无线信道的信道容量

合集下载

信道容量计算公式

信道容量计算公式

信道容量计算公式信道容量计算公式是通信领域中最为重要的公式之一。

它用于衡量在给定的信道条件下,所能传送的最大数据速率。

通俗地说,信道容量就是一条通信信道所能传输的最大数据量。

在通信领域中,信道容量是评估通信系统性能的重要指标之一。

信道容量通常用C来表示,它的计算公式是C=B*log2(1+S/N),其中B代表信道带宽,S代表信号功率,N代表噪声功率。

这个公式表明,信道容量与信道带宽、信号功率和噪声功率都有关系。

信道带宽越大,信道容量就越大;信号功率越高,信道容量也越大;噪声功率越小,信道容量也越大。

在信道容量计算公式中,信噪比是一个重要的概念。

信噪比是信号功率与噪声功率之比。

当信噪比增大时,信道容量也会随之增大。

这是因为信号的功率增大,噪声对信号的影响就相对减小了,从而提高了信道的传输能力。

信道容量计算公式的应用非常广泛。

在无线通信系统中,信道容量是评估无线信道质量的重要指标之一。

在数字通信系统中,信道容量是评估数字通信系统性能的重要指标之一。

在信息论中,信道容量是研究通信系统极限性能的重要概念之一。

在实际应用中,为了提高通信系统的性能,我们需要尽可能地提高信道容量。

一种常用的方法是通过增加信道带宽来提高信道容量。

另外,也可以通过增加信号功率或减小噪声功率来提高信道容量。

在无线通信系统中,还可以采用编码和调制技术来提高信道容量。

信道容量计算公式是通信领域中最为重要的公式之一。

它不仅能够评估通信系统的性能,还能够指导我们在实际应用中如何提高通信系统的性能。

在未来的发展中,信道容量计算公式将继续发挥着重要的作用,促进通信技术的不断发展。

信道容量(Channel Capacity)

信道容量(Channel Capacity)

信道容量(Channel Capacity)无线传输环境中,如果发端和收端均采用单天线发送和接收信号,接收信号y的数学模型可以表示为y=hx+n \tag{1} ,其中h为无线信道, x为发送信号,n为高斯加性白噪声服从正太分布 \mathcal{C}(0,\sigma^2) 。

通信相关专业的学生应该知道香农公式:公式(1)表示的无线信道容量(Channel Capacity)为C=B\log_2\left(1+\frac{P_t|h|^2}{\sigma^2} \right),\tag{2}其中B为信号带宽, P_t 为信号发射功率。

相信很多人知道结论(2),但是不明白它是怎么得到的。

下面将简单的阐述其推导过程。

阅读该过程之前,建议阅读“ 徐光宁:信息论(1)——熵、互信息、相对熵”中关于熵和互信息的定义。

对于接收端,发送信息x是一个随机变量,例如以概率p(x=a)发送x=a。

如果发送信息x对于接收端为一个确定值,那发送本身就没有任何意义。

因为发送信号x和噪声n 都是随机变量,接收信号y也是随机的。

可以引入熵来描述随机变量y所含的信息量,即H(y)=\int_y p(y)\log \frac{1}{p(y)}dy,\\其中p(y)为y的概率密度函数。

当某一时刻发送某一x后(x 此时是确定的), 收到的y的信息量为H(y|x)=\int_y p(y|x)\log \frac{1}{p(y|x)}dy,\\其中p(y|x)为y在给定x下的条件概率。

注意y因为是随机变量x和n的和,且x和n相互独立,其信息量为传输信号x和噪声n的信息量之和。

而y|x的随机性仅仅与噪声n有关,其信息量为噪声n的信息量。

互信息定义为I(x,y)=H(y)-H(y|x)\\ 。

其物理意义为随机变量y的信息量减去噪声n的信息量,等于x的信息量。

信道容量C指信道所实际传输信息量的最大值C=\max\limits_{p(x)} I(x,y) \tag{3}数学证明当x服从高斯分布 \mathcal{C}(0,P_t) 时,C in (3)取得最大值。

信道容量和带宽

信道容量和带宽

信道带宽和信道容量信道是通信双方之间以传输介质为基础传递信号的通路,由传输介质及其两端的信道设备共同构成。

信号带宽是信号频谱的宽度。

信道带宽则限定了允许通过该信道的信号下限频率和上限频率,也就是限定了一个通频带。

信道容量表示一个信道的最大数据传输速率。

信道容量与数据传输速率的区别是,前者表示信道的最大数据传输速率,是信道传输数据能力的极限,而后者是实际的数据传输速率。

它们的关系可以比喻为高速公路上的最大限速与汽车实际速度的关系。

带宽:一般用来描述两种对象,一个是信道(Channel),另一个是信号(signal)。

对于信道来说,又可分为两种,模拟信道和数字信道。

对信号来说,也可分为两种,数字信号和模拟信号。

信道的带宽:对信道来说,带宽是衡量其通信能力的大小的指标。

对模拟信道,使用信道的频带宽度来衡量。

如果一个信道,其最低可传输频率为f1的信号,最高可传输频率为f2的信号,则该模拟信道的带宽是:模拟信道的带宽=f2-f1(f2 > f1)描述模拟信道带宽时,带宽的单位是Hz。

对于数字信道的通信能力,使用信道的最大传输速率来衡量。

如果一个数字信道,其最大传输速率是100Mbps,我们称其带宽为100Mbps。

描述数字信道带宽时,带宽的单位是bps(bit per second)信号的带宽:模拟信号的带宽是指信号的波长或频率的范围,用于衡量一个信号的频率范围,单位是Hz(每秒种电波的重复震动次数)。

一般的电信号(模拟信号),都是由各种不同频率的电磁波所组成,对于这个电信号来说,其包含的电磁波的频率范围,称为这个电信号的带宽。

比如人的声波信号,其绝大部分的能量,集中在300Hz ~3400Hz这个范围,因此我们称语音信号的带宽是3.1Khz(3400-300)。

模拟信号的带宽单位与模拟信道带宽相同。

数字信号的带宽使用数字信号的传输速度来表示。

数字信号一般传输速率是可变的。

在传输数字信号时,可以用最大信号速率(峰值速率)、平均信号速率或最小信号速率来描述数字信号。

MIMO信道容量计算公式

MIMO信道容量计算公式

MIMO信道容量计算公式
MIMO(Multiple-Input Multiple-Output)是一种通过同时使用多个发射天线和接收天线来增加无线通信系统容量的技术。

MIMO技术可以利用信道的冗余和多路径效应,提高信号的传输速率和可靠性。

1.SISO信道容量计算公式:
SISO信道容量的计算公式使用香农公式,用于计算传输速率。

香农公式如下:
C = B * log2(1 + SNR)
其中,C是信道容量,B是带宽,SNR是信噪比(Signal-to-Noise Ratio)。

SISO信道容量计算公式适用于只有一个天线的系统。

2.MIMO信道容量计算公式:
C = log2(det(I + H*SNR*H^H))
其中,C是信道容量,H是MIMO信道的传输矩阵,SNR是信噪比。

除了以上基本的MIMO信道容量计算公式,还有一些进一步考虑调制方式、信道状态信息等因素的改进公式,如ZF(Zero Forcing)和MMSE (Minimum Mean Square Error)等方法,用于提高MIMO系统的容量。

这些方法考虑了天线之间的干扰和多径效应,可以优化信号的传输和接收性能。

总结起来,MIMO信道容量的计算公式可以通过SISO信道容量公式和MIMO信道容量公式来表示,具体的计算方法需要综合考虑信道状况和系
统参数,并结合数值计算方法进行分析。

通过合理设计和优化,MIMO技术可以显著提高无线通信系统的容量和性能。

无线通信中的信道容量与频谱效率计算

无线通信中的信道容量与频谱效率计算

无线通信中的信道容量与频谱效率计算引言:无线通信是指通过无线电波等无线媒介进行信息传输的方式。

在现代社会中,无线通信已广泛应用于各个领域,包括移动通信、卫星通信、无线局域网等。

而了解无线通信中的信道容量与频谱效率的计算方法对于设计和优化无线通信系统至关重要。

本文将详细介绍无线通信中信道容量与频谱效率的计算步骤与方法。

一、信道容量的基本概念与计算方法1. 信道容量的定义信道容量是指在给定的频谱带宽、信号功率和信噪比条件下,信道能够承载的最大信息传输速率。

2. 香农公式香农公式是计算信道容量的基本公式,表示为:C = B*log2(1+S/N),其中C为信道容量,B为频谱带宽,S为信号功率,N为信噪比。

3. 信道容量的计算步骤a) 确定频谱带宽B。

b) 确定信号功率S。

c) 确定信噪比N。

d) 将所得参数代入香农公式,计算信道容量C。

二、频谱效率的定义与计算方法1. 频谱效率的定义频谱效率是指在给定的频谱带宽下,单位频谱资源所能承载的信息传输速率。

2. 频谱效率的计算公式频谱效率的计算公式为:SE = C / B,其中SE为频谱效率,C为信道容量,B 为频谱带宽。

3. 频谱效率的计算步骤a) 计算信道容量C。

b) 确定频谱带宽B。

c) 将所得参数代入频谱效率的计算公式,计算频谱效率SE。

三、信道容量与频谱效率的应用1. 无线通信系统设计与优化通过计算信道容量与频谱效率,可以评估无线通信系统的性能并进行系统设计与优化。

例如,在设计无线局域网系统时,可以根据信道容量和频谱效率来选择合适的调制方式、编码方式和调制阶数。

2. 频谱资源规划与管理了解频谱效率可以帮助进行频谱资源规划与管理。

在无线通信系统中,频谱资源是有限的,因此需要合理分配和利用频谱资源。

通过计算频谱效率,可以评估不同信号调制方式和系统参数对频谱资源的利用效率,从而进行合理的频谱资源规划和管理。

结论:无线通信中的信道容量与频谱效率是评估系统性能和进行系统设计与优化的重要指标。

信道容量的计算方法

信道容量的计算方法

信道容量的计算方法信道容量的计算方法:1、对于离散无记忆信道,香农公式是计算信道容量的重要方法。

香农公式为C = W log₂(1 + S/N),其中C表示信道容量,W表示信道带宽,S表示信号功率,N表示噪声功率。

2、在计算信道容量时,先确定信道带宽W的值。

例如,在一个无线通信系统中,经过测量或者根据通信标准规定,信道带宽可能是20MHz。

3、接着确定信号功率S。

信号功率可以通过功率测量仪器得到,比如在一个发射机输出端测量到的功率为10W。

4、然后确定噪声功率N。

噪声功率的确定需要考虑多种因素,如热噪声、干扰噪声等。

热噪声功率可以根据公式N₀= kT₀B计算,其中k是玻尔兹曼常数,T₀是绝对温度,B是等效噪声带宽。

在常温下,假设T₀= 290K,若等效噪声带宽与信道带宽相同为20MHz,可算出热噪声功率,再加上其他干扰噪声功率得到总的噪声功率N。

5、将确定好的W、S、N的值代入香农公式计算信道容量C。

6、对于离散有记忆信道,计算信道容量会更复杂。

需要考虑信道的记忆特性,通常采用马尔可夫链来描述信道状态的转移概率。

7、构建马尔可夫链的状态转移矩阵,矩阵中的元素表示从一个状态转移到另一个状态的概率。

8、通过求解马尔可夫链的稳态分布,结合输入符号的概率分布,利用信息论中的互信息公式来计算信道容量。

9、在多输入多输出(MIMO) 系统中,信道容量的计算又有不同。

需要考虑多个发射天线和多个接收天线之间的信道矩阵H。

10、利用矩阵H的特征值等信息,根据MIMO信道容量公式C = log₂det(I + ρHH*)计算信道容量,其中ρ是信噪比,I是单位矩阵,H*是H的共轭转置矩阵。

MIMO信道的信道容量

MIMO信道的信道容量

Pi 1/ 0 1/ i 0 P
其中 0 为某个门限值。由此得到信道容量为
i 0 i 0 (1-6)
C B log 2 (
i: i 0
i ) 0
对于有一个发送天线和多个接收天线的单入多出系统,或者有多个发送天线 一个接收天线的多入单出系统,也可以定义出收发都有理想信道信息时的容量。 这些信道可以通过多天线获得分集增益和阵列增益,但没有复用增益。当发送端 和接收端都已知信道信息时, 其容量等于信号在发送端或接收端进行最大比合并 后得到的 SISO 信道的容量为
1 引言
信道容量的计算是研究噪声信道的主要关注点之一。信道容量的定义是以任 意小的差错率传输信息的最大速率,它建立了可靠通信的基本极限。因此,信道 容量广泛应用于衡量通信系统的性能。本文的主要目标是研究与 MIMO 无线信 道有关的信道容量。 MIMO 信道的香农容量是能够以任意小的差错率传输的最大数据率。中断容 量则定义为能使中断率不超过某个数值的最大数据率。 信道容量的大小和收发两 端是否已知信道增益矩阵或其分布有关。 下文先给出不同信道信息假设下静态信 道的容量,它是其后讨论的衰落信道容量的基础。
MIMO 信道的信道容量
摘要
由于 MIMO 可以在不需要增加带宽或总发送功率耗损(transmit power expenditure)的情况下大幅地增加系统的资料吞吐量(throughput)及传送距离, 使得此技术于近几年受到许多瞩目。MIMO 的核心概念为利用多根发射天线与 多根接收天线所提供之空间自由度来有效提升无线通信系统之频谱效率, 以提升 传输速率并改善通信品质。研究 MIMO 信道的容量是对 MIMO 进行深入分析的 基础,本文分析了 MIMO 信道的容量计算方法,分别介绍了在静态信道中的注 水法、平均功率分配法信道容量,以及衰落信道中遍历容量和中断容量。 关键词:MIMO,信道容量,注水法,平均功率分配,遍历容量,中断容量

信道、信道容量、数据传输速率

信道、信道容量、数据传输速率

信道、信道容量、数据传输速率简介:信道、信道容量、数据传输速率(比特率)、电脑装置带宽列表一、信道的概念信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。

广义信道的定义除了包括传输媒质,还包括信号传输的相关设备。

信道容量是在通信信道上可靠地传输信息时能够达到的最大速率。

根据有噪信道编码定理,给定信道的信道容量是其以任意小的差错概率传输信息的极限速率。

信道容量的单位为比特每秒、奈特每秒等等。

香农在第二次世界大战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。

他指出,信道容量是信道的输入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。

二、信道的分类(一)狭义信道的分类狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。

1. 有线信道有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附近,因此传输效率高,但是部署不够灵活。

这一类信道使用的传输媒质包括用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。

2. 无线信道无线信道主要有以辐射无线电波为传输方式的无线电信道和在水下传播声波的水声信道等。

无线电信号由发射机的天线辐射到整个自由空间上进行传播。

不同频段的无线电波有不同的传播方式,主要有:地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地面传播并绕过地面的障碍物。

长波可以应用于海事通信,中波调幅广播也利用了地波传输。

天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。

短波电台就利用了天波传输方式。

天波传输的距离最大可以达到400千米左右。

电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。

无线通信中的信道容量估计

无线通信中的信道容量估计

无线通信中的信道容量估计随着无线通信技术的发展,人们对通信速度和性能要求越来越高。

而信道容量是衡量无线通信系统性能的一个重要指标,准确估计信道容量对于优化系统设计和提高通信质量非常关键。

本文将介绍无线通信中的信道容量估计,并详细列出以下步骤:1. 了解信道容量的概念- 信道容量是指在无干扰的条件下,对于给定的频谱带宽,信道可以传输的最大信息速率。

- 在理想情况下,信道容量可以通过香农公式来计算:C = B*log2(1+S/N),其中B为频谱带宽,S为信号功率,N为噪声功率。

2. 理解无线通信中的信道特性- 无线通信中的信道受到多径传播、衰落和干扰等影响,因此真实的信道容量可能低于理论值。

- 多径传播会导致信号多次反射和绕射,造成信号传播路径的复杂性。

- 衰落是指信号在传播过程中功率的减小,可分为快衰落和慢衰落。

3. 选择合适的信道模型- 常用的信道模型有AWGN信道、瑞利衰落信道和多径衰落信道等。

- AWGN信道是指只有加性高斯白噪声的信道,适用于无干扰和无衰落的情况。

- 瑞利衰落信道适用于没有直射路径的室内和城市环境,信号只经过反射和绕射。

- 多径衰落信道适用于城市和室内环境中,信号经过多次反射和绕射。

4. 进行信道估计- 信道估计是指通过接收信号的特征来估计信道的相关参数,如增益、时延和相位等。

- 常用的信道估计方法有最小二乘法、最大似然估计和贝叶斯估计等。

5. 计算信道容量- 在得到信道的估计结果后,可以根据已选择的信道模型和估计参数来计算信道容量。

- 对于AWGN信道,信道容量可以直接使用香农公式进行计算。

- 对于瑞利衰落和多径衰落信道,可以通过蒙特卡洛仿真或数值积分等方法来估计信道容量。

6. 优化信道容量- 调整系统参数以优化信道容量是提高通信性能的关键。

- 如增加天线数量、优化调制方式、降低码率或增加功率等。

- 此外,使用信道编码和误差控制技术也可以有效提高信道容量。

7. 实际应用- 信道容量估计在无线通信系统设计和优化中具有重要作用。

信道带宽与信道容量

信道带宽与信道容量

C
B
log2
1
S N
bit / s
(2-6-2)
例2.2 设一幅图片约有个像素,每个像素以后2个以等概率出 现的亮电平。若要求用3分钟传输这张图片,并且信噪比等于 30dB,试求所需的信道带宽。
解:由于每个像素有12个等概率出现的亮度电平,所以每个 像素的信息量为 I p log 2 12 3.585 b
每幅图像的信息量为 If 2.5106 Ip 8.963106 b 信息传输速率,即信道容量为
C If t 8.963 10 6 (3 60) 4.98 10 4
信噪比为 S N 30 dB 1000 由于信道容量 C B log2(1 S N)
所以所需信道带宽为
B
C
4.98104 5 kHz
案例分析2
地震预警信息是由电脑自动发送,该预警信息可通过多种通 信手段进行传输发送,例如:网络微博发送,计算机、手机、 专用预警接收服务器、电视等实时同步发布,如图2.37所示。 由于地震预警系统传递信息时需要保证信息的可靠性,因此 可以通过多种通信手段保证信息的发布,所涉及到的信道方 式也可能有多种形式。
地震发生时,首先出现的是上下震动的P波,震动幅度较 小,要过大约10秒到1分钟时间,水平运动的S波才会到来, 造成严重破坏。地震预警就是利用地震发生后,P波与S波之 间的时间差。原理上,在距离震源50公里内的地区,会在地
案例分析2
地震前10秒收到预警信息;90-100公里内的地区,能提前 20多秒收到预警信息。根据数据准确估计震级、震中位置以 及快速估计地震对预警目标的影响等。例如:地震波从震中 传到北川县城大概需要25秒。如果您在发震5秒后感受到了地 震波,并花了15秒钟打电话告诉北川的朋友地震波即将来临, 那么您北川的朋友将会获得5秒的应急时间。

信道、信道容量、数据传输速率

信道、信道容量、数据传输速率
编码信道是指数字信号由编码器输出端传输到译码器输入端经过的部分。对于编译码的研究者来说,编码器输出的数字序列经过编码信道上的一系列变换之后,在译码器的输入端成为另一组数字序列,研究者只关系这两组数字序列之间的变换关系,而并不关心这一系列变换发生的具体物理过程,甚至并不关心信号在调制信道上的具体变化。编码器输出的数字序列与到译码器输入的数字序列之间的关系,通常用多端口网络的转移概率作为编码信道的数学模型进行描述。
二、信道的分类
(一)狭义信道的分类
狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。
1. 有线信道
有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。
天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。短波电台就利用了天波传输方式。天波传输的距离最大可以达到400千米左右。电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。
调制信道的数学模型为:
y(t) = x(t) * h(t;τ) + n(t)
其中x(t)是调制信道在时刻t的输入信号,即已调信号。y(t)是调制信道在时刻t的输出信号。h(t;τ)是信道的冲激响应,τ代表时延,h(t;τ)表示在时刻t、延时为τ时信道对冲激函数δ(t)的响应,描述了信道对输入信号的畸变和延时。*为卷积算子。n(t) 是调制信道上存在的加性噪声,与输入信号x(t)无关,又被称为"加性干扰"。由于信道的线性性质,并且考虑信道噪声,x(t) * h(t;τ) + n(t)就是x(t)通过由信道响应h(t;τ)描述的调制信道的输出。调制信道可以同时有多个输入信号和多个输出信号,这时的x(t)和y(t)是矢量信号。

无线中继信道中继位置对信道容量影响的分析

无线中继信道中继位置对信道容量影响的分析

中多个节点进 行资源共 享 , 从而实 现整个 网络 节约资源
的 目的 。只要 网络 中终 端数 目超过两 个 , 就有 可能采用 中继协作方式进行 通信… 1。 采用 中继协作方 式进行通 信 时 , 协作伙伴 的选择是

算和系统仿真 可知 , 中继 节点位置 存在使信道容 量最大 的唯一最优值 , 一结论有 效的缩小 了 中继节点 位置选 这 择 的范 围, 有助于 提高协作 伙伴 选择 的效率 。文章通过
了运 算 复 杂 度 。此 外 , 方法 对 其 他 准 则下 协作 伙 伴 的 选 择 具有 指 导 意 义 。 该
关键词 : 无线中继信道 ; 信道容量 ; 中继节点位置 中图分类号 : 9 17 TN l . 文献标识码 : A 文章编号 :0 3 2 12 1)6 0 5 — 5 t0 7 4 (000 — 06 0
Ke r :wie e sr l y c a n l c a n lc p c t ; e a o e p sto y wo ds r l s e a h n e ; h n e a a i r l y n d o i n y i
1 引言
在 无线通信 的发展 过程 中, 作通信 是近几年 来发 合
( c o l f nomaina dCo S h o fr t n mmu iainE gn eig HabnE gn eigUnvri , rbn1 0 0 hn ) oI o nc t n ie r , ri n ie r i es y Ha i 5 0 1C i a o n n t
Ab t a t As t e t r e s m a i z n h a a iy o e t r e n d r l s e a h n e , h fe to h e a o ii nsi s r c : h a g t x mi i g t e c p c t f t h e — o e wie e s r l y c a n l t e e f c ft e r l y p sto s i h a a y e . s c a a h m a i a q a i n i o tu t d. tp o i e h a a i o m u a i if r n o d t n n n l z d A pe i l m t e tc le u to sc nsr c e I r v d st e c p c t f r l n d fe e tc n ii s a d y o g v so t h p i l o i o ft e r l y n d n e h o sr i to x mi i g c a n l a a iy S mu a i n s o i e u e o tma st n o e a o e u d r t e c n ta n fma i z n h n e p c t . i l t h ws t p i h c o t a h s a g rt m a e r s n h n e a a i n h p i a o i o fr l y n d c u a e y a d e f c i e y h tt i l o i h c n r p e e tc a n lc p c t a d t e o tm lp st n o e a o e a c r t l n f e t l . y i v

通信基础知识|信道容量

通信基础知识|信道容量

通信基础知识|信道容量写在前面:关于信道容量相关的定义与理论,最经典的是与AWGN信道相关的香农公式,随着移动通信系统的发展,通信信道越来越复杂,在香农公式研究的基础上实际上又有很多展开的研究,包括平坦衰落信道、频率选择性等信道的容量、又包括收发端是否已知信道信息条件下的容量。

本篇文章将相关的资料加以记录整理,供个人学习使用。

1 相关定义•香农容量(各态历经容量、遍历容量):系统无误传输(误码率为0)下,能够实现的最大传输速率;香农定义该容量为在某种输入分布\(p_X(x)\)下,信息传递能够获得的最大平均互信息\(I(X;Y)\),也即\(C_{\rmergodic}=\max_{p_X(x)}I(X;Y)\);如果信道衰落变化很快,在一个编码块内,所有的信息会经历所有可能的衰落,那么此时通常用各态历经容量来定义capacity,为每种可能衰落下,信道容量的统计平均值•中断容量:系统在某个可接受的中断概率下的最大传输速率(注意信噪比越小,中断概率越大,于是可接受的最大中断概率对应着一个最小的信噪比),有\(P_{\rm outage}=P(\gamma<\gamma_{\min})\);如果信道衰落变化较慢,在一个编码块内,信息经历相同的衰落,而不同编码块内信息经历不同的衰落,此时通常用中断容量来讨论capacity2 影响信道容量的因素•信道种类:AWGN信道、平坦衰落信道、频率选择性衰落信道、时间选择性衰落信道等•信道信息对于收发端是否已知:收发端已知信道衰落分布信息CDI、接收端已知信道实时的状态信息CSIR、收发端都已知信道实时的状态信息CSIRT3 SISO信道容量AWGN信道:最简单的加性高斯白噪声AWGN信道的(香农)信道容量,即是经典的香农公式:\(C=B\log(1+\frac{S}{N})\),其推导见通信基础知识 | 信息熵与香农公式,注意两个条件:高斯分布的信源熵最大、信号与噪声不相关平坦衰落信道:对于平坦衰落信道模型\(y=hx+n\)来说,信道的抽头系数可以写为\(\sqrt{g[i]}\),其中\(g[i]\)为每时刻的功率增益系数,信噪比此时考虑信道的衰落作用,为\(\gamma=\frac{S|h|^2}{N}\)•CDI:求解困难•CSIR:经过衰落的信道\(h\)的作用,相比AWGN信道,平坦衰落信道的信噪比会随之随机下降o各态历经容量:\(C_{\rmergodic}=B\int_0^{\infty}\log(1+\gamma)p(\gamma)d\gamma\),由于平坦衰落信道中的信噪比\(\gamma\)相比AWGN信道都是下降的,不难判断有\(C_{\rm fading}<C_{\rm AWGN}\)o中断容量:\(C_{\rmoutage}=B\log(1+\gamma_{\min})\),平均正确接受的信息速率为\(C_{\rm right}=(1-P_{\rmoutage})B\log(1+\gamma_{\min})\)•CSIRT:根据香农公式,信道容量与接收信号功率、噪声功率、信号带宽相关。

信道容量的定义

信道容量的定义

信道容量的定义
1、信道容量的定义在信息论中,称信道⽆差错传输信息的最⼤信息速率为信道容量,记为。

从信息论的观点来看,各种信道可概括为两⼤类:离散信道和连续信道。

所谓离散信道就是输⼊与输出信号都是取值离散的时间函数;⽽连续信道是指输⼊和输出信号都是取值连续的。

可以看出,前者就是⼴义信道中的编码信道,后者则是调制信道。

仅从说明概念的⾓度考虑,我们只讨论连续信道的信道容量。

信道容量是指信道中信息⽆差错传输的最⼤速率.
是⼀个理想的极限值
Shannon公式在信号平均功率受限的⾼斯⽩噪声信道中,计算信道容量的理论公式为:
C=Blog2(1+S/N) 单位(b/s)
由公式得出的结论:
1.增⼤信号功率S可以增加信道容量,若信号功率趋于⽆穷⼤,则信道容量也趋于⽆穷⼤
2.减⼩噪声功率N或者减⼩噪声功率谱密度可以增加信道容量,若噪声功率趋于零,则信道容量趋于⽆穷⼤.
3.增加信道带宽B 可以增加信道容量.但是不能使信道容量⽆限制增⼤.信道带宽B趋于⽆穷⼤时.信道容量的极限值为
limC=1.44(S/n0)。

信道带宽和信道容量

信道带宽和信道容量

信道带宽模拟信道:模拟信道的带宽W=f2-f1其中f1是信道能够通过的最低频率,f2是信道能够通过的最高频率,两者都是由信道的物理特性决定的。

当组成信道的电路制成了,信道的带宽就决定了。

为了是信号的传输的失真小些,信道要有足够的带宽。

数字信道:数字信道是一种离散信道,它只能传送离散值的数字信号,信道的带宽决定了信道中能不失真的传输脉序列的最高速率。

一个数字脉冲称为一个码元,我们用码元速率表示单位时间内信号波形的变换次数,即单位时间内通过信道传输的码元个数。

若信号码元宽度为T秒,则码元速率B=1/T。

码元速率的单位叫波特(Baud),所以码元速率也叫波特率。

早在1924年,贝尔实验室的研究员亨利·尼奎斯特就推导出了有限带宽无噪声信道的极限波特率,称为尼奎斯特定理。

若信道带宽为W,则尼奎斯特定理指出最大码元速率为B=2W(Baud)尼奎斯特定理指定的信道容量也叫尼奎斯特极限,这是由信道的物理特性决定的。

超过尼奎斯特极限传送脉冲信号是不可能的,所以要进一步提高波特率必须改善信道带宽。

码元携带的信息量由码元取的离散值个数决定。

若码元取两个离散值,则一个码元携带1比特(bit)信息。

若码元可取四种离散值,则一个码元携带2比特信息。

总之一个码元携带的信息量n(bit)与码元的种类数N有如下关系:n=log2N单位时间内在信道上传送的信息量(比特数)称为数据速率。

在一定的波特率下提高速率的途径是用一个码元表示更多的比特数。

如果把两比特编码为一个码元,则数据速率可成倍提高。

我们有公式:R=B log2N=2W log2N(b/s)其中R表示数据速率,单位是每秒比特,简写为bps或b/s数据速率和波特率是两个不同的概念。

仅当码元取两个离散值时两者才相等。

对于普通电话线路,带宽为3000HZ,最高波特率为6000Baud。

而最高数据速率可随编码方式的不同而取不同的值。

这些都是在无噪声的理想情况下的极限值。

通信原理第4章信道

通信原理第4章信道
按噪声来源分类
人为噪声 - 例:开关火花、电台辐射 自然噪声 - 例:闪电、大气噪声、宇宙噪声、热
噪声
30
信道中的噪声
热噪声
来源:来自一切电阻性元器件中电子的热运动。 频率范围:均匀分布在大约 0 ~ 1012 Hz。 热噪声电压有效值:
V 4kTRB(V)
式中 k = 1.38 10-23(J/K) - 波兹曼常数; T - 热力学温度(ºK); R - 阻值(); B - 带宽(Hz)。
8
有线信道
4.2 有线信道
明线
9
有线信道
对称电缆:由许多对双绞线组成
导体 绝缘层
同轴电缆
图4-9 双绞线
实心介质 导体
金属编织网
保护层
图4-10 同轴线
10
有线信道
n2 n1 折射率
光纤
结构
(a)
纤芯 包层
n2 n1 折射率
按折射率分类 (b) 阶跃型
梯度型 按模式分类
噪声等效带宽:
Bn
Pn(f)d
f
2Pn(f0)
0 Pn(f)df Pn(f0)
式中 Pn(f0) - 原噪声功率谱密度曲线的最大值
噪声等效带宽的物理概念:
以此带宽作一矩形
滤波特性,则通过此
接收滤波器特性
特性滤波器的噪声功率,
等于通过实际滤波器的
Pn(f)
噪声功率。
Pn (f0)
噪声等效 带宽
利用噪声等效带宽的概念,
32
信道中的噪声
窄带高斯噪声
带限白噪声:经过接收机带通滤波器过滤的热噪 声
窄带高斯噪声:由于滤波器是一种线性电路,高 斯过程通过线性电路后,仍为一高斯过程,故此 窄带噪声又称窄带高斯噪声。

无线通信网络中的信道建模及分析研究

无线通信网络中的信道建模及分析研究

无线通信网络中的信道建模及分析研究在无线通信网络中,信道建模及分析是一个重要的研究领域。

信道建模是指对无线信道传输过程进行描述和建模,以便分析和优化通信系统的性能。

本文将详细介绍无线通信网络中的信道建模及分析研究。

一、信道建模的意义与目的无线通信系统中的信道是指无线信号在传播过程中所经过的传输介质,包括空气、土壤、建筑物等。

而信道建模的目的是用数学模型来描述信号在这些传输介质中的传播特性,为通信系统的设计和性能分析提供准确的参考。

信道建模在无线通信系统中具有重要的意义。

首先,它可以帮助我们理解信号在无线传输过程中所遇到的各种影响因素,如多径效应、衰落效应等,从而更好地设计和优化通信系统。

其次,准确的信道建模可以为无线通信的性能评估提供依据,包括误码率、传输速率等指标。

最后,信道建模是无线通信系统仿真和测试的基础,通过构建合理的信道模型,我们可以在实验室中模拟真实的通信环境,进一步验证系统的设计与性能。

二、信道建模的方法与技术在无线通信网络中,信道建模的方法与技术有很多种。

下面将介绍三种常见的信道建模方法。

1. 统计建模法统计建模法主要是通过对信号在无线传输过程中的统计特性进行描述,以建立信道模型。

常见的统计建模方法有高斯过程模型、随机过程模型等。

这些模型通过对信号在时域、频域等各个方面的统计特性进行分析与建模,能够比较准确地反映出无线信道的传播特性。

2. 几何建模法几何建模法是通过对信号在无线传输过程中的传播路径进行建模。

常见的几何建模方法有射线追踪模型、几何概率模型等。

这些模型通过模拟信号在传输过程中与障碍物之间的反射、衍射和散射等现象,来描述无线信道的传播特性。

3. 物理建模法物理建模法是通过对无线信道中的传输媒介进行物理特性建模,包括介质损耗、多径传播、衰落等。

常见的物理建模方法有雷电模型、耦合波模型等。

这些模型通过对信号在无线传输过程中的物理特性进行建模,能够更真实地反映出无线信道的传播特性。

通信原理第3章信道

通信原理第3章信道
增大视线传播距离的其他途径 ➢ 中继通信: ➢ 卫星通信:静止卫星、 移动卫星
图3.1-5 无线电中继
➢ 平流层通信:利用位于平流层的高空平台电台代替卫星作为 基站的通信。
11
第3章 信 道
三、电离层和大气层对于传播的影响
电离层对于传播的影响
反射 散射
大气层对于传播的影响
散射 吸收
衰 减
根据应用情况不同,在光纤线路中可能设有中继器 (也可不设)。中继器有两种类型:直接中继器和间接中继器。 所谓直接中继器就是光放大器,它直接将光信号放大以补偿光 纤的传输损耗,以便延长传输距离;所谓间接中继器就是将光 信号先解调为电信号,经放大或再生处理后,再调制到光载波 上,利用光纤继续进行传输。在数字光纤信道中,为了减少失 真及防止噪声的积累,每隔一定距离需要加入再生中继器。
电离层
电离层:约60 ~ 400 km
平流层
60 km
对流层
10 km
地面
0 km
6
第3章 信 道
3.短波电离层的传播路径
短波电离层反射信道是利用地面发射的无线电波在电 离层, 或电离层与地面之间的一次反射或多次反射所形成 的信道。
离地面60~400 km的大气层称为电离层。
电离层由分子、原子、离子及自由电子组成,形成的 原因是由于太阳辐射的紫外线和X射线。 当频率范围为 3~30 MHz (波长为10-100m)的短波(或称为高频)无线电 波射入电离层时, 由于折射现象会使电波发生反射,返回 地面,从而形成短波电离层反射信道。
制 器




线测






处 理
电 信 号

dbbit 单位 -回复

dbbit 单位 -回复

dbbit 单位-回复什么是dbbit单位?DBbit(Decibel Bit,分贝位)是一种用来衡量信号强度或信息量的单位。

在无线通信领域,分贝位被广泛应用于衡量信噪比、信道容量等参数。

本文将一步一步回答关于DBbit单位的问题,以使读者对其有更深入的了解。

首先,我们需要了解分贝(dB)是什么。

分贝是一种对数单位,常用于表示两个物理量之间的比例关系。

在通信领域,分贝经常用于衡量信号强度、功率或电压之间的比值。

分贝的计算公式是dB = 10 * log10(x/y),其中x和y代表两个物理量的比值。

然而,分贝单位最初被用来描述声音的强度,而在无线通信领域中,我们需要一种更直接地衡量信息量的单位。

这就是DBbit的出现。

DBbit的定义是与二进制对数有关的单位。

由于信道中的信息通常用二进制进行编码和传输,因此DBbit单位更适用于衡量无线通信系统中的信息量。

DBbit单位的计算公式是DBbit = 10 * log10(1 + S/N),其中S代表信号的功率,N代表噪声的功率。

这个公式表示了信号的功率与噪声的功率之间的比值。

DBbit单位可以用来衡量无线信道中传输的信息量,它越大表示信道传输的信息越丰富。

DBbit单位的应用非常广泛。

在无线通信系统中,衡量信噪比是十分重要的。

信噪比代表了信号与噪声功率之间的比值,它决定了信号的传输质量和可靠性。

通过利用DBbit单位,我们可以对信噪比进行更准确地衡量,从而优化通信系统的性能。

另外,DBbit单位也可以用于衡量无线信道的容量。

信道容量是指在一定的频谱带宽内所能传输的最大信息量。

通过计算信道的信噪比和带宽,我们可以利用DBbit单位来估计信道的容量。

这对于无线通信系统的规划和设计非常重要,可以确保系统能够满足用户的需求。

在现实应用中,DBbit单位常常与其他单位一起使用。

例如,在无线网络中,我们通常使用DBm(分贝毫瓦)来表示发射功率的强度,而使用DBbit 来衡量信道的质量和容量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FSMC的容量取决于信道在所有过去输入和输出条件下的极限分布,可 用迭代的方法求出。如同独立同分布瑞利衰落的情形,对于FSMC这样简单 的分布,信道容量的分析也非常复杂。
由此可见,仅CDI已知时,信道容量的分析以及由此寻求相应的设计思 路都是非常困难的。
第四章 无线信道的信道容量
4.2.3 接收端已知CSI
C
max P( ): P( ) p( )d P
0
B log2(1
P( )
P
)p(
)d
第四章 无线信道的信道容量
4.2.4 接收两端都已知CSI 多路复用情况: 按约束条件得到使香农容量最大的最佳功率分配为:
P( )
P
1/
0
0
1/
0 0
上式的最优功率分配方法是时域的注水发功控。
根据上式,得到信道容量公式为
C
B
log 2[1
]
B
log 2[1
1 E[1/
] ]
其优点是可以不用考虑信道的状态而以固定速率进行传输。由于在所有信道状
态下传输速率不变,传输过程不会发生中断,所以上式的容量又叫做零中断容量。 中断容量与截断式信道反转
衰落信道的零中断容量显著低于香农容量的原因在于它要在所有衰落状态下维
持恒定的传输速率。如果i] Pg[i](/ N0B) ,其均值为 Pg (/ N0B)。由 于 P (/ N0B) 恒定,g[i]的分布就决定了 [i]的分布。
第四章 无线信道的信道容量
4.2 平坦衰落信道的容量 4.2.1 信道和系统模型
信道容量取决于发送端和接收端对g[i]的了解概况,分为以下三种:
P的/乘N积0B,所以知道g[i]的CSI或CDI等于知
第四章 无线信道的信道容量
4.2.2 信道分部信息已知(CDI已知)
已知CDI时,可到达容量 的 输入分布 问题在两种情形下是可以求解的, 一是独立同分布的瑞利衰落信道,二是有限状态马尔科夫(FSMC)信道。
在独立同分布的瑞利衰落信道中,功率增益服从指数分布,并且对于不 同的信道使用。信道增益是独立变化的。具体分布函数及对应的信道容量并 无闭式解,只能以数值方法求得。
信噪比大于或等于 min ,则能正确译码。若接收信噪比小于 min ,就不能
以接近1的概率译对突发中的所有数据比特,此时接收机将指示出现了一次 中断。出现中断的概率为Pout P( min)。在所有突发中,正确传输的概率
是 1 Pout ,所以平均正确接收的数据速率为 Cout (1 Pout )B log2 (1 min)
第四章 无线信道的信道容量
4.2.3 接收端已知CSI
2、带中断的容量
带中断容量定义为中断率下信道能传送的最大的恒定传输速率。 带中断容量允许在某个突发时段以一定的概率译错所传输的比特。发
送端确定一个最小接收信噪比 min ,再按这个信噪比确定一个速率
C B log2(1 min) ,然后在所有突发中以这个速率传输。如果接收的瞬时
第四章 无线信道的信道容量
4.2.4 接收两端都已知CSI 发送机
信道
g[i]
n[i]
接收机

译码器
w
功率 X[i]
编码器 控制
P[i]
y[i] 信道估计
香农容量
收发两端都已知CSI时的系统模型
允许瞬时的发送功率 P( )随
变化,并受限于平均功率
P

P( ) p( )d P
0
将平均功率受限下的衰落信道容量定义为:
此时有两种信道容量的定义:一种是香农容量,也叫遍历容量,另一种 是带中断容量,这两种容量对实际系统设计都有重要的意义。
1、香农容量 香农容量定义为可使误码率任意小的最大数据传输速率。 对于给定平均功率限制 P 且接收端已知CSI的衰落信道,香农容量为:
C B log2(1 ) p( )d
0
对于相同的平均信噪比,接收端已知CSI时的香农容量要比AWGN信道 容量小,即仅接收端已知CSI时衰落将使容量减小。
第四章 无线信道的信道容量
4.1 AWGN信道容量 4.2 平坦衰落信道的容量
4.2.1信道和系统模型 4.2.2信道分布信息已知 4.2.3接收端已知CSI 4.2.4收发两端都已知CSI 4.2.5接收分集的信道容量 4.2.6容量对比 4.3 频率选择性衰落信道的容量 4.3.1时不变信道 4.3.2时变信道
C Blog(2 1 )
第四章 无线信道的信道容量
4.2 平坦衰落信道的容量 4.2.1 信道和系统模型
发送机
信道
接收机
w
X[i] g[i]
n[i]
y[i]

编码器
译码器
平衰落信道及系统模型
如图所示的平稳遍历离散时间信道,时变的信道增益为 g[i] ,信道的功 率增益g[i]服从某种分布p[g],假设g[i]与信道的输入无关。在分块衰落信道中, g[i]在某一分块时间T内保持不变,之后依其分布p[g]变为另一个独立的值。
第四章 无线信道的信道容量
本章讨论单用户单天线系统的信道容量,包括时变信道和时不变信道 的情况。首先介绍很熟悉的时不变加性高斯白噪声信道的容量公式,然后 研究时变平衰落信道的容量。
4.1 AWGN信道容量
一个离散时间加性高斯白噪声信道:y[i]=x[i]+n[i]。假设信道带宽为B, 接收信号功率是P。接收信噪比定义为x[i]的功率除以n[i]的功率,是恒定值 P(/ N0B)。白噪声的单边功率谱密度是 N0 / 2 。AWGN信道的容量由著 名的香农公式给出:
C
0
B
log 2
(
0
)p(
)d
第四章 无线信道的信道容量
4.2.4 接收两端都已知CSI
两种次佳的传输方法:零中断容量与信道反转、中断容量与截断式信道反转。
零中断容量与信道反转
它依靠发送端已知的CSI使接收端保持恒定接收功率,这种功率分配叫做信道反转。
信道反转后衰落信道的容量就是信噪比为 的AWGN信道的容量
(1)信道分布信息CDI已知:发送端和接收端都已知g[i]的分布。
(2)接收端已知CSI:接收端已知g[i]在时刻i的值,且发送端和接收端 都已知g[i]的分布。
(3)发送端和接收端都已知CSI:发送端和接收端都已知g[i]在时刻i的 值及g[i]的分布。
瞬时信噪比 为[i]g[i]和常数 道 [i]的CSI和CDI。
相关文档
最新文档