物联网网关系统设计方案
智慧农业物联网系统设计方案
智慧农业物联网系统设计方案智慧农业物联网系统设计方案近年来,随着物联网技术的不断发展,智慧农业也成为了农业领域的一个热门话题。
智慧农业物联网系统通过结合传感器、云计算、大数据等技术,为农民提供实时的农业信息和数据分析,有效提高农业生产效率和农产品质量。
下面,我将为你详细介绍智慧农业物联网系统的设计方案。
一、系统架构设计智慧农业物联网系统由传感器、物联网网关、数据中心和用户终端四个主要组成部分。
传感器:主要用于农业环境监测,包括土壤湿度、温度、光照强度等传感器,以及农作物生长监测传感器,如叶绿素含量、叶面积等。
物联网网关:负责传感器数据的采集和传输,将采集到的数据发送给云服务器进行存储和分析。
网关还可以通过无线通信技术与用户终端进行数据交互。
数据中心:承担数据存储、处理和分析的任务,运用大数据分析算法,对采集到的农业数据进行处理和挖掘,提供农民所需的实时信息和决策支持。
用户终端:包括电脑、手机APP等多种终端设备,农民可以通过这些设备实时查询农业数据和系统分析结果,进行农作物管理、灌溉控制等操作。
二、功能设计1. 农业环境监测:通过传感器实时监测农田的土壤湿度、温度、光照强度等参数,帮助农民了解农田的实际情况,及时采取相应的措施。
2. 农作物生长监测:通过叶绿素含量、叶面积等传感器监测农作物的生长情况,提供农作物的生长趋势和生长状态分析,帮助农民选择适宜的管理措施。
3. 智能灌溉控制:根据农田的土壤湿度数据,智能决策系统可以自动调整灌溉水量和灌溉时机,以达到节水和科学灌溉的目的。
4. 病虫害预警:通过传感器监测农田的温度、湿度等环境参数,结合农作物的生长数据进行分析,可以提前预警病虫害的发生,帮助农民采取控制措施。
5. 农业数据分析和决策支持:通过对大量的农业数据进行分析和挖掘,为农民提供科学的决策支持,包括作物种植方案、灌溉方案、病虫害防控方案等。
三、数据安全与隐私保护智慧农业物联网系统中涉及到大量的农田数据和用户数据,对数据的安全和隐私保护至关重要。
整体物联网系统方案设计(一)概述
整体物联⽹系统⽅案设计(⼀)概述
该物联⽹系统是⼀个实际的需求项⽬,⽬前已经完成,现将该项⽬分享出来,欢迎⼤家指正。
该项⽬分为以下⼏部分,后续会逐个进⾏详细说明:
1,需求说明
该项⽬硬件到软件都是从零开始,关于远程管理和控制的物联⽹项⽬,包含APP(iOS,android 原⽣开发)、物联⽹⽹关、控制器、采集器、传感器数据采集、IO控制、现场触摸屏操作、IoT 服务平台、后台管理、战情中⼼、视频监控。
2,设计思路
IoT 平台提供WebAPI ,MQTT 服务,物联⽹关由ESP8266设计,物联⽹⽹关通过Zigbee与控制器、采集器通讯,采集器通过485与传感器连接,采⽤modbus RTU 通讯协议。
3,设计⼯具
IoT 平台采⽤.net4.6开发(2年前开始的,没有采⽤.netcore,后续会升级到.netCore,甚是遗憾),硬件采⽤arduino开发;数据库采⽤mysql,系统架构在某云服务器(windows平台)。
4,设计过程
该项⽬设计包含:软件包含IoT服务平台、APP、战情中⼼、后台管理、战情中⼼;硬件包含⽹关、控制器、采集器、触摸屏的设计。
5,系统调试和部署
6,总结。
物联网系统的架构设计与优化
物联网系统的架构设计与优化随着物联网技术的快速发展,物联网系统的架构设计和优化成为了保障系统性能和功能的重要环节。
本文将介绍物联网系统的架构设计原则、常用架构模式以及优化方法。
一、物联网系统架构设计原则1. 可伸缩性:物联网系统需要支持海量设备和数据的接入和处理能力,架构设计应具备良好的可扩展性和可伸缩性,能够灵活应对不同规模的系统需求。
2. 可靠性:物联网系统承载着大量的关键数据和任务,架构设计应确保系统的可靠性和稳定性,能够在各种异常情况下保障系统的正常运行。
3. 安全性:物联网系统需要处理大量的敏感数据,包括用户隐私信息等。
架构设计应注重网络安全性,采取适当的安全策略和措施,保护用户数据的安全。
4. 低延迟:物联网系统中,往往需要实时响应和处理大量的数据。
架构设计应注重降低系统的延迟,提高数据的处理效率,确保系统能够及时响应用户的请求。
5. 灵活易用:物联网系统的用户群体广泛,因此架构设计应注重用户体验,提供简单易用的界面和功能,降低用户使用的门槛。
二、常用的物联网系统架构模式1. 集中式架构:集中式架构是一种常见且简单的物联网系统架构模式。
所有设备通过物联网网关连接到云服务器,设备和网关之间的通信使用标准的通信协议,如MQTT或CoAP等。
云服务器负责接收和处理设备的数据,并提供数据存储、分析和应用服务。
2. 边缘计算架构:边缘计算架构适用于需要在设备或网络边缘进行数据处理和分析的物联网系统。
边缘设备具备一定的计算和存储能力,能够进行部分数据处理和筛选,减轻云服务器的负载,并降低数据传输延迟。
3. 分布式架构:分布式架构是一种将物联网系统功能划分为多个独立模块,各个模块可以分布在不同的服务器上进行处理的架构模式。
分布式架构可以提高系统的可伸缩性和可靠性,减少单点故障的风险。
4. 混合架构:混合架构结合了集中式架构和边缘计算架构的优势。
设备通过物联网网关连接到云服务器进行数据存储和分析,同时部分数据处理和分析也在边缘设备上进行,以实现更高效的系统性能和更低的延迟。
物联网安全接入网关的设计与实现
物联 网安全接 入 网关 的 设计 与实现
一
孙论强 ,秦海权 ,尹丹 。 一
( 安 部 第 一 研 究 所 ,北 京 1 0 4 公 0 0 8) 摘 要 :文章 通过 分析物 联 网发展过 程 中存在 的安 全 问题 ,提 出了如何通 过物 联 网安 全接 入 网关 ,构 建
Ke o d :ne e o i s O ) sc r ac s g t a ; rtc l e c o ;dpha a s fh a y r s i r t fhn ( T ;eu e c es a w y poo o d t t n e t n l i o e t w tn t g J e ei ys t da
下功 能简单 、携 带能量 少,使得它们无法 拥有复杂的安全 保护 能力 ;此外,感 知_ 大 多位于公共场合或无 人看守 区,其物理 节| 安全 无法得到有 效保证 ;3 )传感 网络安 全可控性 差 。感 知廿J 的链接 和数 据传输差 异性 明显 ,既可通过互联 网、移动通信网
等公用通信 网传输 ,也可通过 自 网络传输 ,协议复杂,多样性 突出。由于传感 网络的复杂 、 有 无序性 和不可控性,导致传输过程
中被攻击和入侵、信息泄漏、 数据篡改等安全风险增大 ; ) 4 感知数据的跨网络和跨信任域访问风险增高 。感知节 获取的数
据需经过传感网络传输进入核 网, 对感知节・的控制信令也会 经由核心网下发到传感 网络中的感知节点或感 知汇 聚节 电 。不 同信 任域 、 安全域 、 不同协议 的网络互联会导致严重的安全问题 , 包括形成跨网络和跨信任域双向攻击,协 转换 造成 的可靠性 和可用 议 性降低 ,高信任域的敏感信息外泄 , 低信任域的病毒木马恶意信息流入等多种问题。
物联网系统设计方案
物联网系统设计方案摘要:随着物联网技术的飞速发展,物联网系统在各个领域的应用越来越广泛。
本文将介绍一个基于物联网的系统设计方案,该方案旨在利用物联网技术提升生产效率、便捷生活以及改善能源管理等方面的问题。
一、引言物联网是指通过物体间的互联互通实现信息传递和物体之间的互动,为人们的生活和工作提供更多的便利。
本文将介绍一个基于物联网的系统设计方案,该方案旨在解决生产效率低下、生活不便以及能源效率低下等问题。
二、系统设计目标1. 提升生产效率通过物联网技术,我们可以实现设备之间的实时数据传输和分析。
借助传感器和智能设备的配合,可以实现自动化生产流程和故障检测,从而提高生产效率。
2. 便捷生活物联网技术可以将各种智能设备互相连接,帮助人们更方便地管理家庭和个人生活。
通过智能家居系统,人们可以远程控制家电设备,并实现自动化控制,提供舒适安全的生活环境。
3. 改善能源管理物联网系统可以对能源的使用进行实时监测和分析,并提供合理的能源管理建议。
通过智能能源监控系统,人们可以实时了解家庭能源使用情况,并通过节能措施来降低能源消耗,提升能源利用效率。
三、系统设计方案1. 硬件设备该物联网系统的硬件设备包括传感器、智能设备和物联网网关等。
- 传感器:用于收集各种环境数据,如温度、湿度、光照等。
- 智能设备:包括智能家电、智能灯具等,用于实现设备之间的互联互通。
- 物联网网关:用于将传感器和智能设备等连接到物联网平台,实现数据传输和控制。
2. 软件平台物联网系统的软件平台包括物联网平台和应用软件。
- 物联网平台:用于接收和处理传感器和智能设备的数据,并提供数据存储、分析和管理等功能。
- 应用软件:通过手机、电脑等终端设备,用户可以实现对物联网系统的远程控制和监测。
3. 系统架构该物联网系统采用分布式架构,包括边缘计算和云计算。
- 边缘计算:将数据处理和控制功能移动到物联网设备本地,减少数据传输延迟和带宽占用。
- 云计算:将大量的数据存储和分析功能移动到云端服务器,提供远程访问和大规模数据分析的能力。
物联网智能网关工业采集网关、数据采集网关的功能及应用方案
物联网智能网关、工业采集网关、数据采集网关的功能及应用方案无线通讯网关,亦称数据采集网关,数据采集、协议转换网关,工业采集网关,可采用GPRS,433,2.4G,,wifi及以太网等多种通讯方式,快速实现近距离、中远程数据采集传输,适用于工业、农业、建筑、环保、医疗、运输等领域;目前,比较常用的工业智能网关主要包括XL91智能网关和XL90智能网关;一、XL91智能网关,也叫无线网关,工业物联网智能网关,工业通信网关,无线传感管理主机等,集通讯管理、数据接收、协议转换、数据处理转发等功能,支持手机WiFi现场调试的,属于无线传感器网络产品;XL91智能网关,可同时接收多个无线传感器数据,支持1路以太网口Ethernet、1路RS485串口、无线传输等上行方式, 可选GPRS,433MHZ,2.4GHZ,WI-FI等无线传输方式;特点:1、XL91 适用于构建小容量的传感网络;2、读取、处理、转发传感节点的数据:通讯管理、协议转换、数据处理、数据转发;3、提供用户要求的协议;4、1路2.4GHz或490MHz,组成星型或MESH型的网络;5、可提供用户要求的协议;构建小型智能传感网络;协调、管理传感网络节点通讯;智能传感网络和外部网络枢纽和桥梁:通讯网络转换、通信协议转换;拓扑图如下↓XL91 物联网智能网关应用领域:1、油田、油井、气田监测;2、蒸汽管道、供暖管道监测;3、水泵房的监测;4、冷藏、仓储环境监测;5、农业、养殖环境监测;XL91 物联网智能网关应用方案一:拓扑图如下↓1、构建小型智能传感网络;2、传感网络和外部网络的网络转换和协议转换设备;3、通过433MHz、2.4GHz无线方式读取传感节点的数据;4、通过GPRS方式将数据上传至云服务器;5、可在现场加装触摸屏,用于现场监视;6、能源管理系统EMS:采集局部传感接点的数据上传;XL91 物联网智能网关应用方案二:拓扑图如下↓1、构建小型智能传感网络;2、传感网络和外部网络的网络转换和协议转换设备;3、通过433MHz、2.4GHz无线方式读取传感节点的数据;4、通过Ethernet将数据上传至监控计算机;5、DCS系统:采集压力、温度、气体等节点数据,通过Ethernet、RS485上传至DCS;XL91智能网关的应用范围广,无需布线,减少运维成本,安装便捷,即插即用,适用于油田、油井、气田,蒸汽管道、供暖管道,水泵房,冷藏、仓储,农业大棚、养殖等环境数据实时监测与预警;二、XL90智能网关,也叫无线网关,工业物联网智能网关,工业通信网关,无线传感管理主机等,集通讯管理、数据接收、协议转换、数据处理转发等功能,支持手机WiFi现场调试,属于无线传感器网络产品;XL90智能网关,可同时接收多个无线传感器数据,支持2路以太网口Ethernet、RS485和1路RS232串口、无线传输等上行方式, 可选GPRS,433MHZ,2.4GHZ,WI-FI等无线传输方式;XL90智能网关的应用范围广,无需布线,减少运维成本,安装便捷,即插即用,适用于机房、机站动力、环境监控系统,低压配电监控系统,电能数据监控系统,工厂机器设备、生产线运行状态监控系统,生产信息采集系统等无线监测与预警;特点:1、智能传感网络核心,构建大容量的传感网络;2、高度集成化;3、多种通讯方式可选;4、支持多种通信协议,和平台应用软件通信;5、支持物联网协议MQTT、SOAP协议;6、可为用户定制开发指定的通信协议;构建智能传感网络;协调、管理传感网络节点通讯;智能传感网络节点和服务器之间的枢纽和桥梁:通讯网络转换、通信协议转换;拓扑图如下↓应用领域:1、机房、机站动力、环境监控系统;2、低压配电监控系统;3、电能数据监控系统;4、工厂机器设备、生产线运行状态监控系统;5、生产信息采集系统;XL90物联网智能网关应用方案一:拓扑图如下通过433MHz、2.4GHz无线方式读取传感节点的数据;节点装置可选智能传感器、智能测控装置,或第三方的智能装置;通过以太网,将传感节点的数据上传至监控中心服务器;支持不同的通信协议上传数据给多台服务器;XL90物联网智能网关应用方案二:拓扑图如下读取传感节点通过GPRS上传至Internet上的数据;作为云平台应用软件的前端通讯设备:通讯接口和通信协议转换;。
泛在电力物联网中的物联网网关节点设计与实现
泛在电力物联网中的物联网网关节点设计与实现随着物联网技术的不断发展,泛在电力物联网已经成为电力行业的重要发展方向。
在泛在电力物联网中,物联网网关节点的设计与实现至关重要。
本文将详细介绍泛在电力物联网中物联网网关节点的设计原则和实现步骤。
一、物联网网关节点的设计原则1. 网关节点的可靠性与稳定性:物联网网关节点在泛在电力物联网中扮演着连接终端设备和云平台的重要角色,因此其可靠性和稳定性至关重要。
网关节点应具备高可用性、抗干扰能力强、数据传输稳定等特点,以确保泛在电力物联网的正常运行。
2. 网关节点的灵活性:泛在电力物联网中的终端设备种类繁多,网关节点需要具备良好的兼容性和灵活性,能够与各类终端设备进行通信。
同时,网关节点还应支持多种通信协议,并能够根据不同的场景和需求进行灵活配置。
3. 网关节点的安全性:在泛在电力物联网中,数据的安全性至关重要。
网关节点应该具备强大的数据加密和安全认证机制,能够对数据进行安全传输和存储,以保护用户的隐私和敏感信息。
二、物联网网关节点的实现步骤1. 硬件设计:物联网网关节点的硬件设计是实现网关功能的基础。
硬件设计需要根据具体的场景和需求选择合适的组件,包括处理器、存储器、通信模块等。
同时,硬件设计还需要考虑功耗、散热和可靠性等方面的因素。
2. 软件开发:物联网网关节点的软件开发包括嵌入式系统软件和云平台接口的开发。
嵌入式系统软件负责终端设备的通信和数据处理,云平台接口负责与云平台进行数据交互。
软件开发需要根据泛在电力物联网的需求进行功能拓展和优化。
3. 网络连接与配置:物联网网关节点需要与终端设备进行连接,并进行网络配置。
网关节点可以通过有线或无线方式与终端设备进行通信,并使用网络配置工具对网关进行设置和管理,以实现设备的自动发现和接入。
4. 数据处理与传输:物联网网关节点需要对终端设备的数据进行处理和传输。
数据处理包括数据的采集、预处理、存储和分析等过程,数据传输则需要选择合适的通信协议和传输方式,将数据传输到云平台或其他终端设备。
物联网安全接入网关的设计与实现
物联网安全接入网关的设计与实现摘要:针对物联网设备接入互联网时面临的安全问题,采取相应的安全机制和措施,可以确保物联网数据的保密性、完整性和可用性,从而有效保障物联网的安全和稳定性。
本文基于前面众多学者的研究内容,总结出了基于传感安全接入网关的物联网安全构建方案。
关键词:物联网;安全接入网关;传感网络导言随着物联网技术的不断发展,大量的智能硬件设备被嵌入到各种家用电器、工业设备中,实现对物理世界的智能化感知和控制。
在物联网的应用中,安全问题是一个非常重要的方面。
物联网设备接入互联网时面临着各种各样的安全威胁,如何在物联网设备接入互联网时提供安全可靠的服务,成为了一个亟待解决的问题。
本文基于前面众多学者的研究内容,总结出了基于传感安全接入网关的物联网安全构建方案。
1面临的问题近年来,随着物联网技术的迅速发展和广泛应用,物联网的安全问题日益复杂化和严峻化,包括设备和网络安全、数据和隐私保护、身份认证和访问控制等方面的安全问题。
如果不能很好地解决这些安全风险问题,将会给人们的生活和工作带来困扰,甚至会对国家安全造成影响。
目前物联网面临着许多的问题:1)感知数据类别非常多,涵盖了视频、图像、语音、传感器等多种形式。
每种数据类型都有自己独特的特征和格式,以及处理和解析时需要遵从的规则和标准。
视频类数据是物联网中重要的一种感知数据,主要指通过摄像头、监控设备等设备采集的图像和视频信号,包括监控摄像、视频直播、视频会议等应用场景。
在物联网中,视频类数据应用广泛。
RFID射频识别技术是一种自动识别技术,其标签中携带的信息可以通过无线电波进行读写。
GPS全球定位系统是一种卫星导航定位技术,可以通过卫星信号确定地球上任何一个位置的经纬度坐标。
激光扫描是一种高速、高精度的三维测量技术,可以通过激光束扫描建立物体表面的三维模型。
开关类格式数据是指记录设备或系统的开闭状态信息,用于表示设备或系统的运行状态。
2)感知节点安全保护能力弱。
lora网关方案
lora网关方案随着物联网的发展,越来越多的设备需要通过网络连接到云端。
而包括LoRa在内的低功耗广域网技术,因其低功耗、低成本、长距离传输等特点,成为了IoT设备连接的关键技术之一。
而在实际应用中,LoRa网关的设计和搭建是很关键的一步。
一、LoRa技术简介LoRa(Long Range)是一种低功耗广域网技术,是Semtech公司在2014年推出的一种专门用于物联网通信网络的技术。
LoRa技术的核心是长距离无线传输,其传输距离甚至可以超过10公里,而且在城区和大楼内也有良好的穿透性能。
LoRa技术的物理层使用了基于扩频技术的调制方式,可以将信号在不同频道上进行传输,从而避免信号冲突和干扰。
在MAC 层,LoRa技术使用区分前沿(DDL)技术来减少能耗,同时可以提高设备的灵活性。
二、LoRa网关的原理LoRa网关是连接物联网设备和云端的重要节点,它的核心作用是将多个LoRa设备的信号聚合并转换成传统的TCP/IP协议,最终通过互联网与云端进行通信。
LoRa网关主要由网关节点设备和网关服务器组成。
网关节点设备通常由半径为1-3公里、通信范围为700-1000米的LoRa设备组成。
这些设备采用固定频段进行通信,并将收到的数据通过LoRa网关发送到网关服务器。
网关服务器则负责将收到的数据解析后根据TCP/IP协议转发到云端,或者将云端数据转发到LoRa 设备。
三、LoRa网关的设计LoRa网关的设计要考虑到不同物联网场景的需求,并从硬件和软件两个方面进行考虑。
在硬件方面,LoRa网关需要支持多个LoRa频段的收发,并具备较长的传输距离。
同时要考虑设备的功耗、尺寸和散热等问题。
在软件方面,LoRa网关需要具备完善的转换协议,如在物联网和云端间的转换。
一款可用于LoRa网关设计的芯片是Semtech的SX1308,它可支持8个下行通道,一个上行通道,并支持不同的LoRa设备。
SX1308可连接到服务器端,通过TCP/IP协议与云端进行通信。
中国电信智慧网关系统设计方案
中国电信智慧网关系统设计方案中国电信智慧网关系统设计方案一、方案背景及目标:随着5G时代的到来,中国电信需要构建一个智慧网关系统,以支持更高速的数据传输、更多种类和规模的设备连接,并提供更加智能化的服务。
该系统的目标是提供高效、可靠的数据传输和智能化的服务管理,以满足用户对更好网络体验的需求,并支持物联网和边缘计算等新兴技术的发展。
二、系统架构设计:1. 网络接入层:智慧网关系统需要支持多种网络接入方式,包括有线接入(如光纤、以太网)和无线接入(如4G、5G、Wi-Fi)。
在有线接入方面,可以采用光纤接入技术,将光纤接入设备连接到智慧网关系统。
在无线接入方面,可以采用蜂窝网络技术,如4G和5G网关,将移动通信设备连接到智慧网关系统。
同时,还可以支持Wi-Fi接入,以满足家庭和办公环境中的无线连接需求。
2. 数据传输层:智慧网关系统需要具备高效、可靠的数据传输能力,以满足大规模设备连接和大数据传输的需求。
对于有线接入,可以采用高速的以太网传输技术,如千兆以太网或万兆以太网,以提供更高的传输速度和带宽。
对于无线接入,可以采用LTE技术或5G技术,以支持更高速的无线数据传输和更多设备的连接。
3. 服务管理层:智慧网关系统需要提供智能化的服务管理功能,包括设备管理、用户管理、服务配置等。
设备管理:对接入系统的设备进行管理和监控,包括设备注册、认证、状态监测等。
用户管理:对接入系统的用户进行管理和授权,包括用户注册、认证、权限控制等。
服务配置:提供统一的服务配置接口,以方便用户自定义服务和配置各种智能化应用。
4. 安全管理层:智慧网关系统需要提供全面的安全管理功能,包括数据加密、用户认证、权限控制等,以保障用户数据和隐私的安全。
数据加密:对用户数据进行加密传输,以保障数据的机密性。
用户认证:对用户进行身份认证,防止非法用户的接入。
权限控制:对用户权限进行管理和控制,以防止非授权用户的不当操作。
三、系统功能设计:1. 数据传输功能:支持高速、可靠的数据传输,采用高速传输协议,并支持即时传输和流媒体传输等。
智能物联网网关设计与实现
智能物联网网关设计与实现一、前言智能物联网网关是物联网系统的“大脑”,它负责接收各种传感设备的数据,把这些数据进行处理、分析,并且将处理后的结果传送到上层的云端服务器或APP上。
智能网关是整个物联网系统的核心,为系统的有效运行提供了支撑。
在智能物联网中,网关是一个重要的组成部分,其主要任务是将不同物联网协议标准的传感设备与互联网相连接,进而实现物联网的核心功能。
二、智能物联网网关的设计与实现1. 网关硬件设计智能物联网网关的硬件设计涉及到的内容很多,可以从以下几个方面进行考虑。
(1)选择微处理器在设计物联网网关时,我们需要选择合适的微处理器芯片来作为系统的控制中心。
各种不同的微处理器芯片都有其自身的特点、优劣,因此,在进行选择时我们需要根据自身的需要和硬件设备的特点来合理的进行搭配。
(2)选择传感器选择合适的传感器是智能物联网网关设计中非常重要的一个环节。
不同的传感器能够检测到不同的环境信息,如温度、湿度、光线、压力、声音等。
因此,在选择传感器时需要考虑到具体的应用场景和需求。
(3)选择通讯模块智能物联网网关还需要配备合适的通讯模块,从而可以和其他的设备进行通讯。
常见的通讯模块包括WIFI,蓝牙,Modbus等。
2. 网关软件设计智能物联网网关的软件设计主要包括以下几个方面。
(1)操作系统在实现网关的软件设计时,我们首先需要选择一个合适的操作系统。
常见的操作系统有Linux、windows和RTOS等。
根据实际的需求和系统的复杂程度选择合适的操作系统可以保证系统的稳定性和可靠性。
(2)设备管理物联网中的设备非常多,因此,设备管理显得尤为重要。
通过网关能够管理各种传感器设备,查询设备状态,监控设备数据并且能够定期检测设备健康状况。
(3)数据传输智能物联网网关要负责对接不同类型的设备,并将各个设备上传的数据进行统一的处理。
在实现数据传输时,需要考虑各种协议标准,如MQTT、HTTP、TCP等。
(4)安全措施在物联网应用中,安全问题是必须要考虑的一个重要问题。
智能网关方案
智能网关方案第1篇智能网关方案一、项目背景随着信息技术的飞速发展,物联网、云计算、大数据等新兴技术在各个领域得到了广泛应用。
智能网关作为连接物理世界与虚拟世界的关键设备,其作用日益凸显。
为满足日益增长的市场需求,提高企业信息化水平,降低运营成本,提升管理效率,特制定本智能网关方案。
二、项目目标1. 实现设备间的互联互通,提高数据采集、处理和传输效率。
2. 降低企业运营成本,提升管理效率。
3. 提高设备安全性,保障企业数据安全。
4. 提升企业核心竞争力,助力企业转型升级。
三、方案设计1. 系统架构本方案采用分层架构设计,分为感知层、传输层、平台层和应用层。
(1)感知层:负责采集设备数据,包括传感器、控制器等。
(2)传输层:负责将感知层采集的数据传输至平台层,采用有线和无线的通信方式。
(3)平台层:负责处理和存储数据,提供数据分析和应用接口。
(4)应用层:根据业务需求,开发各类应用,实现设备管理、数据分析等功能。
2. 硬件选型根据项目需求,选用具备以下特点的智能网关硬件:(1)高性能处理器,满足大数据处理需求。
(2)丰富的接口,支持多种设备接入。
(3)支持有线和无线通信,适应不同场景需求。
(4)具备较高的安全性能,保障数据安全。
3. 软件设计(1)操作系统:选用稳定性高、安全性好的操作系统。
(2)数据采集:通过驱动程序,实现设备数据的实时采集。
(3)数据处理:采用大数据技术,对采集的数据进行实时处理和分析。
(4)数据存储:采用分布式存储技术,保障数据安全性和可靠性。
(5)应用开发:根据业务需求,开发各类应用,实现设备管理、数据分析等功能。
4. 安全防护为保障系统安全,采取以下措施:(1)硬件安全:选用具有安全防护功能的硬件设备。
(2)软件安全:采用安全可靠的操作系统和软件,定期进行安全更新。
(3)数据安全:采用加密技术,保障数据传输和存储的安全性。
(4)网络安全:采用防火墙、入侵检测等网络安全技术,防止外部攻击。
IoT 网关的设计与实现以及多协议适配技术研究
IoT 网关的设计与实现以及多协议适配技术研究随着物联网的快速发展,大量的智能设备被广泛应用于各个领域。
这些设备通过传感器和执行器实现数据的采集和控制,为人们提供了更加方便和智能的生活。
然而,由于物联网设备通信协议的多样性,不同设备之间的互通性成为一个重要的问题。
为了解决这个问题,IoT 网关的设计与实现成为一个关键的研究方向,而多协议适配技术则是实现不同设备之间互通的关键。
IoT 网关是连接物联网设备和云平台或其他外部系统的关键组件。
它负责数据的采集、处理、分析和传输,并提供了设备管理、安全认证以及远程控制等功能。
通过将不同协议的物联网设备连接到一个统一的网关上,可以实现不同设备之间的互通和数据的集成与共享。
在设计和实现 IoT 网关时,需要考虑以下几个关键因素:1. 硬件平台选择:选择适合物联网应用场景的硬件平台是设计一个高性能、可靠的 IoT 网关的基础。
通常来说,需要选择能够支持多个传输协议和具备足够计算和存储能力的硬件平台。
2. 通信协议适配:不同的物联网设备通常采用不同的通信协议,例如 MQTT、HTTP、CoAP 等。
在设计 IoT 网关时,需要实现这些协议的适配,使得不同协议的设备能够通过网关进行互通。
3. 数据采集与处理:IoT 网关需要能够实现对物联网设备的数据采集和处理。
它可以从传感器获取原始数据,并通过内置的处理算法对数据进行分析和预处理,以提取有用的信息和进行决策。
4. 安全性与隐私保护:由于物联网中涉及到大量的敏感数据和个人隐私,确保 IoT 网关的安全性和隐私保护至关重要。
设计时需要考虑添加适当的安全机制,例如数据加密、访问控制、认证和防火墙等。
5. 云平台集成:IoT 网关通常与云平台进行数据的交互和存储。
设计时需要考虑与主流的云平台提供商进行集成,以实现数据的上传、远程监控和控制等功能。
多协议适配技术是实现 IoT 网关多设备互通的核心技术之一。
它主要包括以下几个方面的研究:1. 协议映射与转换:不同的物联网设备通常使用不同的协议进行通信,因此需要设计协议映射和转换技术,实现不同协议之间的互通。
物联网的设计方案
第1篇
物联网设计方案
一、项目背景
随着互联网、大数据、云计算等技术的发展,物联网逐渐成为我国战略性新兴产业的重要组成部分。物联网的应用范围广泛,涉及智能家居、智慧城市、智能交通、智能工厂等多个领域。为推动我国物联网产业的快速发展,提高各行业智能化水平,本项目将针对某一具体应用场景,制定一套合法合规的物联网设计方案。
本设计方案从系统架构、硬件选型、软件平台、安全体系等多个维度出发,为特定应用场景提供了一套全面、合规的物联网解决方案。通过本方案的实施,将有效提升应用场景的智能化水平,增强用户体验,同时保障系统的稳定性和数据的安全性,为物联网技术在各领域的广泛应用奠定坚实基础。
(3)数据分析与挖掘:利用机器学习、人工智能等技术,对数据进行深入分析,挖掘潜在的价值。
(4)智能决策支持:结合业务场景,开发智能决策模型,为用户提供决策依据。
4.安全与隐私保护
(1)数据安全:采用加密技术,保障数据在传输和存储过程中的安全性。
(2)访问控制:实施严格的权限管理,确保只有授权用户才能访问系统。
-具备一定的冗余设计,确保关键业务的连续性。
3.软件平台设计
-数据采集与预处理:采用边缘计算技术,对感知层的数据进行实时处理,降低数据传输量。
-数据存储与管理:构建分布式数据库,提高数据处理速度和存储容量。
-数据分析与挖掘:运用大数据分析和人工智能技术,挖掘数据中的有用信息。
-应用服务开发:结合业务场景,提供可视化、智能化的应用服务。
(3)隐私保护:遵守我国相关法律法规,对用户个人信息进行脱敏处理,保护用户隐私。
5.系统集成与测试
(1)系统集成:将各硬件设备和软件平台进行集成,确保系统各组成部分协同工作。
面向智能家居的智能物联网网关的设计与实现
面向智能家居的智能物联网网关的设计与实现智能家居在现代生活中扮演着越来越重要的角色。
通过互联网和物联网技术的发展,人们可以通过智能设备实现对家居环境的智能控制和管理。
而实现智能家居的关键是智能物联网网关,它作为智能家居系统的核心,负责连接和管理各种智能设备,提供安全、稳定、高效的通信和控制功能。
本文将介绍面向智能家居的智能物联网网关的设计与实现。
一、智能物联网网关的功能需求1. 设备连接和管理:智能物联网网关需要支持多种通信协议,如Wi-Fi、蓝牙、Zigbee等,以连接和管理各类智能设备,如智能灯泡、智能插座、智能门锁等。
同时,要支持设备的注册、识别和自动发现功能,方便用户快速添加和配置设备。
2. 数据传输和处理:智能物联网网关需要具备数据传输和处理能力,能够将来自各个智能设备的数据进行收集、传输和处理。
这包括数据的解析、存储和分析,为智能家居系统提供数据支持和决策依据。
3. 安全保障:智能物联网网关需要具备严格的安全机制,防止未授权的设备和用户接入系统,确保数据的隐私和安全。
同时,要支持数据的加密和身份认证等安全功能,防止数据泄露和被篡改。
4. 远程控制和管理:智能物联网网关支持远程控制和管理是智能家居的重要需求之一。
用户可以通过手机APP或Web界面远程控制智能设备,设置定时任务和场景模式等,实现对家居环境的智能化控制和管理。
二、智能物联网网关的硬件设计与实现1. 处理器和内存:智能物联网网关的处理器需要具备较高的计算能力和低功耗特性。
常用的处理器选择包括ARM系列和MIPS系列等,内存容量一般在256MB到1GB之间。
2. 通信模块:智能物联网网关需要支持多种通信协议,如Wi-Fi、蓝牙、Zigbee等,因此需要具备相应的通信模块。
对于Wi-Fi和蓝牙的支持,可以选择集成的模块或外部模块,对于Zigbee等其他协议,可以选择添加插件或扩展模块。
3. 存储器:智能物联网网关需要具备一定的存储容量,用于存储设备配置信息、数据缓存和软件固件等。
物联网系统设计方案
物联网系统设计方案1. 概述本文档介绍了一个物联网系统的设计方案。
物联网是指通过网络连接和交互的智能设备、传感器和其他物理设备的集合。
该系统的目标是实现各种设备之间的无缝通信,收集和分析数据,并提供实时的监控和控制功能。
2. 系统架构物联网系统的设计应考虑以下几个核心组件:2.1. 传感器系统中的传感器负责收集所需的数据。
传感器可以包括温度传感器、湿度传感器、气体传感器等。
这些传感器将被部署在设备或环境中,并通过无线或有线方式将数据传输到系统的中央服务器。
2.2. 网关物联网系统中的网关负责将传感器数据从边缘设备传输到中央服务器。
网关可使用各种通信协议,如Wi-Fi、蓝牙或LoRaWAN等。
网关还负责对数据进行预处理和过滤,并确保数据的可靠传输。
2.3. 中央服务器中央服务器是物联网系统的核心组件。
它负责接收来自各个传感器和网关的数据,并将其存储在数据库中。
此外,中央服务器还负责处理数据、分析数据,并向用户界面提供实时监控和控制功能。
2.4. 用户界面用户界面是连接用户与物联网系统的桥梁。
通过用户界面,用户可以查看实时数据、监控设备状态,并进行远程控制。
用户界面可以是一个Web应用程序、移动应用程序或者桌面应用程序等。
3. 系统功能物联网系统应具备以下功能:3.1. 数据采集与存储系统应能够收集传感器发送的数据,并将其存储在中央服务器的数据库中。
数据存储应具备可扩展性和可靠性,以确保数据的完整性和可用性。
3.2. 数据处理与分析中央服务器应能够对收集的数据进行处理和分析。
这包括数据清理、数据聚合和数据挖掘等操作。
通过处理和分析数据,可以提取有用的信息,为用户提供决策支持。
3.3. 实时监控与控制物联网系统应具备实时监控和控制功能。
通过用户界面,用户可以实时查看设备状态、监测环境变量,并远程控制设备。
系统还应提供警报功能,及时通知用户关键事件的发生。
3.4. 安全与隐私系统设计应重视数据的安全与隐私保护。
物联网设计方案
物联网设计方案I. 简介物联网(Internet of Things,IoT)是指通过物理、虚拟和网络技术,将各种智能设备和对象连接在一起,实现信息共享和智能化管理的网络系统。
本文旨在提出一个基于物联网的设计方案,用于解决现实生活中的问题。
II. 设计目标该物联网设计方案的目标是实现以下几点:1. 实时监测:能够对各种物理设备和环境条件进行准确、实时的监测和数据收集。
2. 数据分析:通过对收集到的数据进行分析,提供有价值的信息和决策支持。
3. 远程控制:能够远程监控和控制各种设备,实现智能化的远程管理。
4. 安全性保障:确保数据的隐私和安全,防止未经授权的访问和攻击。
III. 硬件设备在该物联网设计方案中,我们将采用以下硬件设备来实现数据的收集和通信:1. 传感器:各种类型的传感器,如温度传感器、湿度传感器、光照传感器等,用于监测环境条件。
2. 控制器:用于对各种设备进行控制,如开关控制器、电机控制器等。
3. 网关:用于将传感器和控制器连接到云平台,实现数据的传输和交互。
4. 云平台:用于接收和处理从传感器和控制器发送过来的数据,提供数据分析和远程控制功能。
IV. 系统架构该物联网设计方案的系统架构如下:1. 传感器网络:将各种传感器通过有线或无线方式连接到网关,实现数据的收集和传输。
2. 网关:负责将传感器采集到的数据发送到云平台,并接收来自云平台的指令,控制相应的设备。
3. 云平台:接收来自网关的数据,进行实时处理和分析,并提供数据展示、报表输出等功能。
4. 用户界面:用户可以通过手机、平板或电脑等设备,通过云平台提供的界面进行数据查询和设备控制操作。
V. 数据处理与分析在云平台上,我们将使用一系列的数据处理和分析技术来提取有价值的信息:1. 数据存储:将收集到的数据存储在云平台的数据库中,确保数据的完整性和可靠性。
2. 数据清洗:对收集到的数据进行清洗和筛选,去除噪声和异常值,保证数据的准确性。
智能网关设计方案
智能网关设计方案一、引言随着物联网技术的快速发展,智能网关在物联网系统中扮演着至关重要的角色。
本文将探讨智能网关的设计方案,旨在提高物联网系统的可靠性和性能。
二、智能网关功能分析1. 数据处理功能:智能网关可以处理来自传感器节点的海量数据,并进行实时分析和处理。
2. 数据存储功能:智能网关可以将处理后的数据进行存储,为后续数据分析和管理提供支持。
3. 数据通信功能:智能网关可以实现与云平台以及其他设备的数据通信,确保数据的传输安全和稳定。
4. 安全与隐私保护功能:智能网关需要具备防火墙、数据加密等安全机制,保护物联网系统中的数据安全与隐私。
5. 远程维护功能:智能网关可以通过远程管理平台实现对设备的远程维护和监控,提高系统的稳定性。
三、智能网关设计方案1. 硬件设计:智能网关的硬件设计需要选择高性能的处理器和存储设备,保证数据的高效处理和存储。
同时,应考虑模块化设计,方便后续升级和维护。
2. 软件设计:智能网关的软件设计需要采用稳定可靠的操作系统和通信协议,确保系统的稳定性和安全性。
同时,应支持多种接口和协议,以适配不同类型的设备。
3. 数据处理算法:智能网关需要设计高效的数据处理算法,实现数据的实时分析和处理。
可以采用机器学习等技术,提高数据处理的准确性和效率。
4. 安全与隐私保护:智能网关设计方案应包括多层安全机制,如防火墙、数据加密等,保障数据的安全性和隐私性。
5. 系统整合与测试:设计方案应考虑智能网关与物联网系统的整合,确保各个部件之间的协同工作。
同时,需要进行严格的测试,验证系统的可靠性和性能。
四、智能网关设计案例以某智能家居系统为例,智能网关作为连接各个智能设备的中心节点,实现对家居设备的集中管理和控制。
通过对传感器数据的实时分析和处理,可以实现智能家居系统的智能化管理,提升用户的生活体验。
五、结论本文从智能网关的功能分析、设计方案和设计案例等方面进行了探讨,旨在提高物联网系统的可靠性和性能。
基于Arduino和ZigBee的物联网智能网关设计与实现
基于Arduino和ZigBee的物联网智能网关设计与实现给出了一种能够在ZigBee网络和传统网络进行透明协议高效转换的物联网智能网关的解决方法。
该方法利用MQTT服务器作为数据进入传统网络的中转站,ZigBee网络的数据通过网关上的路由功能接收数据,然后通过串口把数据转发给NodeMCU,最后数据通过MQTT协议发送到数据中转站。
经过智能蔬菜大棚的实际应用证明,本文设计的网关造价低廉,实用性好,效率高。
标签:物联网;网关;ZigBee;NodeMCU0引言物联网(Internet 0f things,简称IoT)是“信息化”时代的重要发展阶段,被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。
要实现物物相连,工程真正的意义上的物联网,就需要把各种网络互联在一起,那么网关功能的设备在物联网应用中就起着非常重要的作用。
物联网涉及到多种网络的互联,因此设计一个能够互联所有网络的物联网网关是不现实的,更没有必要,这样不仅成本高而且研發周期长。
因此,在实际的物联网应用系统中,针对涉及到的网络,研究特定功能的物联网网关不仅能够降低成本而且也会缩短研发周期。
而在当前的物联网中,由于ZigBee广泛应用,那么数据在ZigBee网络和传统以太网之间的相互转发就显得非常重要。
本文主要研究ZigBee网络和以太网之间的数据转发,同时为了方便用户二次开发,也提供数据获取和控制数据传送WebAPI。
基于此,本文的研究内容包括:基于MQTT的数据收发、ZigBee网络的实现、基于MongoDB的数据持久化服务的开发以及提供二次开发的WebAPI接口。
1相关技术和理论(1)MQTr(Message QueuingTelemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议。
该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和制动器的通信协议。
(2)NodeMCU是一个开源的物联网平台,它自身就可以作为物联网终端节点使用,可以应用于某些物联网中。
物联网网关系统设计
物联网网关系统设计1 物联网网关概述物联网是指通过射频识别(RFID)、红外感应器、GPS、激光扫描器等信息传感设备,按约定的协议,实现任何时间、任何地点、任何物体进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网是具有全面感知、可靠传输、智能处理特征的连接物理世界的网络。
物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、*卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。
物联网的接入方式是多种多样的,如广域的PSTN、短距离的Z-Wave 等,物联网网关设备是将多种接入手段整合起来,统一互联到接入网络的关键设备。
它可满足局部区域短距离通信的接入需求,实现与公共网络的连接,同时完成转发、控制、信令交换和编解码等功能,而终端管理、安全认证等功能保证了物联网业务的质量和安全。
物联网网关在未来的物联网时代将会扮演着非常重要的角色,可以实现感知延伸网络与接入网络之间的协议转换,既可以实现广域互联,也可以实现局域互联,将广泛应用于智能家居、智能社区、数字医院、智能交通等各行各业。
物联网组网采用分层的通信系统架构,包括感知延伸系统、传输系统、业务运营管理系统和各种应用,在不同的层次上支持不同的通信协议,。
感知延伸系统包括感知和控制技术,由感知延伸层设备以及网关组成,支持包括Lonworks、UPnP、ZigBee 等通信协议在内的多种感知延伸网络。
感知设备可以通过多种接入技术连接到核心网,实现数据的远程传输。
业务运营管理系统面向物联网范围内的耗能设施,包括了应用系统和业务管理支撑系统。
应用系统为最终用户提供计量统计、远程测控、智能联动以及其他的扩展类型业务。
业务管理支撑系统实现用户管理、安全、认证、授权、计费等功能。
2 物联网网关功能物联网网关在未来的物联网时代将会扮演非常重要的角色,它将成为连接感知网络与传统通信网络的纽带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物联网网关系统设计方案1 物联网网关概述物联网是指通过射频识别(RFID)、红外感应器、GPS、激光扫描器等信息传感设备,按约定的协议,实现任何时间、任何地点、任何物体进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网是具有全面感知、可靠传输、智能处理特征的连接物理世界的网络。
物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、*卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。
物联网的接入方式是多种多样的,如广域的PSTN、短距离的Z-Wave 等,物联网网关设备是将多种接入手段整合起来,统一互联到接入网络的关键设备。
它可满足局部区域短距离通信的接入需求,实现与公共网络的连接,同时完成转发、控制、信令交换和编解码等功能,而终端管理、安全认证等功能保证了物联网业务的质量和安全。
物联网网关在未来的物联网时代将会扮演着非常重要的角色,可以实现感知延伸网络与接入网络之间的协议转换,既可以实现广域互联,也可以实现局域互联,将广泛应用于智能家居、智能社区、数字医院、智能交通等各行各业。
物联网组网采用分层的通信系统架构,包括感知延伸系统、传输系统、业务运营管理系统和各种应用,在不同的层次上支持不同的通信协议,如图1 所示。
感知延伸系统包括感知和控制技术,由感知延伸层设备以及网关组成,支持包括Lonworks、UPnP、ZigBee 等通信协议在内的多种感知延伸网络。
感知设备可以通过多种接入技术连接到核心网,实现数据的远程传输。
业务运营管理系统面向物联网范围内的耗能设施,包括了应用系统和业务管理支撑系统。
应用系统为最终用户提供计量统计、远程测控、智能联动以及其他的扩展类型业务。
业务管理支撑系统实现用户管理、安全、认证、授权、计费等功能。
2 物联网网关功能物联网网关在未来的物联网时代将会扮演非常重要的角色,它将成为连接感知网络与传统通信网络的纽带。
物联网网关可以实现感知网络和基础网络以及不同类型的感知网络之间的协议转换,既可以实现广域互联,也可以实现局域互联。
物联网网关具备如下几个功能。
(1)广泛的接入能力目前用于近程通信的技术标准很多,仅常见的WSN技术就包括Lonworks、ZigBee、6LowPAN、RUBEE 等。
各类技术主要针对某一应用展开,缺乏兼容性和体系规划,如Lonworks 主要应用于楼宇自动化,RUBEE 适用于恶意环境。
如何实现协议的兼容性、接口和体系规划,目前在国内外已经有多个组织在开展物联网网关的标准化工作,如3GPP、传感器工作组,以实现各种通信技术标准的互联互通。
(2)协议转换能力从不同的感知网络到接入网络的协议转换,将下层的标准格式的数据统一封装,保证不同的感知网络的协议能够变成统一的数据和信令;将上层下发的数据包解析成感知层协议可以识别的信令和控制指令。
(3)可管理能力强大的管理能力,对于任何大型网络都是必不可少的。
首先要对网关进行管理,如注册管理、权限管理、状态监管等。
网关实现子网内节点的管理,如获取节点的标识、状态、属性、能量等以及远程唤醒、控制、诊断、升级和维护等。
由于子网的技术标准不同,协议的复杂性不同,所以网关具有的管理能力不同。
本文提出基于模块化物联网网关方式来管理不同的感知网络、不同的应用,保证能够使用统一的管理接口技术对末梢网络节点进行统一管理。
3 物联网网关系统设计物联网网关可以实现感知网络和基础网络以及不同类型的感知网络之间的协议转换,既可以实现广域互联,也可以实现局域互联。
本物联网网关设计面向感知网络的异构数据感知环境,为有效屏蔽底层通信差异化进行有效网络融合和数据通信,采用模块化设计、统一数据表示、统一地址转换等实现。
下面从物联网网关的层次结构、信息交互流程和系统实现3 个方面来进行阐述。
3.1 层次结构物联网网关支持感知延伸设备之间的多种通信协议和数据类型,实现多种感知延伸设备之间数据通信格式的转换,对上传的数据格式进行统一,同时对下达到感知延伸网络的采集或控制命令进行映射,产生符合具体设备通信协议的消息。
物联网网关对感知延伸设备进行统一控制与管理,向上层屏蔽底层感知延伸网络的异构性,共分为4 层,分别为业务服务层、标准消息构成层、协议适配层和感知延伸层,如图2 所示。
(1)业务服务层业务服务层由消息接收模块和消息发送模块组成。
消息接收模块负责接收来自物联网业务运营管理系统的标准消息,将消息传递给标准消息构成层。
消息发送模块负责向业务运营管理系统可靠地传送感知延伸网络所采集的数据信息。
该层接收与发送的消息必须符合标准的消息格式。
(2)标准消息构成层标准消息构成层由消息解析模块和消息转换模块组成。
消息解析模块解析来自业务服务层的标准消息,调用消息转换模块将标准消息转换为底层感知延伸设备能够理解的依赖于具体设备通信协议的数据格式。
当感知延伸层上传数据时,该层的消息解析模块则解析依赖于具体设备通信协议的消息,调用消息转换模块将其转换为业务服务层能够接收的标准格式的消息。
消息构成层是物联网网关的核心,完成对标准消息以及依赖于特定感知延伸网络的消息的解析,并实现两者之间的相互转换,达到统一控制和管理底层感知延伸网络,向上屏蔽底层网络通信协议异构性的目的。
(3)协议适配层协议适配层保证不同的感知延伸层协议能够通过此层变成格式统一的数据和控制信令。
(4)感知延伸层此层面向底层感知延伸设备,包含消息发送与消息接收两个子模块。
消息发送模块负责将经过消息构成层转换后的可被特定感知延伸设备理解的消息发送给底层设备。
消息接收模块则接收来自底层设备的消息,发送至标准消息构成层进行解析。
感知延伸网络由感知设备组成,包括射RFID、GPS、视频监控系统、各类型传感器等。
感知延伸设备之间支持多种通信协议,可以组成Lonworks 和Zigbee 以及其他多种感知延伸网络。
3.2 信息交互流程图3 展示了物联网中信息交互流程,具体流程分析如下。
(1)最终用户产生符合标准数据格式的消息,并将其发送至网关业务服务层的消息接收模块。
(2)业务服务层消息接收模块将标准消息发送至标准消息构成层的消息解析模块。
(3)消息解析模块调用相应的消息转换功能,将标准信息转换为依赖于具体设备通信协议的消息。
(4)消息解析模块将转换为依赖于具体设备通信协议的消息传送至感知延伸服务层的消息发送模块。
(5)感知延伸服务层的消息发送模块选择合适的传输方式,将依赖设备通信协议的特定消息发送至具体的底层设备。
(6)底层设备根据特定消息执行信息采集操作,并将结果返回给网关感知延伸服务层的消息接收模块。
(7)网关的感知延伸服务层的消息接收模块将依赖设备通信协议的特定消息传送至标准消息构成层的消息解析模块。
(8)消息解析模块调用信息转换模块,将依赖于设备通信协议的特定消息转换为标准消息。
从图3 可以看出,物联网网关解决了物联网网络内不同设备无法统一控制和管理的问题,达到屏蔽底层通信差异的目的,并使得最终用户无需知道底层设备的具体通信细节,实现对不同感知延伸层设备的统一访问。
3.3 系统设计基于物联网的典型应用结构如图4 所示。
无线传感器节点采集相应数据信息,通过无线多跳自组织方式将数据发送到网关,固定式阅读器读取RFID 标签内容发送到网关;网关将这些数据通过WCDMA网络发送到服务器;服务器对这些数据进行处理、存储,并提供一个信息平台,供用户(包括PC 用户和手机用户)使用。
从图4 中可以看出物联网网关是架起感知网络和接入网络的桥梁,扮演着重要的角色。
在物联网网关设计时,采用模块化思想,设计面向不同感知网络和基础网络,实现通用低成本的网关。
按照模块化的思想,将物联网网关系统分为数据汇集模块、处理/存储模块、接入模块和供电模块,如图5(a)所示。
数据汇聚模块:实现物理世界数据的采集或者汇聚。
本网关系统采用传感器网络的汇聚节点和RFID 网络的阅读器作为数据汇集设备。
处理/存储模块:是网关的核心模块,它实现协议转换、管理、安全等各个方面的数据处理及存储。
接入模块:将网关接入广域网,可能采用的方式包括有线(以太、ADSL、FTTx 等)、无线(WLAN、GPRS、3G 和卫星等),本系统采用W CDMA的接入方式。
供电管理模块:负责整套系统的电源供给,系统的稳定运行与电源模块的稳定性能关系密切,此处设计的电源模块兼有热插拔和电压转换功能。
可能的供电方式包括市电、太阳能、蓄电池等。
数据汇聚模块和处理/存储模块之间的接口类型采用UART 方式。
接入模块和处理/存储模块之间的接口类型采用PCIE 方式。
网关软件设计时采用分层结构,最后在应用层实现协议数据的相互转换。
在进行物联网网关硬件模块化的同时,实现网关的软件功能的模块化,不同的硬件模块对应不同的驱动模块;采用动态可加载方式运行,分别提取出接入模块和数据汇集模块的公共驱动,根据接入的硬件模块不同加载不同的驱动模块,达到驱动硬件模块的目的,如图5(b)所示。
3.4 关键技术物联网网关系统设计中解决了以下几个关键技术。
软件交互协议的统一:物联网网关系统的设计思路是以模块化的方式实现软硬件的各个部分,使得模块之间的替换非常容易,以实现不同的感知延伸网络和接入网络互联,屏蔽底层通信差异。
其中硬件模块采用UART总线形式进行连接,软件则采用模块化可加载的方式运行,并将共同部分抽象成公共模块。
因此,支持新的数据汇聚模块和接入模块则只需要开发相应的硬件模块和驱动程序即可。
另外,添加统一的协议适配层(如图6 所示),将应用数据统一提取出来,按照TLV(type , length,value)的方式进行组织,然后封装数据包。
使得在接入网络中传输的都是标准的IP 数据包,其中封装了TLV 格式的采集数据。
统一地址转换:不同的数据采集网络使用不同的编址方式,如ZigBee 中有16 位短地址,6LowPan 中有64 位地址。
在应用中只需要能定位到具体的节点即可,不需要关心节点是采用IP 地址还是16 位短地址,也不关心节点间的组网是采用ZigBee 还是6LowPan 或者其他方式。
将这些地址转换为统一的表示方式,有利于应用的开发,因此在网关中实现一种地址映射机制,将IP 或者16 位短地址映射为统一的ID,在与应用交互过程中只需要关注这个ID 即可。
具体的映射方式可以采用从1 累加的方式,当网关接收到第一个节点数据时,将该节点的地址映射为1,后续的依次加1,将这个映射表保存在网关中。
同时还采用老化机制,在一定时间内没有收到该节点的数据时,将此条映射关系删除。
采集模块数据接口的统一:采集模块与网关之间定义AT 指令集,节点通过ZigBee 协议组网。