九年级数学二次函数的图象与性质知识点总结
九年级上册数学二次函数知识点汇总
九年级上册数学二次函数知识点汇总二次函数知识点总结知识点一:二次函数的定义一般地,形如y = ax^2 + bx + c(a,b,c是常数,a ≠ 0)的函数,叫做二次函数。
其中a是二次项系数,b是一次项系数,c是常数项。
知识点二:二次函数的图像与性质抛物线的三要素:开口、对称轴、顶点1.二次函数y = a(x - h) + k的图像与性质1)二次函数基本形式y = ax^2的图像与性质:a的绝对值越大,抛物线的开口越小。
2)y = ax^2 + c的图像与性质:上加下减。
3)y = a(x - h)^2的图像与性质:左加右减。
4)二次函数y = a(x - h)^2 + k的图像与性质。
2.二次函数y = ax^2 + bx + c的图像与性质1)当a。
0时,抛物线开口向上,对称轴为x = -b/2a,顶点坐标为(-b/2a,-Δ/4a)。
当x。
-b/2a时,y随x的增大而增大;当x = -b/2a时,y 有最小值Δ/4a。
2)当a < 0时,抛物线开口向下,对称轴为x = -b/2a,顶点坐标为(-b/2a,Δ/4a)。
当x。
-b/2a时,y随x的增大而减小;当x = -b/2a时,y 有最大值Δ/4a。
3.二次函数常见方法指导1)二次函数y = ax^2 + bx + c图像的画法①画精确图五点绘图法(列表-描点-连线)。
利用配方法将二次函数y = ax^2 + bx + c化为顶点式y = a(x - h)^2 + k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图。
②画草图抓住以下几点:开口方向,对称轴,与y轴的交点,顶点。
2)二次函数图像的平移平移步骤:①将抛物线解析式转化成顶点式y = a(x - h)^2 + k,确定其顶点坐标(h,k)。
②可以由抛物线y = ax^2经过适当的平移得到,具体平移方法如下:向上(k。
0)【或向下(k。
0)【或左(h < 0)】平移|h|个单位。
人教版九年级上册数学 讲义 二次函数的图像与性质
C. D.
【例2】已知二次函数y=ax2+bx+1的大致图象如图所示,则函数y=ax+b的图
象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
【例3】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a-b+c<0;④a+c>0,其中正确结论的个数为().
3、抛物线 ( )的顶点坐标公式:( , );对称轴是直线: ;当 时,函数有最值: 。
4、二次函数图像的平移:只要抛物线解析式中的a相同,它们之间可以相互平移得到,平移规律:左加右减,上加下减。
二、典型例题:
考点一:二次函数的定义
【例1】下列函数中,关于 的二次函数是( )。
A、 B、 C、 D、
A.y1<y2<y3B.y2<y1<y3
C.y3<y1<y2D.y1<y3<y2
【例2】已知二次函数 ,若自变量 分别取 , , ,且 ,则对应的函数值 的大小关系正确的是()
A. B. C. D.
三、强化训练:
【夯实基ห้องสมุดไป่ตู้】
1、二次函数 的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()
【例2】已知函数 ( 为常数)。
(1) 为何值时,这个函数为二次函数?
(2) 为何值时,这个函数为一次函数?
考点二:二次函数的顶点、对称轴、最值
【例1】写出下列抛物线的对称轴方程、顶点坐标及最大或最小值;
(1) (2) (3)
考点三:抛物线的平移(上加下减,左加右减)
【例1】把抛物线 向左平移2个单位,再向下平移2个单位,则所得的抛物线的表达式是;
A、4个B、3个C、2个D、1个
考点五:直线与抛物线的位置关系
九年级(上册)数学二次函数知识点汇总
新人教版九年级上二次函数知识点总结知识点一:二次函数的定义1.二次函数的定义:一般地,形如 y ax2bx c ( a ,b ,c 是常数,a 0)的函数,叫做二次函数.其中 a 是二次项系数, b 是一次项系数, c 是常数项.知识点二:二次函数的图象与性质抛物线的三要素:张口、对称轴、极点2. 二次函数y a x h2的图象与性质k(1 )二次函数基本形式y ax2的图象与性质:a的绝对值越大,抛物线的张口越小(2 ) y ax 2c 的图象与性质:上加下减2(3 ) y a x h的图象与性质:左加右减(4 )二次函数 y a x h 2k 的图象与性质3.二次函数 y ax 2bx c 的图像与性质( 1 )当a 0时,抛物线张口向上,对称轴为x b ,极点坐标为 b ,4ac b2.2a 2 a4a当 x b时, y 随x的增大而减小;当x b时, y 随x的增大而增大;当x b时,2a 2 a2ay有最小值 4 ac b 2.4a( 2 )当a 0时,抛物线张口向下,对称轴为x b ,极点坐标为 b ,4acb2.2a2a4a当 x b时, y 随x的增大而增大;当x b时, y 随x的增大而减小;当x b时,2a 2 a2a 2y 有最大值4 ac b.4a4. 二次函数常有方法指导( 1 )二次函数 y ax 2 bx c 图象的画法①画精确图五点画图法(列表 - 描点 -连线)利用配方法将二次函数y ax 2 bx c 化为极点式 y a(x h) 2 k ,确定其张口方向、 对称轴及极点坐标, 今后在对称轴两侧,左右对称地描点画图.②画草图抓住以下几点:张口方向,对称轴,与 y 轴的交点,极点 .( 2 )二次函数图象的平移平移步骤:① 将抛物线剖析式转变为极点式y a x h2h ,k ;k ,确定其极点坐标② 可以由抛物线 ax 2 经过合适的平移获取详尽平移方法以下:y=ax2向上 (k>0)【或向下 (k<0)】平移 |k |个单位y=ax 2+k向右 (h>0)【或左 ( h<0)】 向右 (h>0) 【或左 (h<0) 】 向右 (h>0)【或左 (h<0)】 平移 |k|个单位平移 |k|个单位平移 |k|个单位向上 (k>0) 【或下 (k<0) 】平移 |k|个单位y=a(x-h)2向上 (k>0) 【或下 (k<0)】平移 |k|个单位y=a(x-h)2+k平移规律:概括成八个字“左加右减,上加下减” .( 3 )用待定系数法求二次函数的剖析式①一般式: .已知图象上三点或三对、的值,平时选择一般式.②极点式: .已知图象的极点或对称轴,平时选择极点式.③交点式: . 已知图象与轴的交点坐标、,平时选择交点式.( 4 )求抛物线的极点、对称轴的方法b 2b2b 4ac b 2①公式法: y24acax bx ca x4a,∴极点是(,),对称轴2a2a4ab .是直线 x2a②配方法: 运用配方的方法, 将抛物线的剖析式化为 ya x h 2k 的形式,获取极点为 ( h , k ),对称轴是直线 xh .③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,因此对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是极点.( 5 )抛物线y ax2bx c 中, a,b,c 的作用① a 决定张口方向及张口大小,这与y ax 2中的a圆满相同.② b和 a 共同决定抛物线对称轴的地址由于抛物线 y ax 2bx c 的对称轴是直线x b,故2a若是 b0 时,对称轴为y 轴;b0(即 a 、 b 同号)时,对称轴在y 轴左侧;若是ab0(即 a 、 b 异号)时,对称轴在y 轴右侧.若是a③ c 的大小决定抛物线y ax 2bx c 与y轴交点的地址当 x0 时, y c ,因此抛物线y ax 2bx c 与y轴有且只有一个交点(0 ,c),故若是 c0 ,抛物线经过原点;若是 c0 ,与 y 轴交于正半轴;若是 c0 ,与 y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5. 函数y ax2bx c ,当 y 0 时,获取一元二次方程 ax2bx c 0 ,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况 .(1)当二次函数的图象与 x 轴有两个交点,这时,则方程有两个不相等实根;(2) 当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3) 当二次函数的图象与 x 轴没有交点,这时,则方程没有实根.经过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象方程有两个相等实数解方程有两个不等实数解方程没有实数解的解6. 拓展:关于直线与抛物线的交点知识(1 )y 轴与抛物线yax 2bxc 得交点为(0, c) .( 2 ) 与y轴 平 行 的 直 线xh 与 抛 物 线yax 2bxc 有 且 只 有 一 个 交 点( h , ah 2bh c ).( 3 )抛物线与 x 轴的交点二次函数yax 2bx c 的图像与x 轴的两个交点的横坐标x 1 、 x 2 ,是对应一元二次方程ax 2bxc0 的两个实数根. 抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的鉴识式判断:①有两个交点抛物线与 x 轴订交;②有一个交点(极点在x 轴上)抛物线与 x 轴相切;③没有交点抛物线与x 轴相离 .( 4 )平行于 x 轴的直线与抛物线的交点同( 3 )相同可能有 0 个交点、 1 个交点、 2 个交点 .当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是 ax 2bx c k 的两个实数根 .( 5 )一次函数 ykx n k0 的图像 l 与二次函数 y ax 2 bx c a 0 的图像 Gykx n的交点,由方程组 y ax 2的解的数目来确定:bx c①方程组有两组不一样样的解时l 与 G 有两个交点 ;②方程组只有一组解时l 与 G 只有一个交点;③方程组无解时l 与 G 没有交点 .( 6 )抛物线与 x 轴两交点之间的距离:若抛物线yax 2 bx c 与 x 轴两交点为A x ,,B x , ,由于x 1、 x 2 是方程 ax 2bx c 0 的两个根,故12x1x2b, x1 x2ca ab2b24acAB x1 x22x1x224cx1 x2 4 x1x2a a a a知识点四:利用二次函数解决实诘责题7.利用二次函数解决实诘责题,要建立数学模型,即把实诘责题转变为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题 .在研究实诘责题时要注意自变量的取值范围应拥有本质意义.利用二次函数解决实诘责题的一般步骤是:(1)建立合适的平面直角坐标系;(2)把实诘责题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去剖析问题、解决问题.。
初三数学:《二次函数的图象和性质》知识点归纳
二次函数图像的性质 :1.二次函数(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点是原点(0,0)。
(1)二次函数图像怎么画作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。
(2)二次函数与的图像和性质:2.二次函数(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是( 0,k),它与的图像形状相同,只是位置不同。
函数的图像是由抛物线向上(或下)平移|k|个单位得到的。
当a>0时,抛物线的开口向上,在对称轴的左边(x<0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>0时),曲线自左向右上升,函数y随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k 。
当a<0时,抛物线的开口向下,在对称轴的左边(x<0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>0时),曲线自左向右下降,函数y随x的增大而减小。
顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k 。
3.二次函数(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x= h,顶点坐标是(h,0),它与的图像形状相同,位置不同,函数(a≠0)的图像是由抛物线向右(或左)平移|h|个单位得到的。
画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。
当a>0时,抛物线的开口向上,在对称轴的左边(xh时),曲线自左向右上升,函数y 随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。
初中九年级二次函数知识点总结
初中九年级二次函数知识点总结初中九年级二次函数知识点总结总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它能使我们及时找出错误并改正,让我们一起认真地写一份总结吧。
那么总结应该包括什么内容呢?以下是小编收集整理的初中九年级二次函数知识点总结,希望能够帮助到大家。
初中九年级二次函数知识点总结1教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学难点:求出函数的自变量的取值范围。
教学过程:一、问题引新1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长_(m) 1 2 3 4 5 6 7 8 9BC长(m) 12面积y(m2) 482._的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y 是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)二、提出问题,解决问题1、引导学生看书第二页问题一、二2、观察概括y=6_2 d= n /2 (n-3) y= 20 (1-_)2以上函数关系式有什么共同特点? (都是含有二次项)3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.4、课堂练习(1) (口答)下列函数中,哪些是二次函数?(1)y=5_+1 (2)y=4_2-1(3)y=2_3-3_2 (4)y=5_4-3_+1(2).P3练习第1,2题。
第二十二章《二次函数》知识点总结人教版数学九年级上册
《二次函数》知识点总结【知识点1 二次函数的表达式】1. 一般式: . 顶点坐标: . 对称轴: .2. 顶点式: .顶点坐标: . 对称轴: . 【知识点2 二次函数的图象与性质】 1. 二次项系数a 决定抛物线的 开口方向 ;①当0>a 时,抛物线的 ; ②当0<a 时,抛物线的 ; ③ ||a 越大,抛物线的开口 .3.常数项c 决定抛物线 与y 轴 交点的位置 . ①当0=c ,抛物线与y 轴交于 ; ②当0>c ,抛物线与y 轴交于 ; ③当0<c ,抛物线与y 轴交于 .5.根据a 、b 、c 的符号,画出二次函数的草图:①已知 a <0、b <0、c <0 ②已知 a>0、b <0、c >0 6.描述下面二次函数c bx ax y ++=2的增减性: 【知识点3 抛物线与坐标轴的交点】 1. 抛物线c bx ax y ++=2与x 轴的交点个数,即02=++c bx ax . ①当 ,抛物线与x 轴有两个交点; ②当 ,抛物线与x 轴有1个交点; ③当 ,抛物线与x 轴有没有交点;2.求抛物线c bx ax y ++=2与x 轴的交点的过程: 3.求抛物线c bx ax y ++=2与y 轴的交点的过程:4.函数 y = ax 2 + bx + c 的图象如图,那么 ①方程 ax 2 + bx + c =2 的根是 ______________;2.系数a 和b 共同决定抛物线 对称轴的位置 . ①a 和b 同号,对称轴在原点的 ; ②a 和b 异号, .4.根据图象判断出a 、b 、c 的符号:方法总结:第一步:求出对称轴;第二步:用箭头在对称轴两侧标出上升和下降;第三步:描述增减性.①当 时,随的增大而减小; ②当 时, 随的增大而增大;∵轴上的点, 为零,∴ . ∵轴上的点, 为零,∴ .②不等式 ax 2 + bx + c >0 的解集是 ___________; ③不等式 ax 2 + bx + c <2 的解集是 _________.④ a + b + c 0 ,4a 2 b + c 0 , 9a +3 b + c 0 .【知识点4 抛物线的平移】二次函数 y = ax 2 + bx + c 的平移口诀:“上下平移, ;左右平移, .” 【 * *知识点5 抛物线的对称 ** 】抛物线c bx ax y ++=2关于x 轴对称的解析式为 . 抛物线c bx ax y ++=2关于y 轴对称的解析式为 . 【 * *知识点6 二次函数图象的画法 ** 】 画出二次函数3-2-2x x y =的的图象.【典型例题 】1.m2+1+2x −是二次函数,则m 的值为( )C. −1D. 1或−12.【求顶点坐标 】抛物线y =2(x −3)4的顶点坐标是( ) A. (3,4)B. (−3,4)C. (3,−4)D. (2,4)3.【与坐标轴的交点 】抛物线y =−x 2+4x −4与坐标轴的交点个数为( ) A. 0B. 1C. 2D. 34.【平移】将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( ) A. 向左平移1个单位 B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位5.【平移】抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的( )A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先向右平移3个单位,再向上平移2个单位 6.【图象与性质】对于抛物线y =−3(x +1)2−2,下列说法正确的是( ) A. 抛物线开口向上 B. 当x >−1时,y 随x 的增大而减小 C. 函数最小值为−2D. 顶点坐标为(1,−2)7.【增减性】已知(−3,y 1),(−1,y 2),(2,y 3)是抛物线y =−3x 2+6x +m 上的三个点.则( ) A. y 1<y 3<y 2B. y 3<y 2<y 1C. y 1<y 2<y 3D. y 2<y 1<y 38.【最值】已知二次函数y=x2−4x+2,关于该函数在−1≤x≤3的取值范围内,下列说法正确的是( )A. 有最大值−1,有最小值−2B. 有最大值0,有最小值−1C. 有最大值7,有最小值−1D. 有最大值7,有最小值−29.【系数与图象】二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B. C. D.10.【求解析式】如图所示,已知二次函数y=ax2+bx+c的图象,求二次函数的解析式.11.如图,已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的解析式、对称轴及顶点坐标;(2)点C是抛物线与x轴的一个交点,点D是抛物线与y轴的交点,求三角形ACD 的面积;(3)已知点M(x1,y1)和N(1+x1,y2)在抛物线对称轴的右侧,判段y1和y2的大小.12.在运动会比赛时,九年级的一名男同学推铅球,已知铅球经过的路线是某二次函数图象的一部分(如图所示),如果这名男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求出这个二次函数的解析式;(2)请求出这名男同学比赛时的成绩?13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.(1)建立平面直角坐标系,求抛物线的解析式;(2)如果水面下降1m,则水面宽度是多少米?14.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?。
九年级上册数学函数知识点总结
九年级上册数学函数知识点总结一、二次函数。
1. 二次函数的定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数叫做二次函数。
其中x是自变量,a、b、c分别是二次函数的二次项系数、一次项系数和常数项。
- 例如y = 2x^2+3x - 1是二次函数,这里a = 2,b = 3,c=-1。
2. 二次函数的图象。
- 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 抛物线y = ax^2+bx + c(a≠0)的对称轴为直线x =-(b)/(2a),顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。
3. 二次函数的性质。
- 当a>0时:- 在对称轴左侧,即x<-(b)/(2a)时,y随x的增大而减小;- 在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大;- 函数有最小值,当x =-(b)/(2a)时,y_min=frac{4ac - b^2}{4a}。
- 当a < 0时:- 在对称轴左侧,即x<-(b)/(2a)时,y随x的增大而增大;- 在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小;- 函数有最大值,当x =-(b)/(2a)时,y_max=frac{4ac - b^2}{4a}。
4. 二次函数图象的平移。
- 抛物线y = a(x - h)^2+k(a≠0)的图象可以由y = ax^2(a≠0)的图象平移得到。
- 向左平移m个单位时,h的值增加m;向右平移m个单位时,h的值减少m;向上平移n个单位时,k的值增加n;向下平移n个单位时,k的值减少n。
- 例如,将y = 2x^2的图象向右平移3个单位,再向下平移2个单位,得到y = 2(x - 3)^2-2的图象。
5. 二次函数与一元二次方程的关系。
(完整word)九年级数学二次函数知识点总结及经典例题,推荐文档
二次函数知识点总结一、二次函数概念:21二次函数的概念:一般地,形如y ax bx c( a,b ,c是常数,a 0 )的函数,叫做二次函数。
里需要强调:和一元二次方程类似,二次项系数 a 0,而b,c可以为零•二次函数的定义域是全体实数.92. 二次函数y ax bx c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a ,b, c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式21.二次函数基本形式:y ax的性质:a的绝对值越大,抛物线的开口越小。
22. y ax c的性质:上加下减。
23. y a x h的性质:左加右减。
24. y ax hk 的性质: a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k •a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k •三、二次函数图象的平移1.平移步骤:2⑴将抛物线解析式转化成顶点式 y a x h k ,确定其顶点坐标 h , k ;⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到 h ,k 处,具体平移方法如下:当x 2a 时,y 随x 的增大而减小; y=ax 2 A y=ax 2+k向右(h>0)【或左(*0)] 平移|k|个单位y=a(x h)2向右(h>0)【或左(h<0)] 平移|k|个单位2.平移规律在原有函数的基础上 概括成八个字“左加右减,h 值正右移,负左移;上加下减” •k 值正上移,负下移”六、 四、二次函数从解析式上看,b a x2a二次函数1. 4ac b 24a,其中 ax 2 bx c 的性质当a 0时,抛物线开口向上,对称轴为2axax 2 bx c 的比较bx c 是两种不同的表达形式, 后者通过配方可以得到前者,4ac b 2 4a盘,顶点坐标为b 4ac b 22a ' 4a向上(k>0)【或向下(k<0)】平移|k|个单位向上(k>0)【或下(k<0)】 平移|k 个单位向右(h>0)【或左(h<0)] 平移|k|个单位2当x佥时,y随x的增大而增大;x2a 时,y有最小值4ac b 2 4a2•当a 0时,抛物线开口向下, 对称轴为 x —,顶点坐标为2a b 4ac b 2 、[/ b ”亠方,F .当x 茲时,y 随 x 的增大而增大;当x 2a 时,b 4ac b 2y 随x 的增大而减小;当x 亦时,y 有最大值 f 七、 1. 二次函数解析式的表示方法一般式:y ax 2bx c ( a , b , c 为常数,a 0);2顶点式:y a (x h ) k ( a , h , k 为常数,a 0); 两根式(交点式):y a (x x i )(x X 2) ( a 0,为,x ?是抛物线与x 轴两交点的横坐标) 2. 3. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x 轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示. 二次函数解析式的这三种形式可以互化.八、 1. ⑴ ⑵ 二次函数的图象与各项系数之间的关系二次项系数a当a 0时,抛物线开口向上, 当a 0时,抛物线开口向下, a 的值越大,开口越小,反之 a 的值越小,开口越大; a 的值越小,开口越小,反之 a 的值越大,开口越大.2. 一次项系数b在二次项系数a 确定的前提下, 3. 常数项c⑴当c ⑵当c ⑶当c总结起来, 0时, 0时, 0时, b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)抛物线与y 轴的交点在x 轴上方,即抛物线与 抛物线与抛物线与y 轴的交点在x 轴下方,即抛物线与 c决定了抛物线与y 轴交点的位置.y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为正; y轴交点的纵坐标为0 ; y 轴交点的纵坐标为负.九、二次函数与一元二次方程:i.二次函数与一元二次方程的关系(二次函数与 一二次方程ax 2 bx c 0是二次函数y x 轴的交点个数: 兀 图象与 ax 2 x 轴交点情况): bx c 当函数值y 0时的特殊情况.2b 4ac 0时,图象与x 轴交于两点Ax 1 ,0 ,B x 2 ,0 (x 1X 2),其中的X i , x 是一元二次方2ax bx 0的两根.• 1' 2' 0时, 0时, 当a 当a x 轴只有一个交点;x 轴没有交点. 0时,图象落在 0时,图象落在 图象与 图象与 x 轴的上方,无论 x 轴的下方,无论 x 为任何实数, x 为任何实数, 都有都有2.抛物线y 2axbx c 的图象与y 轴一定相交,交点坐标为 (0 , c);二次函数对应练习试题、选择题1.二次函数y2x 4x 7的顶点坐标是A.(2, —11)B. (-2, 7)C. (2, 11)D. (2, - 3)2.把抛物线y2x2向上平移1个单位, 得到的抛物线是(2A. y 2(x 1)B. y 2(x 2 21) C. y 2x 1 D. 2x2 12k3.函数y kx k和y (k 0)在同一直角坐标系中图象可能是图中的0)的图象如图所示,则下列结论:①a,b同号;②当x 1和x 3时,函数值相等;③4a b 0④当y 确的个数是()A.1个B.2 个C. 35.已知二次函数y ax2 bx c(a由图象可知关于兀二次方程axA. — 1 .6.已知二次函数A.第一象限C.第三象限7.方程2x x2A.0个8.已知抛物线过点A. y x2C. y x22时,x的值只能取0.其中正个个D. 4B.-2.3C.-0.3D.-3.32ax bx c的图象如图所示, 则点(ac,bc)在(B.第二象限D.第四象限-的正根的个数为xB.1A(2,0),B(-1,0), x 2 或y x2C.2与y轴交于点B.x 2 D.C,且0C=2.则这条抛物线的解析式为y x2 x 22 、2y x x 2 或y x x 2二、填空题9•二次函数y x2 bx 3的对称轴是x 2,则b ______________ 。
北师大版九年级下册数学《二次函数的图象与性质》二次函数研讨说课复习课件巩固
第二种方法:描点法,三步即列表、描点和连线.
2.抛物线y=ax2+c 中的a决定什么?c决定什么?它的对称轴
是什么?顶点坐标怎样表示?
a决定开口方向和大小;c决定顶点的纵坐标.
对称轴为y轴;顶点坐标为(0,c).
课堂练习
1.对于二次函数y=3x2+2,下列说法错误的是( C )
A.最小值为2
B.图象与x轴没有公共点
向上
向下
顶点坐标
(0,0)
轴 (x=0)
增
减
性
在对称轴的左侧,
y随着x的增大而减小.
在对称轴的右侧,
y随着x的增大而增大.
在对称轴的左侧,
y随着x的增大而增大.
在对称轴的右侧,
y随着x的增大而减小.
最值
x=0时,y最小=0
x=0时,y最大=0
抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说
二次函数的图象与性质
第2课时
课件
复习旧知
10
y
9
y =x2
8
7
6
二次函数是否只有y=x2与y=-x2
5
这两种呢?有没有其他形式的二次
3
函数?
4
2
1
–4
–3
–2
–1
O
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
1
2
3
4
x
y =-x2
新知讲解
在画有y
=x2直角坐标系中,画出
=
,y
=2x2的图象.
7.已知二次函数y=a(x-1)2-4的图象经过点(3,0).
初中数学二次函数知识点总结
初中数学二次函数知识点总结初中数学二次函数知识点总结二次函数的图象与性质二次函数开口方向对称轴顶点增减性最大(小)值y=ax2a>0时,开口向上;a0时,在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大;当a0时,当x=0时,=0;当a0时,当x=0时,=c;当a0时,当x=h时,y 最小=0;当a0时,当x=h时,y最小=k;当a0时,当x=h时,y最小=k;当a0时,开口方向向上;a1.二次函数图像是轴对称图形。
对称轴为直线x=h或者x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当h=0时,二次函数图像的对称轴是y轴(即直线x=0)a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点2.二次函数图像有一个顶点P,坐标为P(h,k)当h=0时,P在y轴上;当k=0时,P在x轴上。
h=-b/2ak=(4ac-b2)/4a开口3.二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图像向上开口;当a0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a0),对称轴在y轴左;当a与b异号时(即ab0;k0时,函数在x=h 处取得最小值ymix=k,在xh范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k当ah范围内事增函数,在x且X(X1+X2)/2时Y随X的增大而减小此时,x1、x2即为函数与X轴的两个交点,将X、Y 代入即可求出解析式(一般与一元二次方程连用)。
交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。
两交点X值就是相应X1X2值。
两图像对称①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称;②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称;③y=ax2+bx+c与y=-a(x-h2+k关于顶点对称;④y=ax2+bx+c与y=-a(x+h2-k关于原点对称。
九年级数学下册 二次函数的图象与性质知识点总结
决定抛物线与x轴的交点个数
b2-4ac>0时,抛物线与x轴有2个交点;
b2-4ac=0时,抛物线与x轴有1个交点;
b2-4ac<0时,抛物线与x轴没有交点
知识点三:二次函数的平移
4.平移与解析式的关系
注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式
失分点警示:
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
当a>0时,抛物线开口向上;
当a<0时,抛物线开口向下.
某些特殊形式代数式的符号:
1a±b+c即为x=±1时,y
的值;②4a±2b+c即为x=±2时,y的值.
32a+b的符号,需判断对称
轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.
例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.
开口
向上
向下
对称轴
x=
顶点坐标
增减性
当x> 时,y随x的增大而增大;当x< 时,y随x的增大而减小.
当x> 时,y随x的增大而减小;当x< 时,y随x的增大而增大.
最值
x= ,y最小= .
x= ,y最大= .
3.系数a、b、c
九年级上册数学二次函数知识点汇总
九年级上册数学二次函数知识点汇总新人教版九年级上二次函数知识点总结知识点一:二次函数的定义一般地,形如y=ax^2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中a是二次项系数,b是一次项系数,c是常数项。
知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶点。
二次函数y=a(x-h)^2+k的图象与性质如下:1)二次函数基本形式y=ax^2的图象与性质:a的绝对值越大,抛物线的开口越小。
2)y=ax^2+c的图象与性质:上加下减。
3)y=a(x-h)的图象与性质:左加右减。
4)二次函数y=a(x-h)^2+k的图象与性质:顶点坐标为(h,k),开口方向由a的正负决定。
知识点三:二次函数的顶点式与标准式的相互转化二次函数y=a(x-h)^2+k和y=ax^2+bx+c可以通过配方法相互转化。
知识点四:二次函数的平移二次函数图象的平移可以通过改变顶点坐标实现。
具体平移方法如下:向上(k>0)或向下(k<0)平移|k|个单位。
向右(h>0)或向左(h<0)平移|k|个单位。
知识点五:二次函数的解析式求解可以通过配方法、公式法、图像法等方式求解二次函数的解析式。
知识点六:二次函数的应用二次函数在物理、经济、生物等领域中有广泛的应用,如自由落体运动、抛体运动、成本函数、收益函数、生长模型等。
4)根据问题所求,利用函数的性质或图象求解;5)对结果进行检验和解释,看是否符合实际情况。
例如,某物体从高度为h的地方自由落下,经过t秒后落地,求物体的落地速度v。
建立平面直角坐标系,以落下的方向为正方向,设物体在t秒时下落的距离为s,则有s=1/2gt^2(g为重力加速度),又因为物体从高度为h落下,所以s=h-1/2gt^2.将s与t的关系式代入二次函数y=h-1/2gt^2中,得到二次函数y=h-1/2gt^2,利用函数的性质求出y=0时的t即为物体落地时的时间,再利用s=1/2gt^2求出物体落地时的下落距离,最后利用物理公式v=gt求出物体落地时的速度v。
人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结
《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。
(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x的二次式,x 的最高次数是2.(2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a 在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y =a(x-h)2+k ,抛物线的顶点坐标是(h,k);(2) 当h =0时,抛物线y =ax 2+k 的顶点在y 轴上;当k =0时,抛物线a(x-h)2的顶点在x 轴上;当h =0且k =0时,抛物线y =ax 2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y 轴,则设y=ax 2;如果对称轴是y 轴,但不过原点,则设y=ax 2+k4、抛物线的性质: (1).抛物线是轴对称图形。
对称轴为直线 x = -b/2a 。
九年级数学上册《二次函数的图象和性质》知识点整理知识点总结
九年级数学上册《二次函数的图象和性质》知识点整理知识点总结为大家整理了二次函数的图象和性质知识点整理,供大家参考和学习,希望对大家的学习和成绩的提高有所帮助。
二次函数图像及性质知识总结二次函数概念一般地,形如y?a_2?b_?c(a,b,c是常数,a?0)的函数,叫做二次函数。
定义域是全体实数,图像是抛物线解析式b﹑c为0时y?a_2向上.向下y轴b为0时y?a_2?c向上向下y轴b﹑c不为0时y?a_2?b_?c向上向下a?0开口a?0开口对称轴顶点坐标图_??b2a?0,0?_=0.时y最小值等于0?0,c?_=0,时Y最小值等于c?b4ac?b2????4a??2ab4ac?b2当_??时。
y有最小值.2a4aa?0时y有最小值像a?0时y有最大值的性质a?0时开口向上a?0时开口向下_=0.时_=0,时b4ac?b2当_??时,y有最大值.y最大值等于0Y最大值等于c2a4a_?0时,y随_的增大而增大;_?0时,b当_??时,y随_的增大而减小;y随_的增大而减小;_?0时,y有最小值0.2a当_??b时,y随_的增大而增大2ab时,y随_的增大而增大;2ab时,y随_的增大而减小2a_?0时,y随_的增大而减小;_?0时,y随_的增大而增大;_?0时,y有最大值0 当_??当_??图像画法利用配方法将二次函数y?a_2?b_?c化为顶点式y?a(_?h)2?k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点?0,c?、以及?0,c?关于对称轴对称的点?2h,c?、与_轴的交点?_1,0?,?_2,0?(若与_轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与_轴的交点,与y轴的交点.解析式的表示及图像平移1.一般式:y?a_2?b_?c2.顶点式:y?a(_?h)2?k3.两根式:y?a(_?_1)(_?_2)2.平移⑴将抛物线解析式转化成顶点式y?a?_?h??k,确定其顶点坐标?h,k?;在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”①y?a_?b_?c沿y轴平移:向上(下)平移m个单位,y?a_?b_?c变成222y?a_2?b_?c?m(或y?a_2?b_?c?m)②y?a_?b_?c沿轴平移:向左(右)平移m个单位,y?a_?b_?c变成22y?a(_?m)2?b(_?m)?c(或y?a(_?m)2?b(_?m)?c)二次函数y=a_2及其图象看了上文为大家整理的二次函数的图象和性质知识点整理是不是感觉轻松了许多呢?一起与同学们分享吧.。
九年级数学上册第二十二章二次函数知识点总结归纳(带答案)
九年级数学上册第二十二章二次函数知识点总结归纳单选题1、定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x −m )2−m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1C .4,0D .5+√172,-1 答案:D分析:分别讨论当对称轴位于y 轴左侧、位于y 轴与正方形对称轴x =1之间、位于直线x =1和x =2之间、位于直线x =2右侧共四种情况,列出它们有交点时满足的条件,得到关于m 的不等式组,求解即可. 解:由正方形的性质可知:B (2,2);若二次函数y =(x −m )2−m 与正方形OABC 有交点,则共有以下四种情况:当m ≤0时,则当A 点在抛物线上或上方时,它们有交点,此时有{m ≤0m 2−m ≤2, 解得:−1≤m <0;当0<m ≤1时,则当C 点在抛物线上或下方时,它们有交点,此时有{0<m ≤1(2−m )2−m ≥0, 解得:0<m ≤1;当1<m ≤2时,则当O 点位于抛物线上或下方时,它们有交点,此时有{1<m ≤2m 2−m >0, 解得:1<m ≤2;当m >2时,则当O 点在抛物线上或下方且B 点在抛物线上或上方时,它们才有交点,此时有{m >2m 2−m ≥0(2−m )2−m ≤2 ,解得:2<m≤5+√17;2,−1.综上可得:m的最大值和最小值分别是5+√172故选:D.小提示:本题考查了抛物线与正方形的交点问题,涉及到列一元一次不等式组等内容,解决本题的关键是能根据图像分析交点情况,并进行分类讨论,本题综合性较强,需要一定的分析能力与图形感知力,因此对学生的思维要求较高,本题蕴含了分类讨论和数形结合的思想方法等.2、如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点,若−2< x1<−1,则下列四个结论:①3<x2<4,②3a+2b>0,③b2>a+c+4ac,④a>c>b.正确结论的个数为()A.1个B.2个C.3个D.4个答案:B分析:根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点已经x=-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a-b+c<0,即可判断④.∵对称轴为直线x=1,-2<x1<-1,∴3<x2<4,①正确,∵−b= 1,2a∴b=- 2а,∴3a+2b= 3a-4a= -a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,∴a-b+c<0,∴a+c<b,∵a>0,∴b=-2a<0,∴a+c<0,∴b2 -4ac > a+ c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a-b+c<0,b=-2a,∴3a+c<0,∴c<-3a,∴b=–2a,∴b>c,以④错误;故选B小提示:本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.3、抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对答案:D分析:根据二次函数图象及性质,即可判定.∵抛物线y=x2+3开口向上,在其图象上有两点A(x1,y1),B(x2,y2),且y1<y2,∴|x1|<|x2|,∴0≤x1<x2,或x2<x1≤0,或x2>0,x1≤0且x2+x1>0,或x2<0,x1>0且x2+x1<0,故选:D.小提示:本题考查了二次函数的图象及性质,熟练掌握和运用二次函数的图象及性质是解决本题的关键.4、如图,某公司准备在一个等腰直角三角形ABC的绿地上建造一个矩形的休闲书吧PMBN,其中点P在AC上,点NM分别在BC,AB上,记PM=x,PN=y,图中阴影部分的面积为S,若NP在一定范围内变化,则y与x,S与x满足的函数关系分别是()A.反比例函数关系,一次函数关系B.二次函数关系,一次函数关系C.一次函数关系,反比例函数关系D.一次函数关系,二次函数关系答案:D分析:先求出AM=PM,利用矩形的性质得出y=﹣x+m,最后利用S=S△ABC-S矩形PMBN得出结论.设AB=m(m为常数).在△AMP中,∠A=45°,AM⊥PM,∴△AMP为等腰直角三角形,∴AM=PM,又∵在矩形PMBN中,PN=BM,∴x+y=PM+PN=AM+BM=AB=m,即y=﹣x+m,∴y与x成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.5、二次函数y =x 的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限答案:A分析:由抛物线解析式可得抛物线开口方向及顶点坐标,进而求解.∵y =x 2, ∴抛物线开口向上,顶点坐标为(0,0),∴抛物线经过第一,二象限.故选:A .小提示:本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.6、关于x 的方程ax 2+bx +c =0有两个不相等的实根x 1、x 2,若x 2=2x 1,则4b −9ac 的最大值是( )A .1B .√2C .√3D .2答案:D分析:根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.解:由方程ax 2+bx +c =0有两个不相等的实根x 1、x 2可得,a ≠0,x 1+x 2=−b a ,x 1x 2=c a ∵x 2=2x 1,可得3x 1=−b a ,2x 12=c a ,即2(−b 3a )2=c a 化简得9ac =2b 2 则4b −9ac =−2b 2+4b =−2(b 2−2b)=−2(b −1)2+2故4b −9ac 最大值为2故选D小提示:此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.7、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.8、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.9、已知二次函数y=mx2−4m2x−3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤−1或m>0D.m≤−1答案:A分析:先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m<0,根据二次函数的性质求得m的不同取值范围便可.解:∵二次函数y=mx2−4m2x−3,∴对称轴为x=2m,抛物线与y轴的交点为(0,−3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤−3,即m⋅42−4m2⋅4−3≤−3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤−3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.小提示:本题考查了二次函数的性质,关键是分情况讨论.10、如图,某涵洞的截面是抛物线形,现测得水面宽AB=1.6m,涵洞顶点O与水面的距离CO是2m,则当水位上升1.5m时,水面的宽度为()A.0.4mB.0.6mC.0.8mD.1m答案:C分析:根据题意可建立平面直角坐标系,然后设函数关系式为y=ax2,由题意可知A(−0.8,−2),代入求解函数解析式,进而问题可求解.解:建立如图所示的坐标系:设函数关系式为y=ax2,由题意得:A(−0.8,−2),∴−2=0.8×0.8×a,,解得:a=−258∴y=−25x2,8x2,当y=-0.5时,则有−0.5=−258解得:x=±0.4,∴水面的宽度为0.8m;故选C.小提示:本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.填空题11、已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式−3m2+3m+2022的值为______.答案:2019分析:先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.所以答案是:2019.小提示:本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.12、如图,在平面直角坐标系中,抛物线y=−x2+2mx+m−2(m为常数,且m>0)与直线y=2交于A、B两点.若AB=2,则m的值为______.答案:√21−12分析:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得x2−2mx−m+4=0,利用根与系数关系求得AB,可建立关于m的方程并解出即可.解:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得:−x2+2mx+m−2=2,即:x2−2mx−m+4=0∴x1+x2=2m,x1x2=−m+4,∴AB=|x2−x1|=√(x2+x1)2−4x1x2=√(2m)2−4(−m+4)=2,∴m2+m−5=0,解得:m1=√21−12,m2=−√21−12(舍去),所以答案是:√21−12.小提示:本题考查了抛物线与x轴的交点、二次函数与一元二次方程的关系、二次函数图象上点的坐标特征,熟练掌握这三个知识点的综合应用是解题关键.13、平移二次函数的图象,如果有一个点既在平移前的函数图象上,又在平移后的函数图象上,我们把这个点叫做“关联点”.现将二次函数y=x2+2x+c(c为常数)的图象向右平移得到新的抛物线,若“关联点”为(1,2),则新抛物线的函数表达式为_______.答案:y=(x−3)2−2分析:将(1,2)代入y=x2+2x+c,解得c=-1,设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,然后将(1,2)代入得到关于m的方程,通过解方程求得m的值即可.解:将(1,2)代入y=x2+2x+c,得12+2×1+c=2,解得c=-1.设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,将(1,2)代入,得(1+1-m)2-2=2.整理,得2-m=±2.解得m1=0(舍去),m2=4.故新抛物线的表达式为y=(x-3)2-2.故答案是:y=(x−3)2−2.小提示:本题主要考查了二次函数图象与几何变换,二次函数图象上点的坐标特征以及待定系数法确定函数关系式,解题的关键是理解“关联点”的含义.14、如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.则当水位下降m=________时,水面宽为5m?答案:1.125分析:以抛物线的顶点为原点建立坐标系,则可以设函数的解析式是y=ax2,然后求得水面与抛物线的交点坐标,利用待定系数法求解抛物线的解析式,再利用点的坐标特点即可求解.解:如图,建立如下的坐标系:水面与抛物线的交点坐标是(-2,-2),(2,−2),设函数的解析式是y=ax2,则4a=-2,解得a=−12,则函数的解析式是y=−12x2.当水面宽为5米时,把x=52代入抛物线的解析式可得:y=12×(52)2=258=3.125,∴3.125−2=1.125(米),所以答案是:1.125.小提示:本题考查了待定系数法求二次函数的解析式,二次函数的性质,建立合适的平面直角坐标系,求得水面与抛物线的交点是解题的关键.15、根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是ℎ=−5t2+20t,当飞行时间t为___________s时,小球达到最高点.答案:2分析:将函数关系式转化为顶点式即可求解.根据题意,有ℎ=−5t2+20t=−5(t−2)2+20,当t=2时,ℎ有最大值.所以答案是:2.小提示:本题考查二次函数解析式的相互转化及应用,解决本题的关键是熟练二次函数解析式的特点及应用.解答题16、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.答案:(1)y=−3x+300;(2)售价60元时,周销售利润最大为4800元;(3)m=5分析:(1)①依题意设y=kx+b,解方程组即可得到结论;(2)根据题意得W=(−3x+300)(x−a),再由表格数据求出a=20,得到W=(−3x+300)(x−20)=−3(x−60)2+4800,根据二次函数的顶点式,求出最值即可;(3)根据题意得W=−3(x−100)(x−20−m)(x⩽55),由于对称轴是直线x=60+m2>60,根据二次函数的性质即可得到结论.解:(1)设y=kx+b,由题意有{40k+b=180 70k+b=90,解得{k=−3b=300,所以y关于x的函数解析式为y=−3x+300;(2)由(1)W=(−3x+300)(x−a),又由表可得:3600=(−3×40+300)(40−a),∴a=20,∴W=(−3x+300)(x−20)=−3x2+360x−6000=−3(x−60)2+4800.所以售价x=60时,周销售利润W最大,最大利润为4800;(3)由题意W=−3(x−100)(x−20−m)(x⩽55),其对称轴x=60+m2>60,∴0<x⩽55时上述函数单调递增,所以只有x=55时周销售利润最大,∴4050=−3(55−100)(55−20−m).∴m=5.小提示:本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.17、“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y1(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y1=ax2+ c,部分对应值如表:221.③1~7月份该蔬菜售价x1(元/千克),成本x2(元/千克)关于月份t的函数表达式分别为x1=12t+2,x2=1 4t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.答案:(1)a=−15,c=9(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元分析:(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w元,根据w=x售价−x成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x的值,再求出总利润即可.(1)把{x=3,y=7.2,{x=4,y=5.8代入y需求=ax2+c可得{9a+c=7.2,①16a+c=5.8.②②-①,得7a=−1.4,解得a=−15,把a=−15代入①,得c=9,∴a=−15,c=9.(2)设这种蔬菜每千克获利w元,根据题意,有w=x售价−x成本=12t+2−(14t2−32t+3),化简,得w=−14t2+2t−1=−14(t−4)2+3,∵−14<0,t=4在1≤t≤7的范围内,∴当t=4时,w有最大值.答:在4月份出售这种蔬菜每千克获利最大.(3)由y供给=y需求,得x−1=−15x2+9,化简,得x2+5x−50=0,解得x1=5,x2=−10(舍去),∴售价为5元/千克.此时,y供给=y需求=x−1=4(吨)=4000(千克),把x=5代入x售价=12t+2,得t=6,把t=6代入w=−14t2+2t−1,得w=−14×36+2×6−1=2,∴总利润=w⋅y=2×4000=8000(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.小提示:此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.18、一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少? 答案:(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14分析:(1)根据题意和函数图象,可以设出抛物线的解析式,然后根据抛物线过点F 和点M 即可求得该抛物线的解析式;(2)先求出抛物线的解析式,再根据题意判断该隧道能通过的车辆的最高高度,便可判断该车辆能安全通过.(3)射出H 的坐标,用n 表示出L ,利用二次函数的性质求解即可.解:(1)由题意得M (0,4),F (4,0)可设抛物线的解析式为y=ax 2+4,将F (4,0)代入y=ax 2+4中,得a=-14, ∴抛物线的解析式为y=-14x 2+4; (2)当x=3,y=74, 74+2-12=3.25>3.2,∴能安全通过; (3)由GH=n ,可设H (n 2,−n 216+4),∴GH+GA+BH=n+(−n 216+4)×2+2×2=−18n 2+n +12,∴L=−18n 2+n +12,∵a <0,抛物线开口向下,∴当n=-b=4时,L有最大值,最大值为14.2a小提示:本题考查了二次函数的实际应用,解题的关键是要注意自变量的取值范围必须使实际问题有意义.。
人教版九年级数学上册第二十二章二次函数 知识点总结
第二十二章二次函数一、二次函数得有关概念:1、二次函数得定义:一般地,形如(就是常数,)得函数,叫做二次函数。
2、二次函数解析式得表示方法(1) 一般式:(,,为常数,);(2) 顶点式:(,,为常数,);(3)两根式:(,,就是抛物线与轴两交点得横坐标)、二、二次函数图象得画法1、基本方法:描点法注:五点绘图法。
利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图、一般我们选取得五点为:顶点、与轴得交点、以及关于对称轴对称得点、与轴得交点,(若与轴没有交点,则取两组关于对称轴对称得点)、2、画草图抓住以下几点:开口方向,对称轴,顶点,与轴得交点,与轴得交点、三、二次函数得图像与性质1、二次函数得性质(1)、当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随得增大而减小;当时,随得增大而增大;当时,有最小值.(2)、当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随得增大而增大;当时,随得增大而减小;当时,有最大值.2、二次函数得性质:概括成八个字“左加右减,上加下减”.五、二次函数与一元二次方程:一元二次方程就是二次函数当函数值时得特殊情况、图象与轴得交点个数:① 当时,图象与轴交于两点,其中得就是一元二次方程得两根.这两点间得距离、② 当时,图象与轴只有一个交点;③ 当时,图象与轴没有交点、当时,图象落在轴得上方,无论为任何实数,都有;当时,图象落在轴得下方,无论为任何实数,都有.六、二次函数中得符号问题1、二次项系数决定了抛物线开口大小与方向,得正负决定开口方向,得大小决定开口得大小.2、一次项系数在二次项系数确定得前提下,决定了抛物线得对称轴.⑴在得前提下,当时,,即抛物线得对称轴在轴左侧;当时,,即抛物线得对称轴就就是轴;当时,,即抛物线对称轴在轴得右侧.⑵在得前提下,结论刚好与上述相反,即当时,,即抛物线得对称轴在轴右侧;当时,,即抛物线得对称轴就就是轴;当时,,即抛物线对称轴在轴得左侧.总结起来,在确定得前提下,决定了抛物线对称轴得位置.总结:“左同右异”3、常数项⑴当时,抛物线与轴得交点在轴上方,即抛物线与轴交点得纵坐标为正;⑵当时,抛物线与轴得交点为坐标原点,即抛物线与轴交点得纵坐标为;⑶当时,抛物线与轴得交点在轴下方,即抛物线与轴交点得纵坐标为负.总结起来,决定了抛物线与轴交点得位置.七、二次函数解析式得确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数得解析式必须根据题目得特点,选择适当得形式,才能使解题简便.一般来说,有如下几种情况:1、已知抛物线上三点得坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与轴得两个交点得横坐标,一般选用两根式;4、已知抛物线上纵坐标相同得两点,常选用顶点式.。
初三数学二次函数知识点总结及经典习题
《二次函数》知识点总结一. 二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2。
二次函数2y ax bx c=++的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二。
二次函数的图像和性质表达式(a≠0) a值图像开口方向对称轴顶点坐标增减性最值①y=ax2a>0 向上y轴(0,0)①当x>0时,y随x的增大而增大②当x<0时,y随x的增大而减小当x=0时,y有最小值,即最小值y=0 a<0 向下y轴(0,0)①当x>0时,y随x的增大而减小②当x<0时,y随x的增大而增大当x=0时,y有最大值,即最大值y=0②y=ax2+k a>0 向上y轴(0,k)①当x>0时,y随x的增大而增大②当x<0时,y随x的增大而减小当x=0时,y有最小值,即最小值y=k a<0 向下y轴(0,k)①当x>0时,y随x的增大而减小②当x<0时,y随x的增大而增大当x=0时,y有最大值,即最大值y=k③y=a(x—h)2a>0 向上直线x=h (h,0)①当x>h时,y随x的增大而增大②当x<0时,y随x的增大而减小当x=h时,y有最小值,即最小值y=0 a<0 向下直线x=h (h,0)①当x>h时,y随x的增大而减小②当x<0时,y随x的增大而增大当x=h时,y有最大值,即最大值y=0④y=a(x-h)2+k a>0 向上直线x=h (h,k)①当x>h时,y随x的增大而增大②当x<h时,y随x的增大而减小当x=h时,y有最小值,即最小值y=ka <0向下 直线x=h (h,k )①当x >h 时,y 随x的增大而减小 ②当x <h 时,y 随x 的增大而增大当x=h 时,y 有最大值,即最大值y =k⑤y=ax 2+bx+c 可化为: y=a (x+)2ab 2+a >0 向上直线x=-ab 2(—ab 2,ab ac 442-)①当x >-ab 2时,y随x 的增大而增大 ②当x <-ab 2时,y随x 的增大而减小当x=—ab 2时,y 有最小值,最小值y =a b ac 442- a <0向下直线x=—ab2(-ab 2,ab ac 442-) ①当x >—a b 2时,y随x 的增大而减小②当x <—a b2时,y随x 的增大而增大当x=-ab 2时,y 有最大值,即 y 最大值=ab ac 442-三。
第22章 二次函数知识点总结 2023—2024学年人教版数学九年级上册
第二十二章二次函数22.1二次函数的图像和性质22.1.1 二次函数知识点一 二次函数的定义1.二次函数的定义:一般地,形如)0a ,,(2≠++=是常数,c b a c bx ax y 的函数,叫做二次函数.2.任何一个二次函数的解析式都可化成)0a ,,(2≠++=是常数,c b a c bx ax y 的形式,因此,把)0a ,,(2≠++=是常数,c b a c bx ax y 叫做二次函数的一般式3.二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 中y x ,是变量,c b a ,,是常量.自变量x 的取值范围是全体实数,b 和c 可以是任意实数,a 必须是不等于 0的实数.知识点二 实际问题中的二次函数22.1.2二次函数2ax y =的图像和性质理解 题意 分析问题中的变量和常量及它们之间的关系列函数 关系式22.1.3二次函数()k h x a y +-=2的图像和性质第一课时 二次函数k ax y +=2的图像和性质第二课时 二次函数()2h x a y -=的图像和性质第三课时 二次函数()k h x a y +-=2的图像和性质22.1.4 二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 的图象和性质第一课时 二次函数c bx ax y ++=2的图象和性质知识点一 二次函数c bx ax y ++=2与()k h x a y +-=2之间的关系 利用二次函数图象平移的规律求平移后的函数的解析式,首先要把函数解析式化为顶点式:()k h x a y +-=2知识点二 二次函数c bx ax y ++=2的图象和性质 1. 二次函数c bx ax y ++=2的图象是一条抛物线,与抛物线2ax y =的形状相同,位置不同,利用配方法可以将c bx ax y ++=2转化成顶点式,即a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++= 2. 二次函数c bx ax y ++=2的性质(1)当0>a 时,抛物线开口向上,对称轴为直线a bx 2-=,顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac ab 44,22c bx ax y ++=20>a0<a开口方向 向上 向下对称轴 直线ab x 2-= 直线ab x 2-= 顶点坐标⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ⎪⎪⎭⎫⎝⎛--a b ac a b 44,22 增减性当a b x 2->时,y 随x 的增大而增大;当a b x 2-<时,y 随x 的增大而减小当abx 2->时,y 随x 的增大而减小;当abx 2-<时,y 随x 的增大而增大最值当ab x 2-=时,ab ac y 442-=最小值当ab x 2-=时,ab ac y 442-=最大值知识点三 二次函数c bx ax y ++=2的图象与系数c b a ,,之间的关系 系数 图像的特征 系数的符号a开口向上 0>a 开口向下0<a b对称轴为y 轴 0=b对称轴在y 轴左侧同号b a ,对称轴在y 轴右侧 异号b a ,c经过原点0=c 与y 轴正半轴相交 0>c 与y 轴负半轴相交0<c第二课时 用待定系数法求二次函数的解析式知识点一 用待定系数法求二次函数的解析式根据已知条件确定二次函数解析式,通常利用待定系数法,用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题便捷。
二次函数知识点总结初中数学
二次函数y=ax 2(a ≠0)与y=ax 2+c (a ≠0)的图象与性质要点一、二次函数的概念 1.二次函数的概念一般地,形如y=ax 2+bx+c (a ≠0,a, b, c 为常数)的函数是二次函数. 若b =0,则y=ax 2+c ; 若c =0,则y=ax 2+bx ; 若b=c =0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c (a ≠0)是二次函数的一般式. 二次函数由特殊到一般,可分为以下几种形式:①y=ax 2(a ≠0);②y=ax 2+k (a ≠0);③y=a(x-h)2(a ≠0);④y=a(x-h)2+k (a ≠0),其中abh 2-=,a b ac k 442-=;⑤y=ax 2+bx+c (a ≠0). 要点诠释:如果y=ax 2+bx+c(a,b,c 是常数,a ≠0),那么y 叫做x 的二次函数.这里,当a =0时就不是二次函数了,但b 、c 可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.2.二次函数解析式的表示方法1. 一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0);2. 顶点式:y=a(x-h)2+k (a ,h ,k 为常数,a ≠0);3. 两根式:))((21x x x x a y --=(a ≠0,x 1,x 2是抛物线与x 轴两交点的横坐标)(或称交点式).要点诠释:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.x 240b ac -≥要点二、二次函数y=ax2(a≠0)的图象及性质1.二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.因为抛物线y=x2关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x2的顶点是图象的最低点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的图象与性质
一、知识清单梳理
知识点一:二次函数的概念及解析式关键点拨与对应举例
1.二次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.
例:如果函数y=(a-1)x2是二
次函数,那么a的取值范围是
a≠0.
2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其
中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为
抛物线与x轴交点的横坐标.
(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系
数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析
式.
若已知条件是图象上的三个
点或三对对应函数值,可设一
般式;若已知顶点坐标或对称
轴方程与最值,可设顶点式;
若已知抛物线与x轴的两个交
点坐标,可设交点式.
知识点二:二次函数的图象与性质
3.二次函
数的图象和性质图象x
y
y=ax2+bx+c(a>0)
O
x
y
y=ax2+bx+c(a<0)
O
(1)比较二次函数函数值大
小的方法:①直接代入求值
法;②性质法:当自变量在对
称轴同侧时,根据函数的性质
判断;当自变量在对称轴异侧
时,可先利用函数的对称性转
化到同侧,再利用性质比较;
④图象法:画出草图,描点后
比较函数值大小.
失分点警示
(2)在自变量限定范围求二
次函数的最值时,首先考虑对
称轴是否在取值范围内,而不
能盲目根据公式求解.
例:当0≤x≤5时,抛物线
y=x2+2x+7的最小值为7
开口向上向下
对称
轴
x=
2
b
a
-
顶点
坐标
2
4
,
24
b a
c b
a a
⎛⎫
-
-
⎪
⎝⎭
增减
性
当x>
2
b
a
-时,y随x的增大而增大;
当x<
2
b
a
-
时,y随x的增大而减小.
当x>
2
b
a
-时,y随x的增大而减小;
当x<
2
b
a
-时,y随x的增大而增大.
最值x=
2
b
a
-
,
y最小=
2
4
4
ac b
a
-
. x=
2
b
a
-
,
y最大=
2
4
4
ac b
a
-
.
3.系数a、
b、c a
决定抛物线的开口方
向及开口大小
当a>0时,抛物线开口向上;
当a<0时,抛物线开口向下.
某些特殊形式代数式的符号:
①a±b+c即为x=±1时,y
的值;②4a±2b+c即为x=±
2时,y的值.
③2a+b的符号,需判断对称
轴-b/2a与1的大小.若对称轴
在直线x=1的左边,则-b/2a
>1,再根据a的符号即可得
出结果.④2a-b的符号,需判断
对称轴与-1的大小.
a、b 决定对称轴(x=-b/2a)
的位置
当a,b同号,-b/2a<0,对称轴在y轴左边;
当b=0时,-b/2a=0,对称轴为y轴;
当a,b异号,-b/2a>0,对称轴在y轴右边.
c
决定抛物线与y轴的交
点的位置
当c>0时,抛物线与y轴的交点在正半轴上;
当c=0时,抛物线经过原点;
当c<0时,抛物线与y轴的交点在负半轴上.
b2-
4ac
决定抛物线与x轴的交
点个数
b2-4ac>0时,抛物线与x轴有2个交点;
b2-4ac=0时,抛物线与x轴有1个交点;
b2-4ac<0时,抛物线与x轴没有交点
知识点三:二次函数的平移
4.平移与解
析式的关
系
平移|k|个单位
平移|h|个单位
向上(k>0)或向下(k<0)
向左(h<0)或向右(h>0)
y=a(x-h)2+k
的图象
y=a(x-h)2
的图象
y=ax2
的图象
注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶
点的平移方式即可确定平移后的函数解析式
失分点警示:
抛物线平移规律是“上加下减,左
加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平
移2个单位后所得抛物线的解析
式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数
与一元二次方程二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程
ax2+bx+c=0的根.
当Δ=b2-4ac>0,两个不相等的实数根;
当Δ=b2-4ac=0,两个相等的实数根;
当Δ=b2-4ac<0,无实根
例:已经二次函数
y=x2-3x+m(m为常数)的图象
与x轴的一个交点为(1,0),
则关于x的一元二次方程
x2-3x+m=0的两个实数根为
2,1.
6.二次函
数与不等式抛物线y=ax2+bx+c=0在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式ax2+bx+c>0的解集;在x轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2+bx+c<0的解集.。