中考数学重难点题型专题复习

合集下载

人教版2023中考数学专题复习:多边形、平行四边形重难点题型讲练1多边形的内角和与外角和

人教版2023中考数学专题复习:多边形、平行四边形重难点题型讲练1多边形的内角和与外角和

多边形、平行四边形重难点题型讲练(一)多边形的内角和与外角和题型1:多边形的内角和与外角和类型1-多边形的内角和1.如果一个四边形四个内角度数之比是1:2:3:4,那么这四个内角中( )A .只有一个直角B .有两个直角C .有两个钝角D .只有一个钝角类型2-正多边形的内角和2.如图,O 与正五边形ABCDE 的边AB 、DE 分别相切于点B 、D ,则劣弧BD 所对的圆心角BOD ∠的大小为( )A .150︒B .144︒C .135︒D .120︒类型3-多边形的缺(多)角问题1.小明同学在用计算器计算某n 边形的内角和时,不小心少输入一个内角,得到和为2016°,则n 等于( )A .11B .12C .13D .14类型4-正多边形的外角问题2.如图,小明从A 点出发,沿直线前进9米后向左转45︒,再沿直线前进9米,又向左转45︒……照这样走下去,他第一次回到出发点A 时,共走路程为( )A .54米B .72米C .90米D .108米类型5-多边形的外角和问题3.如图,五边形ABCDE 的4个外角和1234290∠+∠+∠+∠=︒,则A ∠等于( )A .130︒B .110︒C .100︒D .70︒类型6-多边形的内角与外角和的综合问题4.一个正多边形每个内角与它相邻外角的度数比为3:2,则这个正多边形是( )A .正五边形B .正六边形C .正八边形D .正十边形综合训练1.如图,已知在Rt ABC △中,90C ∠=︒,若沿图中虚线剪去C ∠,则12∠+∠的度数是().A .270︒B .240︒C .180︒D .90︒2.一个正多边形的内角和为540°,则这个正多边形的边数是( )A .4B .5C .6D .73.湖南革命烈士纪念塔的塔底平面为八边形,这个八边形的内角和( )A .720︒B .900︒C .1080︒D .1440︒4.已知一个多边形的内角和为540︒,则这个多边形的对角线有:( )A .2条B .3条C .5条D .10条5.一个多边形的内角和为720︒,那么这个多边形是( )A .七边形B .六边形C .五边形D .四边形6.如图,点A 、B 、C 、D 、E 、F 在同一平面内,连接AB 、BC 、CD 、DE 、EF 、FA ,若110BCD ∠=︒,则A B D E F ∠+∠+∠+∠+∠等于( )A .470︒B .450︒C .430︒D .410︒7.如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是( )A .7个B .8个C .9个D .10个8.将正六边形与正方形按如图所示摆放,公共顶点为O ,且正六边形的边AB 与正方形的边CD 在同一条直线上,则BOC ∠的度数是( )A .30︒B .32︒C .35︒D .40︒9.用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中AFE ∠=()A .108︒B .63︒C .72︒D .81︒10.将边长为2的正五边形ABCDE 沿对角线BE 折叠,使点A 落在正五边形内部的点M 处,则下列说法正确的个数为( )①AB ME ∥;②36DEM ∠=︒;③若连CM ,则180CMB BME ∠+∠=︒A .3个B .2个C .1个D .0个11.如图,正六边形123456A A A A A A 内部有一个正五边形12345B B B B B ,且3434A A B B ∥,直线l 经过23B B ,,则直线l 与12A A 的夹角α为( )A .48°B .45°C .72°D .30°12.如图,已知AB 是正六边形ABCDEF 与正五边形ABGHI 的公共边,连接FI ,则AFI ∠的度数为( )A .24︒B .26︒C .28︒D .30︒13.如图,在平面上将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠放在一起,则312=∠+∠-∠( )A .24°B .26°C .28°D .30°14.一个正多边形的一个内角是一个外角的4倍,则正多边形的边数为( )A .8B .9C .10D .1115.一个多边形除去一个内角外,剩下的内角和是1000°,则这个多边形是( ).A .五边形B .六边形C .七边形D .八边形16.晨曦因少算了一个内角得出一多边形的内角和为980°,则该多边形的边数为( )A .6B .8C .10D .917.已知一个多边形多算了一个内角得到内角和是1960°,则这个多边形是( )A .十一边形B .十二边形C .十三边形D .十五边形18.在计算一个多边形内角和时,多加了一个角,得到的内角和为1500°,那么原多边形的边数为( )A .9B .10C .11D .10或1119.计算多边形内角和时不小心多输入一个内角,得到和为1290︒,则这个多边形的边数是( ).A .8B .9C .10D .1120.当多边形的边数增加1时,它的内角和会( )A .增加160B .增加180C .增加270D .增加36021.一个多边形截去一个角后,形成另一个多边形的内角和为900︒,那么原多边形的边数为( )A .5B .5或6C .6或7或8D .7或8或922.一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )A .120°B .130°C .135°D .150°23.正五边形的外角和为( )A .540︒B .360︒C .108︒D .72︒24.已知一个多边形的每一个外角都为40︒,则这个多边形的边数是( )A .6B .7C .8D .925.如图,正十边形与正方形共边AB ,延长正方形的一边AC 与正十边形的一边ED ,两线交于点F ,设AFD x ∠=︒,则x 的值为( ).A .15B .18C .21D .2426.正多边形的每个内角都是150︒,则这个正多边形的边数为( )A .8B .9C .10D .1227.已知一个正多边形的每一个外角都是45︒,则这个正多边形的边数是( )A .8B .9C .10D .1228.如图所示,分别以n 边形的顶点为圆心,以1cm 为半径画圆,当2021n =时,则图中阴影部分的面积之和为( )A .22cm πB .2cm πC .22020cm πD .22021cm π29.一个正多边形,它的每一个内角都等于140︒,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形30.若n 边形的内角和是它外角和的3倍,则n 等于( )A .8B .9C .10D .1131.如果一个多边形的每个内角都相等,且内角和为1440︒,那么该多边形的一个外角是( )A .30°B .36°C .60°D .72°32.若一个正n 边形的内角和为1080︒,则它的每个外角度数是( )A .36︒B .45︒C .72︒D .60︒33.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形的边数是() A .4 B .5 C .6 D .834.如图,正五边形ABCDE ,BG 平分ABC ∠,DG 平分正五边形的外角EDF ∠,则G ∠=()A .45︒B .54︒C .60︒D .64︒。

2024年中考数学复习重难点(全国通用版):反比例函数与几何图形综合问题(重点突围)(解析版)

2024年中考数学复习重难点(全国通用版):反比例函数与几何图形综合问题(重点突围)(解析版)

专题16反比例函数与几何图形综合问题【中考考向导航】目录【直击中考】 (1)【考向一反比例函数中K 值的几何意义】 (1)【考向二反比例函数与三角形的综合问题】 (8)【考向三反比例函数与矩形的综合问题】 (15)【考向四反比例函数与菱形的综合问题】 (22)【考向五反比例函数与正方形的综合问题】 (32)【考向六反比例函数与圆的综合问题】 (42)【直击中考】【考向一反比例函数中K 值的几何意义】【答案】4【分析】设点C 的坐标为3382AEC S k ,由此即可求出【详解】4k .故答案为:4 .【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C 的坐标,利用点C 的横坐标表示出A 、E 点的坐标.本题属于基础题,难度不大,解决该题型题目时,利用反比例函数图象上点的坐标特征表示出点的坐标是关键.【变式训练】【答案】23【分析】过点B作BD再由三角形面积求解即可.【详解】解:过点B作BD【答案】7213【分析】先利用面积关系得到得到对应边的关系进一步转化即可得到【详解】解:过点C 作CN OC ∵平分AOB ,CN CD ,54OA OB , 54OAC S S ,【答案】6【分析】根据全等三角形的判定和性质以及三角形的面积公式可得3COD S △,由系数k 的几何意义可得答案.【详解】解:如图,过点C 作CD y 轴于【答案】6【分析】根据反比例函数中k的几何意义:,根据图像均在第一象限可知【考向二反比例函数与三角形的综合问题】(1)求反比例函数的解析式;(2)过点A作AP垂直OA,交反比例函数的图象于点①求直线AC的解析式;②求点P的坐标.【答案】(1)反比例函数的解析式为∵AO=AB,OA=5,OB=6.∴OD=BD=3,∴AD=22253OA OD∴A(3,4),把A(3,4)代入y=kx (x>∴反比例函数的解析式为y=(2)(1)求反比例函数的解析式;(2)坐标平面内有一点D,若以【答案】(1)y=3 x(2)(1,﹣3)或(﹣1,【分析】(1)过点B作BE是等边三角形,根据菱形的性质可知,需要分三种情况:当(1)求反比例函数的表达式;(2)求等边△ACD的边长.【答案】(1)反比例函数的表达式为(2)等边△ACD的边长为458【分析】(1)根据等边三角形的性质以及在Rt△OFM中,∠OMF=90°-∴OF=1,FM=3,∴点M的坐标为(1,3),代入∴反比例函数的表达式为y=∵等边△ADC,∴AD=CD=AC,∠ADC=∠DCA ∴设AD=CD=AC=4a,∵点N是AD的中点,∴AN=DN=2a,同理,得:AE=a,NE=3a,统考中考真题)如图,在平面直角坐标系中,等腰直角三角形(1)直接写出B,C,D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点k的值.【答案】(1)B(1,3),C(3,(2)平移的距离为52,32k=【分析】(1)根据矩形性质得出【答案】(1)k=﹣6连接AE,相似的三角形?若存在,请把它们一一找出来,并选其中一种进行【考向四反比例函数与菱形的综合问题】(1)求k 的值及AB 所在直线的函数表达式;(2)将这个菱形沿x 轴正方向平移,当顶点【答案】(1)32k ,354y x ;(2【分析】(1)根据点D 的坐标为(4k 的值;(2)根据D′F′的长度即可得出D′点的纵坐标,进而利用反比例函数的性质求出∵点D 的坐标为(4,3)∴FO =4,DF =3∴DO =5∴AD =5∴A 点坐标为:(4,8)∴4832xy ∴32k的图像上m,求出(1)求一次函数与反比例函数的解析式;∵四边形AODC是菱形,∴AD⊥OA,AE=DE,EC=OE,∵D(1,−2),∴OE=1,ED=2,∴AE=DE=2,EC=OE=1,∴A(1,2),将A(1,2)代入直线y=k1x+1可得解得k1=1,∴OF=1,∵S△OAF12 ×1×1=12,当P在A的左侧时,S△FOP=12(-a ∴a=−3,a+1=−2,∴P(−3,−2),当P在A的右侧时,S△FOP=12a•OF ∴a=5,a+1=6,(1)求双曲线y2的函数关系式及(2)判断点B是否在双曲线上,并说明理由;(3)若BA的延长线与双曲线y【答案】(1)y=4;m=2∵A(2,0),C(2,m),∴E(2,1m),AC y 轴,【考向五反比例函数与正方形的综合问题】(1)求反比例函数的解析式;(2)若将正方形ABCD沿x轴向右平移得到正方形的坐标,并判断点B′是否在该反比例函数的图象上,说明理由.【答案】(1)反比例函数的解析式为(2)B′(6,4),点B′在该反比例函数的图象上.理由见解析【分析】(1)通过证明△AOB≌△由正方形的性质可知AB =CB ,∠ABC ∴∠ABO +∠BAO =∠ABO +∠CBM ∴∠BAO =∠CBM ,在△AOB 和△BMC 中,90BAO CBM AOB BMC AB CB,同(1)可证△AOB ≌△DEA (AAS ),∴DE =OA =2,AE =OB =4,∴OE =2+4=6,(1)求反比例函数的解析式;(2)求四边形OAFM的面积.【答案】(1)2 yx(2)115【分析】(1)根据三角形的面积可得点(2)首先求出点F的坐标,根据利用待定系数法求出备用图(1)求k的值并直接写出∴四边形AEFO是矩形.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,全等三角形的判定和性质,勾股定理,平行四边形的判定以及矩形的判定等知识,通过作辅助线构造出全等三角形是解题的关键.(1)点B的坐标_________;(2)将正方形ABCD以每秒2个单位的速度沿x两点的对应点B 、D¢正好落在某反比例函数的图像上,请求出此时(3)在(2)的情况下,问是否存在y轴上的点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点【答案】(1)(﹣3,1)∵点A (-6,0),D (-7,3),∴OA=6,OG =7,DG =3,∴AG =OG-OA=1.∵∠DAG+∠BAH =90°,∠DAG+∠GDA =90°∴∠GDA =∠BAH .又∠DGA =∠AHB =90°,AD=AB ,∴△DGA ≌△AHB ,∴DG=AH =3,BH=AG =1,∴点B 的坐标是(-3,1);(2)由(1),得点B (-3,1),D (-7,3),∴运动t 秒时,点(72,3)D t ,(32B t 设反比例函数的关系式为k y x,∵点B ,D ¢在反比例函数图象上,=轴的另一个交点是【答案】(1)240k ;(2)四边形【分析】(1)解方程求出OA 、OB 的长,进而可得点求解即可;(2)易求PA =PB =20,设⊙M 的半径为证明四边形PAMB 是菱形;(3)连接PM 并延长,交⊙M 于点过点Q 作QF ⊥y 轴于点F ,首先求出【详解】解:(1)解方程t 2-16t +48∵OA 、OB 的长是方程t 2-16t +48=∴OA =12,OB =4,即点A 、B 的坐标为(∵PA ⊥x 轴于点A ,∴设P 点坐标为12,k ,∴四边形PAMB 是菱形;(3)连接PM 并延长,交⊙M 于点过点Q 作QF ⊥y 轴于点F ,当圆心M 在y 轴上时,由(1)(2)可知∴ME =16+20=36,∴PM =2212361210 ,∴1210sin 101210PE PME PM ,∴sin sin 20FQ FQ PME FMQ MQ∴210FQ ,∴点Q的坐标为(210,16610【点睛】本题为反比例函数综合题,涉及到解一元二次方程、圆的基本知识、勾股定理、两点间距离公式、菱形的判定、解直角三角形等知识,明确第(是本题解题的关键.。

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。

中考数学复习重难点与压轴题专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版)

中考数学复习重难点与压轴题专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版)

专题07 全等三角形旋转、一线三等角模型【中考考向导航】目录【直击中考】 (1)【考向一 全等三角形旋转模型】 (1)【考向二 全等三角形一线三等角模型】 (6)【直击中考】【考向一 全等三角形旋转模型】 例题:(2022·山东菏泽·菏泽一中校考模拟预测)如图①,在ABC 中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,且AD AE =.则CE BD =.现将ADE 绕点A 顺时针方向旋转,旋转角为()0180αα︒<<︒.如图②,连接CE ,BD .(1)如图②,请直接写出CE 与BD 的数量关系.(2)将ADE 旋转至如图③所示位置时,请判断CE 与BD 的数量关系和位置关系,并加以证明.(3)在旋转的过程中,当BCD △的面积最大时,α=______.(直接写出答案即可)【变式训练】 一、选择题1.(2022·重庆璧山·统考一模)如图,在正方形ABCD 中,将边BC 绕点B 逆时针旋转至点BC ',若90CC D '∠=︒,2CC '=,则线段BC '的长度为( )A .2B .52C .6D .52.(2022·四川南充·模拟预测)如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,直角EPF ∠的顶点P 是BC的中点,将EPF ∠绕顶点P 旋转,两边PE ,PF 分别交AB ,AC 于点E ,F .下列四个结论:①AE CF =;②PEF 是等腰直角三角形;③EF AP =;④12ABC AEPF S S =四边形△.在EPF ∠旋转过程中,上述四个结论始终正确的有( )A .①②③B .②③④C .①③④D .①②④3.(2022秋·全国·九年级专题练习)如图,在矩形ABCD 中,DE 平分ADC ∠交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE PD <,将DPF ∠绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:①DH DE =;②DP DG =;③2DG DF DP +=;④DP DE DH DC ⋅=⋅,其中一定正确的是( )A .①②B .②③C .①④D .③④ 二、填空题4.(2022·广西贺州·统考中考真题)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.5.(2022·江苏无锡·模拟预测)笑笑将一副三角板按如图所示的位置放置,DOE 的直角顶点O 在边BC 的中点处,其中90,45A DOE B ∠=∠=︒∠=︒,60D ∠=︒,DOE 绕点O 自由旋转,且OD ,OE 分别交AB ,AC 于点M ,N ,当4AN =,2NC =时,MN 的长为______.6.(2022·广东广州·统考中考真题)如图,在矩形ABCD 中,BC =2AB ,点P 为边AD 上的一个动点,线段BP 绕点B 顺时针旋转60°得到线段BP ',连接PP ' ,CP '.当点P ' 落在边BC 上时,∠PP 'C 的度数为________; 当线段CP ' 的长度最小时,∠PP 'C 的度数为________三、解答题7.(2022·山东日照·校考二模)在ABC ∆中,AB AC =,BAC α∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC .(1)如图1,当60α=︒时,①求证:PA DC =;②求DCP ∠的度数;(2)如图2,当120α=︒时,请直接写出PA 和DC 的数量关系.(3)当120α=︒时,若6AB =,31BP =,请直接写出点D 到CP 的距离为8.(2022·河北保定·校考一模)如图1,等腰直角三角形ABC 中,∠A =90°,AB =AC =102cm ,D 为AB边上一点,tan ∠ACD =15,点P 由C 点出发,以2cm /s 的速度向终点B 运动,连接PD ,将PD 绕点D 逆时针旋转90°,得到线段DQ ,连接PQ .(1)填空:BC = ,BD = ;(2)点P 运动几秒,DQ 最短;(3)如图2,当Q 点运动到直线AB 下方时,连接BQ ,若S △BDQ =8,求tan ∠BDQ ;(4)在点P 运动过程中,若∠BPQ =15°,请直接写出BP 的长.9.(2022秋·九年级单元测试)如图,正方形ABCD 和正方形CEFG (其中BD >2CE ),直线BG 与DE 交于点H .(1)如图1,当点G 在CD 上时,请直接写出线段BG 与DE 的数量关系和位置关系;(2)将正方形CEFG 绕点C 旋转一周.①如图2,当点E 在直线CD 右侧时,求证:2BH DH CH -=;②当∠DEC =45°时,若AB =3,CE =1,请直接写出线段DH 的长.10.(2022·全国·九年级专题练习)如图,在ABC 与DEF 中,90ACB EDF ∠=∠=︒,,BC AC ED FD ==,点D 在AB 上.(1)如图1,若点F 在AC 的延长线上,连接AE ,探究线段AF 、AE 、AD 之间的数量关系,并证明你的结论;(2)如图2,若点D 与点A 重合,且32AC =,4DE =,将DEF 绕点D 旋转,连接BF ,点G 为BF 的中点,连接CG ,在旋转的过程中,求32CG BG +的最小值; (3)如图3,若点D 为AB 的中点,连接BF 、CE 交于点M ,CE 交AB 于点N ,且::7:9:10BC DE ME =,请直接写出ND CN 的值.11.(2022·内蒙古通辽·模拟预测)综合实践问题情境在图1所示的直角三角形纸片ABC 中,O 是斜边AB 的中点.数学老师让同学们将ABC 绕中点O 做图形的旋转实验,探究旋转过程中线段之间的关系.解决问题(1)“实践小组”的同学们将ABC 以点O 为中心按逆时针旋转,当点A 的对应点A '与C 重合时,BC 与它的对应边B C ''交于点D .他们发现:OD B C '⊥.请你帮助他们写出证明过程.数学思考(2)在图2的基础上,“实践小组”的同学们继续将ABC 以点O 为中心进行逆时针旋转,当AB 的对应边A B AB ''⊥时,设A B ''与BC 交于点F ,B C ''与AB 交于点E .他们认为ED FD AC +=.他们的认识是否正确?请说明理由.再探发现(3)解决完上面两个问题后,“实践小组”的同学们在图3中连接OD ,他们认为DF ,DE 与OD 也具有一定的数量关系.请你写出这个数量关系______.(不要求证明)【考向二 全等三角形一线三等角模型】例题:(2023·全国·九年级专题练习)感知:数学课上,老师给出了一个模型:如图1,点A 在直线DE 上,且90BDA BAC AEC ∠=∠=∠=︒,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角“模型.应用:(1)如图2,Rt ABC △中,90,ACB CB CA ∠=︒=,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ≌.(2)如图3,在ABC 中,D 是BC 上一点,90,,CAD AC AD ∠=︒=,23DBA DAB AB ∠=∠=,求点C 到AB 边的距离.(3)如图4,在ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若,10,6DEF B AB BE ∠=∠==,求EF DE 的值.【变式训练】一、选择题1.(2022秋·八年级课时练习)如图,在∠ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于( )A .3B .2C .94D .92 二、解答题2.(2022秋·广东惠州·八年级校考期中)如图1,90ACB AC BC AD CE BE CE ∠==⊥⊥,,,,垂足分别为D ,E .(1)若 2.5cm 1.7cm AD DE ==,,求BE 的长.(2)在其它条件不变的前提下,将CE 所在直线变换到ABC 的外部(如图2),请你猜想AD DE BE ,,三者之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在ABC 中,AC BC =,D ,C ,E 三点在同一条直线上,并且有BEC ADC BCA α∠=∠=∠=,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.3.(2022秋·云南昭通·八年级校考期末)在ABC 中,90o ACB AC BC ∠=,=,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ACD CEB ≌;②DE AD BE =+.(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE -=;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE AD BE 、、具有怎样的等量关系?请写出这个等量关系,并加以证明.4.(2022秋·全国·八年级专题练习)已知,在ABC 中,AB AC =,D A E ,,三点都在直线m 上,且9DE cm BDA AEC BAC =∠=∠=∠,.(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为 ___________,CE 与AD 的数量关系为 ___________;(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,同时,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,它们运动的时间为s t ().是否存在x ,使得ABD △与EAC 全等?若存在,求出相应的t 的值;若不存在,请说明理由.5.(2022秋·八年级课时练习)【问题解决】(1)已知∠ABC 中,AB =AC ,D ,A ,E 三点都在直线l 上,且有∠BDA =∠AEC =∠BAC .如图①,当∠BAC =90°时,线段DE ,BD ,CE 的数量关系为:______________;【类比探究】(2)如图②,在(1)的条件下,当0°<∠BAC <180°时,线段DE ,BD ,CE 的数量关系是否变化,若不变,请证明:若变化,写出它们的关系式;【拓展应用】(3)如图③,AC =BC ,∠ACB =90°,点C 的坐标为(-2,0),点B 的坐标为(1,2),请求出点A 的坐标.。

中考数学复习 查补重难点 反比例函数与一次函数的综合运用(原卷版)

中考数学复习 查补重难点 反比例函数与一次函数的综合运用(原卷版)

查补重难点03反比例函数与一次函数的综合运用考点一:反比例函数与一次函数综合反比例函数与一次函数进行综合考查的题型是江苏历年中考数学对于函数考查的重点内容,那么关于反比例函数与一次函数的综合专题当中,我们主要涉及到函数共存问题,交点和不等式(比大小)问题、最值问题以及与几何综合压轴类的题型。

无论是哪一类型的题型,在综合的考察过程当中都是对于反比例函数与一次函数的图像和性质有充分的了解,借助数形结合思想、方程思想、化归思想等。

通过函数的图像来得到我们所需要的求解问题。

在这过程当中,如果对于这两类函数没有全面的了解,那么在解题过程当中就要花费大家很多的时间而导致其解题效率的降低,那么在解决这三大类型的提醒过程当中,该如何利用这些函数的性质来进行解题,该专题可供大家在备考阶段能够进行专项的突破。

题型1.反比例函数和一次函数图像共存问题函数图象共存问题是一次函数和反比例函数当中含有共同的参数,根据分类讨论的形式,由函数的图像特点来判定符合两个函数参数的图形。

解决这类型的题不仅是反比例函数和一次函数进行综合考查,连同二次函数在内的题型进行考查也是比较常见的,所以解决这类型的问题时,我们先要根据一次函数或反比例函数中参数的共性,通过分别进行讨论的形式逐一进行排除,最终确定满足要求的函数图像。

.B ...变式1.(2023年湖北省襄阳市中考数学真题)在同一平面直角坐标系中,一次函数y kx =k x的图象可能是().B .C .D .变式2.(2022·广西·中考真题)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是()A .B .C .D .题型2.反比例函数和一次函数的交点问题一次函数图像与反比例函数相关问题,牵扯到的知识点比较多,如求它们的函数解析式,或是通过两者的图像相交,需要考生结合两个函数解析式转化成一元二次方程,从而求得交点坐标等。

人教中考数学重难点题型分类必刷题 人教版七年级下学期数学

人教中考数学重难点题型分类必刷题 人教版七年级下学期数学

人教中考数学重难点题型分类必刷题人教版七年级下学期数学在人教版七年级下学期数学教材中,有一些题型被认为是重难点题型,考生需要特别关注和重点复习。

本文将对这些题型进行分类,并介绍一些必刷题,帮助同学们更好地备考。

一、整数的加减法运算整数的加减法运算是初中数学中的基础知识,也是中考中相对较为简单的题型之一。

但是,加减法题目中常常融合了其他知识点,比如小数、分数等,需要同学们运用多种知识进行联想和综合运算。

在此我们推荐一道必刷题:例题:已知a=-3,b=5,则a-(-4)-b+(2-a)的值是多少?解析:根据运算符的优先级,先计算括号中的式子,再依次进行减法、加法运算。

将a、b的值代入得:-3-(-4)-5+(2-(-3))=-7+6=-1。

二、平方根与立方根求平方根与立方根是数学中的重要知识点,也是中考中较为常见的题型之一。

在做这类题目时,同学们需要熟悉根号的运算规则,并且要注意约分化简。

以下是一道建议练习的必刷题:例题:将8的平方根与立方根分别化简。

解析:8的平方根为√8,化简为2√2。

8的立方根为∛8,化简为2。

三、比例与百分数比例和百分数在中考数学中也是常考题型之一。

同学们需要掌握比例的概念和计算方法,以及百分数与小数、分数之间的转化。

以下是一道必刷题:例题:某商店原价150元的商品现在打8折出售,小明买了5件,请问小明买这些商品的总价是多少?解析:由于打折是按照商品原价的比例进行的,打折后的价格为150×0.8=120元。

小明买了5件商品,所以总价为120×5=600元。

四、图形的周长与面积图形的周长和面积是中考数学中的重点知识,同学们需要熟悉各种图形的计算公式,并根据题目要求进行计算。

以下是一道必刷题:例题:长方形的长是7cm,宽是5cm,求其周长和面积。

解析:周长=2×(长+宽)=2×(7+5)=2×12=24cm,面积=长×宽=7×5=35cm²。

中考数学重难点专题12 一次函数与几何综合问题(学生版)

中考数学重难点专题12 一次函数与几何综合问题(学生版)

中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题12一次函数与几何综合问题【典型例题】1.(2022·四川成都·九年级期末)如图,在平面直角坐标系中,点A,B分别在x轴,y轴正半轴上,AO=2BO,点C(3,0)(A点在C点的左侧),连接AB,过点A作AB的垂线,过点C作x轴的垂线,两条垂线交于点D,已知△ABO△△DAC,直线BD交x轴于点E.(1)求直线AD的解析式;(2)直线AD有一点F,设点F的横坐标为t,若△ACF与△ADE相似,求t的值;(3)如图2,在直线AD上找一点G,直线BD上找一点P,直线CD上找一点Q,使得四边形AQPG是菱形,求出G点的坐标.【专题训练】一、选择题1.(2022·山东龙口·七年级期末)对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.y的值随x值的增大而增大C.当x>0时,y<0D.它的图象与x轴的交点坐标为(13,0)2.(2022·江苏溧阳·八年级期末)如图,直线122y x=-+与x轴、y轴交于A、B两点,在y轴上有一点C(0,4),动点M从A点发以每秒1个单位的速度沿x轴向左移动.当动到△COM与△AOB全等时,移的时间t是()A.2B.4C.2或4D.2或63.(2022·陕西·辋川乡初级中学八年级期末)数学课上,老师提出问题:“一次函数的图象经过点A(3,2),B(-1,-6),由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为y=2x-4;②该一次函数的函数值随自变量的增大而增大:③点P(2a,4a-4)在该函数图象上;④直线AB与坐标轴围成的三角形的面积为8.其中错误的结论是()A.1个B.2个C.3个D.4个4.(2022·江苏启东·八年级期末)如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)二、填空题5.(2022·江苏滨湖·八年级期末)如图,直线y=﹣43x+8与坐标轴分别交于A、B两点,P是AB的中点,则OP的长为_____.6.(2021·山东济阳·八年级期中)如图,一次函数y =x +2的图像与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且△OPC =45°,PC =PO ,则点P 的坐标为______.7.(2021·湖北阳新·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC ::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.8.(2022·山东龙口·七年级期末)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示放置,点A 1,A 2,A 3,和点C 1,C 2,C 3,…,分别在直线y =kx +b (k >0)和x 轴上,已知点B 1,B 2,B 3,B 4的坐标分别为(1,1),(3,2),(7,4),(15,8),则Bn 的坐标为_____三、解答题9.(2022·江苏海州·八年级期末)已知直线l 1经过点A (3,2)和点B (0,5),直线l 2:y =2x ﹣4经过点A 且与y 轴相交于点C .(1)求直线l 1的函数表达式;(2)已知点M 在直线l 1上,过点M 作MN //y 轴,交直线l 2于点N .若MN =6,请求出点M 的横坐标.10.(2022·广西·桂林市雁山中学九年级期末)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=mx在第一象限的图象交于点C,CD垂直于x轴,垂足为D.如果OA=OB=OD=1,求:(1)点A、B、C的坐标;(2)这个反比例函数的表达式;(3)这个一次函数的表达式.11.(2022·江苏溧阳·八年级期末)如图,在平面直角坐标系中长方形AOBC的顶点A、B坐标分别为(0,8)、(10,0),点D是BC上一点,将△ACD沿直线AD翻折,使得点C落在OB上的点E处,点F是直线AD 与x轴的交点,连接CF.(1)点C坐标为____________;(2)求直线AD的函数表达式_______________________;(3)点P是直线AD上的一点,当△CFP是直角三角形时,请你直接写出点P的坐标.。

2023年九年级人教版数学中考复习重难点专练 二次函数的最值(含答案)

2023年九年级人教版数学中考复习重难点专练 二次函数的最值(含答案)

2023年人教版数学中考复习重难点专练——二次函数的最值一、单选题1.二次函数的最小值是A .1-B .1C .2-D .2 2.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .有最小值0,有最大值3B .有最小值﹣1,有最大值0C .有最小值﹣1,有最大值3D .有最小值﹣1,无最大值 3.二次函数()215y x =--+,当m x n ≤≤且0mn <时,y 的最小值为2m ,最大值为2n ,则m n +的值为( )A .52B .2C .12D .32 4.二次函数y=(x-1)2+2的最小值是( )A .-2B .2C .-1D .1 5.二次函数 22y x x c =--+ 在 32x -≤≤ 的范围内有最小值 5- ,则 c 的值是( )A .6-B .2C .2-D .3 6.二次函数y=x 2﹣8x+1的最小值是( )A .4B .﹣15C .﹣4D .15 7.二次函数y=3(x ﹣1)2+2的最小值是( )A .2B .1C .﹣1D .﹣2 8.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( )A .﹣1或1B .1或﹣3C .﹣1或3D .3或﹣39.二次函数223y x mx =+-,当01x ≤≤时,若图象上的点到x 轴距离的最大值为4,则m 的值为( )A .-1或1B .-1或1或3C .1或3D .-1或3 10.已知二次函数y=(x-m+2)(x+m-4)+n ,其中m ,n 为常数,则( )A .m>1,n<0时,二次函数的最小值大于0B .m=1,n>0时,二次函数的最小值大于0C .m<1,n>0时,二次函数的最小值小于0D .m=1,n<0时,二次函数的最小值小于0二、填空题11.二次函数 22y x =-+ 的最大值为 .12.二次函数y=x 2+(2m+1)x+(m 2﹣1)有最小值﹣2,则m= . 13.二次函数y=2x 2﹣2x+6的最小值是 .14.如图,在平面直角坐标系中,点A 、B 的坐标分别为 ()11--, 、 ()21-, ,抛物线 ()20y ax bx c a =++≠ 的顶点P 在线段 AB 上,与x 轴相交于C 、D 两点,设点C 、D 的横坐标分别为 1x 、 2x ,且 12x x < .若 1x 的最小值是 2- ,则 2x 的最大值是 .15.已知二次函数y=x 2﹣2mx (m 为常数),当﹣2≤x≤1时,函数值y 的最小值为﹣2,则m 的值为 .三、解答题16.用总长为60的篱笆围成的矩形场地,矩形面积S 随矩形一边长L 的变化而变化,L 是多少时,场地的面积S 最大?17.已知抛物线l 1的最高点为P (3,4),且经过点A (0,1),求l 1的解析式. 18.如图,二次函数的图象与x 轴交于点A (-3,0)和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y轴交于点E.(1)请直接写出点D的坐标:(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.19.四边形ABCD的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形的面积最大?20.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】B5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】212.【答案】34 13.【答案】9214.【答案】315.【答案】32 或-16.【答案】解:由题意S=,当 时,S 有最大值.17.【答案】解:∵抛物线l 1的最高点为P (3,4),∴设抛物线的解析式为y=a (x ﹣3)2+4,把点(0,1)代入得,1=a (0﹣3)2+4,解得,a=﹣ 13, ∴抛物线的解析式为y=﹣13 (x ﹣3)2+4 18.【答案】(1)(﹣3,4);(2)设PA=t ,OE=l由△DAP=△POE=△DPE=90°得△DAP△△POE∴∴l=﹣∴当t=时,l有最大值即P为AO中点时,OE的最大值为;(3)存在.①点P点在y轴左侧时,P点的坐标为(﹣4,0)由△PAD△△OEG得OE=PA=1∴OP=OA+PA=4∵△ADG△△OEG∴AG:GO=AD:OE=4:1∴AG=,∴重叠部分的面积=;②当P点在y轴右侧时,P点的坐标为(4,0),此时重叠部分的面积为.19.【答案】解:设四边形ABCD的面积为y,AC的长为x,BD的长为(10-x)∴根据题意可得,y=102x x-()=-12x2+5x=-12(x-5)2+12.5根据题意可得,当x=5时,四边形的面积最大此时AC=BD=520.【答案】解:由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为53米。

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。

中考数学复习重难点与压轴题专题12 新定义型几何图形综合问题(重点突围)(原卷版)

中考数学复习重难点与压轴题专题12 新定义型几何图形综合问题(重点突围)(原卷版)

专题12 新定义型几何图形综合问题【中考考向导航】目录【直击中考】 (1)【考向一 与三角形有关的新定义型问题】..................................................................................................... 1 【考向二 与四角形有关的新定义型问题】..................................................................................................... 5 【考向三 三角形与圆综合的新定义型问题】 ................................................................................................. 8 【考向四 四角形与圆综合的新定义型问题】 .. (10)【直击中考】【考向一 与三角形有关的新定义型问题】例题:(2022·江西抚州·统考一模)定义:从三角形(不是等腰三角形)的一个顶点引出一条射线与对边相交,顶点与交点所连线段把这个三角形分割成两个小三角形,如果其中一个为等腰三角形,另一个与原三角形相似,我么就把这条线段叫做这个三角形的“华丽分割线”.例如:如图1,AD 把△ABC 分成△ABD 和△ADC ,若△ABD 是等腰三角形,且△ADC ∽△BAC ,那么AD 就是△ABC 的“华丽分割线”. 【定义感知】(1)如图1,在ABC 中,40B ∠=︒,110BAC ∠=︒,AB=BD .求证:AD 是ABC 的“华丽分割线”. 【问题解决】(2)①如图2,在ABC 中,46B ∠=︒,AD 是ABC 的“华丽分割线”,且ABD △是等腰三角形,则C ∠的度数是________;②如图3,在ABC 中,AB =2,AC =3,AD 是ABC 的“华丽分割线”,且ABD △是以AD 为底边的等腰三角形,求华丽分割线AD 的长.【变式训练】1.(2022·山东济宁·三模)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图,在ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad BCA AB==底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad60︒=___________,sad90︒=___________;(2)如图,已知3sin 5A =,其中A ∠为锐角,试求sad A 的值.2.(2022春·福建龙岩·九年级校考期中)在一个三角形中,如果有两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“亚直角三角形”.根据这个定义,显然90αβ+<︒,则这个三角形的第三个角为()18090αβ︒-+>︒,这就是说“亚直角三角形”是特殊的钝角三角形.(1)【尝试运用】:若某三角形是“亚直角三角形”,且一个内角为100︒,请求出它的两个锐角的度数; (2)【尝试运用】:如图1,在Rt ABC 中,90ACB ∠=︒,4AC =,8BC =,点D 在边BC 上,连接AD ,且AD 不平分BAC ∠.若ABD △是“亚直角三角形”,求线段AD 的长;(3)【素养提升】:如图2,在钝角ABC 中,90ABC ∠>︒,5AB =,35BC =,ABC 的面积为15,求证:ABC 是“亚直角三角形”.3.(2022秋·江苏常州·九年级校考期中)【理解概念】定义:如果三角形有两个内角的差为90︒,那么这样的三角形叫做“准直角三角形”. (1)已知△ABC 是“准直角三角形”,且90C ∠>︒. ①若60A ∠=︒,则B ∠=______︒; ②若40A ∠=︒,则B ∠=______︒; 【巩固新知】(2)如图①,在Rt ABC △中,9062ACB AB BC ∠=︒==,,,点D 在AC 边上,若ABD △是“准直角三角形”,求CD 的长;【解决问题】(3)如图②,在四边形ABCD 中,58CD CB ABD BCD AB BD =∠=∠==,,,,且ABC 是“准直角三角形”,求BCD △的面积.4.(2022·山东青岛·统考中考真题)【图形定义】 有一条高线相等的两个三角形称为等高三角形.例如:如图①.在ABC 和A B C '''中,,AD A D ''分别是BC 和B C ''边上的高线,且AD A D ''=,则ABC 和A B C '''是等高三角形.【性质探究】 如图①,用ABCS ,A B C S'''分别表示ABC 和A B C '''的面积.则11,22ABC A B C S BC AD S B C A D '''=⋅=''⋅''△△, ∽AD A D ''=∽::ABC A B C S S BC B C ''=''△△. 【性质应用】(1)如图②,D 是ABC 的边BC 上的一点.若3,4BD DC ==,则:ABD ADC S S =△△__________;(2)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点.若:1:2BE AB =,:1:3CD BC =,1ABC S =△,则BEC S =△__________,CDE S =△_________;(3)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点,若:1:BE AB m =,:1:CD BC n =,ABCS a =,则CDE S =△__________.【考向二 与四角形有关的新定义型问题】例题:(2022·陕西西安·校考三模)定义:两组邻边分别相等的四边形叫做筝形.(1)问题发现:如图1,筝形ABCD 中,AD CD =,AB CB =,若12AC BD +=,求筝形ABCD 的面积的最大值;(2)问题解决:如图2是一块矩形铁片ABCD ,其中60AB =厘米,90BC厘米,李优想从这块铁片中裁出一个筝形EFGH ,要求点E 是AB 边的中点,点F 、G 、H 分别在BC 、CD 、AD 上(含端点),是否存在一种裁剪方案,使得筝形EFGH 的面积最大?若存在,求出筝形EFGH 的面积最大值,若不存在,请说明理由.【变式训练】1.(2022·吉林长春·校考模拟预测)定义:如果一个四边形的一组对角互余,我们称这个四边形为对角互余四边形.(1)问题1.利用下面哪组图形可以得到一个对角互余四边形( )①两个等腰三角形;②两个等边三角形;③两个直角三角形;④两个全等三角形.(2)如图①,在对角互余四边形ABCD 中,30D ∠=︒,且AC BC ⊥,AC AD ⊥.若1BC =,求四边形ABCD 的面积和周长.(3)问题2.如图②,在对角互余四边形ABCD 中,AB BC =,13BD =,90ABC ADC ∠+∠=︒,8AD =,6CD =,求四边形ABCD 的面积和周长.(4)问题3.如图③,在对角互余四边形ABCD 中,2BC AB =,3sin 5ABC ∠=,90ABC ADC ∠+∠=︒,10BD =,求ACD 面积的最大值.2.(2023春·江西抚州·九年级金溪一中校考阶段练习)【图形定义】有一组邻边相等的凸四边形叫做“等邻边四边形”.【问题探究】(1)如图①,已知矩形ABCD 是“等邻边四边形”,则矩形ABCD ___________(填“一定”或“不一定”)是正方形;(2)如图②,在菱形ABCD 中,120ABC ∠=︒,4AB =,动点M 、N 分别在AD 、CD 上(不含端点),若60MBN ∠=︒,试判断四边形BMDN 是否为“等邻边四边形”?如果是“等邻边四边形”,请证明;如果不是,请说明理由;此时,四边形BMDN 的周长的最小值为___________; 【尝试应用】(3)现有一个平行四边形材料ABCD ,如图③,在ABCD 中,17AB =,6BC =,tan 4B =,点E 在BC 上,且4BE =,在ABCD 边AD 上有一点P ,使四边形ABEP 为“等邻边四边形”,请直接写出此时四边形ABEP的面积可能为的值___________.3.(2022·江西赣州·统考二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,B C ∠=∠,则四边形ABCD 为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形的是___________. ①平行四边形;②矩形;③菱形;④等腰梯形. (2)深入探究:①已知四边形ABCD 为“等邻角四边形”,且120100A B ∠=︒∠=︒,,则D ∠=________.②如图②,在五边形ABCDE 中, DE BC ∥,对角线BD 平分ABC ∠,求证:四边形ABDE 为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD 中,B C ∠=∠,点P 为边BC 上的一动点,过点P 作PM AB PN CD ⊥⊥,,垂足分别为M ,N .在点P 的运动过程中,PM PN +的值是否会发生变化?请说明理由.【考向三 三角形与圆综合的新定义型问题】例题:(2022·江西上饶·统考一模)定义:如果一个三角形有一个内角的平分线与这个角的对边的夹角是60︒,那么称该三角形为“特异角平分三角形”,这条角平分线称为“特异角平分线”.(1)如图1,ABC 是一个“特异角平分三角形”,AD 是一条“特异角平分线” ①当90C ∠=︒时,试求:AD BD 的值.②在ABC 中,过点D 作DE AB ⊥于点E ,延长至点H ,HE DE =,若:3:3DE AE =,证明:AHE ADC ≌. (2)如图2.BD 是O 的直径,AC 是O 的切线,点C 为切点,AB AC ⊥于点A 且交O 于点H ,连接DH 交BC 于点E ,4BD =,3AB =.试证明DBH △是一个“特异角平分三角形”.【变式训练】1.(2022春·九年级课时练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的“好角”.(1)如图1,∽E 是ABC 中∽A 的“好角”,若A α∠=,则E ∠=______;(用含α的代数式表示)(2)如图2,四边形ABCD 内接于O ,点D 是优弧ACB 的中点,直径BF ⊥弦AC ,BF 、CD 的延长线于点G ,延长BC 到点E .求证:∽BGC 是ABC 中∽BAC 的“好角”.(3)如图3,ABC 内接于O ,∽BGC 是ABC 中∽A 的“好角”,BG 过圆心O 交O 于点F ,O 的直径为8,45A ∠=︒,求FG .2.(2022·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考一模)我们不妨定义:有两边之比为1:3的三角形叫敬“勤业三角形”.(1)下列各三角形中,一定是“勤业三角形”的是________;(填序号)①等边三角形;②等腰直角三角形;③含30︒角的直角三角形;④含120︒角的等腰三角形.(2)如图1,∽ABC 是∽O 的内接三角形,AC 为直径,D 为AB 上一点,且2BD AD =,作DE OA ⊥,交线段OA 于点F ,交∽O 于点E ,连接BE 交AC 于点G .试判断∽AED 和∽ABE 是否是“勤业三角形”?如果是,请给出证明,并求出EDBE的值;如果不是,请说明理由; (3)如图2,在(2)的条件下,当AF :FG =2:3时,求BED ∠的余弦值.【考向四 四角形与圆综合的新定义型问题】例题:(2022秋·九年级课时练习)定义:有一个角为45°的平行四边形称为半矩形.(1)如图1,若∽ABCD 的一组邻边AB =4,AD =7,且它的面积为142.求证:∽ABCD 为半矩形. (2)如图2,半矩形ABCD 中,∽ABD 的外心O (外心O 在∽ABD 内)到AB 的距离为1,∽O 的半径=5,求AD 的长.(3)如图3,半矩形ABCD 中,∽A =45° ①求证:CD 是∽ABD 外接圆的切线; ②求出图中阴影部分的面积.【变式训练】1.(2022·浙江宁波·校考模拟预测)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图1,在“对角互余四边形” ABCD 中, 6.5AD CD BD ==,,9043ABC ADC AB CB ∠+∠=︒==,,,求四边形ABCD 的面积.(2)如图2,在四边形ABCD 中,连接AC ,90BAC ∠=︒,点O 是ACD 外接圆的圆心,连接OA ,OAC ABC ∠∠=.求证:四边形ABCD 是“对角互余四边形”;(3)在(2)的条件下,如图3,已知3AD a DC b AB AC ===,,,连接BD ,求2BD 的值.(结果用带有a ,b 的代数式表示)2.(2022·江苏淮安·统考一模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)请在特殊四边形中找出一个圆美四边形,该四边形的名称是 ;(2)如图1,在等腰Rt ∽ABC 中,∽BAC =90°,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接DE ,若四边形ABED 为圆美四边形,则AB DE的值是 (3)如图2,在∽ABC 中,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接AE 、BD 交于点F ,若在四边形ABED 的内部存在一点P ,使得∽PBC =∽ADP =α,连接PE 交BD 于点G ,连接P A ,若P A ∽PD ,PB ∽PE . ①试说明:四边形ABED 为圆美四边形;②若2tan 3α=,8PA PE +=,33CD BC =,求DE 的最小值.。

中考数学复习重难点与压轴题 专题01 实数(原卷版)

中考数学复习重难点与压轴题 专题01 实数(原卷版)

专题01 实数【中考考向导航】目录【直击中考】 (1)【考向一 正数和负数】 .................................................................................................................................... 1 【考向二 与数轴上的有关问题】 .................................................................................................................... 2 【考向三 相反数、绝对值】 ............................................................................................................................ 3 【考向四 科学计数法】 .................................................................................................................................... 4 【考向五 平方根、立方根】 ............................................................................................................................ 4 【考向六 无理数的概念理解】 ........................................................................................................................ 5 【考向七 无理数的估算】 ................................................................................................................................ 5 【考向八 实数的运算】 (6)【直击中考】【考向一 正数和负数】例题1.(2022·江苏扬州·校考模拟预测)下列各数3-,()1--,12⎛⎫+- ⎪⎝⎭,0,23,2--中,是正数的有( )A .1个B .2个C .3个D .4个例题2.(2022·四川绵阳·校考模拟预测)在跳远测验中,合格标准是4米,张丰跳出了4.25米,记为0.25+米,李敏跳出了3.95米,记作( ) A .0.25+米B .0.05-米C . 3.95+米D . 3.95-米1.(2022·福建厦门·统考模拟预测)下列四个数中,是负数的是( ) A .3-B .()3--C .()23-D .3-2.(2022·四川巴中·统考中考真题)下列各数是负数的是( ) A .2(1)-B .|3|-C .(5)--D .38-3.(2022·江苏南通·统考中考真题)若气温零上2℃记作2+℃,则气温零下3℃记作( ) A .3-℃B .1-℃C .1+℃D .5+℃4.(2022·广西河池·统考中考真题)如果将“收入50元”记作“+50元”,那么“支出20元”记作( ) A .+20元B .﹣20元C .+30元D .﹣30元5.(2022·广西柳州·统考中考真题)如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作 _____.6.(2022·广西·中考真题)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作______米. 7.(2022·江苏镇江·统考中考真题)“五月天山雪,无花只有寒”,反映出地形对气温的影响.大致海拔每升高100米,气温约下降0.6C ︒.有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6C ︒,则此时山顶的气温约为_________C ︒.【考向二 与数轴上的有关问题】例题1.(2022·江苏镇江·统考中考真题)如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+例题2.(2022·四川德阳·模拟预测)实数a ,b 在数轴上的位置如图所示,化简a b a b --+的结果为( )A .2aB .0C .2bD .22a b -1.(2022·四川攀枝花·统考中考真题)实数a 、b 在数轴.上的对应点位置如图所示,下列结论中正确的是( )A .2b >-B .||b a >C .0a b +>D .0a b -<2.(2022·内蒙古·中考真题)实数a 在数轴上的对应位置如图所示,则21|1|a a ++-的化简结果是( )A .1B .2C .2aD .1﹣2a3.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .24.(2022·江苏常州·统考中考真题)如图,数轴上的点A 、B 分别表示实数a 、b ,则1a ______1b.(填“>”、“=”或“<”)5.(2022·浙江金华·一模)如图所示,数轴上表示1,3的点分别为A ,B ,且2CA AB =(C 在A 的左侧),则点C 所表示的数是________.6.(2022·四川遂宁·模拟预测)实数a ,b 在数轴上对应点的位置如图所示,则化简()()2222a b ++-的结果是 _____.7.(2022·河北廊坊·统考二模)如图,在数轴上点A ,B 表示的数分别为-2,1,P 为A 点左侧上的一点,它表示的数为x .(1)用含x 的代数式表示2PB PA+的值. (2)若以PO ,PA ,AB 的长为边长能构成等腰三角形,请求出符合条件的x 的值.例题1.(2022·浙江宁波·统考中考真题)-2022的相反数是( ) A .2022B .-2022C .12022D .-12022例题2.(2022·辽宁锦州·统考中考真题)有理数﹣2022的绝对值为( ) A .﹣2022B .12022C .2022D .﹣120221.(2022·河南洛阳·统考一模)实数3-的相反数是( ) A .3B .3C .3-D .33-2.(2022·吉林长春·模拟预测)下列各组数中,互为相反数的是( ) A .1+与1-B .()1--与1C .()3--与3--D .2-+与()2+-3.(2022·青海西宁·统考中考真题)6-的绝对值是________.4.(2022·河南郑州·郑州外国语中学校考模拟预测)计算:32-+=______.5.(2022·浙江嘉兴·一模)计算:0|2|(3)-+-=____________. 6.(2022·西藏·统考中考真题)已知a ,b 都是实数,若2120220a b ,则b a =_____.【考向四 科学计数法】例题:(2022·辽宁鞍山·统考中考真题)教育部2022年5月17日召开第二场“教育这十年”“1+1”系列新闻发布会,会上介绍我国已建成世界最大规模高等教育体系,在学总人数超过44300000人.将数据44300000用科学记数法表示为_________.【变式训练】1.(2022·山东德州·德州市同济中学校考模拟预测)人的大脑每天能记录大约8600万条信息,8600万用科学计数法表示为( ) A .38.610⨯B .80.8610⨯C .68610⨯D .78.610⨯2.(2022·河南郑州·郑州外国语中学校考模拟预测)年初,某官网发布了2021年通信运营业统计公报,数据显示,2021年,4G .5G 用户数呈爆发式增长,全年新增3.4亿户,总数达到770000000亿户,将770000000用科学记数法表示应为( ) A .90.7710⨯B .77.710⨯C .87.710⨯D .97.710⨯3.(2022·吉林长春·校考二模)第24届冬季奥林匹克运动会,于2022年2月4日在我国首都北京开幕,据统计,北京冬奥会开幕式电视直播观众规模达3.16亿,是历史上收视率最高的一届冬奥会,数据3.16亿用科学记数法可以表示为( ) A .93.1610⨯B .90.31610⨯C .731.610⨯D .83.1610⨯4.(2022·贵州黔西·校考一模)2022年我市地区生产总值逼近14000亿元,用科学记数法表示14000是______. 5.(2022·江苏徐州·统考中考真题)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为________亿斤.6.(2022·辽宁丹东·校考二模)截止到2021年1月22日9时30分,天问一号探测器已经在轨飞行182天,距离火星约4200000公里,4200000用科学记数法表示应为________.7.(2022·山东东营·统考中考真题)2022年2月20日,北京冬奥会圆满落幕,赛事获得了数十亿次数字平台互动,在中国仅电视收视人数就超6亿.6亿用科学记数法表示为____________.8.(2022·湖北黄石·统考中考真题)据新华社2022年1月26日报道,2021年全年新增减税降费约1.1万亿元,有力支持国民经济持续稳定恢复用科学记数法表示1.1万亿元,可以表示为__________元. 【考向五 平方根、立方根】例题:(2022·广东东莞·东莞市万江第三中学校考三模)计算下列各题:(1)4的平方根是______;(2)25的算术平方根是______;(3)8-的立方根是______;【变式训练】1.(2022·浙江衢州·统考中考真题)计算:22=____. 2.(2022·吉林·统考一模)计算:251-=______.3.(2022·浙江杭州·统考中考真题)计算:4=_________;()22-=_________. 4.(2022·内蒙古鄂尔多斯·统考一模)()13127122-⎛⎫---+-= ⎪⎝⎭______. 5.(2022·广西贺州·统考中考真题)若实数m ,n 满足5240m n m n --++-=∣∣,则3m n +=__________.例题:(2022·甘肃武威·统考模拟预测)下列各数:π3,sin30︒,3-,4.其中是无理数的有______个1.(2022·广西玉林·统考中考真题)下列各数中为无理数的是( ) A .2B .1.5C .0D .1-2.(2022·四川遂宁·校联考一模)下面四个数中的无理数是( ) A .0.7B .227C .9D .7π 3.(2022·江苏无锡·校考模拟预测)下列各数中:4-、12π、39、0.010010001、37、0是无理数的有( )A .1个B .2个C .3个D .4个4.(2022·湖南湘潭·统考中考真题)四个数-1,0,12,3中,为无理数的是_________.5.(2022·陕西西安·校考三模)在3π+,6,9,47,3.121231234⋯,35-中,无理数的个数是______.6.(2022·江苏苏州·苏州中学校考二模)下列各数:3.14、9、381、-127、2π、22、0、3.12112111211112……中,无理数有______个. 【考向七 无理数的估算】例题:(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______.1.(2022·湖南株洲·统考一模)下列实数中,在3和4之间的是( ) A .π+1B .2+1C .22D .232.(2022·四川资阳·中考真题)如图,M 、N 、P 、Q 是数轴上的点,那么3在数轴上对应的点可能是( )A .点AB .点NC .点PD .点Q3.(2022·福建南平·统考模拟预测)若a ,b 分别是65-的整数部分和小数部分,则23a b -的值为( ) A .565-+B .935-C .535-+D .965-+4.(2022·湖南永州·统考中考真题)请写出一个比5大且比10小的无理数:______. 5.(2022·海南·统考中考真题)写出一个比3大且比10小的整数是___________.6.(2022·云南昆明·云大附中校考模拟预测)若26的整数部分为a ,小数部分为b ,则a b -的值为______. 7.(2022·湖北随州·统考中考真题)已知m 为正整数,若189m 是整数,则根据1893337337m m m =⨯⨯⨯=⨯可知m 有最小值3721⨯=.设n 为正整数,若300n是大于1的整数,则n 的最小值为______,最大值为______. 【考向八 实数的运算】例题:(2022·湖南株洲·统考一模)计算:1312(82022)2sin 306-⎛⎫-+--︒ ⎪ ⎪⎝⎭.【变式训练】1.(2022·山东济南·统考模拟预测)计算:01112(2022)2cos30()2π----⨯︒+-.2.(2022·四川乐山·统考二模)计算: ()2038323tan 60+3(2022)π+--︒+-3.(2022·江苏盐城·校考三模)计算:13164sin 45tan 452-⎛⎫+︒-︒+- ⎪⎝⎭.4.(2022·湖南长沙·长沙市南雅中学校联考一模)计算:()01332cos 60820222π-+︒-⨯--.5.(2022·北京西城·校考模拟预测)计算:011(2019)31()2tan302π--+-+--︒.6.(2022春·九年级单元测试)计算:()301236020222tan -︒⎛⎫+-+- ⎪⎝⎭.7.(2022春·九年级单元测试)计算:()20120222sin 6032123π-⎛⎫+-+︒+-- ⎪⎝⎭.8.(2022·广东佛山·校考三模)计算:101|3|tan 60()12( 3.14)3π---︒-----.9.(2022·广东韶关·校考二模)计算:01|32|(3)()2cos30π2-+-+--︒.。

2024成都中考数学第一轮专题复习 重难题型分类题型 综合与实践

2024成都中考数学第一轮专题复习 重难题型分类题型 综合与实践

2024成都中考数学第一轮专题复习重难题型分类题型综合与实践1. (2022河南)综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图①中一个30°的角:______________________________________;(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图②,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图③,判断∠MBQ与∠CBQ的数量关系,并说明理由;(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8 cm,当FQ=1 cm时,直接写出AP的长.第1题图2. (2022齐齐哈尔)数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.转一转:如图①,在矩形ABCD中,点E,F,G分别为边BC,AB,AD的中点,连接EF,DF,H为DF的中点,连接GH .将△BEF 绕点B 旋转,线段DF ,GH 和CE 的位置和长度也随之变化.当△BEF 绕点B 顺时针旋转90°时,请解决下列问题:(1)图②中,AB =BC ,此时点E 落在AB 的延长线上,点F 落在线段BC 上,连接AF ,猜想GH 与CE 之间的数量关系,并证明你的猜想;(2)图③中,AB =2,BC =3,则GH CE=________; (3)当AB =m ,BC =n 时,GH CE=________;第2题图剪一剪、折一折:(4)在(2)的条件下,连接图③中矩形的对角线AC ,并沿对角线AC 剪开,得△ABC (如图④).点M ,N 分别在AC ,BC 上,连接MN ,将△CMN 沿MN 翻折,使点C 的对应点P 落在AB 的延长线上,若PM 平分∠APN ,则CM 长为________.第2题图④类型二 探究迁移型试题3. (2022乐山)以下是华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.如图①,在正方形ABCD 中,CE ⊥DF .求证:CE =DF .证明:设CE 与DF 交于点O ,∵四边形ABCD 是正方形,∴∠B =∠DCB =90°,BC =C D.∴∠BCE +∠DCE =90°.∵CE ⊥DF ,∴∠COD =90°.∴∠CDF +∠DCE =90°.∴∠CDF =∠BCE .∴△CBE ≌△DCF .∴CE =DF .第3题图①某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究.【问题探究】如图②,在正方形ABCD 中,点E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上,且EG ⊥FH .试猜想EG FH的值,并证明你的猜想;【知识迁移】如图③,在矩形ABCD 中,AB =m ,BC =n ,点E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上,且EG ⊥FH ,则EG FH=________; 【拓展应用】如图④,在四边形ABCD 中,∠DAB =90°,∠ABC =60°,AB =BC ,点E ,F 分别在线段AB ,AD 上,且CE ⊥BF .求CE BF的值.图②图③图④第3题图4. (2022江西)综合与实践问题提出某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).操作发现(1)如图①,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为________;当OF与BC垂直时,重叠部分的面积为________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为________;类比探究(2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.①如图②,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;②如图③,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);拓展应用(3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).(参考数据:sin 15°=6-24,cos 15°=6+24,tan 15°=2-3)第4题图源自北师九上P25第4题类型三综合应用型试题5. (2022自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A,B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;第5题图(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(3≈1.73,结果精确到0.1米) (3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E,F(E,F,H在同一直线上),分别测得点P的仰角α,β,再测得E,F间的距离m,点O1,O2到地面的距离O1E,O2F均为1.5米.求PH(用α,β,m表示).图③图④第5题图源自北师九下P22活动课题6. (2022陕西)问题提出(1)如图①,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为________;问题探究(2)如图②,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB,BC于点O,E,求四边形OECA的面积;问题解决(3)如图③,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP 型部件,并要求∠BAP=15°,AP=A C.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP,BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.第6题图。

重难点 填空压轴题(代数篇)(学生版)--2024年中考数学二轮复习

重难点 填空压轴题(代数篇)(学生版)--2024年中考数学二轮复习

重难点 填空压轴题(代数篇)目录题型01 求值类类型一 代数式求值类型二 方程、不等式求值类型三 函数求值题型02 规律探究类类型四 数字规律探究类型五 图形规律探究类型六 函数规律探究题型03 函数最值类类型七 一次函数的最值问题类型八 二次函数的最值问题类型九 反比例函数与其它函数的最值问题题型04 函数临界点类类型十 一次函数的最值问题类型十一 二次函数的最值问题类型十二 反比例函数的最值问题题型01求值类类型一代数式求值1已知,a+b=x+y=2,ax+by=5,则a2+b2=xy+ab x2+y22如图,正方形ABCD内部摆放着①号,②号,③号3个边长都为1的正方形,其中①号正方形部分被②号和③号正方形遮盖,若图中阴影部分的面积为S,则正方形ABCD的边长为.(用含S的式子表示)3若a <112011+12012+12013+12014+12015<a +1,则自然数a =.4下列说法正确的有.(选序号)①若(x -1)x -1=1,则满足条件x 的值有3个.②若x =32m -2,y =3-9m ,则用含x 的代数式表示y 为y =-9x +3.③已知(x -20)2+(x -28)2=100,则(x -24)2的值是34.④1,2,3,⋯,58这58个数中不能表示成某两个自然数的平方差的数共有14个.5四个互不相等的数a ,b ,c ,m 在数轴上的对应点分别为A ,B ,C ,M ,其中a =4,b =8,m =0.5(a +b +c ).(1)若c =2,则A ,B ,C 中与M 距离最小的点为;(2)若在A ,B ,C 中,点C 与点M 的距离最小,且不等于A ,B 与点M 的距离,则符合条件的点C 所表示的数c 的取值范围为.如果一个三位自然数各个数位上的数字均不为0,且百位数字等于十位数字与个位数字的和,则称这个数为“佳佳数”.如:532,因为5=3+2,所以532是“佳佳数”;又如,432,因为4≠3+2,所以432不是“佳佳数”.已知M 是一个“佳佳数”,则M 最大值是;交换M 的百位数字与十位数字得到一个新三位数N ,在N 的末位数字后加2得到一个新的四位数P ,在M 的十位数字与个位数字之间添加M 的十位数字得到一个新四位数Q ,若Q -P 能被7整除,则满足以上条件的“佳佳数”的最大值为.6若一个四位自然数M ,满足个位数字与十位数字之和的平方正好等于M 的千位数字与百位数字组成的两位数,则这个四位数称为“和数”,比如:4952,满足5+2 2=49;若一个四位自然数N ,满足个位数字与十位数字的平方差正好等于N 的千位数字与百位数字组成的两位数,则这个四位数称为“差数”,比如:7239,满足92-32=72;那么最大的“和数”与最小的“差数”之和是.如果一个“和数”M 与一个“差数”N 的个位数字均为a 、十位数字均为b ,且F M ,N =M +N +18a -22811,若F M ,N 为整数时,记G M ,N =aba +b,则G M ,N 的最大值是.7对于任意一个三位自然数M ,若它的各数位上的数字均不为0,且满足十位上数字的平方等于百位数字与个位数字之积的k 倍(k 为整数),则称M 为“k 阶比例中项数”此时,记去掉其个位数字后剩余的两位数为m 1,去掉百位数字后剩余的两位数为m 2,规定F M =m 1+5m 2,则最大的“4阶比例中项数”是;若N =100m +10n +1(其中1≤m ≤4,2≤n ≤8,m ,n 均为正整数)是一个“k 阶比例中项数”,且F N 能被8除余3,则满足条件的N 之和是.类型二方程、不等式求值8已知方程组a1x+b1y=c1a2x+b2y=c2的解为x=4y=3,则方程组2a1x-1+3b1y+1=6c12a2x-1+3b2y+1=6c2的解为.9如果一个五位数的万位数字与个位数字之和等于其百位数字的2倍,则称这个五位数为“星星数”,如果一个五位数的千位数字与十位数字之和等于其百位数字的2倍,则称这个五位数为“月亮数”;一个五位数A,规定其末三位数字组成的数与其前两位数字组成的数的和为F A;若M=10020+10000a+ 2010b+100c+d为“星星数”,N=10000a+1000b+10c+512+d为“月亮数”(其中1≤a≤8,0≤b≤4,0≤c≤8,0≤d≤7,且a,b,c,d为整数),则a+2b+d的值为;在此条件下,若F M+F N 的值能被13整除,则满足条件的M的值为.定义新运算“⊕”,对于任意实数a,b都有a⊕b=a+3b 2.(1)若a=-2,b=6,则a⊕b的立方根是;(2)若不等式4⊕x≥5成立,则该不等式的解集是.10关于x的一元一次不等式组x-32≥2x+13-32x-m>5至少有3个整数解,且关于y的分式方程myy-2+2=-3y2-y有整数解,那么符合条件的所有整数m的和为.11(2024·浙江宁波·模拟预测)已知关于x的一元二次方程x2+ax+b=0有两个根x1,x2,且满足1<x1<x2<2.记t=a+b,则t的取值范围是.12已知,数轴上从左到右有三点A,B,C,它们在数轴上对应的数分别为a,b,c(a,b,c均不为整数),且6<c-a<7,k<b<k+1(k为正整数)为正整数.在点A与点B之间的所有整数依次记为p1,p2,p3⋯,p m;在点B与点C之间的所有整数分别记为q1,q2,q3,⋯,q n.若p21+p22+p23+⋯+p2n=q21+q22+q23 +⋯+q2n,则k的值为.13如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为ts t>0.(1)当t=s时,PB=4;(2)若点P表示的数是x,当2x+4+2x-6的值最小时,则t的取值范围是.14已知a,b,c为正整数,且a>b>c若b+c,a+c,a+b是三个连续正整数的平方,则a2+b2+c2的最小值为.15如果p,q是非零实数,关于x的方程||2023x-2024|-p|=-q始终存在四个不同的实数解,则p+q |p+q|+p-q|p-q|+pq|pq|+p|p|+q|q|的值为.16已知,直角梯形的上底为12厘米,下底为18厘米,高为12厘米.正方形的边长为13厘米,起始状态如下图所示.若正方形固定不动,把直角梯形以2厘米/秒的速度向右沿直线平移,设直角梯形的平移时间为t秒,两个图形的重叠部分面积为S平方厘米,则当S=60时,t=.类型三函数求值17如图,在平面直角坐标系xOy 中,点A x 1,y 1 、B x 2,y 2 在双曲线y =3x上,且0<x 1<x 2,分别过点A ,点B 作x 轴的平行线,与双曲线y =9x 分别交于点C ,点D .若△AOB 的面积为94,则ACBD的值为.18如图,在Rt △ABC 中,∠BAC =90°,B -6,0 ,CB 与y 轴交于点D ,CD BD=14,点C 在反比例函数y =kxx >0 的图象上,且x 轴平分∠ABC ,则k 的值为.19如图,在平面直角坐标系中,平面内有一动点P m ,-14m 2+12m +2 ,定点A 4,0 、B 0,2 ,连结AB .(1)点A 是否在点P 的运动路径上:;(填“是”或“否”)(2)若点P 只是在第一象限内运动,过点P 作PQ ⊥AB 于Q ,当PQ 取得最大值时,点P 的坐标是.20如图1,在△ABC 中,AB =AC ,∠BAC =90°,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x =AD ,y =AE +CD,y关于x的函数图象如图2,图象过点0,2.则:(1)BC=.(2)y关于x的函数图象的最低点的横坐标是.21(2024·浙江宁波·一模)如图,点A为反比例函数y=k1x(x>0)上一点,连结AO并延长交反比例函数y=k2x(x<0)于点B,且k2=9k1.点C在y轴正半轴上,连结CA并延长交x轴于点E,连结BC交x轴于点F,若ACAE=4,SΔCOB=10,则△COF的面积为.22如图,正比例函数y=x与反比例函数y=kx(x>0)的图象交于点A,OA=2,过点A作AB⊥OA,交x轴于点B;作BA1∥OA,交反比例函数的图象于点A₁;过点A₁作A₁B₁⊥A₁B,交x轴于点B₁;再作B1A2∥BA1,交反比例函数的图象于点A₂,依次进行下去⋯根据以上信息,解答下列问题.(1)k的值为.(2)点A101的横坐标为.23给出如下新定义:在平面直角坐标系中,动点M x,y在反比例函数y1=1x上,若点A绕着M点旋转180°后得到点B,我们称B是A关于M的“伴随点”.若A2,t关于M的“伴随点”为B,由A、B和坐标原点构成的三角形是以OA为直角边的等腰直角三角形,则t的值是.24(2023·浙江温州·三模)如图1,为世界最大跨度铁路拱桥--贵州北盘江特大桥.如图2,已知拱桥曲线呈抛物线,主桥底部跨度OA=400米,以O为原点,OA所在直线为x轴建立平面直角坐标系,点E为抛物线最高点,立柱AB,CD,GH都与x轴垂直,BN∥OA,BC=120m,HF=40m,若F,G,O和B,D,O均三点共线.则立柱比HGCD =,以及EFAB=.25如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以3cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧作△PQH,且QH⊥AB,点H在射线AB上.设点P的运动时间为t(s).△PQH与△ABC的重叠部分的面积为S(cm2),则当t=(s)时S最大;当t=(s)时S的值为38cm2.26一次函数y=kx+b(k、b为常数,k≠0)中的x与y的部分对应值如下表:下列结论中一定正确的是(填序号即可).①当n>0时,k<0;②当y的值随x值的增大而增大时,n<0;③当S△AOB=9时,n=-5或n=7;④当k<0时,直线AB与y轴相交于点C,则OC=3n+6 4.题型02规律探究类类型四数字规律探究27将实数-1,2,-3,4,-5⋅⋅⋅按图所示方式排列.若用m,n表示第m排从左向右第n个数,则4,3与23,20 表示的两数之和是.28小亮有黑、白各10张卡片,分别写有数字0~9.把它们像扑克牌那样洗过后,数字朝下,排成四行,排列规则如下:①从左至右按从小到大的顺序排列:②黑、白卡片数字相同时,黑卡片放在左边.小亮每行翻开了两张卡片,如图所示:其余卡片上数字小亮让小明根据排列规则进行推算,小明发现有的卡片上数字可以唯一确定,例如第四行最后一张白色卡片上数字只能是有的卡片上的数字并不能唯一确定,小明对不能唯一确定的卡片上数字进行猜测,则小明一次猜对所有数字的概率是.29将正偶数按下表排列5列:第1列第2列第3列第4列第5列第一行2468第二行16141210第三行18202224⋯⋯2826根据上面规律,则2000应在.30下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为.142638⋯a 1829320435bx31我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂分家万事非”.如图,在边长为1的正方形纸板上,依次贴上面积为12,14,18,⋯,12n 的长方形彩色纸片(n 为大于1的整数),运用“数形结合”的思想,依数形变化的规律,可计算出12+14+18+⋯+12100=.32定义一种对正整数n 的“F 运算”:(1)当n 为奇数时,结果为3n +5;(2)当n 为偶数时,结果为n 2k(其中k 是使n2k为奇数的正整数),并且运算重复进行.例如,取n =30,则:若n =420,则第2023次“F 运算”的结果是.33记S n =a 1+a 2+a 3+⋯+a n ,令T n =S 1+S 2+⋯+S nn,称T n 为a 1,a 2,⋯,a n 这数列的“理想数”.已知a 1,a 2,⋯,a 500的“理想数”为2505,那么24,a 1,a 2,⋯,a 500的“理想数”为.34观察下列算式:12=1×2×36;12+22=2×3×56;12+22+32=3×4×76;12+22+32+42=4×5×96;⋯⋯.用你所发现的规律,化简:(n +12)(n +13)(2n +25)6-(n +10)(n +11)(2n +21)6=(n 为正整数).35斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即:1,1,2,3,5,8,13,21,34,⋯实际生活中及现代物理与化学等领域也有着广泛的应用,若斐波那契数列中的第n 个数记为a n ,则1+a 3+a 5+a 7+a 9+⋅⋅⋅+a 2021与斐波那契数列中的第个数相同.类型五图形规律探究36如图是一组有规律的图案,它由若干个大小相同的点和三角形组成.第1个图案中有3个点和1个三角形,第2个图案中有6个点和3个三角形,第3个图案中有9个点和6个三角形,⋅⋅⋅⋅⋅⋅依此规律,第10个图案中,三角形的个数与点个数的和为.37如图,图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,⋯,按此规律排列下去,第⑧个图形中菱形的个数为.38如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为a 1,第2幅图形中“•”的个数为a 2,第3幅图形中“•”的个数为a 3,以此类推,则1a 1+1a 2+1a 3+⋯+1a 18的值为.39如图,第一个正方形后,是用大小相等的小正方形拼成的大正方形,若第n 个、第m 个图形中正方形的个数分别记为S m 、S n ,m -n =a ,1<a <5,(-3)a <S m -S n <(-5)a ,则满足条件的所有n 值的和为.类型六函数规律探究40如图,在平面直角坐标系中,A 1,0 ,D 0,2 ,第1个正方形ABCD 面积记为S 1,第2个正方形A 1B 1C 1C 面积记为S 2,第3个正方形A 2B 2C 2C 1面积记为S 3,,以此规律,则第2023个正方形的面积S 2023=.41如图所示,已知直线与x 、y 轴交于B 、C 两点,A 0,0 ,在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,⋯则第n 个等边三角形的边长等于.42如图,在平面直角坐标系中,正方形A 1B 1C 1A 2与正方形A 2B 2C 2A 3是以O 为位似中心的位似图形,且位似比为12,点A 1,A 2,A 3在x 轴上,延长A 3C 2交射线OB 1与点B 3,以A 3B 3为边作正方形A 3B 3C 3A 4;延长A 4C 3,交射线OB 1与点B 4,以A 4B 4为边作正方形A 4B 4C 4A 3;⋯按照这样的规律继续作下去,若OA 1=1,则正方形A 2021B 2021C 2021A 2022的面积为.43如图,已知点A 1,A 2,,A 2020在函数y =x 2位于第二象限的图象上,点B 1,B 2,,B 2020在函数y =x 2位于第一象限的图象上,点C 1,C 2,,C 2020在y 轴的正半轴上,若四边形OA 1C 1B 1、C 1A 2C 2B 2,,C 2021A 2022C 2022B 2022都是正方形,则正方形C 2021A 2022C 2022B 2022的对角线长为.44如图所示,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,⋯,A n ,将抛物线y =x 2沿直线l :y =x 向上平移,得到一系列抛物线,且满足条件:①抛物线的顶点M 1,M 2,M 3,⋯,M n 都在直线y =x 上;②抛物线依次经过点A 1,A 2,A 3,⋯,A n ,则顶点M 2021的坐标为.45如图,在函数y=4xx>0的图象上有点P1、P2、P3、⋯,P n,P n+1,点P1的横坐标为1,且后面每个点的横坐标与它前面相邻点的横坐标的差都是1,过点P1、P2、P3、⋯,P n,P n+1,分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3、⋯,S n,则S n=.(用含n的代数式表示)46如图,点A1,A2,A3⋯在反比例函数y=1xx>0的图象上,点B1,B2,B3,⋯B n在y轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=⋯,直线y=x与双曲线y=1x交于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3⊥B2A3⋯,则B n(n为正整数)的坐标是.题型03函数最值类类型七一次函数的最值问题47如图,在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,点P是线段AB的中点.若动点C在x轴上,连接BC,以BC为直角边,点B为直角顶点作等腰直角△BCD,连接DP,则DP长度的最小值是.48如图,直线y=3x+3分别交x轴、y轴于点B、A,点M在x轴,将AM绕点A按逆时针旋转60°得到AN,连接BN,则BN的最小值为.49直线y=x+3与y轴和x轴分别交于A、B两点,点C是OB的三等分点,D,E分别是直线AB和y轴上的动点,则△CDE周长的最小值是.50在平面直角坐标系中,A2,0,C在直线y=x上运动,存在一点P,满足∠POA+∠OPA,B3,0OP的最小值为.=∠APB,则CP+1351已知二次函数y=ax2+bx+c的图象与x轴交于点A、B,与y轴交于点C,且顶点的纵坐标为-1,如果△ABC为直角三角形,那么△ABC的面积的最大值为.类型八二次函数的最值问题52(23-24九年级上·浙江·期末)已知Rt△ABC的直角顶点C与原点O重合,点A,B都落在抛物线y=4x2上,则AB与y轴的交点为;若OD⊥AB于点D,则点D到点1,0的最大距离为.53已知关于x的二次函数y=-x-k2+11,当1≤x≤4时,函数有最小值2k,则k的值为.54(2024·浙江杭州·模拟预测)若点在抛物线上过y轴上点E作两条相互垂直的直线与抛物线分别交于A,B,C,D,且M,N分别是线段AB,CD的中点,面积的最小值为.55如图,在平面直角坐标系中,二次函数y=-x2+2x+3的图象与x轴交于点A,B,与y轴交于点C,点在线段上,则PA+PO的最小值是.56(23-24九年级上·浙江嘉兴·期中)如图,抛物线y=x2-2x-3与轴交于两点,抛物线的顶点为,点为AB的中点,以为圆心,长为半径在轴的上方作一个半圆,点为半圆上一动点,连接,取的中点,当点沿着半圆从点运动至点的过程中,线段的最小值为.类型九反比例函数与其它函数的最值问题57如图,一次函数y=-x+b与反比例函数的图像相交于A,B两点,其交点的横坐标分别为4,8.(1)k的值是;(2)将点A沿x轴正方向平移个单位长度得到点C,连接并延长交x轴正半轴于点D,则的最大值是.58如图,一次函数的图象与轴、轴分别交于、两点.线段的中点在反比例函数的图象上.若一次函数的图象与的图象有且只有一个第三象限的公共点,且与轴、轴分别交于、两点,试求出四边形的面积最小为.59如图,曲线是二次函数y=-x2+6x+3图像的一部分(其中A是抛物线与y轴的交点,B是抛物线顶点),曲线是反比例函数()图像的一部分,A,C两点的纵坐标相等,由点C开始不断重复“”的过程,形成一组波浪线.若点是波浪线上的点,则;若点和是波浪线上的点,则的最大值为.60如图,在平面直角坐标系中,点A,C分别在坐标轴上,且四边形是边长为3的正方形,反比例函数的图像与边分别交于E,D两点,△DOE的面积为4,点P为y轴上一点,则的最小值为.类型十一 一次函数的最值问题61如图,在平面直角坐标系中,已知点A的坐标为,点B的坐标为,点为y轴上一动点,现连接.记线段所围成的封闭区域(不有6个整点时,m的取值范围是.62在平面直角坐标系中,点的坐标为,点的“变换点”的坐标定义如下:当时,点坐标为;当时,点坐标为,线段上所有点按上述“变换点”组成一个新的图形,若直线与组成的新的图形有两个交点,则的取值范围是.63把a、b、c三个数按照从小到大排列,最大的数记作,例如,若直线与函数的图象有且只有1个交点,则k的取值范围是.64如图,直线分别与坐标轴交于,两点,若称横纵坐标都是整数的点为整点,那么△AOB内(含边界)的整点共有个.65某数学兴趣小组遇到这样一个问题:探究函数员小东根据学习函数的经验,对函数的图象与性质进行了探究,结合绝对值的性质以及函数图象,解决问题:若一次函数的图象与函数的图象只有一个交点,则实数a的取值范围是.类型十二二次函数的最值问题66若抛物线y=x2-x+m与轴交于不同的两点、,且,则的取值范围是.67已知点,,若抛物线y=ax2-2ax+4a≠0与线段恰有一个公共点,则a 的取值范围为.68(23-24九年级上·浙江金华·期末)定义:若x,y满足:,(k为常数)且x≠y,则称点为“好点”.(1)若是“好点”,则.(2)在的范围内,若二次函数的图象上至少存在一个“好点”,则c的取值范围为.69如图函数y=ax2+bx+ca>0,b2-4ac>0图象是由函数y=ax2+bx+c a>0,b2-4ac>0的图像x轴上方部分不变,下方部分沿轴向上翻折而成,如图所示,则下列结论正确的是.;将图像向上平移个单位后与直线有个交点.70在平面直角坐标系中,为抛物线y=x2+4x+2上一点,为平面上一点,且位于点右侧.(1)此抛物线的对称轴为直线;(2)若线段与抛物线有两个交点,则的取值范围是.类型十三反比例函数的最值问题71在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,那么称该点为“黎点”.例如都是“黎点”.(1)当时,双曲线上的“黎点”为;(2)若抛物线(为常数)上有且只有一个“黎点”,则当时,的取值范围为.72定义新运算:,即的取值为a,b,c的中位数,例如:,,已知函数与直线有个交点时,则的取值范围为.73对于平面直角坐标系xOy 中的图形M 和直线m ,给出如下定义:若图形M 上有点到直线m 的距离为d ,那么称这个点为图形M 到直线m 的“d 距点”.如图,双曲线C :y =4x(x >0)和直线l :y =-x +n ,若图形C 到直线l 的“2距点”只有2个,则n 的取值范围是.74如图是6个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角和凹入的角的顶点记作(为的整数).函数的图象为.()若过点,则.()若过,则一定过另一点,则.()若使得这些点分布在它的两侧,且一侧个点一侧个点,请写出符合要求的的所有整数值:.75定义:在平面直角坐标系xOy 中,函数图象上到两条坐标轴的距离之积等于的点,叫做该函数图象的“n 阶积点”.例如,点为一次函数y =-32x +3图象的“92阶积点”.若y 关于x的一次函数y =nx +4n -6图象的“n 阶积点”恰好有3个,则n 的值为.76定义:平面直角坐标系xOy 中,点,点,若,,其中k 为常数,且k≠0,则称点是点的“k 级变换点”.例如,点-2,4 是点1,2 的“-2级变换点”.(1)若函数y =-4x的图象上存在点1,2 的“k 级变换点”,则k 的值为;(2)若关于x 的二次函数y =nx 2-4nx -5n (x ≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线上,则的取值范围是.77如图,在第一象限,反比例函数y =k 1x x >0 和y =k 2x x >0 的图象分别与直线l :y =25x 交于点,,过点A ,B 分别作轴,轴,垂足分别为C ,D .(1)①k 1的值为.②图中阴影部分的面积为.(2)已知反比例函数y =m x x >0 的图象与直线l :y =25x 交于点,与抛物线y =-x 2+992x 交于点,,将点M ,N 之间的抛物线(不含端点)记为图象G ,则图象G 上的整点(横、纵坐标都是整数的点)有个.78定义:函数图象上到两坐标轴的距离都不大于的点叫做这个函数图象的“n 阶方点”.例如,点是函数图象的“阶方点”;点是函数图象的“2阶方点”.(1)在①;②;③三点中,是反比例函数图象的“1阶方点”的有(填序号);(2)若y 关于x 的一次函数y =ax -3a +1图象的“2阶方点”有且只有一个,则;(3)若y 关于x 的二次函数图象的“n 阶方点”一定存在,则n 的取值范围为.。

2024年中考数学复习重难点题型训练—简单几何证明题(含答案解析)

2024年中考数学复习重难点题型训练—简单几何证明题(含答案解析)

2024年中考数学复习重难点题型训练—简单几何证明题(含答案解析)类型一三角形全等1.(2022·西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【答案】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD(SAS).2.(2022·湖南省益阳市)如图,在Rt△ABC中,∠B=90°,CD/​/AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.【答案】证明:∵DE⊥AC,∠B=90°,∴∠DEC =∠B =90°,∵CD/​/AB ,∴∠A =∠DCE ,在△CED 和△ABC 中,∠DCE =∠A CE =AB ∠DEC =∠B ,∴△CED≌△ABC(ASA).3.(2022·江苏省南通市)如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .(1)求证:∠A =∠C ;(2)求证:AB//CD .【答案】证明:(1)在△AOB 和△COD 中,OA =OC ∠AOB =∠COD OB =OD ,∴△AOB≌△COD(SAS),∴∠A =∠C ;(2)由(1)得∠A =∠C ,∴AB//CD .4.(2022·上海市)如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,AE 2=AQ ⋅AB .求证:(1)∠CAE =∠BAF ;(2)CF ⋅FQ =AF ⋅BQ .【答案】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF−EF=BE−EF,即CE=BF,在△ACE和△ABF中,AC=AB∠C=∠BCE=BF,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ⋅AB,AC=AB,∴AE AQ=AC AF,∴△ACE∽AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴CF BQ=AF FQ,即CF⋅FQ=AF⋅BQ.5.(2022·贵州省铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.【答案】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠B=∠D=∠ACE=90°,∴∠DCE+∠DEC=90°,∠BCA+∠DCE=90°,∴∠BCA=∠DEC,在△ABC和△CDE中,∠BCA=∠DEC∠B=∠DAB=CD,∴△ABC≌△CDE(AAS).6.(2022·广东省云浮市)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【答案】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,OP=OPPD=PE,∴Rt△OPD≌Rt△OPE(HL).7.(2022·四川省宜宾市)已知:如图,点A、D、C、F在同一直线上,AB/​/DE,∠B=∠E,BC=EF.求证:AD=CF.【答案】证明:∵AB//DE,∴∠A=∠EDF.在△ABC和△DEF中,∠A=∠EDF∠B=∠EBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC−DC=DF−DC,即:AD=CF.8.(2022·陕西省)如图,在△ABC中,点D在边BC上,CD=AB,DE/​/AB,∠DCE=∠A.求证:DE=BC.【答案】.证明:∵DE//AB,∴∠EDC=∠B,在△CDE和△ABC中,∠EDC=∠BCD=AB∠DCE=∠A,∴△CDE≌△ABC(ASA),∴DE=BC.9.(2022·湖南省衡阳市)如图,在△ABC中,AB=AC,D、E是BC边上的点,且BD=CE.求证:AD=AE.【答案】证明:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,AB=AC∠B=∠CBD=CE,∴△ABD≌△ACE(SAS),∴AD=AE.10.(2022·四川省乐山市)如图,B是线段AC的中点,AD/​/BE,BD//CE.求证:△ABD≌△BCE.【答案】证明:∵点B为线段AC的中点,∴AB=BC,∵AD/​/BE,∴∠A =∠EBC ,∵BD/​/CE ,∴∠C =∠DBA ,在△ABD 与△BCE 中,∠A =∠EBC AB =BC ∠DBA =∠C ,∴△ABD≌△BCE.(ASA).11.(2021·湖南衡阳市·中考真题)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DFBC EF =.求证:ABC DEF △≌△.【答案】见解析【分析】根据//,//AC DF BC EF ,可以得到,A FDE ABC DEF ∠=∠∠=∠,然后根据题目中的条件,利用ASA 证明△ABC ≌△DEF 即可.【详解】证明:点A ,B ,C ,D ,E 在一条直线上∵//,//AC DF BC EF∴,A FDE ABC DEF∠=∠∠=∠在ABC 与DEF 中CAB FDE AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DEF ASA △≌△【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目.12.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.【答案】证明见解析【分析】根据全等三角形的性质,通过证明ABO DCO △≌△,得OB OC =,结合等腰三角形的性质,即可得到答案.【详解】∵A D AOB DOC AB DC ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴ABO DCO △≌△(AAS ),∴OB OC =,∴OBC OCB ∠=∠.【点睛】本题考查了全等三角形、等腰三角形的知识;解题的关键是熟练掌握全等三角形、等腰三角形的性质,从而完成求解.13.(2021·四川泸州市·中考真题)如图,点D 在AB 上,点E 在AC 上,AB=AC ,∠B=∠C ,求证:BD=CE【答案】证明见详解.【分析】根据“ASA”证明△ABE ≌△ACD ,然后根据全等三角形的对应边相等即可得到结论.【详解】证明:在△ABE 和△ACD 中,∵A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABE ≌△ACD (ASA),∴AE=AD ,∴BD=AB–AD=AC-AE=CE .【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.14.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.【答案】见解析【分析】直接利用SSS 证明△ACD ≌△BDC ,即可证明.【详解】解:在△ACD 和△BDC 中,AD BC AC BD CD DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BDC (SSS ),∴∠DAC=∠CBD .【点睛】本题考查了全等三角形的判定和性质,解题的关键是根据题意灵活运用SSS 的方法.15.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点E 在AC 的延长线上,ED ⊥AB 于点D ,若BC =ED ,求证:CE =DB.【分析】由“AAS ”可证△ABC ≌△AED ,可得AE =AB ,AC =AD ,由线段的和差关系可得结论.【解答】证明:∵ED ⊥AB ,∴∠ADE =∠ACB =90°,∠A =∠A ,BC =DE ,∴△ABC ≌△AED (AAS ),∴AE =AB ,AC =AD ,∴CE =BD .16.(2020•南充)如图,点C 在线段BD 上,且AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,BC =DE .求证:AB =CD .【分析】证明△ABC≌△CDE(ASA),可得出结论.【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,∠ACB=∠CEDBC=DE∠ABC=∠CDE,∴△ABC≌△CDE(ASA),∴AB=CD.17.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.【解答】证明:在△ABE与△ACD中∠A=∠AAB=AC∠B=∠C,∴△ABE≌△ACD.∴AD =AE .∴BD =CE .18.(2020•铜仁市)如图,∠B =∠E ,BF =EC ,AC ∥DF .求证:△ABC ≌△DEF .【分析】首先利用平行线的性质得出∠ACB =∠DFE ,进而利用全等三角形的判定定理ASA ,进而得出答案.【解答】证明:∵AC ∥DF ,∴∠ACB =∠DFE ,∵BF =CE ,∴BC =EF ,在△ABC 和△DEF 中,∠B =∠E BC =EF ∠ACB =∠DFE ,∴△ABC ≌△DEF (ASA ).19.(2020•无锡)如图,已知AB ∥CD ,AB =CD ,BE =CF .求证:(1)△ABF ≌△DCE ;(2)AF ∥DE .【分析】(1)先由平行线的性质得∠B =∠C ,从而利用SAS 判定△ABF ≌△DCE ;(2)根据全等三角形的性质得∠AFB =∠DEC ,由等角的补角相等可得∠AFE =∠DEF ,再由平行线的判定可得结论.【解答】证明:(1)∵AB ∥CD ,∴∠B =∠C ,∵BE =CF ,∴BE ﹣EF =CF ﹣EF ,即BF =CE ,在△ABF 和△DCE 中,∵AB =CD ∠B =∠C BF =CE ,∴△ABF ≌△DCE (SAS );(2)∵△ABF ≌△DCE ,∴∠AFB =∠DEC ,∴∠AFE =∠DEF ,∴AF ∥DE .20.(2020•台州)如图,已知AB =AC ,AD =AE ,BD 和CE 相交于点O .(1)求证:△ABD ≌△ACE ;(2)判断△BOC 的形状,并说明理由.【分析】(1)由“SAS ”可证△ABD ≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC=∠OCB,可得BO=CO,即可得结论.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.21.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∠A=∠D∠B=∠CAE=DF,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=12×(180°﹣40°)=70°.类型二特殊四边形判定及性质22.(2022·广西壮族自治区河池市)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.【答案】(1)证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC和△DEF中,AB=DEBC=EFAC=DF,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE;(2)解:如图,四边形BFEC是平行四边形,理由如下:由(1)可知,∠ACB=∠DFE,∴BC/​/EF,又∵BC=EF,∴四边形BFEC是平行四边形.23.(2022·青海省西宁市)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的边长.【答案】(1)证明:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD ,在△ABE 和△ADF 中,∠AEB =∠AFD ∠B =∠D AB =AD ,∴△ABE≌△ADF(AAS);(2)解:设菱形的边长为x ,∵AB =CD =x ,CF =2,∴DF =x −2,∵△ABE≌△ADF ,∴BE =DF =x −2,在Rt △ABE 中,根据勾股定理得,AE 2+BE 2=AB 2,即42+(x −2)2=x 2,解得x =5,∴菱形的边长是5.24.(2022·江苏省无锡市)如图,已知四边形ABCD为矩形,AB=22,BC=4,点E在BC 上,CE=AE,将△ABC沿AC翻折到△AFC,连接EF.(1)求EF的长;(2)求sin∠CEF的值.【答案】解:(1)∵CE=AE,∴∠ECA=∠EAC,根据翻折可得:∠ECA=∠FCA,∠BAC=∠CAF,∵四边形ABCD是矩形,∴DA//CB,∴∠ECA=∠CAD,∴∠EAC=∠CAD,∴∠DAF=∠BAE,∵∠BAD=90°,∴∠EAF=90°,设CE=AE=x,则BE=4−x,在△BAE中,根据勾股定理可得:BA2+BE2=AE2,即:(22)2+(4−x)2= x2,解得:x=3,在Rt△EAF中,EF=AF2+AE2=17.(2)过点F作FG⊥BC交BC于点G,设CG=x,则GB=3−x,∵FC=4,FE=17,∴FG2=FC2−CG2=FE2−EG2,即:16−x2=17−(3−x)2,解得:x=43,∴FG=FC2−CG2∴sin∠CEF=FG EF=25.(2022·湖北省荆门市)如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB 沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【答案】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,∠ CFE=∠AFD∠D=∠E=90°AD=CE,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8−a,∵四边形ABCD是矩形,∴AB//CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8−a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8−a)2,∴a=64−x216,∴tan∠DAF=DF AD=64−x216x.26.(2022·四川省遂宁市)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF//AC交OE的延长线于点F,连接AF.(1)求证:△AOE≌△DFE;(2)判定四边形AODF的形状并说明理由.【答案】(1)证明:∵E是AD的中点,∴AE=DE,∵DF//AC,∴∠OAD=∠ADF,∵∠AEO=∠DEF,∴△AOE≌△DFE(ASA).(2)解:四边形AODF为矩形.理由:∵△AOE≌△DFE,∴AO=DF,∵DF//AC,∴四边形AODF为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,即∠AOD=90°,∴平行四边形AODF为矩形.27.(2022·湖北省)如图,已知E、F分别是▱ABCD的边BC,AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,且AD=BC,∴AF//EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)如图所示:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°−∠2,∠4=90°−∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=12BC=5.28.(2022·云南省)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE 与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.【答案】.(1)证明:∵四边形ABCD是平行四边形,∴BA//CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,∠BAE=∠FDEAE=DE∠BEA=∠FED,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF=AD2−DF2=52−32=4,∴S矩形ABDF=DF⋅AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=12BD⋅CD=12×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.29.(2022·广西壮族自治区河池市)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.【答案】(1)证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC和△DEF中,AB=DEBC=EFAC=DF,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE;(2)解:如图,四边形BFEC是平行四边形,理由如下:由(1)可知,∠ACB=∠DFE,∴BC//EF,又∵BC=EF,∴四边形BFEC是平行四边形.30.(2022·湖南省郴州市)如图,四边形ABCD是菱形,E,F是对角线AC上的两点,且AE=CF,连接BF,FD,DE,EB.求证:四边形DEBF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠DAB=∠DCB,AC平分∠DAB,AC平分∠DCB,∴∠DAC=∠BAC=12∠DAB,∠DCA=∠ACB=12∠DCB,∴∠DAC=∠BAC=∠DCA=∠ACB,∵AE=CF,∴△DAE≌△BAE≌△BCF≌△DCF(SAS),∴DE=BE=BF=DF,∴四边形DEBF是菱形.31.(2022·山东省聊城市)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C 作CF//AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF 是菱形,证明你的结论.【答案】(1)证明:∵CF//AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD//CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=12AB=AD,∴四边形ADCF是菱形.32.(2022·北京市)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【答案】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB//DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∵OA=OC,∴DB⊥EF,∴平行四边形EBFD是菱形.33.(2022·湖南省张家界市)如图,菱形ABCD的对角线AC、BD相交于点O,点E是CD的中点,连接OE,过点C作CF//BD交OE的延长线于点F,连接DF.(1)求证:△ODE≌△FCE;(2)试判断四边形ODFC的形状,并写出证明过程.【答案】.(1)证明:∵点E是CD的中点,∴CE=DE,又∵CF//BD∴∠ODE=∠FCE,在△ODE和△FCE中,∠ODE=∠FCEDE=CE∠DEO=∠CEF,∴△ODE≌△FCE(ASA);(2)解:四边形ODFC为矩形,证明如下:∵△ODE≌△FCE,∴OE=FE,又∵CE=DE,∴四边形ODFC为平行四边形,又∵四边形ABCD为菱形,∴AC⊥BD,即∠DOC=90°,∴四边形ODFC为矩形.34.(2022·四川省内江市)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【答案】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB//CD,∴∠ABD=∠CDB,在△ABE和△CDF中,AB=CD∠ABE=∠CDFBE=DF,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°−∠AEB=180°−∠CFD,即∠AEF=∠CFE,∴AE//CF,∵AE=CF,AE//CF,∴四边形AECF是平行四边形.35.(2022·湖南省长沙市)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=32,AO=2,求BD的长及四边形ABCD 的周长.【答案】(1)证明:∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD是菱形,∴AC⊥BD;(2)解:∵点E,F分别为AD,AO的中点,∴EF是△AOD的中位线,∴OD=2EF=3,由(1)可知,四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BD=2OD=6,在Rt△AOD中,由勾股定理得:AD=AO2+OD2=22+32=13,∴菱形ABCD的周长=4AD=41336.(2021·四川广安市·中考真题)如图,四边形ABCD是菱形,点E、F分别在边AB、AD=.连接CE、CF.的延长线上,且BE DF求证:CE CF=.【答案】见解析【分析】根据菱形的性质得到BC=CD,∠ADC=∠ABC,根据SAS证明△BEC≌△DFC,可得CE=CF.【详解】解:∵四边形ABCD 是菱形,∴BC=CD ,∠ADC=∠ABC ,∴∠CDF=∠CBE ,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△DFC (SAS ),∴CE=CF .【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.37.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC.(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =,求四边形AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE ∥AB ,DF ∥AC 判定四边形AFDE 是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD ,可得AE=DE ,即可证明;(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,=2,∴∴四边形AFDE的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.38.(2021·江苏连云港市·中考真题)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;,求证:四边形ACED是矩形.(2)如果AB AE【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED是平行四边形,∴四边形ACED是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.39.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.【答案】(1)见解析;(2)EF ⊥BD 或EB =ED ,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF ;(2)连接BF ,DE ,由AOE COF V V ≌,得到OE=OF ,又AO=CO ,所以四边形AECF 是平行四边形,则根据EF ⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA =OC ,BE ∥DF∴∠E =∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE =CF(2)当EF ⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF ,DE∵四边形ABCD 是平行四边形∴OB =OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF ⊥BD ,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.40(2020•黄冈)已知:如图,在▱ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD =CE .【分析】只要证明△AOD≌△EOC(ASA)即可解决问题;【解答】证明:∵O是CD的中点,∴OD=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∠D=∠OCEOD=OC∠AOD=∠EOC,∴△AOD≌△EOC(ASA),∴AD=CE.41.(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=32,求EF的长;(2)判断四边形AECF的形状,并说明理由.【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=32,进而得出EF的长;(2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.【解析】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=32,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.42.(2020•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,∠ADC=∠CBA,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC ⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,AD=CB∠ADE=∠CBFDE=BF,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.43.(2020•新疆)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.【分析】(1)根据平行四边形的性质,可以得到AD=CB,AD∥CB,从而可以得到∠DAE=∠BCF,再根据DE∥BF和等角的补角相等,从而可以得到∠AED=∠CFB,然后即可证明△ADE和△CBF全等,从而可以得到AE=CF;(2)根据(1)中的△ADE和△CBF全等,可以得到DE=BF,再根据DE∥BF,即可得到四边形EBFD是平行四边形,再根据BE=DE,即可得到四边形EBFD为菱形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF ,∵DE ∥BF ,∴∠DEF =∠BFE ,∴∠AED =∠CFB ,在△ADE 和△CBF 中,∠DAE =∠BCF ∠AED =∠CFB AD =CB ,∴△ADE ≌△CBF (AAS ),∴AE =CF ;(2)证明:由(1)知△ADE ≌△CBF ,则DE =BF ,又∵DE ∥BF ,∴四边形EBFD 是平行四边形,∵BE =DE ,∴四边形EBFD 为菱形.类型三与相似有关的证明44.(2021·广东中考真题)如图,边长为1的正方形ABCD 中,点E 为AD 的中点.连接BE ,将ABE △沿BE 折叠得到,FBE BF 交AC 于点G ,求CG 的长.【答案】CG =【分析】根据题意,延长BF 交CD 于H 连EH ,通过证明()Rt EDH Rt EFH HL ≌、DHE AEB ∽得到34CH =,再由HGC BGA ∽得到()34CG AC CG =-,进而即可求得CG 的长.【详解】解:延长BF 交CD 于H 连EH ,∵FBE 由ABE △沿BE 折叠得到,∴EA EF =,90EFB EAB ∠=∠=︒,∵E 为AD 中点,正方形ABCD 边长为1,∴12EA ED ==,∴12ED EF ==,∵四边形ABCD 是正方形,∴90D EFB EFH ∠=∠=∠=︒,在Rt EDH △和Rt EFH 中,ED EF EH EH=⎧⎨=⎩,∴()Rt EDH Rt EFH HL ≌,又∵AEB FEB ∠=∠,∴90DEH AEB ∠+∠=︒,∵90ABE AEB ∠+∠=︒,∴ABE DEH ∠=∠,∴DHE AEB ∽,∴12DH AE DE AB ==,∴14DH =,∴13144CH CD DH =-=-=,∵CH AB ∥,∴HGC BGA ∽,∴34CG CH AG AB ==,∴()3344CG AG AC CG ==-,∵1AB =,1CB =,90CBA ∠=︒,∴AC =,∴)34CG CG =,∴CG =.【点睛】本题主要考查了三角形全等的判定及性质、三角形相似的判定及性质以及正方形的性质,熟练掌握相关几何知识是解决本题的关键.45.(2021·湖北鄂州市·中考真题)如图,在ABCD 中,点E 、F 分别在边AD 、BC 上,(1)探究四边形BEDF的形状,并说明理由;(2)连接AC,分别交BE、DF于点G、H,连接BD交AC于点O.若23AGOG=,4AE=,求BC的长.【答案】(1)平行四边形,见解析;(2)16【分析】(1)利用平行四边形的判定定理,两组对边分别平行是平行四边形即可证明;(2)根据23AGOG=,找到边与边的等量关系,再利用三角形相似,建立等式进行求解即可.【详解】(1)四边形BEDF为平行四边形.理由如下:∵四边形ABCD为平行四边形∴ABC ADC∠=∠∵ABE CDF∠=∠∴EBF EDF∠=∠∵四边形ABCD为平行四边形∴//AD BC∴EDF DFC EBF∠=∠=∠∴//BE DF∵//AD BC∴四边形BEDF 为平行四边形(2)设2AG a =,∵23AG OG =∴3OG a =,5AO a=∵四边形ABCD 为平行四边形∴5AO CO a ==,10AC a =,8CG a=∵//AD BC,,AGE CGB AEG CBG EAG BCG ∠=∠∠=∠∠=∠,∴AGE CGB∆∆∽∴14AE AG BC GC ==∵4AE =∴16BC =.【点睛】本题考查了平行四边形的判定定理、相似三角形的判定定理,解题的关键是:熟练掌握相关定理,能进行相关的证明.46.(2021·北京中考真题)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明;(2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.【答案】(1)BAE CAD ∠=∠,BM BE MD =+,理由见详解;(2)DN EN =,理由见详解.【分析】(1)由题意及旋转的性质易得BAC EAD α∠=∠=,AE AD =,然后可证ABE ACD △≌△,进而问题可求解;(2)过点E 作EH ⊥AB ,垂足为点Q ,交AB 于点H ,由(1)可得ABE ACD ∠=∠,BE CD =,易证BH BE CD ==,进而可得HM DM =,然后可得DMN DHE ∽,最后根据相似三角形的性质可求证.【详解】(1)证明:∵BAC EAD α∠=∠=,∴BAE BAD BAD CAD α∠+∠=∠+∠=,∴BAE CAD ∠=∠,由旋转的性质可得AE AD =,∵AB AC =,∴()ABE ACD SAS ≌,∴BE CD =,∵点M 为BC 的中点,∴BM CM =,∵CM MD CD MD BE =+=+,∴BM BE MD =+;(2)证明:DN EN =,理由如下:过点E 作EH ⊥AB ,垂足为点Q ,交AB 于点H ,如图所示:∴90EQB HQB ∠=∠=︒,由(1)可得ABE ACD △≌△,∴ABE ACD ∠=∠,BE CD =,∵AB AC =,∴ABC C ABE ∠=∠=∠,∵BQ BQ =,∴()BQE BQH ASA ≌,∴BH BE CD ==,∵MB MC =,∴HM DM =,∵MN AB ⊥,∴//MN EH ,∴DMN DHE ∽,∴12DM DN DH DE ==,∴DN EN =.【点睛】本题主要考查全等三角形的性质与判定、相似三角形的性质与判定及等腰三角形的性质、旋转的性质,熟练掌握全等三角形的性质与判定、相似三角形的性质与判定及等腰三角形的性质、旋转的性质是解题的关键.47.(2020•长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=23,AD=4,求EC的长;(3)若AE﹣DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)设EC=x,证明△ABF∽△FCE,可得AB CF=BF EC,由此即可解决问题.(3)首先证明tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,解直角三角形求出a,b之间的关系即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由翻折可知,∠D=∠AFE=90°,∴∠AFB+∠EFC=90°,∠EFC+∠CEF=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)设EC=x,由翻折可知,AD=AF=4,∴BF=AF2−AB2=16−12=2,∴CF=BC﹣BF=2,∵△ABF∽△FCE,∴AB CF=BF EC,∴2322,∴x=∴EC=(3)∵△ABF∽△FCE,∴AF EF=AB CF,∴tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,∴AE=DE+2CE=x+2(a﹣x)=2a﹣x,∵AD=AF=b,DE=EF=x,∠B=∠C=∠D=90°,∴BF=b2−a2,CF=x2−(a−x)2=2ax−a2,∵AD2+DE2=AE2,∴b2+x2=(2a﹣x)2,∴a2﹣ax=14b2,∵△ABF∽△FCE,∴AB CF=BF EC,−(a−x)=b2−a2a−x,∴a2﹣ax=b2−a2•2ax−a2,∴14b2=b2−a2•整理得,16a4﹣24a2b2+9b4=0,∴(4a2﹣3b2)2=0,∴b a=233,∴tanα+tanβ=BC AB=48.(2020•怀化)如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD =CA,且∠D=30°.(1)求证:CD是⊙O的切线.(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:CG2=AE•BF.【分析】(1)连接OC,∠CAD=∠D=30°,由OC=OA,进而得到∠OCA=∠CAD=30°,由三角形外角定理得到∠COD=∠A+∠OCA=60°,在△OCD中由内角和定理可知∠OCD=90°即可证明;(2)证明AC是∠EAG的角平分线,CB是∠FCG的角平分线,得到CE=CG,CF=CG,再证明△AEC∽△CFB,对应线段成比例即可求解.【解答】(1)证明:连接OC,如右图所示,∵CA=CD,且∠D=30°,∴∠CAD=∠D=30°,∵OA=OC,∴∠CAD=∠ACO=30°,∴∠COD=∠CAD+∠ACO=30°+30°=60°,∴∠OCD=180°﹣∠D﹣∠COD=180°﹣30°﹣60°=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)∵∠COB=60°,且OC=OB,∴△OCB为等边三角形,∴∠CBG=60°,又∵CG⊥AD,∴∠CGB=90°,∴∠GCB=∠CGB﹣∠CBG=30°,又∵∠GCD=60°,∴CB是∠GCD的角平分线,∵BF⊥CD,BG⊥CG,∴BF=BG,又∵BC=BC,∴Rt△BCG≌Rt△BCF(HL),∴CF=CG.∵∠D=30°,AE⊥ED,∠E=90°,∴∠EAD=60°,又∵∠CAD=30°,∴AC是∠EAG的角平分线,∵CE⊥AE,CG⊥AB,∴CE=CG,∵∠E=∠BFC=90°,∠EAC=30°=∠BCF,∴△AEC∽△CFB,。

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。

2022-2023学年人教中考数学重难点题型分类必刷题 专题10 实数重难点题型分类(含详解)

2022-2023学年人教中考数学重难点题型分类必刷题 专题10 实数重难点题型分类(含详解)

专题10 《实数》名重难点题型分类-高分必刷题(原卷版)专题简介:本份资料包含《实数》这一章的全部重要题型,所选题目源自各名校月考、期中、期末试题中 的典型考题,具体包含十类题型:平方根立方根的概念、平方根立方根的文字题、无理数的判断、平方根 和绝对值的非负性、实数的应用题、绝对值的化简(结合数轴)、实数的计算题、估算无理数的大小、实 数的压轴题。

适合于培训机构的老师给学生作单元复习培训时使用或者学生考前刷题时使用。

题型1:平方根、立方根的概念1.(中雅)下列说法错误的是( ) A.1的平方根是1± B.-1是1的平方根 C.1是1的平方根D.-1的平方根是12.(中雅)下列各式正确的是( ) A.39±=B.283=-C.932=- D.8)2(3-=-3.(南雅)4的算术平方根是( )A.B. 2C. 2-4.(立信)-64的立方根是( ) A.8±B.4C.4-D.165.________.6.(广益 ,则x =________.题型2:平方根、立方根的文字题7.(青一)一个正数的两个平方根分别是2a ﹣1与﹣a +2,则a 的值为( ) A .1B .﹣1C .2D .﹣28.(立信)一个正数x 的两个平方根为23a -和9a -,则x =________. 9.(湘郡)若51a +和19a -都是m 的平方根,则m 的值为 .10. (青一)已知n m m n A -+-=3是3+-m n 的算术平方根,322+-+=n m n m B 是n m 2+的立方根,求A B +的平方根.11.(雅礼)已知1+a 是4算术平方根,1-b 是27的立方根,化简并求值:()()22422a a b a ---.12.(长郡)已知2-x 的平方根是2±,72++y x 的立方根是3,求22y x +的算术平方根。

题型3:无理数的判断13.(湘一芙蓉)在下列各数3.1415、0.2060060006…、0、0.2、π-、227( )A .1B . 2C . 3D . 414.(青竹湖)在下列实数中:-0.6,8,3π,364,722,0.010010001……,3.14,无理数有( ) A.2个 B.3个 C.4个 D.5个 15.(长梅)在-2,4,2,3.14,3-27,5π,这6个数中,无理数共有( ) A.1个B.2个C.3个D.4个题型4:平方根和绝对值的非负性16.(广益)已知实数x ,y 满足20x y ++=,则x y +的值为( ) A. 2-B. 2C. 4D. 4-17.(长郡芙蓉)若270x y -++=,则x y -=________.18.(怡雅)已知10a b b -+-=,则1a +=_______.题型5:实数的应用题19.(麓山国际)有一个数值转换器,程序如图所示,当输入的数x 为81时,输出的数y 的值是( ) A.9 B.3 C.3 D.3±20.(中雅)将一块体积为31000cm 的正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为( ) A.cm 5 B. cm 6 C.cm 7 D.cm 8 21.一个底面半径为4 cm 的圆柱形玻璃杯装满水,杯的高度为π32cm ,现将这杯水倒入一个正方体容器中,正好达到正方体容器高度的81处,求这个正方体容器的棱长.(玻璃杯及正方体容器的厚度忽略不计)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学新题型专题复习专题复习 新题型解析 探究性问题传统的解答题和证明题,其条件和结论是由题目明确给出的,我们的工作就是由因导果或执果索因。

而探究性问题一般没有明确的条件或结论,没有固定的形式和方法,要求我们认真收集和处理问题的信息,通过观察、分析、综合、归纳、概括、猜想和论证等深层次的探索活动,认真研究才能得到问题的解答。

开放性、操作性、探索性和综合性是探究性问题的明显特征。

这类题目形式新颖,格调清新,涉及的基础知识和基本技能十分广泛,解题过程中有较多的创造性和探索性,解答方法灵活多变,既需要扎实的基础知识和基本技能,具备一定的数学能力,又需要思维的创造性和具有良好的个性品质。

. 阅读理解型这类题主要是对数学语言(也包括非数学语言)的理解和应用进行考查。

要求能够读懂题目,理解数学语言,特别是非数学语言,并能进行抽象和转化及文字表达,能根据引入的新内容解题。

这是数学问题解决的开始和基础。

例. ()据《北京日报》年月日报道:北京市人均水资源占有量只有立方米,仅是全国人均占有量的18,世界人均占有量的132。

问:全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米。

()北京市一年漏掉的水,相当于新建一个自来水厂。

据不完全统计,全市至少有6105⨯个水龙头、2105⨯个抽水马桶漏水。

如果一个关不紧的水龙头,一个月能漏掉立方米水;一个漏水马桶,一个月漏掉立方米水,那么一年造成的水流失量至少是多少立方米(用含、的代数式表示);()水源透支令人担忧,节约用水迫在眉睫。

针对居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费。

假设不超标部分每立方米水费元,超标部分每立方米水费元,某住楼房的三口之家某月用水立方米,交水费元,请你通过列方程求出北京市规定三口之家楼房每月标准用水量为多少立方米。

分析:本题是结合当前社会关注的热点和难点问题——环保问题设计的题组,着重考查运用数学知识分析和解决实际问题的能力,以及阅读理解、检索、整理和处理信息的能力,解好本题的关键是认真阅读理解题意,剖析基本数量关系。

解:()3001824003001329600÷=÷=,答:全国人均水资源占有量是立方米,世界人均水资源占有量是立方米。

()依题意,一个月造成的水流失量至少为()61021055⨯+⨯a b 立方米 所以,一年造成的水流失量至少为(..)7210241066⨯+⨯a b 立方米 ()设北京市规定三口之家楼房每月标准用水量为立方米依题意,得13291222..()x x +-= 解这个方程,得答:北京市规定三口之家楼房每月标准用水量为立方米。

例. 阅读下列题目的解题过程:已知、、为∆ABC 的三边,且满足a c b c a b 222244-=-,试判断∆ABC 的形状。

解: a c b c a bA 222244-=-()∴-=+-∴=+∴c a b a b a b B c a b C ABC 2222222222()()()()()∆是直角三角形 问:()上述解题过程,从哪一步开始出现错误?请写出该步的代号:; ()错误的原因为:; ()本题正确的结论为:。

分析:认真阅读,审查每一步的解答是否合理、有据、完整,从而找出错误及产生错误的原因。

答:();()a b 22-也可以为零;()∆ABC 是等腰三角形或直角三角形。

例. 先阅读第()题的解法,再解第()题:()已知p p q q 22301130--=--=,,、为实数,且pq ≠1,求p q +1的值。

解:pq p q ≠∴≠11,又,和是一元二次方程的两个不相等的实数根p p q qp q x x 222301130130--=--=∴--=由一元二次方程根与系数关系可得p q +=--=111()()已知2370732022m m n n --=+-=,,、为实数,n ≠0,且mn ≠1,求m n +1的值。

分析:本题首先要求在阅读第()题规范的解法基础上,总结归纳出逆用方程根的定义构造一元二次方程,根据根与系数的关系求代数式值的方法,并加以应用。

但这种应用并非机械模仿,需要先对第()题的第二个方程变形转化,才能实现信息迁移,建模应用。

解:73202n n n +-=,为实数且n ≠0 07)1(3)1(22=--n n ··可得又2370112m m mn m n --=≠∴≠∴--=m n x x 、是方程的两个不相等的实数根123702由根与系数的关系可得m n +=--=13232()说明:本题考查了阅读理解、举一反三、触类旁通、创造性地解决新问题的能力。

例. 阅读下列材料:“11312113⨯=-(),1351213151571215171171912117119⨯=-⨯=-⨯=-()()()……∴⨯+⨯+⨯++⨯11313515711719…=-+-+-++-=-+-+-+++-=1211312131512151712117119121131315151717117119919()()()()()……”解答问题:()在和式113135157⨯+⨯+⨯+…中,第五项为,第项为,上述求和的想法是:通过逆用法则,将和式中各分数转化为两个实数之差,使得除首、末两项外的中间各项可以,从而达到求和的目的。

()解方程121241810524x x x x x x ()()()()()++++++++=…… 分析:本题是从一个和式的解题技巧入手,进而探索具有类似特征的分式方程的解题思路。

解:()第五项为1911⨯,第项为12121()()n n -+,上述求和的想法是:通过逆用分数减法法则,将和式中各分数转化为两个实数之差,使得除首、末两项外的中间各项都可以互相抵消,从而达到求和的目的。

()方程左边的分式运用拆项的方法化简:12112121418110524121110524()()x x x x x x x x -+++-++++-+=-+=…即化简可得()()x x +-=1220解得,经检验,,是原方程的根。

x x x x 1212212212==-==-例. 阅读以下材料并填空。

平面上有个点(n≥2),且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线?()分析:当仅有两个点时,可连成条直线;当有个点时,可连成条直线;当有个点时,可连成条直线;当有个点时,可连成条直线;()归纳:考察点的个数和可连成直线的条数Sn,发现:()推理:平面上有个点,两点确定一条直线,取第一个点有种取法,取第二个点有()n-1种取法,所以一共可连成n n()-1条直线,但与是同一条直线,故应除以,即Sn nn=-()12()结论:Sn nn=-()12试探究以下问题:平面上有(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?()分析:当仅有个点时,可作个三角形;当有个点时,可作个三角形;当有个点时,可作个三角形;……()归纳:考察点的个数和可作出的三角形的个数Sn,发现:()推理:()结论:分析:本题是从阅读材料中得到研究数学问题的方法:分析——归纳——猜想——推理——结论,再用这种方法探究解决新的数学问题。

解:()当仅有个点时,可作个三角形;当有个点时,可作个三角形;当有个点时,可作个三角形。

()平面上有个点,过不在同一条直线上的三点可以确定一个三角形,取第一个点有种取法,取第二个点有()n-1种取法,取第三个点有()n-2种取法,所以一共可以作n n n()()--12个三角形,但∆∆A∆∆∆ABC CB BAC BCA CAB 、、、、、∆CBA是同一个三角形,故应除以,即Sn n nn=--()()126()Sn n nn=--()()126. 探究规律型例. 观察下列各式:2 122123 23323⨯=+⨯=+4 34434⨯=+5 45545⨯=+……想一想,什么样的两数之积等于这两数之和?设表示正整数,用关于的等式表示这个规律为:×。

分析:本题从比较简单的例子入手,探索算式的规律,易得出nnnnn ++=+ 111·()++()n1,其中为正整数。

例. 如图,在直角坐标系中,第一次将∆OAB变换成∆OA B11,第二次将∆OA B11变换成∆OA B22,第三次将∆OA B22变换成∆OA B33。

已知(,),A1(,),A2(,),A3(,);(,),B1(,),B2(,),B3(,)。

()观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将∆OA B33变换成OA B44,则A4的坐标是,B4的坐标是。

()若按第()题找到的规律将∆OAB进行了次变换,得到∆OA B n n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标为,Bn的坐标是。

分析:认真观察不难发现,无论∆OAB怎样变换,点和点的纵坐标保持不变,横坐标按两倍递增。

所以得A4的坐标为(,),B4的坐标为(,),依此规律类推,不难推测出An的坐标为(2n,),Bn的坐标为(201n+,)。

例. 在∆ABC中,为边的中点,为边上的任意一点,交于点。

某学生在研究这一问题时,发现了如下的事实:()当AEAC==+12111时,有AOAD==+23221(如图);()当AEAC==+13112时,有AOAD==+24222(如图);()当AEAC==+14113时,有AOAD==+25223(如图);在图中,当AEAC n=+11时,参照上述研究结论,请你猜想用表示AOAD的一般结论,并给出证明(其中是正整数)解:依题意可以猜想:当AEAC n=+11时,有AOAD n=+22成立。

证明:过作交于点,如图。

是的中点∴是的中点由,可知AEAC nAEEC n=+=111∴==+AEEF nAEAF n222,∴==+AOADAEAF n22说明:本题让我们阅读有关材料,从中感悟出结论,提出猜想,并对猜想进行证明。

将阅读理解与探索猜想连接在一起,是考查能力的一道好题,同时它又给予我们发现真理的一个思维过程:观察——分析——归纳——猜想——验证——证明。

例. 已知:∆ABC是⊙的内接三角形,为⊙的切线,为切点,为直线上一点,过点做的平行线交直线于点,交直线于点。

()当点在线段上时(如图),求证:PA PB PE PF··=;()当点为线段延长线上一点时,第()题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;()若AB EBA=∠=4213,cos,求⊙的半径。

分析:第()问是证明圆中等积式,利用弦切角定理及平行线性质易得出两个三角形相似,从而得比例式;第()问是研究题设条件下——点为线段延长线上一点时,第()问的结论是否还成立?探求图形变化中不变的数量关系,需要据题意正确地画出图形,分析图形的几何性质,进行猜想、判断,并进行推理和证明。

相关文档
最新文档