人工神经网络文献综述.

合集下载

人工神经网络综述

人工神经网络综述

人工神经网络综述〔摘要〕本文使用通谷易懂的语言从物理概念上深入浅出地介绍了人工神经网络的工作原理、特点及几种典型神经网络,避免出现繁琐的公式及数学推导。

希望能通过本文引起广大科研工作者对人工神经网络的认识和重视。

1 神经元模型的提出“人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称A.N.N.)是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。

早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。

其后,F.Rosenblatt、Widrow和Hopf、J.J.Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。

神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。

据神经生物学家研究的结果表明,人的一个大脑一般有~个神经元。

如图1所示,每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。

轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。

其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。

树突的功能是接受来自其它神经元的兴奋。

神经元细胞体将接受到的所有信号进行简单地处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。

神经元的树突与另外的神经元的神经末梢相连的部分称为突触。

图1 神经元结构图图2 神经元模型对应于图1,可以很容易的建立起神经元的模型,如图2所示。

大脑之所以能够处理极其复杂的分析、推理工作,一方面是因为其神经元个数的庞大,另一方面还在于神经元能够对输入信号进行非线性处理。

因此,对图2可进一步建立起更接近于工程的数学模型,如图3所示,它是一个多输入单输出的非线性器件。

其中的权值W即代表神经元之间的连接强度,f(x)为非线性函数。

BP算法文献综述

BP算法文献综述

人工神经网络的技术前沿11115028 王媛媛1.人工神经网络的起源自古以来,各界研究工作者对于“人脑”“生物智能”一直表现着极大的研究兴趣.采用某种工程技术的手段设计出具有生物神经网络的某些结构功能的软硬件智能设施被称为“人工神经网络技术”【1】。

举例来讲,“识别人脸"是大脑的基本功能,正常成人可以正确辨别认识的人脸。

但计算机要准确做到这一点却比较困难,因为计算机智能针对具体的模型机型指令编程,若没有精确的模型,程序也就无法编制。

故而如何针对人脑所具有的各项智能活动做出有效的计算机或硬件模拟,就是人工神经网络的主要研究内容。

人工神经网络起源于20世纪初期,主要由两方面因素催生。

一方面经过生物学家数学家的不懈努力,采用数学模型来描述神经元的基本生物活动成为可能.神经元是神经活动的基础原件,了解神经元的工作机制是创建人工神经网络科学的基础。

另外一方面,19世纪比较具有代表性的牛顿力学或者欧式几何都是线性科学,而生物智能活动如此纷繁复杂,不可能用简单的线性数学模型进行模拟,提出一种非线性的可有效模拟神经网络活动的模型算法迫在眉睫。

人工神经网络的发展并不是偶然,而是在当时的科学背景下应运而生.2.人工神经网络的发展人工神经网络算法真正发展于20世纪40年代初,至今发展也不超过一百年,虽然其存在的时间较短,但其发展过程可谓一波三折,经历很多挫折,也取得很多进展.1943年,心理学家W.S。

Mcculloch和数学家W。

Pitts总结了生物神经元的一些基本特性,共同提出M—P模型,第一次用数学语言描述了神经元的活动【2】。

虽然其神经元的功能较弱,但M—P模型的提出为人工神经网络奠定了基础,自此发展开来。

心理学家D。

O。

Hebb于1949年提出神经元之间的突触联系强度可变的假设,他认为人脑的学习活动室发生在突触上的,而其联系的强度会随着神经元的活动而变化【3】。

他的假设为人工神经网络的学习活动研究提供了基础.1958年,Rosenblatt提出了著名的感知机模型,这是第一个真正意义上的神经网络,它基本上满足了神经生理学的一切先验知识,可用于模式识别、联想记忆等方面【4】。

神经网络【文献综述】

神经网络【文献综述】

毕业论文文献综述应用物理神经网络人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。

每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。

与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制人工神经元的研究起源于脑神经元学说。

19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。

人们认识到复杂的神经系统是由数目繁多的神经元组合而成。

大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。

但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。

人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。

人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。

虽然人脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常思维活动。

而普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。

元器件的局部损坏及程序中的微小错误都可能引起严重的失常。

人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。

人工智能文献综述10000字

人工智能文献综述10000字

人工智能文献综述10000字人工智能(Artificial Intelligence,AI)是指通过模拟、延伸和扩展人类智能的技术和方法。

人工智能已经渗透到了各个领域,如医疗、金融、交通等。

本文将对人工智能领域的一些重要文献进行综述,以期了解目前人工智能领域的研究进展和热点。

1. "Deep Residual Learning for Image Recognition" (Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, 2016)这篇论文提出了一种新的深度残差网络(Deep Residual Network,ResNet)结构,通过引入残差学习的方法解决了深度神经网络的退化问题。

该论文在ImageNet数据集上取得了当时最先进的结果,为深度学习的发展做出了重要贡献。

2. "Playing Atari with Deep Reinforcement Learning" (Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller, 2013)这篇论文提出了一种基于深度强化学习的方法,将深度神经网络应用于Atari游戏的自动游戏玩家训练中。

这种方法通过将图像作为输入,直接从原始像素中学习游戏策略,取得了比之前所有方法更好的结果。

这是深度强化学习在游戏领域的开创性工作。

3. "Generative Adversarial Networks" (Ian J. Goodfellow,Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, 2014)这篇论文提出了一种新的生成模型,称为生成对抗网络(Generative Adversarial Networks,GANs)。

人工神经网络综述【范本模板】

人工神经网络综述【范本模板】

人工神经网络综述摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力.首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。

关键词:神经网络、分类、应用0引言多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元.特别是近二十年来. 对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。

大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统.在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。

神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动.1 人工神经网络概述1.1 人工神经网络的发展人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。

1。

1。

1 人工神经网络发展初期1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP 模型,这是人类最早对于人脑功能的模仿。

他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究.1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。

人工神经网络文献综述.

人工神经网络文献综述.

WIND一、人工神经网络理论概述 (一人工神经网络基本原理神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。

人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。

人工神经元模型的基本结构如图 1所示。

图中X=(x 1, x 2, … x nT∈ R n表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。

其表达式为 y i =f(nj =iΣw ij x j+θi式中, f (·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。

图 1(二人工神经网络的发展人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。

人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。

在这 50多年的历史中,它的发展大体上可分为以下几个阶段。

60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。

造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。

这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。

80年代中期人工神经网络得到了飞速的发展。

这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。

人工神经网络文献综述

人工神经网络文献综述

WIND一、人工神经网络理论概述 (一人工神经网络基本原理神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。

人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。

人工神经元模型的基本结构如图 1所示。

图中X=(x 1, x 2, … x nT∈ R n表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。

其表达式为 y i =f(nj =iΣw ij x j+θi式中, f (·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。

图 1(二人工神经网络的发展人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。

人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。

在这 50多年的历史中,它的发展大体上可分为以下几个阶段。

60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。

造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。

这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。

80年代中期人工神经网络得到了飞速的发展。

这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。

人工神经网络综述论文

人工神经网络综述论文

人工神经网络的最新发展综述摘要:人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的处理部件,由人工方式建立起来的网络系统。

该文首先介绍了神经网络研究动向,然后介绍了近年来几种新型神经网络的基本模型及典型应用,包括模糊神经网络、神经网络与遗传算法的结合、进化神经网络、混沌神经网络和神经网络与小波分析的结合。

最后,根据这几种新型神经网络的特点,展望了它们今后的发展前景。

关键词:模糊神经网络;神经网络与遗传算法的结合;进化神经网络;混沌神经网络;神经网络与小波分析。

The review of the latest developments in artificial neuralnetworksAbstract:Artificial neural network is the system that simulates the human brain’s structure and function, and uses a large number of processing elements, and is manually established by the network system. This paper firstly introduces the research trends of the neural network, and then introduces several new basic models of neural networks and typical applications in recent years, including of fuzzy neural network, the combine of neural network and genetic algorithm, evolutionary neural networks, chaotic neural networks and the combine of neural networks and wavelet analysis. Finally, their future prospects are predicted based on the characteristics of these new neural networks in the paper.Key words: Fuzzy neural network; Neural network and genetic algorithm; Evolutionary neural networks; Chaotic neural networks; Neural networks and wavelet analysis1 引言人工神经网络的研究始于20世纪40年代初。

神经网络历史发展及应用综述资料

神经网络历史发展及应用综述资料

人工神经网络历史发展及应用综述1、引言人类为了生存而改造自然,在探索自然的过程中,先是利用机械拓展了自身的体力,强化和延伸了自我能力,随着对自然认识的不断深入,创造语言,符号,计算工具,甚至是计算机等一系列工具来强化自身的脑力,使人能够更加专注于对自然的探索。

复杂的数字计算原本是靠人脑来完成的,为了摆脱这种脑力束缚发明了计算机。

其数字计算能力比人脑更强,做得更迅速、更准确。

计算机的出现,人类开始真正有了一个可以模拟人类思维的工具,期盼可以实现人工智能,构造人脑替代人类完成相应工作。

要模拟人脑的活动,就要研究人脑是如何工作的,要怎样模拟人脑的神经元。

人脑的信息处理具有大规模并行处理、强容错性和自适应能力、善于联想、概括、类比和推广的特点,多少年以来,人们从生物学、医学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图获悉人脑的工作奥秘,寻求神经元的模拟方法。

在寻找上述问题答案的研究过程中,从20世纪40年代开始逐渐形成了一个新兴的边缘性交叉学科,称之为“神经网络”,是人工智能、认知科学、神经生理学、非线性动力学、信息科学、和数理科学的“热点”。

关于神经网络的研究包含众多学科领域,涉及数学、计算机、人工智能、微电子学、自动化、生物学、生理学、解剖学、认知科学等学科,这些领域彼此结合、渗透,相互推动神经网络研究和应用的发展。

2、定义思维学普遍认为,人类大脑的思维有三种基本方式,分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维。

逻辑性的思维是根据逻辑规则进行推理的过程,这一过程可以写成指令,让计算机执行,获得结果。

而直观性(形象)的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的有以下两个特点:一是信息通过神经元上的兴奋模式分布储在网络上;二是信息处理通过神经元之间同时相互作用的动态过程来完成的。

人工神经网络就是模拟第二种人类思维方式。

人工神经网络是由大量具备简单功能的人工神经元相互联接而成的自适应非线性动态系统。

人工神经网络发展综述

人工神经网络发展综述

人工神经网络发展综述人工神经网络发展综述1 绪论人工神经网络(Artificial Neural Network, ANN)是由大量处理单元互联组成的非线性、自适应信息处理系统。

它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。

ANN 通过模仿人类大脑的结构和功能,并借鉴生物神经科学的研究成果,实现对信息的处理,是一种新兴的交叉学科,不但推动了智能化计算的应用和发展,同时也为信息科学和神经生物学的研究方法带来革命性的变化,现已成功应用于脑科学,认知科学,模式识别,智能控制,计算机科学等多个领域。

在实际应用中,人工神经网络的选取通常包括适当的神经网络模型,合理的网络结构及快速有效的网络参数训练算法。

而针对某一特定网络模型,ANN的研究主要集中在结构的调整和训练算法的改进两个方面。

所谓神经网络训练,也就是网络参数的学习和调整,是一个反复调节节点之间权值和阈值的过程,其学习可以分成三类,即有监督学习,无监督学习和强化学习,本文基于有监督和无监督学习进行分类,分别分析了前馈神经网络的特点及研究现状、递归神经网络的特点及研究现状。

2 前馈神经网络2.1 前馈神经网络的特点前馈神经网络的主要种类包括:感知器,线性神经网络,BP 网络,径向基网络(RBF)等。

其训练算法主要采用梯度下降法,包括:误差反向传播算法,改进的BP算法,Levenberg -Marquardt 法(LM)等。

前馈神经网络具有学习简单,收敛较快等优点,因此在实际应用中,一般选取三层或以上的网络结构,神经网络的任意逼近定理指出,训练合适的多层前馈神经网络能够以任意精度逼近任意连续函数。

当网络结构已知的情况下,训练前馈神经网络的本质就是确定最优权值和阈值的方法,前馈神经网络的训练方式一般采用网络理想输出和实际输出的误差作为权值调整信号,解空间一般是多峰函数,由于训练过程中很容易陷入局部极小,因此网络的训练目标就是求解一组最优的权值,使误差达到最小。

人工智能-人工神经网络论文

人工智能-人工神经网络论文

人工智能—神经网络化工机械系1220301015应凯业摘要人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。

为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。

人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。

关键字人工智能,人工神经网络,神经元,人工智能系统引言“人工智能”一词最初是在1956 年Dartmouth学会上提出的。

从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。

人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

在计算机技术与网络技术高速发展的今天,更多的人将目光投向了人机交互与人工智能,这样的聚焦促使了人工智能的快速前进,在现今生活的方方面面,像专家系统,模式识别,数字图像处理等这些智能化的技术系统都分别应用在了医学,人类学等研究中,为人们带来了更大的便利。

在人工智能的研究中,牵扯到非常庞大的学科知识,像生物学,心理学,仿生学等等,就个人对人工智能这一词语的字面理解,本人认为:人工智能的终极目标就是将机器改进成可以与人们进行互动,进行交流,达到思想上的拟合。

当然这与人机交互还是有非常大的区别的,人机交互的人机交流仅仅是停留在界面与人心理适应程度的契合上,通俗的说,人机交互就是只是做了表面的功夫,还是要人类去告诉机器要怎么样做,去亲自操作更种功能。

而人工智能的目标是将机器改进成就像人与人之间一样,人与机器可以就疑难问题进行讨论,模拟,测试,最终得出正确的结论。

这样的话,就要将机器根据人脑中的神经构造来进行改进,从而达成目标。

人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。

神经元网络 文献综述

神经元网络 文献综述

文献综述*************************************神经元网络*************************************同济大学经济与管理学院摘要本文通过搜索与神经元网络相关的各种文献资料,学习研究现有神经元网络理论知识, 并集中的总结国内外相关研究和应用的现状,聚焦了当今社会对神经元网络的研究热点。

本文综合前人研究成果,结合自身理解提出相关的问题和看法,并预测了神经元网络的发展趋势。

前言人工神经元是对生物神经元的一种模拟与简化。

它是神经网络的基本处理单元,利用人工神经元,可以构成各种不同拓扑结构的神经网络。

人工神经网络是在现代神经生物学研究基础上提出的模拟生物过程以反应人脑某些特性的计算结构。

它不是人脑神经系统的真实描写,只是特的某种抽象、简化和模拟。

人工神经网络最有吸引力的特点就是它的学习能力。

因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。

最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用人工神经网络模型对问题进行研究优化解决。

但目前人工神经网络的研究还存在应用面窄、结果缺乏精确性、可信度等问题。

本文将综述性的回顾该研究历史,并聚焦当今社会对神经元网络的研究热点,介绍相关研究理论及成果。

同时对该研究中存在的部分问题提出看法和建议,提出神经网络未来发展趋势。

正文1、人工神经网络起源和发展人工神经网络至今经历了萌芽期、第一高潮期、反思期、第二高潮期、再认识与应用期。

1)萌芽期(20世纪40年代):1943 年心理学家W.McCulloch 和数学家W.Pitts 合作提出了最早的神经元数学模型(MP 模型,如图1 所示),开创了神经科学理论研究的时代。

人工神经网络应用于海洋领域的文献综述-_海洋环境监测

人工神经网络应用于海洋领域的文献综述-_海洋环境监测

人工神经网络应用于海洋领域的文献综述*_海洋环境监测论文导读::船舶与海洋工程。

海洋预报与预测。

海洋资源评估。

海洋环境监测。

人工神经网络应用于海洋领域的文献综述*。

论文关键词:人工神经网络(ANN),船舶与海洋工程,海洋预报与预测,海洋资源评估,海洋环境监测人工神经网络是对人类大脑特性的一种描述。

它是一个数学模型,可以用电子线路实现,也可以用计算机程序来模拟。

是人工智能研究的一种方法。

主要功能有:联想记忆、分类识别、优化计算、非线性映射。

由于其具有好的容错性、并行处理信息、自学习性及非线性映射逼近能力等特点,因此被广泛的应用于各个领域。

ANN在海洋领域的应用起步较晚。

20世纪90年代以来,国内外掀起了应用ANN研究海洋问题的热潮。

相比传统方法,由于ANN提高了预测的准确性,减少了对数据的要求并且便于应用,到目前为止,ANN模型的应用已经遍布海洋工程(包括港口、沿海、近海和深海工程)海洋环境监测,海洋预报与预测,海洋资源与环境等各方面,并且应用前景不断扩大。

本文通过梳理相关文献,分析和总结了ANN在海洋领域的研究进展和主要成果,以期为相关研究提供参考。

1 船舶与海洋工程钢材腐蚀问题是海洋工程的重大课题。

国内许多学者通过建立ANN模型考察海水环境相关参数与钢材腐蚀速度的相关性。

刘学庆等根据四层BP神经网络分析了3C钢腐蚀速度与海水环境参数的相关性,建立了3C钢在海洋环境中腐蚀速度的人工神经网络模型,证明该方法在监测与评价区域海洋环境腐蚀性方面具有实际应用价值[1]。

邓春龙等研究建立了海洋环境材料腐蚀与防护数据库,收集和整理了大量的材料腐蚀数据。

并在此基础上建立了误差反传(BP)人工神经网络预测模型和灰色GM(1,1)腐蚀预测模型。

从而形成一套较完整的数据采集、处理和分析网络系统[2]。

王佳等采用电化学、人工神经网络和数据库方法研究了5种海洋工程钢材在深海环境中非现场腐蚀行为评价技术。

结果表明,结合采用多种非现场方法可以可靠评价深海环境钢材的腐蚀行为[3]。

人工智能文献综述范文模板

人工智能文献综述范文模板

人工智能文献综述引言人工智能作为一门交叉学科,已经成为当今世界的热点领域。

随着技术的不断发展和应用的广泛推广,越来越多的研究者开始关注和研究人工智能的各个方面。

本文旨在对近年来人工智能领域的相关文献进行综述,总结现有的研究进展和存在的问题,并展望未来的发展方向。

主要内容1.人工智能算法与模型人工智能的核心在于算法和模型的设计与优化。

近年来,深度学习模型如卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(Recurrent Neural Network,RNN)等取得了显著的成果。

同时,强化学习(Reinforcement Learning)、生成对抗网络(Generative Adversarial Networks,GANs)等新兴算法也受到了广泛关注。

然而,这些算法和模型仍然存在许多挑战,如数据稀缺性、模型解释性等问题。

2.人工智能在图像处理领域的应用人工智能在图像处理领域有着广泛的应用。

例如,目标检测、图像分类、图像生成等任务都取得了令人瞩目的成果。

其中,基于卷积神经网络的图像识别方法成为了主流。

然而,对于复杂场景和小样本数据,现有的算法仍然存在一定的局限性。

3.人工智能在自然语言处理领域的应用自然语言处理是人工智能领域的重要分支之一。

近年来,深度学习方法在机器翻译、文本分类、情感分析等任务上取得了巨大成功。

然而,对于语义理解、多语种处理等问题,现有的方法仍然有待改进。

4.人工智能在智能交通领域的应用智能交通是人工智能在实际应用中的一个重要领域。

通过利用人工智能技术,可以提高交通管理效率、减少交通事故等。

例如,基于深度学习的交通流量预测、智能驾驶系统等技术已经取得了显著的成果。

然而,安全性、可靠性等问题仍然是亟待解决的难题。

结论与展望人工智能作为一门新兴的学科,已经在各个领域取得了重要进展。

然而,仍然存在许多挑战和问题需要解决。

未来,我们可以继续改进现有的算法和模型,提高其性能和效果。

基于人工神经网络的预测研究的文献综述

基于人工神经网络的预测研究的文献综述

基于人工神经网络的预测研究的文献综述第一篇:基于人工神经网络的预测研究的文献综述基于人工神经网络的预测研究文献综述专业:电子信息工程班级:08级2班作者:刘铭指导老师:熊朝松引言随着多媒体和网络技术的飞速发展及广泛应用,人工神经网络已被广泛运用于各种领域,而它的预测功能也在不断被人挖掘着。

人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。

现代计算机构成单元的速度是人脑中神经元速度的几百万倍,对于那些特征明确,推理或运算规则清楚地可编程问题,可以高速有效地求解,在数值运算和逻辑运算方面的精确与高速极大地拓展了人脑的能力,从而在信息处理和控制决策等方面为人们提供了实现智能化和自动化的先进手段。

但由于现有计算机是按照冯·诺依曼原理,基于程序存取进行工作的,历经半个多世纪的发展,其结构模式与运行机制仍然没有跳出传统的逻辑运算规则,因而在很多方面的功能还远不能达到认得智能水平。

随着现代信息科学与技术的飞速发展,这方面的问题日趋尖锐,促使科学和技术专家们寻找解决问题的新出路。

当人们的思想转向研究大自然造就的精妙的人脑结构模式和信息处理机制时,推动了脑科学的深入发展以及人工神经网络和闹模型的研究。

随着对生物闹的深入了解,人工神经网络获得长足发展。

在经历了漫长的初创期和低潮期后,人工神经网络终于以其不容忽视的潜力与活力进入了发展高潮。

这么多年来,它的结构与功能逐步改善,运行机制渐趋成熟,应用领域日益扩大,在解决各行各业的难题中显示出巨大的潜力,取得了丰硕的成果。

通过运用人工神经网络建模,可以进行预测事物的发展,节省了实际要求证结果所需的研究时间。

正是由于人工神经网络是一门新兴的学科,它在理论、模型、算法、应用和时限等方面都还有很多空白点需要努力探索、研究、开拓和开发。

因此,许多国家的政府和企业都投入了大量的资金,组织大量的科学和技术专家对人工神经网络的广泛问题立项研究。

从人工神经网络的模拟程序和专用芯片的不断推出、论文的大量发表以及各种应用的报道可以看到,在这个领域里一个百家争鸣的局面已经形成。

人工神经网络综述

人工神经网络综述

起来,从而形成一个新的网络。与其他神经网络相比,它能够 直接使用图像的像素进行模式识别,有效降低了传统识别算法 中复杂的特征提取计算过程。与此同时,卷积神经网络对图像 的平移、缩放和旋转具有较好的鲁棒性。
2.2 递归人工神经网络模型 递归网络(Recurrent Neural Network,RNN)中由于存在输 出变量到输入端的反馈,因而其变量中包含时间延时网络,是 真正的动态网络系统[2]。递归网络与静态神经网络比较,递归 网络不需要预先假定系统的阶次,为动态系统的辨识与控制开 辟了一个极有前途的领域。动态递归神经网络因其固有的反馈 结构,一般只需单层的网络就可以较好的表达一个复杂的动态 系统,逼近系统的动态过程。
引言 自计算机产生以来,计算机的计算能力已经远远超过人类
的能力。例如,一台计算机可以在一秒钟内完成数十亿次的加 减运算,但在许多未定义、未分类的人类高级活动中,计算机 并不能发挥有效的辅助作用。于是“人工智能”的概念就出现 了,麻省理工学院教授温斯顿曾说过:“人工智能就是研究如 何使计算机去做过去只有人才能做的智能工作。”人工智能主 要包括自然语言处理、智能搜索、推理、规划、机器学习、神 经网络等等一系列的方向,是目前计算机科学家们不断追求的 目标,其中神经网络更是重中之重。
1 关于人工神经网络 1.1 人工神经网络的构造 1943年著名学者McCulloch和Pitts提出了一种M-P模型,它
是模拟人体生物学上的神经细胞的数学研究。这一个模型的出 现标志这人工神经网络的诞生。随着BP算法、SVM算法的提出 人工神经网络发展迅速。
目前的人工神经网络大致可以分为三个层次[1],输入层, 隐藏层,输出层。接收外部信息与数据的为输入层,隐藏层是 负责对信息进行处理,不断调整神经元之间的连接属性,如权 值、反馈等;输出层负责对计算的结果进行输出。其中,权值 反映了单元间的连接强度;反馈反映了单元间的正负相关性,在 单元间的连接关系中,通过这些信息反映出信息的处理过程。 由于对整体结果的未知,在隐藏层的权值和反馈需要不断地调 整,最终达到最好的拟合的结果。

人工神经网络综述

人工神经网络综述

人工神经网络综述引言人工神经网络(Artificial Neural Network,简称ANN)可以概括的定义为:由大量简单的高度互连的处理元素(神经元)所组成的复杂网络计算系统。

它是在现代神经科学研究成果基础上提出的,反映了人脑功能的若干基本特征,是模拟人工智能的一条重要途径。

最普通形式的神经网络就是对人脑完成特定任务或感兴趣功能的方法进行建模的机器。

人工神经网络既可以用硬件实现,也可以用软件实现;既可以看做一种计算模式,也可以看做一种认知模式。

因此,从某种意义上说,人工神经网络、并行分布处理(Parallel Distributed Processing,简称PDP)、神经计算机是同一概念。

神经网络在两个方面与人脑相似:①神经网络获取的知识是从外界环境中学习得来的;②互连神经元的连接强度,即突触权值,用于存储获取的知识。

1神经网络基础知识1.1神经元模型神经元是神经网络的基本处理单元,它是人工神经网络的设计基础。

人工神经网络是模拟或学习生物神经网络(Biological Neural Network,BNN)信息处理功能的信息处理模型。

因此,要了解人工神经元模型首先必须了解生物神经元模型。

1.1.1生物神经元的结构生物神经元是大脑的基本单元。

虽然存在多种生物神经元,但其基本结构是相似的,即一个生物神经元由一个细胞体、大量的树突和轴突构成。

细胞体相当于一个初等处理器,由细胞核、细胞质和细胞膜等组成。

树突也称枝晶,为细胞体向外伸出的许多树状分枝,它相当于细胞的输入端,接受来自四面八方的传入神经冲动、兴奋或抑制信号。

轴突即神经纤维,是由细胞体向外伸出的最长的一条分枝。

轴突相当于细胞的输出电缆,其端部有许多神经末梢作为信号输出端子,用于传出神经冲动、兴奋或抑制信号。

神经元之间通过轴突(输出)与树突(输入)相互连接,其接合部称为突触,即神经冲动通过突触从一个神经元传递到另一个神经元。

它决定了神经元之间的联接强度和性质(兴奋或抑制)。

人工神经网络模型发展及应用综述

人工神经网络模型发展及应用综述

20215711人工神经网络(Artificial Neural Networks,ANN)是一种可用于处理具有多个节点和多个输出点的实际问题的网络结构。

虽然人类的大脑和人工神经网络的运用都具有极其强大的信息处理能力,但是两者还是有许多不同之处。

谷歌Deepmind最初被Demis Hassabis、Mustafa Suleyman以及Shane Legg创立出来,在2016年创造出AlphaGo打败世界围棋冠军李世石后逐渐被人认可,也说明人工神经网络具有巨大的潜力。

与人脑处理信息方式有所不同,运用人工神经网络开发出的机器人采用线性的思维方式处理获取到的信息,计算机通过快速、精确的顺序数值运算,在串行算术类型的任务处理上超过人类。

但人脑的“并行处理体系”相对于人工神经网络领域具有绝对领先的能力。

McCulloch心理学家和Pitts数学家于1943年考虑寻找神经元背后的基本原理,将阈值函数作为计算神经元的主要特性,把逻辑演算表述为神经计算架构,提出“神经网络”概念和M-P模型,标志着人工神经网络ANN萌芽[1]。

Hebb假设突触权重的变化会如何控制神经元相互激励的方式,在1949年出版的《行为的组织》中提出了Hebb突触以及Hebb学习规则,为人工神经网络算法的发展构建了理论知识基础[2]。

20世纪60年代末,Rosenblatt开创了感知器,感知器是建立在M-P模型基础上,第一个物理构建并形成了具有学习能力的人工神经网络[3]。

Minsky和Papert在1969年出版Perceptrons:an introduction to computational geometry,提出Rosen-blatt的单层感知器只能够学习线性可分模式,无法处理人工神经网络模型发展及应用综述张驰,郭媛,黎明齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161000摘要:人工神经网络与其他学科领域联系日益紧密,人们通过对人工神经网络层结构的探索和改进来解决各个领域的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

WIND
一、人工神经网络理论概述 (一人工神经网络基本原理
神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。

人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。

人工神经元模型的基本结构如图 1所示。

图中X=(x 1, x 2, … x n
T
∈ R n
表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示
神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。

其表达式为 y i =f(
n
j =i
Σw ij x j
+θi
式中, f (
·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。

图 1
(二人工神经网络的发展
人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。

人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。

在这 50多年的历史中,它的发展大体上可分为以下几个阶段。

60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。

造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。

这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。

80年代中期人工神经网络得到了飞速的发展。

这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。

90年代以后,人工神经网络系统理论进入了稳健发展时期。

现在人工神经网络系统理论的应用研究主要是在模式识别、经济管理、优化控制等方面:与数学、统计中的多个学科分支发生联系。

(三人工神经网络分类
人工神经网络模型发展到今天已有百余种模型,建造的方法也是多种多样,有出自热力学的、数学方法的、模糊以及混沌方法的。

其中 BP 网络(BackPropagationNN 是当前应用最为广泛的一种人工神经网络。

在人工神经网络的实际应用中, 80%~90%的人工神经网络模型是采用 BP 网络或它的变化形式,它也
是前向网络的核心部分,体现了人工神经网络最精华的部分。

其结构简单,应用范围主要在模式识别、分类、非线性映射,复杂系统仿真,过程控制等方面。

(四人工神经网络模型的研究及相关应用
神经网络一直是科学界的研究热点,无论是理论研究还是应用实践都有大量的成果报道。

人工神经网络历史上首先应用于电子科技领域,如模式识别、信号和图像处理、控制理论等。

随着人们对神经网络的认知和了解,其应用领域将更加广泛。

由于人工神经网络具有任意逼近函数、自学习自适应能力极强的特点,因此,在这里,可以将人工神经网络应用到经济预警问题之中。

如王春峰,万海晖,张维应用 BP 网络对股票价格进行预测,应用 BP 网络模型对商业银行的信贷风险进行预警,运用 BP 网络模型评估借贷方的信用风险等等,这些应用都取得了比较好的效果。

顾海军等人利用 BP 网络的较高的自组织、自适应和自学能力,对商业银行风险进行综合评价,从而为商业银行风险评价走向使用化奠定了基础。

为了避免传
统参数期权定价模型 (parametric option pricing models , POPMS 的缺陷,马文伟课题的研究,借助人工神经网络探讨实物期权定价,这将有利于实物期权定价理论的完善和发展。

王洪利等人采用人工神经网络方法,对最常用于体育场馆建设的网架结构形式进行了选型研究,结果表明,该方法能较好的进行网架结构的选型,从而节约建造成本。

吴煜等人通过人工神经网络寻找组合预测权重的方法,有效的解决预测城市用水需求量这样的复杂性问题。

段玉波等人使用的递归神经网络可以满足短期负荷预测的需要,效果较好对于合理地进行电力系统调度,
计划,用电与规划具有一定的现实意义。

刘历波提到利用改进的 BP 神经网络算法对建设项目集成管理绩效进行了综合评价,证明该方法的可行性和有效性,为我国建设项目集成管理绩效评价提供了一条新的可操作性方法。

付辉指出应用Hopfield 网络对非定量因素进行科学的分析, 可以消除一些人为因素的影响,使评选
结果更加合理。

杨俊琴通过对投标项目风险因素辨识,建立了基于 BP 神经网络的风险分析模型,对项目的风险度进行评估,为投标人在进行投标决策时提供了一个有效的风险分析工具。

二、总结
人工神经网络在各个领域中的应用,为工作的顺利进行提供了保障,克服了以往的常用方法的缺陷,解决了很多难题。

比如在工程造价预测中的应用,它利用了神经网络具有自学习、自组织、自适应的特点,建立了具有反馈系统从而不断调节误差的 BP 算法,减少了人为主观的参与,这使得造价预测结果更加贴近实际,更加精确。

在评标过程中的应用亦是如此。

但是,神经网络作为新兴学科,在理论和实践中, 还有很多不完善和不成熟的地方,又在一定程度上制约了它的实际应用。

总之在利用人工神经网络解决问题时,需要选定合适的网络模型及网络算法,同时还要加深人工神经网络基础理论方面的研究。

[摘要 ]本文主要介绍人工神经网络的基本原理 , 发展和分类,详细描述了其在各行业的有关研究及应用;对人工神经网络的应用提出了建
议。

[关键词 ]人工神经网络;分类及发展;应用人工神经网络文献综述
段玉三
(安徽蟠桃园林绿化工程有限公司,安徽巢湖
231500
[参考文献 ]
[1]段玉波 , 曲薇薇 , 周群等 . 应用递归人工神经网络预测电力短期负荷 [J].佳木斯大学学报 (自然科学版 ,2010.
[2]姜绍飞 , 张春丽 , 钟善桐 .BP 网络模型的改进方法探讨 [J].哈尔滨建筑大学学报 ,2000.
[3]冯清海 , 袁万城 .BP 神经网络和 R BF 神经网络在墩柱抗震性能评估中的比较研究 [J].结构工程师 ,2007.
[4]李刚 . 基于人工神经网络的房地产估价研究 [D].长安大学 ,2006.
[5]刘丹 . 基于人工神经网络的风险投资项目评估模型 [D].中南大学 ,2002. [6]张凌 . 基于人工神经网络的期权定价模型 [D].武汉理工大学 ,2007.
[7]马文伟 . 基于人工神经网络的实物期权定价方法研究 [D].武汉理工大学 , 2004.
学术论坛
185。

相关文档
最新文档