第九章微分方程

合集下载

常微分方程

常微分方程

dy y
P(
x)dx,
ln | y | P( x)dx lnC1 ,(C1为任意常数)
齐次方程的通解为 y Ce P( x)dx (C eC1 )
17
2. 线性非齐次方程 dy P( x) y Q( x) dx
线性齐次方程是线性非齐次方程的特殊情况.
线性齐次方程的通解是 Ce P( x)dx ,
(3)检验改进模型, 观察所得的解能够在多大程度或范围上反映实际问题,
用实际问题检验该模型, 如果存在问题,则需研究, 改进模型.
27
例 冷却问题 将一个温度为50º的物体,放在20º的恒温 环境中冷却,求物体温度变化的规律.
解 冷却定律:“温度为T的物体,在温度为 T0 的环境中 冷却的速率与温差T T0成正比.” 设物体的温度T与时间 t的函数关系为 T T (t),
(t2 x)dt xdx 0 一阶 z x y 一阶
x
未知函数是一元函数的方程为 常微分方程;
未知函数是多元函数的方程为 偏微分方程.
方程中所出现的导数的最高阶数称为 微分方程的阶.
一般的n阶微分方程为 F ( x, y, y,, y(n) ) 0,
或已解出最高阶导数 y(n) f ( x, y, y,, y(n1) ).
9.4 微分方程的应用问题
例 把“大气压随高度变化而降低的速率与所在高度 处的气压成正比”所含关系表示出来.
解:第一步,设未知函数:
设大气压P和高度x之间的函数关系为 P P(x),
大气压随高度变化的速率为 dP
dx
第二步,根据条件写出方程 dP P, 为比例系数,
dx
第三步,取比例系数为正:因 dP 0, 故 0,
第九章 常微分方程

微分方程与差分方程

微分方程与差分方程

λ = −1± i, 则齐次方程的通解为 y = e−x (C1 cos x + C2 sin x). 因 −1+ i 是单特征根,故设原非齐次方程的特解为
y* = xe−x[( A0 x + A1) cos x + (B0 x + B1) sin x].
402
把它代入原非齐次方程得
4B0 x cos x + 2(A0+B1) cos x − 4A0 x sin x + 2(B0−A1) sin x = x cos x + 3sin x,
解 将特解 y = e2x + (1+ x)ex 代入原非齐次微分方程得 (4 + 2 p + q)e2x + (3 + 2 p + q)ex + (1+ p + q)xex = rex.
比较系数,得方程组
⎧2 p + q = −4, ⎧ p = −3;
⎪⎨2 p + q − r = −3,⇒ ⎪⎨q = 2;
tan y
tan x

1 tan
y
d
tan
y
=
−∫
1 tan
x
d
tan
x,
ln(tan y) = − ln(tan x) + ln C, 故通解为 tan x tan y = C. 例3 求微方程 cos ydx + (1+ e−x ) sin ydy 在 y(0) = π 下的特解.
4
解 原方程变形为 (1+ e−x ) sin ydy = − cos ydx, 分离变量,得
过程,只要对所给通解求若干次导数,以消去所有任意常数即可.

第九章 常微方程数值解法

第九章 常微方程数值解法
第9章 常微分方程数值解法 8-2
第8章 序
许多科学技术问题,例如天文学中的星体运动, 许多科学技术问题,例如天文学中的星体运动,空间 技术中的物体飞行,自动控制中的系统分析, 技术中的物体飞行,自动控制中的系统分析,力学中的振 动,工程问题中的电路分析等,都可归结为常微分方程的 工程问题中的电路分析等, 初值问题。 初值问题。 所谓初值问题, 所谓初值问题,是函数及其必要的导数在积分的起始 点为已知的一类问题,一般形式为: 点为已知的一类问题,一般形式为:
⇒ y n +1 = y n −1 + 2hf ( xn , y n )
第9章 常微分方程数值解法
(8 - 4)
8-10
Euler公式的推导( Euler公式的推导(续5) 公式的推导
上对y )=f 四、利用数值积分公式:在[xn,xn+1]上对y′(x)=f (x,y(x)) 积分 利用数值积分公式:
x0 < x1 < L < xn < L
(i=1,2,…,n)构造插值函数作为近似函数。上述离散点 i=1,2,…,n)构造插值函数作为近似函数。 相 邻两点间的距离h 称为步长, 邻两点间的距离hi=xi-1-xi 称为步长,若hi 都相等为一定数 h, 则称为定步长,否则为变步长。( x, y ( x)) 则称为定步长,否则为变步长。 a≤ x≤b y ′( x) = f 本章重点讨论如下 y (a ) = y0 一阶微分方程: 一阶微分方程: 在此基础上介绍一阶微分方程组与 8-5 第9章 常微分方程数值解法 高阶微分方程的数值解法。 高阶微分方程的数值解法。
⇒ yn +1 = yn + hf ( xn , yn ) + E ( xn , h) ⇒ yn +1 = yn + hf ( xn , yn )

30第九章 连续时间:微分方程

30第九章 连续时间:微分方程

• 索罗—斯旺新古典增长模型 新古典生产函数 Y Y (K, L) 边际产品为正但递减
Y K
2Y 0, K 2
0
Y L
0,
2Y L2
0
一次齐次(规模报酬不变)性
Y (K,L) Y (K, L)
人均项目表示为
y (k)
净投资:
K I K S K sY K
同除 L可得
K / L sy k s(k) k
yk a
该非齐次方程的通解为 y(x) y y(0)eax
定义
• y(x) y,y 收敛于y ,y 的时间路径是稳定的
在上例中,当且仅当 a 0时,y(x) y
• 伯努利方程
dy ay cym dx
m 其中a 和 c为常数或者 x 的函数, 为任意除0和1之外的
实数,两边同除 ym 可得
形式 P(D)y 0的通解则非齐次方程 P(D) y f (x) 的通解
为 y yc yp 。
第3节 一阶常系数线性微分方程
最简单形式
dy ay f (x) dx
定理 其非齐次方程的特解为
y(x) eax x eas f (s)ds 0
特殊情形 dy ay k dx
其一个特解(潜在均衡点)为
dt
为常系数的一阶线性微分方程,一特解(潜在均衡点)为
通解为
P
ab
P(t) P cegt
其中c为任意常数而g (b a)
当且仅当 g 0时P(t) P ,因 0条件即为b a
在正常商品时,供给曲线不后仰,条件满足
• 马歇尔供求函数:
PD
a
Q a
PS
b
Q b
动态调整过程:
dQ dt

数值分析第九章常微分方程数值解法

数值分析第九章常微分方程数值解法
高斯-赛德尔迭代法
松弛法
通过迭代更新函数值并逐步放松约束 条件来逼近解,适用于刚性和非刚性 问题。
利用线性组合迭代函数值来逼近解, 具有更高的收敛速度和稳定性。
03
数值解法的稳定性分析
数值解法的稳定性定义
数值解法的稳定性是指当微分方程的初值有微小的扰动时, 其数值解的近似值的变化情况。如果数值解在微小扰动下变 化较小,则称该数值方法是稳定的。
更高的精度和稳定性。
数值逼近法
泰勒级数法
将微分方程的解展开为泰勒级数,通过截断级数来逼 近解。
多项式逼近法
利用多项式来逼近微分方程的解,通过选取合适的基 函数和系数来提高逼近精度。
样条插值法
利用样条函数来逼近微分方程的解,具有更好的光滑 性和连续性。
迭代法
雅可比迭代法
通过迭代更新函数值来逼近微分方程 的解,具有简单易行的优点。
初值和边界条件的处理
根据实际问题,合理设定初值和边界 条件,以获得更准确的数值解。
收敛性和误差分析
对数值解进行收敛性和误差分析,评 估解的精度和稳定性。
数值解法的应用案例分析
人口增长模型
通过数值解法求解人口增长模型,预测未来人口数量,为政策制 定提供依据。
化学反应动力学
利用数值解法研究化学反应的动力学过程,模拟反应过程和结果。
数值分析第九章常微分方 程数值解法
• 引言 • 常微分方程数值解法的基本思想 • 数值解法的稳定性分析 • 数值解法的收敛性和误差分析 • 数值解法的实现和应用案例
01
引言
常微分方程的应用背景
自然科学
描述物理、化学、生物等自然 现象的变化规律。
工程领域
控制系统设计、航天器轨道计 算等。

第九章-微分方程与差分方程简介市公开课一等奖省赛课获奖课件

第九章-微分方程与差分方程简介市公开课一等奖省赛课获奖课件

x
C2
例3.求解微分方程
y
y2 ,y(0) 1,y(0) 1. y
解: 设
y
p( y) ,则
y
p
dp dy
代入方程得
p dp p2 , dy y
p(
dp dy
p y
)
0
p0
27
第27页
(三)不显含自变量 x 二阶微分方程
2
第2页
第一节 微分方程普通概念
例2.设 s=s(t) 为作自由落体运动物体在 t 时刻
下落距离, 则有
d 2s dt 2 g
s(t) g
s g
ds dt
g
ds dt
gt
C1
s(0) 0
s(0)
0
ds gdt
ds gdt
s gt C1
ds ( gt C1 )dt
ds (gt C1 )dt
于价格P线性函数: QS a bP , QD c dP ,
且 a, b, c, d 都是已知正常数. 当 QS = QD 时, 得
均衡价格 P
ac .
当 QS
> QD 时, 价格将下降,
bd
当 QS < QD 时, 价格将上涨,故价格是时间t 函数.
假设在时刻t价格P(t)改变率与这时过剩需求量
x

P(
x)dx
1 x
dx
ln
x
ln
1 x

Q(
x)e
P
(
x )dx
dx
1
x 2eln x dx
xdx x2 ,
2
故 y ( x2 C )e(ln x) ( x2 C ) x Cx x3 .

第九章--微分方程与差分方程简介

第九章--微分方程与差分方程简介
19
于是非齐次方程的一个特解为:y* =kxa x-1 x
例5 求解差分方程 2y x+1 − 4y x = 2
解:原方程可化为 y x+1 − 2y x = 2 x % 则相应齐方程的通解为 y x =C ⋅ 2 x 由于p=2=a, 所以原方程的特解应设为 y* = Ax 2 x x 代入原方程得: A(x+1)2 x +1 − 2 Ax 2 x = 2 x , 1 ⇒A= 2 1 x * y x = x 2 =x 2 x -1 于是 2 所以原方程的通解为: y x =x 2 x -1 +C ⋅ 2 x
(2)∆(cyx ) = c∆y x (c为常数)
(3)∆ (ay x + bz x ) = a∆y x + b∆z x , b为常数) (a
(4)∆ ( yx z x ) = yx +1∆z x + z x ∆yx = y∆z x + z x +1∆yx

yx z x ⋅ ∆y x − y x ⋅ ∆z x (5) ∆( ) = zx z x ⋅ z x +1
23
1、二阶齐次差分方程的通解 由9.6节可知,要求齐次差分方程的通解,只需找出 两个线性无关的特解即可。仿照一阶齐次差分方程, 设二阶齐次差分方程存在指数形式的解: y x = λ x , (λ ≠ 0) 代入原方程得:
λ x+2 + pλ x+1 + qλ x = 0
即:
λ x + pλ + q = 0
11
9.6、常系数线性差分方程 、
9.6.1 n阶 系 线 差 方 的 本 质 常 数 性 分 程 基 性 n阶 系 线 差 方 的 般 式 : 常 数 性 分 程 一 形 为 yx+n +p1yx+n-1+L+pn-1yx+1+pny1 = f (x) 其 , 1,, n为 知 数 且 n ≠ 0, (x)为 知 数 中 pL p 已 常 , p f 已 函 。 当 (x)=0时 上 方 则 n阶 系 齐 线 差 方 。 , 述 程 为 常 数 次 性 分 程 f 当 (x) ≠ 0时 上 方 则 n阶 系 非 次 性 分 程 , 述 程 为 常 数 齐 线 差 方 。 f

第9章 常微分方程初值问题数值解法

第9章 常微分方程初值问题数值解法
2
数值分析
第9章 常微分方程初值问题数值解法
《常微分方程》中介绍的微分方程主要有:
(1)变量可分离的方程 (2)一阶线性微分方程(贝努利方程) (3)可降阶的一类高阶方程 (4)二阶常系数齐次微分方程 (5)二阶常系数非齐次微分方程 (6)全微分方程 本章主要介绍一阶常微分方程初值问题的数值解法。
进一步: 令
y n1 y n
xn 1 xn
y n 1 y( x n 1 ) , y n y( x n )
f ( x , y( x ))dx h f ( x n , y n )

9

实际上是矩形法
数值分析
第9章 常微分方程初值问题数值解法
(3)
用Taylor多项式近似并可估计误差
解决方法:有的可化为显格式,但有的不行 18
数值分析
第9章 常微分方程初值问题数值解法
与Euler法结合,形成迭代算法 ,对n 0,2, 1,
( yn0 )1 yn hf x n , yn ( k 1) h ( yn1 yn f x n , yn f x n1 , ynk )1 2
7
数值分析
第9章 常微分方程初值问题数值解法
建立数值解法的常用方法
建立微分方程数值解法,首先要将微分方程离散 化. 一般采用以下几种方法: (1) 用差商近似导数
dy yx yx x x dx x y
n 1 n n 1 n
n
,
n
进一步: 令
yn1 y( xn1 ) , yn y( xn )
由 x0 , y0 出发取解曲线 y y x 的切线(存在!),则斜率

第9章 常微分方程初值问题数值解法

第9章 常微分方程初值问题数值解法

oa
b
a f ( x)dx (b a) f (b)
中矩形公式
b
ab
a f ( x)dx (b a) f ( 2 )
计算方法
梯形公式
bx
右矩形公式 中矩形公式 左矩形公式
§ 欧拉方法几何意义
y y y(x)
y0 y1 y2 0 x0 x1 x2
计算方法
x
§ 隐式欧拉方法
➢隐式欧拉法 /* implicit Euler method */
初 值 问 题 的 解 必 存 在 且唯 一 。
计算方法
§9.1 引言
三. 数值解法含义
所谓数值解法, 就是设法将常微分方程离散化, 建 立差分方程, 给出解在一些离散点上的近似值。
微分方程的数值解: 设方程问题的解y(x)的存在区 间是[a,b], 令a= x0< x1<…< xn =b, 其中hk=xk+1-xk, 如是等距节点h=(b-a)/n, h称为步长。
yi1 yi1 2h f ( xi , yi ) i 1, ... , n 1
计算方法
预估-校正法
三. 预估 — 校正法
/* predictor-corrector method */
方法 显式欧拉 隐式欧拉 梯形公式
中点公式
简单
稳定性最好
精度提高
精度低
精度低, 计算量大
计算量大
精度提高, 显式
在x0 x X上的数值解法。
四. 误差估计、收敛性
和稳定性
计算方法
§9.2 简单的数值方法与基本概念
一. 欧拉(Euler)格式
设 节 点 为xi a ih (i 0,1,2 , n) 方 法 一 :Taylor展 开 法

第9章微分方程初值问题的数值解法-1

第9章微分方程初值问题的数值解法-1

(x k x k 1 )
y ( x k 1 ) y ( x k ) h y ( ) y ( x k ) h f ( , y ( ) )
记 K*f(,y()) 称为[xk , xk+1]上的平均斜率. 故
y(xk1)y(xk)hK*

y(i) k
y(i)(xk)
时,

y(xk1)yk1O (hp1). 此时①为
p 阶Taylor方法. p=1时即为Euler公式.
例2: 取步长 h = 0.1, 用一阶、二阶和四阶Taylor方法求解下列初 值问题
y y2
,
y(0) 1
0x1. 2
解: (1) 一阶Taylor法
yk1yk 0.1yk2
Taylor公式推导:
y(xk1)y(xk)hy(xk)h 2 2y(k), xkkxk1
yk1ykhf(xk,yk) k0,1,L,n1
Euler公式几何意义:
y
P2 P1 P0
Pk
也称折线法
x
2. 梯形法
若采用梯形公式计算(★)中的积分项,则有
y(xk1)y(xk)h 2[f(xk,y(xk))f(xk1,y(xk1))]
y ( x k 1 ) y ( x k ) h y ( x k ) h 2 2 !y ( x k ) L h p p !y (p )( x k ) O ( h p 1 )

yk 1ykhyk h 22 !yk Lh p p !yk (p)

称之为Taylor级数法. 其中 y k (i)y(i)(x k),i 0 ,1 ,2 ,L,p
y(2y3)6y2y6y4
y(4) 24y3y24y5

第九章动力学微分方程(陆)案例

第九章动力学微分方程(陆)案例

o
x
★理论力学电子教案
第一个方程的解:
dv x dt


k m
v
x
dvx k dt
vx
m
ln vx

k m
t
c
kt
vx ce m
初始条件:
第9章 约束 质点动力学微分方程
kt
vx v0e m
kt
dx v0e m dt
x

x0

mv 0 k
kt
em
10
y
v O
F
h
mg
o
x
初始条件: x |t0 0 x0 v0m / k
vx |t0 v0 c v0
x

v0m
(1

kt
em
)
k
★理论力学电子教案
第9章 约束 质点动力学微分方程
11
第二个方程的解:
dv y dt

k (mg mk
vy )
dy vydt
y

y0

mg k
( k m
第9章 约束 质点动力学微分方程
例题 一质点M在xy平面内运动,已知运动 轨迹为x=b cos(kt),y=c sin(kt),b,c,k为常数。 试分析质点的受力。
解:
Fx

ma x

m
d2x dt 2

mbk 2
cos(kt)
mk 2 x
y
o r
F
Fy

ma y

m
d2y dt 2

mck
|t0 0, |t0 0 c g / r

第九章 微分方程

第九章 微分方程

二、确定函数关系式 y c1 sin( x c 2 ) 所含的参数,使其 满足初始条件 y x 1 , yx 0 .
练习题答案
一、1、3; 2、2; 3、1; 4、2.
二、C1 1, C 2 . 2
第九章 微分方程
第二节 一阶微分方程
§9.2 一阶微分方程 复习:
例 y y,
y y 0,
特解 y 2ex;
特解 y 2sin x cos x;
(3)初始条件: 用来确定任意常数的条件. 如:
T
t 0
100
y
x 1
2
一般地,一阶微分方程y' f ( x, y)的初始条件为:
y
x x0
y0
一般地,二阶微分方程y'' f ( x, y, y' )的初始条件为:
通解
特殊情形:
dy f ( x) dx
dy g ( y) dx
y f ( x)dx C
1 g ( y)dy x C
解微分方程:xy ' y ln y 0
解 分离变量
1 1 dy dx y ln y x
ln ln y ln x ln C,
两边积分
ln y Cx,
一阶方程的一般形式为 F ( x , y , y ) 0
初值问题: y f ( x , y )
y x x0 y 0
这个方程虽然简单,但常常很难求出解的表达式 本节只讨论几种特殊类型的一阶微分方程的解法。
教学任务
• 可分离变 量的微分 方程
分离变量法
• 齐次微分 方程
变量代换

第九章 微分方程与差分方程简介

第九章  微分方程与差分方程简介

第九章 微分方程与差分方程简介基 本 要 求一、了解微分方程及其解、通解、初始条件和特解等概念。

二、掌握变量可分离的方程、齐次方程和一阶线性方程的求解方法。

三、会用降阶法解下列方程:),(),,(),(//////)(y y y y y y f x f x f n ===。

四、会用微分方程解决一些简单的应用问题。

五、了解差分与差分方程及其通解与特解等概念。

习 题 九1、试说出下列微分方程的阶数:(1)x yy y x =-'2'2)(; ………………………………一阶 (2) 02)(22=+-xydy dx y x ;…………………………一阶 (3)022'''''=++y x y xy ;………………………………三阶 (4)x y y y =++'2''')1(.…………………………………二阶 2、验证下列各题中所给函数是否是所对应的微分方程的解: (1)y xy x y 2,5'2==;解:由x y x y 105'2=⇒= ∴y x xy 2102'== ∴25x y =为y xy 2'=的解.(2) 02,sin '''=-+=xy y xy xxy . 解:∵2''sin cos )sin (x x x x x x y -==,32''sin 2cos 2sin xxx x x x y +--= ∴0sin 22'''≠-=-+x xy y xy ,即xxy sin =不是02'''=-+xy y xy 的解.3、求下列微分方程的通解:(1)0'2=+y y x ;解:x Ce y C x y x dx y dy 12ln 1ln =⇒+=⇒-=(2) xy dxdyx =+)1(2; 解:)1(ln )1ln(21ln 122222x C y C x y x xdx y dy +=⇒++=⇒+=(3) y yex x dx dy 12+=; 解:C x e ye dx x x dy ye yyy++=-⇒+=2322)1(311(4) 3'ln xy xy xy +=;解:C x y y C x y y dx x x dy y y +=+⇒+=+⇒=+24212423)(ln 22)(ln 2142ln )( 4、解下列初值问题:(1)0)1(,12=+=y y dx dy; 解:∵)tan(arctan 12C x y C x y dx y dy+=⇒+=⇒=+ 由10)1(-=⇒=C y ∴)1tan(-=x y (2)1)0(,==-y e dxdyy x ;解:∵C e e dx e dy e x y x y +=⇒=由11)0(-=⇒=e C y ∴1-+=e e e x y (3)1)0(,)1(212-=-+=y y x dx dy ;解:∵C x x y y dx x dy y ++=-⇒+=-222)12()1(2由31)0(=⇒-=C y ∴3222++=-x x y y (4)2)2(,132=++=y x x yx dx dy .解:∵13ln )1ln(213ln 13222+=+⇒++=+⇒+=+x C y C x y x xdx y dy 由52)2(=⇒=C y ∴)1(5)3(22x y +=+ 5、求下列齐次方程的通解: (1)xyx y -=';解:令u xu y x y u +=⇒='',方程化为:xdx u du =-21 积分得:xC x C y Cx u C x u 2222121)21(ln ln 21ln 21-=⇒=-⇒+=--- (2) yx y x y -+='; 解:令u xu y x y u +=⇒='',方程化为dx x du uu u u u u xu 1)111(1122'=+-+⇒-+=+ 积分得:Cx u e C x du u u u =+⇒+=+--212arctan 2)1(ln ln )1ln(21arctan即Cx xy exy =+-2122)1(arctan(3)xy xe y xy +='; 解:令u xu y x y u +=⇒='',方程化为dx xu d e e u dx du x u u u 1)(=--⇒+=+- 积分得:)ln ln(ln x C x y C x e u --=⇒-=--(4)x xy y x y xy -=sin sin' x x yy x y x y -=sin sin /;解:令u xu y x y u +=⇒='',方程化为dx xudu 1sin -=积分得:C x xyC x u +=⇒--=-ln cos ln cos(5) 1,02)3(022==--=x y xydx dy x y .解:令u xu y x y u +=⇒='',方程化为x dx du u u u uu =--++--)]25151(1035[2 积分得:C y x y C x u u u =-⇒+=+----3251225ln ln ln 1065ln 1035ln 216、求下列微分方程的通解:(1) x e y y =-3';解:2)()(2333xx x x dx x dx eCe C dx e e C dx e e e y -=+=+⎰=⎰⎰-⎰-(2)22'x e y xy =+;解:方程整理为xe y x y x 22'=+∴)2(1)(1)(222222C e xC dx xe x C dx e x e ey x x dx x x dx x+=⎰+=⎰+⎰⎰=-(3)'xy xy e x =+;解:方程整理为xe y y x=-'∴)(ln )1()(C x e C dx xe C dx e x e ey x x dx x dx+=⎰+=+⎰⎰=-⎰ (4))2,2(,1tan ππθθθ-∈=-y d dy ; 解:方程整理为1tan '=⋅-y y θ∴θθθθθθθθθθcos tan )cos (cos 1)(tan tan CC d C d e e y d d +=+=⎰+⎰⎰=⎰- (5))0('>=++-x e y xy xy x;解:方程整理为xe y x x y x-=++1'∴)1()()(ln )ln (11xC e C dx e x e eC dx e xe ey x x x x x x dx xx x dx xx +=+⎰=+⎰⎰=-+-+-⎰+-+-*(6)21y x dx dy +=. 解:方程整理为2'y x x =-∴y y y dydy Ce y y C dy e y e C dy e y e x +---=+=+⎰⎰=⎰⎰-22)()(2227、求下列微分方程的通解: (1)x x y sin ''+=;解:∵12'cos 2)sin (C x x dx x x y +-=+=⎰ ∴⎰++-=+-=21312sin 6)cos 2(C x C x x dx C x x y(2) '''''44y y xy +=; 解:令 (3)0'''=+y xy ;解:令''''P y P y =⇒=,则原方程为dx xP dP P xP 10'-=⇒=+ 积分得x C P C x P 11ln ln ln =⇒+-=,即211ln C x C y xC dx dy +=⇒= (4) 222x dxy d =; 解:∵132'3C x dx x y +==⎰ ∴2141312)3(C x C x dx C x y ++=+=⎰ (5)xy y xy ''''ln =;解:令''''P y P y =⇒=,则原方程为x P x P P ln '=,令dxdu x u P x P u +=⇒=' ∴原方程为xdxu u du =-)1(ln ,积分有2111111)1(1ln ln ln 1ln ln 11C C x C e y e x P x C x P C x u x C x C +-=⇒=⇒=-⇒+=-++(6) '22''')(y y y yy =-; 解:令dy dP Py y P y =⇒=''')(,原方程化为y P ydy dP =-1∴)()1()(11111C y y C dy yy y C dy yeeP dyy dyy +=⎰+⋅⇒+⎰⎰⎰=-∴xC xC e C e C C y dx C dy C y y C y y y 11221111'1)11()(-=⇒=+-⇒+= (7)x x y y sin cot 2'''=+;解:令''''P y P y =⇒=,则原方程为x x P P sin cot 2'=+,即)cos cos 31(csc )sin ()sin (1321321cot 2cot 2C x x x C xdx x csx C dx e x e P xdx xdx +-=+⎰⇒⎰+⎰⋅⎰=-∴2121222cot 3sin 3csc 2csc sin sin 1sin sin )sin 1(31C x C x x xdx C x d x xx d x y +--=+--=⎰⎰⎰ (8)'''''y y =;解:令''''''P y P y =⇒=,则原方程为dx pdP=,积分得x e C P 1= ∴21'C e C y x += ∴321C x C e C y x ++= (9)2,1,30'0''=====x x y y y y .解:令dydP P y y P y =⇒=''')(,原方程化为dy y PdP 3=,积分得12324C y P +=∵2,10'0====x x yy∴由上式得01=C ,即43'2y y =∴24124C x y +=,同理可得22=C ∴2241+=x y8、求下列函数的差分. (1)C y x =(C 为常数); 解:0=-=∆C C y x (2)x x a y =;解:)1(1-=-=∆+a a a a y x x x x (3)ax y x sin =;解:2sin )21(cos 2sin )1(sin a x a ax x a y x +=-+=∆(4) 2x y x =;解:12)1(22+=-+=∆x x x y x 9、确定下列差分方程的阶. (1)23123=+-++x x x y y x y ; 解:∵3)3(=-+x x ∴其阶为3. (2) 242+--=-x x x y y y .解:∵6)4()2(=--+x x ∴其阶为6.第九章 单 元 测 验 题1、指出下列题的叙述是否正确:(1)方程y x y y xy 2'2)(=-是齐次的;…………………………………………错 (2)方程0)13()2(3'22=+++y x xy x 是线性的;………………………………正确 (3)方程1623'-+-=xy x y y 是可分离的.……………………………………正确 2、求下列微分方程的通解:(1))(cos 2'x yx y xy +=;解:∵)(cos 2'x y x y y += 令''xu y y x y u +=⇒=,原方程化为dx x udu 1sec 2=积分得)arctan(ln ln tan C x x y C x u +=⇒+= (2)xy x x y 1ln 1'=+; 解:xCx C dx x x x y C dx e x ey dx x x dxx x ln 2ln )ln (ln 1)1(ln 1ln 1+=⎰+=⇒+⎰⎰⎰=-*(3) 0)2(22=-+-dy x xy y dx y ; 解:原方程整理得1)21(2=-+x y y dy dx ∴)1()1()(121212)21()12(22y y ydyy y dyy y Ce y x C dy e ye y x C dy eex +=⇒⎰+=⇒⎰+⎰⎰=---2(4)0)1('''2=--xy y x ,且满足1,00'0====x x y y .解::令''''P y P y =⇒=,则原方程为dx x xP dP 21-=,积分得 2121ln 1ln 21ln xC P C x P -=⇒+--= ∴2121arcsin 1C x C y dx x C dy +=⇒-=又∵1,00'0====x x y y ∴代入上式得0,121==C C ∴x y arcsin =3、求曲线方程)(x y y =,它满足方程y x dxdy34=,且在y 轴上的截距等于7. 解:由题得dx x ydy34=,积分有4x Ce y = 又∵曲线在y 轴上的截距等于7 ∴当0=x 时7=y ,代入上式得7=C∴曲线方程为47x e y =.4、求一条曲线,使该曲线的切线、坐标轴与切点的纵坐标所围成的梯形面积等于2a ,并且该曲线过),(a a 点. 解:设该曲线方程为)(x f y =则曲线上任意一点),(00y x A 的切线方程为))((00'0x x x f y y -=-设此切线与y 轴交于点C ,过切点A 作AB 垂直于x 轴于点B ,对梯形ABOC 有:000'0000'0,),()0)((y AB x OB x f x y x x f y OC ==-=-+=∴)](2[22)(0'0002x f x y x a OBAB OC S ABOC -=⇒+=由于点),(00y x A 的任意性,上式可以改写为2'2)2(a xy y x =-整理得22'22xa y x y -=-,积分得)32()2()2(3224222222C xa x C dx x a x C dx e x a ey dx x dxx +=+⎰-=+⎰⎰-⎰=-- 又∵曲线过),(a a 点 ∴a C 31= ∴ax x a y 33222+=。

第九章 常微分方程数值解

第九章 常微分方程数值解



k 0, 1, 2,...
( ( 应用改进欧拉法,如果序列 yn0)1 , yn1)1 , 收敛,它的极限便
满足方程
y n 1 h yn f ( xn , yn ) f ( xn1 , yn1 ) 2
3.公式的截断误差
二元泰勒公式: 设 z=f(x,y) 在点 ( x 0 , y 0 ) 的某一邻域内连续且直到有n+1阶
首先希望能确定系数 1、2、p,使得到的算法格式有2阶 dy f x ( x, y) yi y( x i ) 的前提假设下,使得 f y ( x , y ) 精度,即在 dx 3 Ri y( xi 1 ) yi 1 Oh ( x , y ) f ( x , y ) f ( x , y ) ( f )
2
Q: 为获得更高的精度,应该如何进一步推广?
yi1 yi h[ 1 K1 2 K2 ... m Km] K1 f ( xi , yi ) K2 f ( xi 2 h, yi 21 hK1 ) K3 f ( xi 3 h, yi 31 hK1 32 hK2 )
最常用为四级4阶经典龙格-库塔法
4 阶龙格――库塔法
h y n 1 y n ( k1 2 k 2 2 k 3 k 4 ) 6 k1 f ( x n , y n ) 1 h k 2 f x n h, y n k1 2 2 1 h k 3 f x n h, y n k 2 2 2 k f x h, y hk n n 3 4
y( x ) y0 f (t , y(t ))dt
x0
x
是等价的,当x = x1时,

各种 微分方程的概念及其解法

各种 微分方程的概念及其解法

第九章微分方程第一节基本概念一.解释下列名词术语1.微分方程:含有未知函数的导数(或微分)的方程.注意:(1)微分方程的一般形式:,在这个方程中是自变量,是的未知函数,是对的一阶、二阶、n阶导数;(2)方程中未知函数及自变量的记号可以不出现,如:;但未知函数的导数则必须出现.2.微分方程的阶:微分方程中所含的未知函数的最高阶导数的阶数.如:是一阶是二阶是n阶3.微分方程的解:代入微分方程能使方程成为恒等式的函数.例如:是的解.4.微分方程的通解:n阶微分方程的含有n个独立的任意常数的解.例如:是的通解;但是的解,而非通解.注意:这里要说明一下“两个常数独立”的含义----即对于任意给定的不同的的取值,则应得到不同的解,则称两个常数是互相独立的.之所以不是的通解,就是因为不是互相独立的.比如:取或者都可得到解.5.微分方程的初始条件:用来确定通解中的任意常数的一种定解的条件.一阶微分方程的初始条件通常为二阶微分方程的初始条件通常为例如:已知是的通解,可由初始条件通常为。

初始条件的个数与微分方程的阶数相同。

6.微分方程的特解:通解中所含的所有任意常数都确定后的解。

比如:是的满足初始条件的特解。

7.积分曲线:微分方程的解的图形(特解是一条积分曲线;通解是一组积分曲线)二。

用微分方程求解实际问题中的未知函数的步骤:1.建立微分方程和初始条件(难点);------这通常使一部分同学感到为难,因为它除了需要数学知识之外,还往往要用到力学、物理学、化学、电学、工程技术等方面的知识,甚至还要用到语文的知识。

2.求通解;3.求特解。

我们这一章的重点是:给定一个微分方程,如何求其通解或特解.第二节一阶微分方程一.可分离变量的微分方程求解微分方程有一个特点:就是“对号入座”,什么样的微分方程,就用什么方法去解决,这几乎成了一个固定的格式.因此,判定所给的方程是什么类型就是首要问题。

这是本章的特点.今天,就给大家介绍一种最简单的一阶微分方程:可分离变量的微分方程.1.引例求解解:因为,所以是是的一个原函数。

第九章 fx微分方程与差分方程简介

第九章 fx微分方程与差分方程简介
dp p = f ( y, p) dy
y′ = p(y)
p = ψ ( y , C1 )
dp dy′ =p y′′ = dx dy
y′ = ψ ( y , C1 )
dy ∫ ψ ( y , C1 ) = x + C 2 .
3
第九章 微分方程与差分方程简介
7.
y′′ + py′ + qy = 0
2
λ + pλ + q = 0
x 1 1 2 = − + y + C. y y 2
1 3 x = −1 + y + Cy . 2
′ = ± 1 − u2 xu du dx ± = . 2 x 1− u
7
5. 求以 y = Ce
第九章 微分方程与差分方程简介
− x2
为通解的微分方程 . − x2 y ′ = − 2 xCe = − 2 xy y ′ + 2 xy = 0 . x 2x x −x 6. 已知 y1 = xe + e , y2 = xe + e ,
y 3 = xe x + e 2 x − e − x 为二阶线性非齐次
微分方程的三个解,求 此微分方程 . 微分方程的三个解, 因Y1 = y1 − y3 = e− x , Y2 = y1 − y2 = e2x − e−x , Y3 = Y1 +Y2 = e2x ,
e 和 e 是二阶线性齐次微分方 程线性无关特解, λ1 = −1, λ 2 = 2, (λ + 1)(λ − 2) = 0, λ2 − λ − 2 = 0.
2
5. y′′ = f ( x , y′ ) y′ = p(x) y′′ = p′(x) p′ = f ( x , p ) p = ϕ ( x , C1 ) y′ = ϕ ( x , C1 )

常微分方程教材

常微分方程教材

第九章 微分方程一、教学目标与根本要求(1) 了解微分方程与其解、通解、初始条件和特解的概念。

(2) 掌握变量可别离的方程和一阶线性方程的解法,会解齐次方程。

(3) 会用降阶法解以下方程:),(),,(),()(y y f y y x f y x f y n '='''=''=。

(4) 理解二阶线性微分方程解的性质以与解的结构定理。

(5) 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

(6) 会求自由项多项式、指数函数、正弦函数、余弦函数,以与它们的和与二阶常系数非齐次线性微分方程的特解和通解。

(7) 会用微分方程解决一些简单的应用问题。

二、本章教学容的重点和难点1、理解和熟悉微分方程的一些根本概念;2、掌握一阶和高阶微分方程的各种初等积分法;3、熟悉线性方程的根底理论,掌握常系数二阶线性齐次与非齐次方程的解法;4、会列微分方程与其始值问题去解决实际问题。

三、本章教学容的深化和拓宽:1、别离变量法的理论根据;2、常用的变量代换;3、怎样列微分方程解应用题;4、黎卡提方程;5、全微分方程的推广;6、二阶齐次方程;7、高阶微分方程的补充;8、求线性齐次方程的另一个线性无关的解;9、求线性非齐次方程的一个特解;10、常数变易法。

本章的思考题和习题解以下方程〔第1-6题〕1、2)0(,)1(==+'+y x y y x2、()[]f dx x f e e x f xx x ,)(02⎰+=可微 3、21222sin 22sin 1X e y x y y x ++='•+ 4、0)3(24=+-xydx dy x y5、21)0(,1)0(,022-='=='+''y y y x y 6、2y y y x y '-'+'=7、可微函数)(x f 满足⎰-=+x x f f x f x x f dx x f 12)()1(,1)()()(和求; 8、)(,,1)(21)(10x f f x f da ax f 求可微+=⎰; 9、求与曲线族C y x =+2232相交成 45角的曲线; 10、一容器的容积为100L ,盛满盐水,含10kg 的盐,现以每分钟3L 的速度向容器注入淡水冲淡盐水,又以同样的速度将盐水抽入原先盛满淡水的同样大小的另一容器,多余的水便沉着器流出,问经过多少时间,两容器的含盐量相等?§9.1微分方程的根本概念一、容要点:先从实例引入建立几个微分方程的模型,引入微分方程的一系列概念;常微分方程:常微分方程的阶数、解、通解、全部解、特解、积分曲线族的定义;二、教学要求和注意点了解微分方程与微分方程的阶、解、通解、初始条件和特解以与积分曲线说明1:一个微分方程加上初始条件和初值问题的解是对某实际问题两种等价的描述形式。

微积分课件(高教社版朱来义编)——第九章9-1

微积分课件(高教社版朱来义编)——第九章9-1

第9章微分方程初步§9.1 微分方程的基本概念§9.2 一阶微分方程§9.3 二阶常系数线性微分方程§9.4 微分方程在经济学中的应用§9.1 微分方程的基本概念一、问题的提出例1 一曲线通过点(1,2),且在该曲线上任一点),(y x M 处的切线的斜率为x 2,求这曲线的方程.解)(x y y =设所求曲线为x dxdy 2=∫=xdx y 2(1)2y =且,2C x y +=,1=C 求得.12+=x y 所求曲线方程为(1)2y =由条件⇒⇒⇒#例2 列车在平直的线路上以20米/秒的速度行驶,当制动时列车获得加速度4.0−米/秒2,问开始制动后多少时间列车才能停住?以及列车在这段时间内行驶了多少路程?解)(,t s s s t =米秒钟行驶设制动后4.022−=dtsd ,20,0,0====dt ds v s t 时14.0C t dtdsv +−==2122.0C t C t s ++−=代入条件v(0)=20120C ⇒=,202.02t t s +−=,204.0+−==t dtdsv ),(504.020秒==t 列车在这段时间内行驶了).(5005020502.02米=×+×−=s 开始制动到列车完全停住共需代入条件s(0)=020C ⇒=#含有未知函数的导数或微分的方程叫微分方程。

例,xy y =′,0)(2=++xdx dt x t ,32x e y y y =−′+′′,y x xz+=∂∂二、微分方程的定义联系自变量、未知函数以及未知函数的某些导数(或微分)的关系式:()(,,,,)0n F x y y y ′= 微分方程的实质:微分方程的阶:分类1: 常微分方程& 偏微分方程。

,0),,(=′y y x F );,(y x f y =′,0),,,,()(=′n y y y x F ).,,,,()1()(−′=n n y y y x f y 分类2: 一阶微分方程& 高阶(n阶)微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首页
上页
返回
下页
结束

将方程(9.14)和(9.15b)两端分别对x和对y积 分,得
f (x)dx g( y)dy C

( x)dx
1 (y)
dy
C
(9.16) (9.17)
式(9.16)和(9.17)分别为(9.14)和(9.15)的通解.
首页
上页
返回
下页
结束

例 求方程 y’= 2xy 的通解. 解 分离变量, 得 1 dy 2xdx
首页
上页
返回
下页
结束

其中C为任意正的常数. 将y(1)=2代入通解,可得C=10.于是,所求特解为
(1+x2)(1+y2)=10x2
首页
上页
返回
下页
结束

二、齐次微分方程
1.齐次微分方程
形如 dy f ( y ) dx x
(9.18)
的一阶微分方程,称为齐次微分方程,简称为齐次
方程. 求解齐次方程(9.18)的常用方法是变量变换
x0
x0
y = cos2x
首页
上页
返回
下页
结束

第二节 最简单的微分方程
一、可分离变量方程 二、齐次微分方程
首页
上页
返回
下页
结束

最基本的微分方程是一阶微分方程,一阶微 分方程的一般形式为
F (x, y, y') 0 y' f (x, y) (9.13) 其中F (x, y, y') 为x,y和 y' 的已知函数;f(x,y)为x、y 的已知函数.
分离变量得
1 x
dx
3 2u2 u(1 u2
)
du
( 1
u u
2
3)du u
首页
上页
返回
下页
结束

积分得 ln | x | 1 ln(1 u2) 3ln | u | ln | C | 2
由此得
| Cxu3 | 1 u2 于是,将u y 代入上式,得原方程的通解为
x Cy3 x x2 y2
于是原方程的通解为 cos y ccos x
首页
上页
返回
下页
结束

又将初始条件
y
x0 4
代入通解中, 得 c 2
2
故满足初始条件的特解为 cos y 2 cos x
2
首页
上页
返回
下页
结束

例9.1 求方程ye2xdx+(5+e2x)dy=0的通解.
解 分离变量得
e2x dx 1 dy 0
在自然科学、生物科学以及经济与管理科学的许多领 域中, 反映变量之间内在联系的函数关系, 往往都不能直接 得到,而必须通过建立实际问题的数学模型—— 微分方程, 并求解这个微分方程才能得到.
什么是微分方程呢? 下面通过具体的实例来引入微分 方程的概念.
首页
上页
返回
下页
结束

§9.1 微分方程的基本概念
dx y
y(4) 2x 0等都是常微分方程.
首页
上页
返回
下页
结束

而方程
2u x 2
2u y2
2u z 2
0,
2u x 2
4
u y
等都是偏微分方程.
定义9.2 微分方程中出现的未知函数的最高阶导数
的阶数, 称为微分方程的阶.
例如, 方程 dy x , y ' p( x) y q( x) 都是一阶微分方程,
(2)
将(1)式整理积分,得 Q ce1.5 p (3)
再将(2)式代入(3) 式,得 c = 800
又将c = 800代入(3) 式,即得所求函数关系为
Q 800e1.5 p
首页
上页
返回
下页
结束

上述两个例子, 有一个共同特点:
它们都是把一个实际问题归结为一个含有未知函数 导数的方程的求解问题. 数学上, 人们把这种方程称为 微分方程.
第九章 微分方程
§9.1 微分方程的基本概念 §9.2 最简单的微分方程 §9.3 线性微分方程解的基本性质与结构定理 §9.4 一阶线性微分方程 §9.5 二阶常系数线性微分方程
首页
上页
返回
下页
结束

第九章 微分方程
微积分研究的主要对象是函数. 因此, 如何寻找函数 关系, 这在实践中具有十分重要的意义.
例1 求过点 (1, 3 ) 且斜率为2 x的曲线方程.
解 设所求曲线的方程为 y = y (x) 则由题意可知,方程应满足
dy
dx
2x
(1)
y(1) 3
(2)
将方程(1)两端积分,得 y 2xdx x2 c (3)
再将(2)式代入(3) 式,得 c = 2
又将c = 2代入(3) 式,即得所求曲线方程为 y = x 2 + 2
通常将确定微分方程任意常数的条件称为初始条件.
n阶微分方程确定任意常数的附加条件为
y x x0
y0 , y ' x x0
y1 ,
, y(n1) x x0 yn1
其中x0 , y0 , y1 , , yn1是待定的n+1个常数.
首页
上页
返回
下页
结束

我们称这些条件为微分方程的初始条件. 微分方程 满足初始条件的求解问题称为初值问题. n阶微分方程 的初值问题通常记作
dx y
方程 y" 2 y ' 3 y x2 都是二阶微分方程.
一般地, n阶微分方程的形式为 F ( x, y, y ', , y(n) ) 0
其中 F 是 x, y , y ’, … , y (n) 的已知函数, x 为自变量, y 为未知函数, 且方程中一定含有 y(n).
首页
上页
返回
下页
于是函数 y = c1cos 2x + c2 sin 2x 是给定方程的解
首页
上页
返回
下页
结束

又因为解中含有两个独立的任意常数,所以函数
y = c1cos2x + c2sin2x 是给定方程的通解.
将初始条件
y 1, y ' 0
x0
x0
代入通解中, 求得 c1 = 1, c2 = 0
所以满足初始条件 y 1, y ' 0 的特解为
y(n) f ( x, y, y ', , y(n1) )
y
x0
y0 , y ' x0
y1 ,
, y(n1) x0 yn1
微分方程解的图形是一条曲线,叫做微分方程的积分
曲线. 初值问题的几何意义, 就是求微分方程的通过点
( x0 , y0 ) 的那条积分曲线.
首页
上页
返回
下页
结束

例1 验证 函数 y = c1cos2x + c2 sin2x是微分方程
y(n) a1 ( x) y(n1) an ( x) y f ( x) 其中 a1(x) 、…、a n-1 (x)、 a n (x), f (x) 都是 x 的已 知函数 . 不是线性方程的微分方程, 统称为非线性微分方程.
首页
上页
返回
下页
结束

例如, 方程 y ' x3 y sin x, y " 2 y ' 3 y x2是线性微分方程 方程 ( y")3 y ' 2 y 0, y" y ' y2 0 是非线性微分方程.
结束

n阶微分方程的另一种形式为 y(n) f ( x, y, y ', , y(n1) )
其中f 是 x , y , y’, … , y ( n - 1) 的已知函数. 这种已就 最高阶导数解出的方程,称为正规形微分方程.
如果微分方程中所含的未知函数和未知函数的各阶导 数都是一次的,则称方程为线性微分方程. 线性微分方程 的一般形式为:
一. 微分方程及其阶的定义 定义9.1 含有未知函数的导数(或偏导数)的方程, 称为
微分方程. 当未知函数是一元函数时, 称为常微分方程; 当未 知函数是多元函数时, 称为偏微分方程. 微分方程有时也简称 方程.
例如, 方程 dy x , y ' x2 y sin x, y " 2 y ' 3 y 0,
y
两边积分,得 ln y x2 lnc
于是原方程的通解为 y cex2
例 求方程 cos xsin ydy cos ysin xdx 满足初始条件
y
x0
4
的特解.
解 分离变量, 得 sin y dy sin x dx
cos y cos x
两边积分,得 lncos y lncos x lnc
二. 微分方程的解
定义9.3 设函数 y =φ(x) 在区间D上有连续的n阶导 数, 并且对任意的 x∈D, 均有
F ( x, ( x), '( x), , (n) ( x)) 0 则称函数 y = φ(x) 为微分方程在区间D上的解.
如可以验证函数 y e2x 是方程 y ' 2 y 0 的解
1 du ln | x | C f (u) u
(9.20)
首页
上页
返回
下页
结束

例9.4
求方程
dy dx
y3 2x2y 3x3 2xy2
的通解.
解 将所给方程改写为其次方程
相关文档
最新文档