抗静电、防水、耐久耐用等特点,如有机发光二极管、有机白光二极
管等。
3、有机光电材料还可用于光电传感器,可用于检测光照强度、透射率
和温度变化等环境参数,如光电视、光纤传感卡等。
4、有机光电材料可用于无线信号系统,能够实现高速、低成本、高效
的无线通信,如电视和对讲机等。
5、有机光电材料也可用于生物传感、能源转换和自适应光电转换等应用,具有良好的抗冲击性和易于控制的特点。
《光电显示材》课件
电致发光(EL):广泛应 用于汽车仪表盘、广告牌 等
激光显示:广泛应用于投 影仪、激光电视等
柔性显示:广泛应用于可 穿戴设备、智能手表等
3D显示:广泛应用于电影、 游戏、虚拟现实等领域
光电显示材料的原 理
光电效应:当光照射到某些物质上时,物质内部的电子吸收光子的能量,从低能级跃迁到高能级,产生电流的现 象。
主要竞争对手:三星、LG、京东方等 市场份额:三星、LG等国际巨头占据较大市场份额 技术水平:国际巨头在技术方面具有领先优势 价格竞争:国内厂商在价格方面具有一定优势
技术趋势:OLED、QLED等新 型显示技术将逐渐持续 增长
应用领域:光电显示材料在智 能手机、电视、汽车等领域的
应用将越来越广泛
竞争格局:市场竞争激烈,国 内外企业纷纷加大研发投入,
抢占市场份额
光电显示材料的未 来展望
量子点显示技术:具有高 色纯度、高亮度、长寿命 等优点
OLED显示技术:具有自 发光、高对比度、低功耗 等优点
柔性显示技术:具有可弯 曲、可折叠、轻便等优点
极管显示材料等
光电显示材料的性能直接影响 到电子设备的显示效果和能耗
LCD(液晶显示)
OLED(有机发光二极 管)
LED(发光二极管)
QLED(量子点发光二 极管)
E-ink(电子墨水)
MicroLED(微型发光 二极管)
液晶显示器(LCD):广 泛应用于电视、电脑、手 机等电子产品
发光二极管(LED):广 泛应用于照明、显示、信 号等领域
发展背景:随着科技的进步, 第一代光电显示材料逐渐无法 满足市场需求
主要特点:具有更高的亮度、 对比度和色彩饱和度
主要应用领域:电视、电脑、 手机等消费电子产品
有机激光材料ppt课件
报告人:
.
目录
一、激光材料背景 二、有机激光材料 三、研究现状及展望 四、总结
.
1.激光材料背景
➢激光器主要包括三个部分: 1)工作物质 2)泵浦源 3)光学谐振腔 工作物质是产生激光的物质基础, 是激光器的核心部分,是用来实现 粒子数反转并产生受激辐射的
.
激光器结构图
1.激光材料背景
对于固体激光器,面临着晶体生长 困难,技术要求高,价格昂贵等问题;
激光玻璃一般需在高温条件下熔制, 对于不同的基质材料和不同的激光工作 波段,还需要除去 OH 基和气体保护, 工艺条件苛刻,生产成本高;
二氧化碳气体激光,虽然功率高, 但其装置笨重庞大,给需要小型化激光 器的场合带来了诸多不便。
.
2.有机激光材料
下面将简述几个光泵浦有机激光的 最新进展, 虽然这些进展并不是完全 集成在同一个器件中的, 但它们都从 不同方面促进了有机激光领域的发 展, 提供新的研究方向
间接电泵浦有机激光 间接电抽运有机激光的想法是用 电抽运的光源去光抽运有机材料.
使用LED光源泵浦有机激光的机理示意, 其中使用的光栅为二维DFB光栅
工作物质包括: 固体(晶体和玻璃) 气体(原子气体、离子气体和分 子气体) 液体(有机和无机液体) 半导体
工作物质一般由两部分组成:
基质材料 物理化学性质:玻璃,晶体
少量掺杂离子(激活离子) 激光介质的发光中心,其内部能 级结构决定激光介质光谱特性, Nd3+,Cr3+
1960 年世界上第一台红宝石激光器问世
另外一种彻底解决波长跨度限制的方法, 就是使用非线性光学器件来把有机材料 发出的可见光调谐到UV或者IR的范围之内. 对于这类非线性光学系统必须有高 峰值和好的光斑质量, 才能保证其有较高的能量转换效率. 在实际的应用中使用 一个外延的谐振腔是比较简单易行的方案.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机发光二极管OLED
33
光传导高分子材料
34
光导纤维
35
手机保护膜
防刮:采用高品质高分子材料,表面的抗摩擦和划伤能力强, 高透明度、真彩色色调以90%透光率,可以感受到舒适明亮的 画面和真实自然的色彩感 软屏幕的画面色调采用特殊微雾的表面处理技术,能有效减少 高达98%的反射视觉和外部环境光线 耐指纹和防灰尘作为特殊防静电,表面可以有效地防止指纹附 上和远离粉尘 有效的紫外线隔离高达75%,特殊表面涂层能有效隔离紫外线 屏幕所产生的负担
24
新 能 源
25
26
27
28
29
30
燃料电池-质子交换膜
CF2 CF2 x CF2 CF y
O
CF2
CF O
m
CF2 nSO3H
CF3
31
有机发光二极管
OLED:有机发光显示器,有机半导体材料和发光材料在电场驱动下,通过 载流子注入和复合导致发光
邓青云
1979年的一天晚上,在柯达公司从事科学研究工作的 华裔科学家邓青云博士在回家的路上忽然想起有东西 忘记在实验室。回到实验室,他发现黑暗中有个亮东 西。打开灯,原来是一块做实验的有机蓄电池在发光
14
Nobel Prize in Chemistry 2000
“For the discovery and development of conductive polymers”
G. MacDiarmid H.Shirakawa J.Heeger
15
材料导电能力的差异与原因
电导率 11mSm
16
高分子材料在 能源信息领域的应用
1
整体概况
概况一
点击此处输入 相关文本内容
01ห้องสมุดไป่ตู้
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
能源
水力
核能
火力
风力
潮汐
地热
3
太阳能发电站
4
有机太阳能电池
植物光合作用
多晶硅太阳能电池
5
太阳能电池发展历史
1839,Bequerel发现了光电效应 1873,Selen发现了光伏效应 1954,研发出半导体技术
36
手机结构 手机结构一般包括以下几个部分:
1.LCD LENS 材料:材质一般为PC或压克力; 连结:一般用卡勾+背胶与前盖连结。 分为两种形式:a. 仅仅在LCD上方局部区域;b.与整个面板合为一体。 2.上盖(前盖) 材料:材质一般为ABS+PC; 连结:与下盖一般采用卡勾+螺钉的连结方式(螺丝一般采用φ2,建议使用 锁螺丝以便于维修、拆卸,采用锁螺丝式时必须注意Boss的材质、孔径)。 Motorola 的手机比较钟爱全部用螺钉连结。 下盖(后盖) 材料:材质一般为ABS+PC; 连结:采用卡勾+螺钉的连结方式与上盖连结; 3.按键 材料:Rubber,pc + rubber,纯pc; 连接: Rubber key主要依赖前盖内表面长出的定位pin和boss上的rib定位。 Rubber key没法精确定位,原因在于:rubber比较软,如key pad上的定位孔 和定位pin间隙太小(<0.2-0.3mm),则key pad压下去后没法回弹。
21
金属防腐蚀
防止低碳钢腐蚀,火箭发射塔内壁的保护
界面,两者的界面产生一个电场,阻止电子从金属流向外部的氧化层 聚苯胺还原电位0V/SCE,金属铁氧化电位 -0.7V/SCE,两者的作用在 界面形成氧化层。导电高分子层使得铁直接与界面的水相互作用而氧化 最终成为致密的氧化膜,起到保护作用
22
船舶防污涂料
材料导电能力的差异与原因
能带间隙 (Energy Band Gap)
金属之Eg值几乎为0 eV ,半导体材料Eg值在1.0~3.5 eV之间,绝 缘体之Eg值则远大于3.5 eV。
17
导电高分子材料的研究进展
初期的实验发现与理论积累
1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质 1954年,米兰工学院G.Natta用Et3Al-Ti(OBu)4为催化剂制得聚乙炔 1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性
率令人吃惊地达到3000S/m。
20
导电高分子材料的研究进展
后续研究进展
1980年,英国Durham大学的W.Feast得到更大密度的聚乙炔。
1983年,加州理工学院的H.Grubbs以烷基钛配合物为催化剂将环辛四烯转 换了聚乙炔,其导电率达到35000S/m,但是难以加工且不稳定。
1987年,德国BASF科学家 N. Theophiou 对聚乙炔合成方法进行了改良, 得到的聚乙炔电导率与铜在同一数量级,达到107S/m。
聚乙炔 聚吡咯
聚噻吩 聚苯胺
纳米复合材料
11
高分子的化学结构
n
聚乙炔
S
n
聚噻吩
n
聚苯
n
聚苯撑乙烯
N
n
H
聚吡咯
RR
n
聚芴
12
三联苯聚乙炔
(CH2)2CH3
CC n (CH2)2O
CN
13
C60足球烯
?
??
Nobel Prize for 1996
Harold, Kroto Walter, Kohn Richard N, Zare
海洋生物污损
传统的防污涂料采用氧化亚铜,有机锡等,污染海洋环境 含海洋生物天敌的生物防污涂料,含有有机硅低表面能防污涂料 导电防污涂料 导电聚苯胺在海水中会发生氧化还原反应 海洋生物生长的最佳PH为7-8,导电涂层的酸性环境
23
电学性能与应用
透明电极
金属和石墨电极不透明,导电高分子可以制成透明电极 但透明性与高导电性是矛盾的, 樟脑磺酸掺杂
科学家将有机高分子与无机高分子导电聚合物 的开发研究合在一起开始了探寻之旅。
18
导电高分子材料的研究进展
导电高分子材料的发现
1974年日本筑波大学H.Shirakawa在合成聚乙炔的实验中,偶然地投 入过量1000倍的催化剂,合成出令人兴奋的有铜色的顺式聚乙炔薄膜与 银白色光泽的反式聚乙炔。
H-C≡C-H 1000 倍催化剂
Ti(OC4H9)4 Al(C2H5)3
温度
10-8~10-7 S/m 10-3~10-2 S/m
19
导电高分子材料的研究进展
聚乙炔的掺杂反应
1975年,G. MacDiarmid 、 J.Heeger与H.Shirakawa合作进行研究,他 们发现当聚乙炔曝露于碘蒸气中进行掺杂氧化反应(doping)后,其电导
印刷电路板
在绝缘的基底上镀金属铜,表面吸附贵金属,然后在铜离子 的甲醛溶液中化学沉积出铜,再用电镀的方法 可直接将导电的聚苯胺沉积在绝缘的尼龙或聚酯薄膜上
微波焊接
聚苯胺类高分子在一定的电导率范围内具有很高的介电常数 很强的吸收电磁波的能力,吸收电磁波后可将电磁能转变为热能 在两块聚乙烯之间加入聚苯胺,微波处理后,界面处的聚乙烯 熔融,最终粘结在一起,具有良好的力学性能
第一块硅晶片诞生
固体吸收光线 产生自由电荷 电荷分离
在太阳光照下,毫无损伤地产生电子能量
6
能级分布
绝 缘 体 固体中的能量状态图
半导体 金 属
7
太阳能电池发电原理
8
太阳能电池种类
硅太阳能电池 纳米晶太阳能电池
聚合物多层修饰电极型太阳能电池 多元化合物太阳能电池
9
聚合物太阳能电池
10
用于太阳能电池的高分子