微积分(上、下)模拟试卷和答案
微积分模拟试题及答案
三、计算题
1.求f(x)=x/x,phi(x)=|x|/x当x->0时的左、右极限,并说明它们在x->0时的极限是否存在。
2.求微分方程(dy)/(dx)+2xy=xe^(-x^2)的通解
3.设z=lntan(y/x),求dz
3.设y=2arctan(sqrt(x/(1-x))),求y’
五、应用题
1.设某商品日产量是x个单位时,总费用F(x)的变化率为f(x)=0.2x+5(元/单位),且已知F(0)=0,求
(1)总费用F(x)
(2)若销售单价是25元,求总利润
(3)日产量为多少时,才能获得最大利润
六、证明题
A.x^2-6x+5
B.x^2-5x+6
C.x^2-5x+2
D.x^2-x
答案:b
二、填空题
1.lim_(n->oo)sqrt(n)(sqrt(n+1)-sqrt(n))=___
答案:1/2
2.f(x)={(ax+b,x<=1),(x^2,x>1):}在x=1处可导,则a=___,b=___
1.设z=arctan(x/y),求证x(delz)/(delx)+y(delz)/(dely)=0
试卷答案
一、单选题
1.已知函数f(x)=(x-1)(x-2)(x-3)(x-4),则方程f’(x)=0有
A.三个根,分别位于区间(1,2)、(2,3)、(3,4)内
B.四个根,分别为x_1=1,x_2=2,x_3=3,x_4=4
微积分的(上、下)模拟的试卷和答案
北京语言大学网络教育学院《微积分(上、下)》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。
一、【单项选择题】(本大题共20小题,每小题4分,共80分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设函数()f x 的定义域是[]0,4,则函数1)f 的定义域是( ) 2、数列nn n)211(lim +∞→的极限为( )。
[A] e 4 [B] e 2 [C] e[D] e 33、函数y = )。
[A] ()21,,y x x =+∈-∞+∞[B] [)21,0,y x x =+∈+∞[C] (]21,,0y x x =+∈-∞[D] 不存在4、1arctany x=, 则dy =( )。
[A] (1,1)-[B] (1,0)-[C](0,1)[D] [1,25][A] 21dx x +[B] 21dxx -+[C] 221x dx x+ [D]()221dxx x +5、xx xx sin cos 1lim0⋅-→=( )6、设,ln x y =则'y =( )。
[B] 1x;[C] 不存在7、函数4334+-=x x y 的二阶导数是( )。
[A] 2x [B] 21218x x - [C] 3249x x -[D] x 128、21lim 1xx x →∞⎛⎫-= ⎪⎝⎭( )9、已知()03f x '=-,则()()0003lim x f x x f x x x∆→+∆--∆=∆( )10、函数1()()2x xf x e e -=+的极小值点是( ) 11、函数()ln z x y =--的定义域为( ) [A] (){},0x y x y +< [B] (){},0x y x y +≠[C](){},0x y x y +>[D](){},,x y x y -∞<<+∞-∞<<+∞12、幂级数1nn x n ∞=∑的收敛域是( )[A] -1 [B] 0[C] 1/2[D] 不存在[A] 2e -[B] e[C]2e [D] 1[A] 12 [B] -12[C]3[D] -3[A] 1[B] -1[C]0[D] 不存在[A] []1,1- [B] [)1,1- [C] (]1,1-[D] ()1,1-13、设)(x f 为],[b a 上的连续函数,则⎰⎰-babadt t f dx x f )()(的值( )14、若f x ax nn n ()==∞∑0,则a n =( )15、设(,)f x y 为连续函数,且(,)(,)d d Df x y xy f u v u v =+⎰⎰,其中D 是由0y =,2y x =和1x =围成的区域。
(完整word版)《微积分》各章习题及详细答案
第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim 22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→x x k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
山东大学 微积分作业卷及答案(上下册)
(D)若 lim f ( x) lim g ( x) 0 ,当 0 x x0 时有 f ( x) g ( x) .
x x0 x x0
2. 当 x → 1 时,函数
(A) 等于 2
x 2 1 x1 e 1 的极限为 ( D ) x 1 (B) 等于 0 (C) 为 ∞x 1 0 NhomakorabeaD
x 1 0
)
(A) f ( x)在x 1无定义 (B) lim f ( x)不存在 (C) lim f ( x)不存在 2. 当 x → 0 时 f ( x) (A)无穷小量 1 1 sin 是 ( 2 x x (B)无穷大量
C )
x x0 x x0
(D) lim f ( x)不存在
解 lim f ( x) lim sin x 0, lim f ( x) lim a x 2 a ,故当 a=0 时 lim f ( x) 存在
x 0 0 x 0 0 x 0 0 x 0 0 x 0
此时 lim f ( x) 0
x 0
第 2 页,共 61 页
,b =
0
时 f(x)在(-∞,+ ∞)连续.
4.若 lim
sin 6 x xf ( x) 6 x sin 6 x 6 f ( x) 0, lim 36, 则 lim 3 3 x 0 x 0 x 0 x x x2
36
.
二、选择题
x 1, 0 x 1 1. f ( x) 在 x=1 处间断是因为 ( 2 x, 1 x 3
(D) 不存在但不为 ∞ ) (D) a =-1,b =-1
x2 3. 已知 lim ax b 0 ,其中 a,b 是常数,则 ( C x x 1
微积分试卷及标准答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
经济应用数学基础(一)微积分_试题及答案
四、解答题(第 1 题 8 分,第 2 题 10 分,共 18 分) x3 + 4 f ( x) = 2 x 的单调区间与极值。 1.求函数
2.求由曲线 y = x + 1、直线 x = 0 、 x = 1 以及 x 轴围成的平面图形的面积以及这个平面 图形绕 x 轴旋转而成的旋转体的体积.
2
高等数学(上)模拟试卷四
sin y
dy + xy = cos x 确定,求 dx .
⎧ x = ln(1 + t 2 ) dy d 2 y ⎨ y = t − arctan t 确定,求 dx , dx 2 . 3.设函数 y = y ( x ) 由方程 ⎩
f ( x) 4.已知 y = f (ln x)e , 且f 可微, 求 dy .
1 a = − , b =1 2 (C )
2 2 6.当 x → 0 时,函数 e − ( ax + bx + 1) 是比 x 高阶的无穷小,则
1 a = , b =1 2 (A)
( )
( B ) a = 1, b = 1
( D ) a = −1, b = 1 )
x = x1 处有 f ′( x1 ) = 0 ,在 x = x2 处不可导, 则( 7.设函数 f ( x ) 处处连续, ,且在
x tan 2、 ∫
2
xdx
3、
∫
1
0
e x dx
4、
∫
1
−1
x dx 5 − 4x
四、求解下列各题(共 18 分) :
1、求证:当 x > 0, y > 0, x ≠ y 时,
x ln x + y ln y > ( x + y ) ln
微积分上学期答案
1微积分答案 第一章 函数一、1.B; 2.D; 3.A; 4.C; 5.D二、1.1cos -x 或22sin2x ;2.100010-<⎧⎪=⎨⎪>⎩x x x 或()f x ; 3.4,-1;4.y =[0,1];5.1(1)2y x =-. 三、1. (1)[1,2)(2,4)D =⋃; (2)[3,2][3,4]D =--⋃. 2.(1)102,1y u u x ==+ ;(2)1,sin ,u y e u v v x===;(3) 2arctan ,ln ,1y u u v v x===+.3. 211,12,()12400,44ab C C x x x ====++ ()1400124c x C x x x==++.4. (1)90010090(100)0.011001600751600x P x x x <≤⎧⎪=--⋅<<⎨⎪≥⎩;(3)L=21000(元). (2)2300100(60)310.011001600151600x x L P x x xx x x ≤≤⎧⎪=-=-<<⎨⎪≥⎩;四、略.第二章 极限与连续(一)一、1.C ; 2. D ; 3.C ; 4.B ; 5.C 二、1. -2; 2. 不存在; 3. 14; 4. 1; 5.ab e .三、 1、(1)4; (2)25; (3)1; (4)5; (5)2.2、(1)3; (2)0; (3)2; (4)5e -; (5)2e-.3、11,2=-=-αβ 4、利用夹逼定理:11←<<→四、略。
第二章 极限与连续(二)一、1. D ; 2. C ; 3. B ; 4. C ; 5. B 二、1、0; 2、-2; 3、0; 4、2; 5、0,1x x ==-.2三、1、(1)1=x 是可去间断点;2=x 是连续点.(2)=xk π是第二类间断点(无穷间断点); 2=+x k ππ是可去间断点.(3)0=x 是可去间断点. (4)1x =是跳跃间断点.2、1()011⎧<⎪==⎨⎪->⎩x x f x x x x ,1=±x是跳跃间断点.3、(1)0;(2)cos α;(3)1; (4)0;(5)12.四、略。
微积分试卷内含答案
湖北汽车工业学院微积分(一)(下)考试卷( 2011-2012-2)一、(本题满分21分,每小题3分)填空题: 1.='⎰]sin [20x tdt 2sin 2x x .2.过点)3,2,1(-且与平面0144=-++z y x 平行的平面方程为 044=+++z y x .3.设yx z =,则 =dz xdy x dx yxy y ln 1+- .4.⎰⎰+-=Ddxdy y x I )432(,其中D }4),{(22≤+=y x y x ,则=I π16 .5.微分方程)1)(1(22y x y --='的通解为C x y +-=2)1(arcsin .6.平面曲线2x y =与x y =所围成的平面图形绕x 轴旋转一周所得旋转体体积为15/2π . 7.设数项级数∑∞=1n nu收敛且和为s ,则级数∑∞=++11)(n n nu u的和为12u s - .二、(本题满分21分,每小题3分)选择填空题(请将所选答案填入题号前的方括号内): 【B 】1. 设)(x f 在),(+∞-∞内连续,)(x F 是)(x f 在),(+∞-∞内的一个原函数,0≠c ,则dx c x f ba⎰+)(等于)(A )()(c a F c b F ---. )(B )()(c a F c b F +-+.)(C )()(c b F c a F ---. )(D )()(c b F c a F +-+.【C 】2.设)2,1,3(--=a ,)1,2,1(-=b ,则b a ⨯ 等于)(A 3. )(B 7. )(C )7,1,5(. )(D )7,1,5(-. 【A 】3.下列级数中条件收敛的是)(A ∑∞=+-111)1(n nn . )(B ∑∞=+-1211)1(n nn . )(C ∑∞=--11)107()1(n nn . )(D ∑∞=-151)1(n n n .【A 】4. 下列微分方程中是齐次方程的是)(A dx y x ydx xdy 22-+=. )(B x y y x y sin 2=+'.)(C y y x y ln sin ='. )(D x x y y sec tan =-'.【D 】5. 设)(x f 在]1,0[上连续且满足1)()(1-=⎰dt t f x x f ,则⎰1)(dx x f 等于)(A 1 . )(B 2. )(C 1-. )(D 2-.【C 】6. 设x y y x D ≤≤≤+≤0,41:22,则二重积分=⎰⎰σd xyDarctan)(A2163π . )(B 2323π. )(C 2643π. )(D 21283π. 【C 】7. 函数x x f /1)(=的在1=x 点处的幂级数展开式为)(A ∑∞=--0)1()1()(n nnx x f =, 11<<-x . )(B ∑∞=-0)1()(n n x x f =, 20<<x .)(C ∑∞=--0)1()1()(n nnx x f =,20<<x . )(D ∑∞=--1)1()1()(n n n x x f =,20<<x .三、计算下列各题(共3284=⨯分)1. 设函数),(y x z z =由方程z y x z y x ++=++222确定,证明:y x yzx z x z z y -=∂∂-+∂∂-)()(. [证] 方程z y x z y x ++=++222两边对x 求导得xzx z zx ∂∂+=∂∂+122, 解得zx x z 2112--=∂∂,由字符轮换性知z y y z 2112--=∂∂,于是 y x zy x z z x z y y z x z x z z y -=---+---=∂∂-+∂∂-2112)(2112)()()(. 2 .计算dx xx ⎰--11241. [解] 原式dx xx ⎰-=102412. dt ttt t x ⎰⋅=204cos cos sin 2sin πdt t ⎰=204sin 2π83221432ππ=⋅⋅⋅= 3.判别正项级数nx nn n21sin 2∑∞=的敛散性 . [解] nn n n nx n u 2sin 22≤=, 设n n n v 2=,121221lim lim 11<=⋅+=+∞→+∞→n n v v n n n nn n ,于是级数∑∞=12n n n 收敛.从而原级数∑∞=12sin 2n n nx n 收敛.4.某工厂生产甲种产品x 件乙种产品y 件的总利润函数为22222040),(y xy x y x y x L ---+=设备的最大产出力为15=+y x ,求x 与y 为何值时利润最大? 解:作 )15(222040),(22-++---+=y x y xy x y x y x F λ …令 ⎪⎩⎪⎨⎧=-+==+--==+--=015),,(02220),,(02440),,(y x y x F y x y x F y x y x F x x λλλλλλ得 10=x ,5=y .于是当这两种产品分别生产10件与5件的时候利润最大 . 四.(8分)交换二次积分⎰⎰=101y xy dx e dy I 的次序并计算.【解】dx e dx I x xy⎰⎰=2010 dx xe x y y xy ⎰===1002| ⎰=-=10.21)(dx x xe x五、(8分)求微分方程2212)1(xx xy y x -=+'+的通解.解:方程变形为:2221)1(12x x xx xy y -+=++' 通解为: ])([)()(C dx e x Q e y dxx p dx x p +⎰⎰=⎰- ]1)1([12221222C dx exx x edxx xdxx x+⎰⋅-+⎰=++-⎰]1)1([1)1(221)1(2222C dx exx x ex x d x x d +⎰⋅-+⎰=++++-⎰]1[11]1)1([22)1ln(22)1ln(22C dx xxx C dx e x x x e xx+-+=+⋅-+=⎰⎰++- 11]12)1([1122222+--=+---+=⎰x x C C xx d x 法二:221])1[(x x y x -='+ 通解为 C x y x +--=+221)1(六、(10分)求幂级数n n x n )11(1-∑∞=的收敛域与和函数,并求级数nn n n 211⋅-∑∞=的和.解:收敛域为)1,1(-)(1)1-(1)(1111x S x x n x x x n x S n n nn n n --=-==∑∑∑∞=∞=∞=n x x S n n ∑∞==11)(, x x n x x S n n n n -=='='-∞=∞=∑∑11)()(1111)1ln()(1x x S --=,于是 )1ln(1)(x xxx S -+-=. 2ln 1)21(-=S ,2ln 1)21(211-==⋅-∑∞=S n n nn .湖北汽车工业学院 微积分A2考试试卷(2013~2014~2 A 卷)一、(本题满分21分,每小题3分)单项选择题(请将所选答案填入答题卡的指定位置):【 B 】1. 设)4,1,1(-=a ,),0,2(λ=b ,且b a ⊥,则=λ)(A 2-. )(B21. )(C 2. )(D 21-. 【 B 】2.极限=+-→→22101limy x xyy x)(A 0. )(B 1. )(C 1-.)(D21. 【 C 】3.设⎰⎰+=xyx dx e dt t f y x F 112)(),(,则xF ∂∂为)(A )(xy f . )(B 22)(x xe xy yf +. )(C )(xy yf . )(D 22)(x xe xy f +.【 D 】4.二次积分dy y x f dx x x ⎰⎰-2010),(=)(A ρρθρθρθπd f d ⎰⎰1020)sin ,cos (. )(B ρρθρθρθθπd f d ⎰⎰cos 020)sin ,cos (.)(C ρρθρθρθπd f d ⎰⎰120)sin ,cos (. )(D ρρθρθρθθπd f d ⎰⎰cos 020)sin ,cos (.【 B 】5.已知2)(,3)2(20==⎰dx x f f ,则⎰'20)(dx x f x =)(A 10. )(B 4. )(C 6. )(D 1.【 C 】6.若级数)0(1≠∑∞=n n n u u 收敛,则级数∑∞=11n nu)(A 绝对收敛. )(B 条件收敛. )(C 发散. )(D 无法确定.【 D 】7.函数xx f -=31)(,则)(x f 的麦克劳林展开式为:)(A ∑∞==03)(n n nx x f ,(1<x ).)(B ∑∞==13)(n n nx x f ,(3<x ).)(C ∑∞=+=013)(n n n x x f ,(1<x ). )(D ∑∞=+=013)(n n nx x f ,(3<x ).二、(本题满分21分,每小题3分)填空题:1.过点)3,2,1(M 且与平面05532=++-z y x 平行的平面方程为11532=+-z y x .或0)3(5)2(3)1(2=-+---z y x2.设}42),{(22≤+≤=y x y x D ,则⎰⎰Ddxdy =π2.3.交换二重积分⎰⎰=2010),(x dy y x f dx I 的次序,则I =⎰⎰11),(ydx y x f dy .4.⎰∞+141dx x=3/1.5.已知yx e z +=2,则dz =)2(2dy dx e y x ++.6.=+⎰-223)sin 1(dx x 4.7.微分方程yx dx dy 232=的通解是Cx y +=32.三、(本题满分8分)设函数),(y x z z =由方程0e =-xyz z所确定,求x z ∂∂与yz∂∂. [解] 令xyz z y x F z-=e ),,(,则yz F x -=', xz F y -=', xy F zz -='e .从而有xy yz F F x z z z x -=''-=∂∂e ,xyxzF F y z z z y -=''-=∂∂e . 四、(本题满分8分)曲线2xy =与直线0,3==y x 围成一个平面图形,①求此平面图形的面积;②求图形绕x 轴旋转一周所生成的旋转体的体积. [解] 90331)1(332===⎰x dx x A )(2 dx x dV 22)(π=,于是πππ524351035304===⎰x dx x V .五、(本题满分8分) 判定级数∑∞=-13)1(n n nn是否收敛,若收敛,指出是绝对收敛还是条件收敛. [解] 令nn nn n n u 33)1(=-=, 由于131331lim lim11<=+=+∞→+∞→n n n n n n n n u u , 所以正项级数∑∞=13n n n 收敛,从而∑∞=-13)1(n n n n 绝对收敛.六、(本题满分8分)求微分方程x xx y y sin =+'满足初始条件0==πx y 的特解. [解] 此方程为一阶线性微分方程,其中 x x P 1)(=,xx x Q sin )(= 其通解为])([)()(C dx e x Q e x dx x P dx x P +⎰⎰=⎰- ]sin [11C dx e xx e dx x dxx +⎰⎰=⎰-)sin (1C xdx x x x +⋅=⎰)sin (1⎰+=C xdx x )cos (1C x x+-=由初值条件0==πx y 可得1-=C ,故特解为)1(cos 1)1cos (1+-=--=x xx x y .七、(本题满分8分)计算二重积分⎰⎰-Dydxdy e ,其中D 为直线x y y x =1=0=,,所围的区域. [解](X 型)⎰⎰⎰⎰--=112xy Dy dy e dx dxdy e⎰⎰----=-=1111)()(dx e e dy e x xy110121----=--=e e ex.(Y 型)⎰⎰⎰⎰--=y yDy dx dy e dxdy e12)(111⎰⎰-----==dy e yedy ye y yy101121)(----=+-=e ee y.八、(本题满分8分)求函数324),(223+-+-=y xy x x y x f 的极值.[解] 令⎩⎨⎧=-='=+-=',022,02832y x f y x x f yx 得唯一)2,2(,)0,0(,又86-=''x f xx,2=''xy f ,2-=''yy f ,于是 在点)0,0(处,2,2,8-==-=C B A ,则0122)2)(8(22>=---=-B AC 且08<-=A ,所以函数),(y x f 在)0,0(处有极大值3)0,0(=f . 在点)2,2(处,2,2,4-===C B A ,则0122)2(422<-=--⋅=-B AC ,所以)2,2(不是函数),(y x f 的极值点.九、(本题满分10分)求级数∑∞=--11)1(n nn nx 的收敛域与和函数. [解] 易求得1=R ,且当1=x 时级数∑∞=--111)1(n n n 收敛,当1-=x 时级数∑∞=-11n n发散. 因此∑∞=--11)1(n nn nx 的收敛域是]1,1(-. 在区间)1,1(-内,设=)(x S ∑∞=--11)1(n nn nx ,则 x x x n x n x x S n n n n n n n n n n n +=-=-='-='⎥⎦⎤⎢⎣⎡-='∑∑∑∑∞=-∞=--∞=-∞=-11)()1()()1()1()(111111111 所以 )1ln(11)(0x dx x x S x+=+=⎰,11≤<-x .湖北汽车工业学院微积分考试试卷( 2014—2015—2)一、(本题满分21分,每小题3分)单项选择题(请将所选答案填入题号前的方括号内):[ A ] 1.⎰=xdt t x f 0cos )(,则=')0(f(A )1. (B )0. (C )1-. (D )2π. [ D ] 2.设y x z 2=,则=∂∂22xz(A )xy 2. (B )x . (C )x 2. (D )y 2.[ B ] 3.已知平面区域D 为222≤+y x ,则=+⎰⎰Dd y x σ)2(2 (A )π. (B )π4. (C )π3. (D )0.[ C ] 4.由曲线xe y =与直线1=x 及直线2=x 所围图形的面积为(A )e . (B )1-e . (C )e e -2. (D )2e . [ D ] 5.下列级数中收敛的是(A )∑∞=+1131n n . (B )∑∞=+121n nn. (C )∑∞=11cos n n n . (D )∑∞=+12n n n n.[ A ] 6.设),(y x z z =由方程022=--+z z xy y 所确定,则=∂∂yz (A )122++z x y . (B )12+z y. (C )122++-z x y . (D )12+-z y.[ C ] 7.微分方程0=-'y y 的通解为(A )c x y +=. (B ).xce y 2= (C )x ce y =. (D )xe y =.二、(本题满分21分,每小题3分)填空题(请将正确答案填入题后相应横线上)1.=-+→→12lim1xy xy y x 0 .2.设向量}1,3,2{-=→a 与向量},1,0{k a -=→垂直,则=m -3 . 3.设xy y z sin =,则=dz dy xy xy xy dx xy y )cos (sin cos 2++. 4.设220(,)x I dx f x y dy =⎰⎰,则交换积分次序后=I 422(,)y I dy f x y dx =⎰⎰ .5.=+⎰-dx x x 1121 0 .6.过点)2,1,3(-且与平面052=+-+z y x 平行的平面方程为012=+-+z y x .7.幂级数∑∞=⋅-12)1(n nn n n x 的收敛域为 (2,2]-.【温馨提示】请将下面解题过程直接写在各题相应空白处 三、(本题满分8分)设)ln 1ln(y x z ++=,求),1(e xz∂∂,),1(e yz ∂∂.解 由y x x z ln 11++=∂∂,yy x y z 1ln 11⋅++=∂∂所以31ln 111),1(=++=∂∂e x z e故(1,)11111ln 3e z ye e e∂=⋅=∂++四、(本题满分8分)计算定积分dx x x ⎰+412解 令12+=x t ,则212-=t x ,tdt dx =原式=tdt t t ⋅⋅-⎰312121dt t )1(21312⎰-==103五、(本题满分8分)计算二重积分⎰⎰+=Ddxdy y x I )(,其中积分区域D 是由直线x y =及曲线2x y =所围成的区域.解 积分区域D 为:10≤≤x ,x y x ≤≤2 画图 故⎰⎰+=xxdy y x dx I 2)(1⎰+=1022]21[(dx y xy xx⎰--=10432)2123(dx x x x 10543]1014121[x x x --==203六、(本题满分8分)求函数364),(22+-++=y x y x y x f 的极值. 解 由⎩⎨⎧=-==+=062042y f x f yx 得点)3,2(-,又2==xx f A ,0==xy f B ,2==yy f C ,故在点)3,2(-处,2=A ,0=B ,2=C 042<-=-AC B ,且0>A所以)3,2(-为极小值点,极小值为10)3,2(-=-f七、(本题满分8分)求幂级数∑∞=++01)2(n n x n 的收敛域及和函数.解 由ρ123lim ||lim 1==++=∞→+∞→n n a a n nn n ,故1ρ1==r , 且幂级数在1±=x 处均发散,故收敛域为)1,1(-设=)(x s ∑∞=++01)2(n n xn =∑∞=+'02)(n n x)(02'=∑∞=+n n x)1(2'-=x x =22)1(2x x x --,1||<x八、(本题满分8分)判断级数∑∞=-1241n nn 的敛散性.解 由=+∞→nn n u u 1lim 1441)1(lim 212-⋅-++∞→n n n n n 141<= 故由正项级数的达朗贝尔判别法知级数收敛- 九、(本题满分10分)求微分方程xxx y y cos =+'的通解. 解 次微分方程为一阶线性微分方程 且x x p 1)(=,xxx Q cos )(= 则])([)()(C dx e x Q ey dx x p dxx p +=⎰⎰⎰-]cos [11C dx ex x e dxxdx x +=⎰⎰⎰-]cos [ln ln C dx e x x e xx +=⎰- ]cos [1C xdx x xx +⋅=⎰)(sin 1C x x+= -湖北汽车工业学院微 积 分 (一)(下) 考 试 卷( 2014-2015-2 )一、(本题满分21分,每小题3分)选择填空题(请将所选答案填入题号前的方括号内): 【B 】1. 平面曲线2x y =与2y x =所围成的平面图形的面积为)(A21. )(B 31. )(C 32. )(D 43. 【C 】2.设)1,2,4(=a ,),2,2(k b -=,若a 与b 相互垂直,则k 等于)(A 0. )(B 2-. )(C 3. )(D 4.【A 】3.设0≠a 为常数,则级数∑∞=-02)1(n nn)(A 绝对收敛. )(B 条件收敛. )(C 发散. )(D 敛散性无法判断.【A 】4. 积分⎰-=222sin ππxdx I 等于)(A2π. )(B 4π. )(C 8π. )(D 16π. 【B 】5. 设函数)1(),(-+=y x xy y x f 在点)31,31(处)(A 取极大值 . )(B 取极小值. )(C 不取极值. )(D 在该点不可微.【D 】6. 设yx z =,则dz 等于)(A dy x xdx x dz y y +=ln . )(B ydy x xdx x dz yy ln ln +=.)(C dy x dx yxdz y y +=-1. )(D xdy x dx yx dz y y ln 1+=-.【B 】7. 函数xx f -=21)(的马克劳林展开式的第三项为)(A 222x . )(B 322x . )(C 222x -. )(D 322x -.二、(本题满分21分,每小题3分)填空题:1.=+⎰-112)sin (dx x e x x32. 2.过点)1,2,3(且与平面0132=++-z y x 平行的平面方程为0232=-+-z y x .3.设),(y x z z =是由方程ze z y x +=+22所确定的隐函数,则=dz )(12ydy xdx ez++ . 4.设⎰⎰+=Ddxdy y x f I )(22,其中D 是由曲线122=+y x ,直线x y =及y 轴所围成的第一象限的平面图形,则I 的极坐标系下的二次积分为:=I rdr r f d ⎰⎰124)(ππθ.5.微分方程dx y dy x 221)1(-=+的满足条件1)0(=y 的特解为2arctan arcsin π+=x y .6.设数项级数∑∞=1n nu的前n 项的和为1+=n ns n ,则级数的通项=n u )1(1+n n .7. 计算=⎰→2arctan limx tdt x x 21.三、 (8分)计算dx xx ⎰---11221. 解:22arcsin22212110112112112π==---=--⎰⎰⎰---x dx xx dx xdx xx .四、(8分) 设函数)ln 1ln(y x z ++=,求),1(e xz∂∂,),1(e yz ∂∂.解:y x x z ln 11++=∂∂,)ln 1(1y x y x z ++=∂∂, 31),1(=∂∂e xz ,eyz e 31),1(=∂∂. 五、(8分)求微分方程x e x x yy )1(1+=+-'的通解. 解:方程变形为:xe x y x y =+-+'2)1(1 即 x e x y ='+)1(,C e x y x +=+1,通解为:))(1(C e x y x++=..六、(8分)判别级数∑∞=-+++-131322)1()1(n n n n n 的敛散性,并指出是绝对收敛还是条件收敛.解:332)1()1(31+++-=-n n n u n n ,取21n v n =,∑∞=121n n收敛,. +∞<=+++=∞→∞→21332)1(lim lim 32n n n n v u n nn n ,. 于是原级数收敛,且为绝对收敛。
微积分考试题库(附答案)
微积分考试题库(附答案)85考试试卷(⼀)⼀、填空1.设c b a,,为单位向量,且满⾜0=++c b a ,则a c c b b a ?+?+?= 2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ?dt t x 2sin 0,则)(x f '=5.?>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b⼆、选择1.曲线==-0122z y x 绕x 轴旋转⼀周所得曲⾯⽅程为()。
(A )12222=+-z y x ;(B )122222=--z y x ;(C )12222=--z y x ;(D )122222=+-z y x2.2)11(lim xx x x -∞→-+=()。
(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'?dx x f x f x )]()([()(A )c x xf +)(;(B )c x f x +')(;(C )c x f x +'+)(;(D )c x f x ++)( 4.设)(x f 在],[b a 上连续,则在],[b a 上⾄少有⼀点ξ,使得()(A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=?)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ()(A )0 (B )1 (C )2 (D )3 三、计算题1.求与两条直线??+=+==211t z t y x 及112211-=+=+z y x 都平⾏且过点(3,-2,1)的平⾯⽅程。
微积分下试卷(四套含答案)
一. 填空题(共30分) 1设()xy y z e x sin cos -=,则.1|0ππ--=∂∂==y x xz2.曲面z xy 2=在点()1,1,1的切平面方程为.02=-+y x3.曲线t e z t t y x t 2sin ,cos ,=-==在2π=t 处的切线方程.42202πππ-=-=-z y ex4.计算().1cos 121sin 1210-=⎰⎰dx dy y x5.把直角坐标系下的二次积分化为极坐标系下的二次积分有()()rdr r r f d dx yyy x f dy ⎰⎰⎰⎰=---1001110sin ,cos ,22θθθπ 6.积分().16242224π=⎰⎰-+≤+dxdy y x x x7.()e e x e d x y x y x 11ln 211112-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++-⎰⎰≤≤-≤≤-+σ8.级数∑∞=+--1231n n n n的敛散性为.发散9.级数∑∞=1n nnx 的和函数()()x x s --=1ln ,.2ln 112=∑∞=n nn10.().2111222222-=++--⎰⎰≤+ππdxdy y x yx y x二. 计算题(每小题7分,共70分) 1。
设z yx xzy u =的全微分du分数 评卷人解:两边取对数z x y z x y u ln ln ln ln ++=-----(1), 再对(1)两边取全微分:⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=dz z x zdx ydz dy y zxdy dx x y du u ln ln ln 1.ln ln ln dz z x y dy y z x dx z x y ⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+= 所以,.ln ln ln dz z x y dy y z x dx z x y u du ⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+= 2.计算由方程yz zxln =确定的函数()y x z z ,=的全微分。
微积分(上)习题200题及答案
填空题:(30题)1.()___________2则20102sin 设函数设函数2=÷÷øöççèæîíì<£+<<-=p f x xx x x f f代入函数可得答案,220££p答案:412p+2._________的定义域是24函数2--=x x y即可得到答案且由02-04-2¹³x x答案:](()¥+È-¥-,22, 3.()[]()的定义域求,1,0的定义域是设2x f x fy =[]的范围,进而得到的范围是者函数由原函数定义域知道后x x 1,02 答案:[]1,1-4.()()()[]______则1,ln 1已知=+=+=x g f x x g x x f()()[][]()1ln 11,1++=+=+=x x f x g f x x g5.()()()x f d c b a dcx bax x f 1求反函数为常数,,,设-++= ()可知反函数,--,--,0--,a cy dyb x dy b x a cy b ax dy cxy d cx bax y ===+++=答案:acx dxb --6._________1sin lim 3310=®xx x答案:07.______sinlim =+¥®xx x x答案:是有界的由于x xxx x sin 1sin lim=+¥®8.()0______1lim 0>=-®a xa x x 答案:a a a xa x x x x ln 1ln lim 1lim 00==-®® 9.()_____1lim 1=-®x x x答案:1-e10._____则,22sin sin lim 若0==®m xmx x答案:411.()()_____则在其定义域内连续若函数011sin 00sin 1设=ïïïîïïïíì>+=<=k x f x x x x k x xx x f 解:因为()在其定义域内连续函数x f ,所以1sin lim k 0==®xx x12.()()_____的间断点是412函数+++=x x x y 答案:1-=x 13._____的连续区间是321函数2--=x x y答案:()()()¥+È-È-¥-,33,11,14.__________,则,14lim设21===+++-®b a b x ax x x 解:()34lim 145lim ,5,04lim 12121=+=+++===++-®-®-®x x x x b a ax x x x x 。
微积分考试题库(附答案)
85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。
(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。
(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。
大学微积分模拟试卷
一、单项选择题(本大题分5小题,每小题2分,共10分)(在每个小题四个备选答案中选出一个正确答案,填在括号内.)1.当时,与相比较下列变量中是高阶无穷小量的是()A.B. C。
D.2.函数在点处连续且取得极大值,则在处必有( )(A) (B)(C)且(D)或不存在3.的极限为( )(A)1(B)-1(C)1或-1(D)不存在补充:是函数的 ( )A。
连续点 B。
可去间断点C。
跳跃间断点 D. 无穷间断点4.已知函数在处可导,且导数为2,则()(A)3(B)-3(C)-6(D)65.已知某商品的需求函数为,当时,下列解释正确的是( )(A)价格上升1%,需求增加0.6%(B)价格上升1%,需求减少0.6%60% (D)价格上升1%,需求减少60%二、填空题(将正确答案填在横线上)(本大题分5小题,每小题2分,共10分)1.函数的连续区间为2.的值等于3.已知,则4.,则,则三、计算题(必须有解题过程)(本大题分12小题,每小题5分,共60分)1.求极限2.补充:a.b.c.3.已知,求.4。
设,求.5.设,求。
6.设, 可微,求。
补充:a.设,求。
b.设 ,求.c.设 ,求.d.设 ,求。
e.已知隐函数方程确定了是的函数,求.7. 设函数,求函数的定义域、单调区间、极值、凹凸性、拐点以及渐近线。
补充:a.求的单调区间。
b.求的极值.c.设,列表讨论函数的增减区间和极值;曲线的凹凸区间和拐点。
8.求9.若的原函数为,问与间有什么关系?并求补充:a.b.四、应用题(本大题8分)设生产某产品的固定成本为60000元,变动成本为每件20元,价格函数为,(为销售量),假设供销平衡。
(2)求为多少时利润为最大?并求最大利润。
补充:a.设某种产品个单位的总成本函数为(万元),其价格函数为(万元),问:(1)当个单位时,边际成本和边际收益分别为多少?(2)应生产多少个单位产品,才能使利润函数取最大值?最大利润是多少?b.某种商品的需求函数为(其中为价格,为需求量),(1)求时的需求弹性,并说明其经济意义;,总收益最大?最大收益为多少?五、证明题(本大题6分)设在闭区间上连续,在内可微,且,证明:对任意实数,则存在,使得.a。
微积分(上)模拟试卷二
北京语言大学网络教育学院《微积分(上)》模拟试卷二注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共10小题,每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1.在已知的数轴上,表示2.75的点是( )[A] E 点 [B] F 点 [C] G 点 [D] H 点2、函数()12x xy e e -=+是( ) [A] 奇函数 [B] 偶函数[C] 非奇非偶函数 [D] 既是奇函数又是偶函数3、设()xf x x=,则0lim ()x f x →( )[A] 等于1- [B] 等于0 [C] 等于1[D] 不存在4、22lim 2(sin cos )x x x x π→--( )[A][B] 222π-[C]21e[D] 2e 5、曲线()yf x =在点00(,)x y 的法线方程是( )[A] ()000()y y f x x x -=- [B] ()000()y y f x x x '-=- [C] ()0001()y y x x f x -=-' [D] ()0001()y y x x f x -=--' 6、求函数4334+-=x x y 的二阶导数( )[A] 2x [B] 21218x x - [C] 3249x x - [D] 2x7、求函数)(sinb ax e y +=的微分( )[A] 2x [B] 0[C] 3249x x -[D] sin()cos()ax b ae ax b dx ++8、下列极限中不能使用洛必达法则求极限的是( )[A] xx x sin lim0→ [B] x xx 3tan 2tan lim 0→[C] xx x x sin lim +∞→ [D] x x x ln lim 0+→ 9、函数1()()2x xf x e e -=+的极小值点是( )[A] 1 [B] -1[C] 0[D] 不存在10、判断曲线y =x 3的凹凸性( )[A] 凸的 [B] 当x<0时,为凸,x ≧0,为凹。
经济应用数学基础(一)微积分-试题与答案
。
二、计算下列各题(每题 5 分,共 20 分)
11 lim( − ) 1、 x→1 ln x x −1
2、 y = arcsin 1− 3x ,求 y' ;
3、设函数 y = y(x) 由方程 exy = x − y 所确定,求 dy x=0 ;
4、已知
⎧
⎨ ⎩
y
=
x= cos
sin t t + t sin
高等数学(上)模拟试卷一
一、 填空题(每空 3 分,共 42 分)
1、函数 y = 4 − x + lg(x − 1) 的定义域是
;
⎧2x
x<0
f (x) = ⎨
2、设函数
⎩a + x x ≥ 0在点 x = 0 连续,则 a =
;
3、曲线 y = x4 − 5 在(-1,-4)处的切线方程是
;
∫ 4、已知 f (x)dx = x3 + C ,则 f (x) =
;
∫ 4、已知 f (x)dx = x2 + C ,则 f (x) =
;
ห้องสมุดไป่ตู้
lim (1 +
1
x
)3
5、 x→∞ x =
;
6、函数 f (x) = x3 − x2 +1的极大点是
;
7、设 f (x) = x(x −1)(x − 2)……(x −1000) ,则 f '(0) =
;
8、曲线 y = xex 的拐点是
→
a
=
{3,
−4,
0}
,
→
b
=
{k
,
−1,1}
微积分下册期末试卷及答案[1]
1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.6 知dx e xp ⎰∞+- 0 )1(与⎰-ep xx dx 1 1ln 均收敛,则常数p 的取值范围是( c ). (A ) 1p > (B ) 1p < (C) 12p << (D ) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( b )。
(A ) 在原点无定义 (B ) 在原点二重极限不存在 (C ) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( a).(A) 123I I I >> (B ) 213I I I >> (C ) 123I I I << (D) 213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( d )。
(A) b ax y += (B) xe b ax y 3)(+=(C ) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( d )。
大学微积分数学模拟题(含答案)
一、填空题(本大题共 5 小题,每小题 3 分,共 15 分。
把答案写在横线上)1.函数y 1x 2 的定义域是。
x2.lim sin5 x。
x 02x3.微分方程y x y0 的通解是。
4.设y a2x2,则 dy。
5.不定积分x x 23dx=。
二、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分,在每小题四个选项中,只有一个是符合题目要求的,把所选字母填在括号内)1.设f (x)x2 ,0x1x1处必定()x,1x, 在点2A.连续但不可导B.连续且可导C.不连续但可导D.不连续,故不可导2.曲线y x 在点 x 4 处的切线方程是()A .y 1x 1B. y1x 1 42C .y 1x 1D. y1x 2 443.下列函数在区间[1,1]上满足罗尔定理条件的是()A.1B.1 C .x D. x3 x2 1 x24.设f x的原函数为 sin x ,则 f x()A.cosx B. sin x C. cosx D.sin x 5.设f x为连续函数,则下列等式中正确的是()A . f ( x)dx f ( x)B.d()( )f f Cx dx x dxC.d f (x)dx f (x)dx D.d f ( x)dx f ( x)三、计算题(本大题共 7 小题,每小题 7 分,共 49 分)3x 1.求极限 lim1 3。
xx2.求极限 lime xx 1 。
x 0x e x13.设函数 y1 1 cosx ,求dy。
x 2dx4.试讨论函数 f (x)e x1 , x 0, 在点 x 0 处的连续性与可导性。
2x , x 05.设方程 xeyexy1 0 确定隐函数 y y( x) ,求 y x 0 。
6.求不定积分 xcos xdx 。
7.求不定积分xdx 。
x 5四、解答题(本大题共3 小题,每小题7 分,共21 分)1.设 ex 是fx的一个原函数,求e xfx dx 。
微积分初步期末模拟试题及答案
微积分初步期末模拟试题及答案一、填空题(每小题4分,本题共20分)⒈函数241)(x x f -=的定义域是 . ⒉若24sin lim 0=→kxx x ,则=k . ⒊已知x x f ln )(=,则)(x f ''= .⒋若⎰=x x s d in .⒌微分方程y x e x y y x +='+'''sin )(4的阶数是 .二、单项选择题(每小题4分,本题共20分)⒈设函数x x y sin =,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数⒉当k =( )时,函数⎩⎨⎧=≠+=00,,1)(2x kx x x f ,在0=x 处连续. A .1 B .2 C .1- D .0⒊满足方程0)(='x f 的点一定是函数)(x f 的( )。
A .极值点B .最值点C .驻点D . 间断点⒋设)(x f 是连续的奇函数,则定积分=⎰aa x x f -d )(( ) A .⎰0-d )(2a x x f B .⎰0-d )(a x x f C .⎰ax x f 0d )( D . 0 ⒌微分方程1+='y y 的通解是( )A. 1e -=Cx y ;B. 1e -=x C y ;C. C x y +=;D. C x y +=221 三、计算题(本题共44分,每小题11分) ⒈计算极限423lim 222-+-→x x x x . ⒉设x x y 3cos 5sin +=,求y '. ⒊计算不定积分x x x d )1(2⎰+ ⒋计算定积分⎰π0d sin 2x x x 四、应用题(本题16分)欲用围墙围成面积为216平方米的一成矩形的土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽选取多大尺寸,才能使所用建筑材料最省?模拟试题答案及评分标准一、填空题(每小题4分,本题共20分)⒈)2,2(- ⒉2 ⒊21x- ⒋C x +-cos ⒌3 二、单项选择题(每小题4分,本题共20分)⒈B ⒉A ⒊C ⒋D ⒌B三、(本题共44分,每小题11分) ⒈解:原式41)2)(2()2)(1(lim 2=+---=→x x x x x 11分 ⒉解:)sin (cos 35cos 52x x x y -+=' 9分x x x 2c o s s i n 35c o s 5-= 11分 ⒊解:x x xd )1(2⎰+= C x x x ++=++⎰32)(132)d(1)1(2 11分 ⒌解:⎰π0d sin 2x x x 2sin 212d cos 21cos 21000πππππ=+=+-=⎰x x x x x 11分四、应用题(本题16分)解:设土地一边长为x ,另一边长为x 216,共用材料为y 于是 y =3xx x x 43232162+=+ 24323xy -=' 令0='y 得唯一驻点12=x (12-=x 舍去) 10分 因为本问题存在最小值,且函数的驻点唯一,所以,当土地一边长为12,另一边长为18时,所用材料最省. 16分。
微积分考试题库(附答案)
85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。
(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。
(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京语言大学网络教育学院《微积分(上、下)》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。
一、【单项选择题】(本大题共20小题,每小题4分,共80分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设函数()f x 的定义域是[]0,4,则函数1)f 的定义域是( ) 2、数列nn n)211(lim +∞→的极限为( )。
[A] e 4 [B] e 2 [C]e[D] e 33、函数y = )。
[A] ()21,,y x x =+∈-∞+∞[B] [)21,0,y x x =+∈+∞[C] (]21,,0y x x =+∈-∞[D] 不存在4、1arctany x=, 则dy =( )。
[A] (1,1)- [B] (1,0)- [C](0,1) [D] [1,25][A] 21dx x + [B] 21dxx -+ [C] 221x dx x +[D]()221dxx x +5、xx xx sin cos 1lim0⋅-→=( )6、设,ln x y =则'y =( )。
[A][B]1x ; [C] 不存在[D]7、函数4334+-=x x y 的二阶导数是( )。
[A] 2x [B] 21218x x - [C] 3249x x -[D] x 128、21lim 1xx x →∞⎛⎫-= ⎪⎝⎭( )9、已知()03f x '=-,则()()0003lim x f x x f x x x∆→+∆--∆=∆( )10、函数1()()2x xf x e e -=+的极小值点是( ) 11、函数()ln z x y =--的定义域为( ) [A] (){},0x y x y +< [B] (){},0x y x y +≠[C](){},0x y x y +>[D](){},,x y x y -∞<<+∞-∞<<+∞12、幂级数1nn x n ∞=∑的收敛域是( )[A] -1 [B] 0[C] 1/2[D] 不存在[A] 2e -[B] e[C]2e [D] 1[A] 12 [B] -12[C]3[D] -3[A] 1[B] -1[C]0[D] 不存在[A] []1,1- [B] [)1,1- [C] (]1,1-[D] ()1,1-13、设)(x f 为],[b a 上的连续函数,则⎰⎰-babadt t f dx x f )()(的值( )14、若f x ax nn n ()==∞∑0,则a n =( )15、设(,)f x y 为连续函数,且(,)(,)d d Df x y xy f u v u v =+⎰⎰,其中D 是由0y =,2y x =和1x =围成的区域。
则(,)f x y 等于( )16、下列微分方程中,是可分离变量的方程是( ) [A] 'x yy e x+= [B] 'sin y y x -= [C] 22'1y y x y x =+++[D] '2xy xy y e +=17、将11x+展开成x 的幂级数为( ) [A]∑∞=o n nx[B]()1nn n x ∞=-∑[C]∑∞=+-on nn x 1)1([D]∑∞=+on nx )1(18、设3323z x y xy =+-,则22zx∂=∂( )19、设u xyz =,则du =( )[A] 小于零[B] 大于零 [C] 等于零 [D] 不能确定[A]fn n ()()!0 [B]fx n n ()()![C] (())!()f n n 0[D]1n ![A] xy [B] 2xy[C] xy+81[D] xy+1[A]63-x[B] 23x[C] 66-x [D] 6x[A] xydz xzdy yzdx ++ [B] zdz ydy xdx ++ [C] xyzdz xyzdy xyzdx ++[D] zxdz yzdy xydx ++20、函数223333y x y x z --+=的极小值点是( ) 二、【判断题】(本大题共10小题,每小题2分,共20分),正确的填A ,错误的填B ,填在答题卷相应题号处。
21、0()f x '存在的充分必要条件是0()f x -'和0()f x +'都存在。
( )22、函数22,0()2,011,1x x x f x x x x x ⎧+≤⎪=<≤⎨⎪>⎩在0x =处可导且在1x =处连续。
( )23、函数()2ln 1y x =+的凸区间是()(),11,-∞-+∞。
( ) 24、3193lim23=--→x x x 。
( )25、两个无穷小量的乘积仍为无穷小量。
( ) 26、二元连续函数经过四则运算后仍为二元连续函数。
( )27、如果一个级数收敛,在其中加上若干括号后所得到的新级数也收敛。
( ) 28、若函数(,)f x y 在00(,)x y 的偏导数都存在,则(,)f x y 在该点处必可全微分。
( )29、当D 为{}22224),(ππ≤+≤y x y x ,则二重积分2226sinπ-=+⎰⎰Ddxdy y x 。
( ) 30、⎰-adx x a 022)0(>a 42a π=。
( )[A] (0,0)[B] (2,2)[C] (0,2)[D] (2,0)《微积分(上、下)》模拟试卷一答案一、【单项选择题】(本大题共20小题,每小题4分,共80分)二、【判断题】(本大题共10小题,每小题2分,共20分)北京语言大学网络教育学院《微积分(上、下)》模拟试卷二注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。
一、【单项选择题】(本大题共20小题,每小题4分,共80分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设函数()f x 的定义域是[]0,4,则函数2(1)f x -的定义域是( )。
[A] ⎡⎣[B] 1⎡⎤-⎣⎦[C] 11,5⎡⎤⎡⎤-⎣⎦⎣⎦[D] (),5,⎡-∞+∞⎣2、设232,0()2,0x x f x x x -≥⎧=⎨+<⎩,则0lim ()x f x +→=( )。
3、函数3y x x =-的单调增区间是( )。
[A] )33,(--∞ [B] )33,33(-[C] ),33(+∞ [D] ),0(+∞4、=+→tt t 10)1(lim ( )。
[A] 2[B] -2 [C] 0 [D] 15、设曲线()y f x =在某点处切线方程为()11223y x -=-+,则()2f '-=( )。
6、函数x x f =)(在]4,1[上满足拉格朗日中值定理的条件,则拉格朗日中值定理结论中的ξ=( )。
7、函数313y x x =+-有( ) [A] 极小值-2,极大值2, [B] 极小值-2,极大值3, [C] 极小值-1,极大值1,[D] 极小值-1,极大值38、判断曲线3x y =的凹凸性( ) [A] 凸的 [B] 当x<0时,为凸,x ≧0,为凹 [C] 无法判断[D] 无凸凹性9、0limsin x x→=( )。
10、等边双曲线x y 1=在点)2,21(处的法线方程是( ) [A] 4x+y -4=0 [B] 2x -8y -15=0 [C] 4x+y+4=0 [D] 2x -8y+15=011、若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )(( )。
[A] C e F x+)( [B] C eF x+-)([C] C e F x+-)([D]C xe F x +-)( [A]43[B] 21[C] 1 [D] e[A]12[B]13[C] 13-[D] 2-[A] 0[B]49[C] 1[D] 4[A] 0[B] 1[C] 2[D] -112、下列无穷积分中收敛的是( )。
[A] ⎰∞+1d ln x x[B]⎰∞+0d e x x[C]⎰∞+12d 1x x [D]⎰∞+13d 1x x13、函数z f x y =(,)在点(,)x y 00处连续是它在该点偏导数存在的( )。
[A] 必要而非充分条件 [B] 充分而非必要条件[C] 充分必要条件 [D] 既非充分又非必要条件14、设zy xu =,则=∂∂)2,2,3(yu ( )15、 微分方程2()y x y dx x dy +=是( ) [A] 一阶线性方程 [B] 一阶齐次方程 [C] 可分离变量方程 [D] 二阶微分方程16、=+⎰e 12dx )1ln(d d x x( ) 17、设22,y x x y y x f -=⎪⎭⎫ ⎝⎛+,则=),(y x f ( ) [A] xx y +-1)1(2[B] y y x -+1)1(2[C] xx y -+1)1(2[D] yy x +-1)1(218、341)(2++=x x x f 展开成x-1的幂级数是( ) [A] 3ln 4 [B] 3ln 8[C] 3ln 324 [D] 3ln 162[A] )21ln(2e + [B] 2ln e[C] )1ln(2e +[D] )1ln(2-e[A]13220)1)(2121()1(+++∞=---∑n n n nn x [B]nn n n n x )1)(2121()1(3220---++∞=∑[C]n n n nn x )1)(2121()1(120---+∞=∑[D]1120)1)(2121()1(-+∞=---∑n n n n n x 19、已知函数()222ln u x y z =++,则du =( ) [A]222)(2z y x zdz ydy xdx ++++[B]222z y x zdzydy xdx ++++[C] )(2222z y x zdzydy xdx ++++ [D]zdz y dy x dx ++ 20、dx x ⎰-πsin 1=( )[A] 12- [B] )12(2- [C] 2[D] )12(4-二、【判断题】(本大题共10小题,每小题2分,共20分),正确的填A ,错误的填B ,填在答题卷相应题号处。